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§1. INTRODUCTION

We consider the motion of the interface separating an inviscid, incompressible,
irrotational fluid from a region of zero density in three-dimensional space; we assume
that the fluid region is below the vacuum, the fluid is under the influence of gravity
and the surface tension is zero. Assume that the density of mass of the fluid is one,
the gravitational field is (0,0, —1), the free interface is X(¢) at time ¢ > 0, and the
fluid occupies the region (). The motion of the fluid is described by

(1.1)  v+v-Vo=-(0,0,1)— Vp on Q(t), t>0 (Euler’s equation),
(1.2) dive=0 on (t), t>0 (incompressible),
(1.3)  curlv =0, on Qt), t>0 (irrotational),

where v = (v1,v9,v3) is the fluid velocity, p is the fluid pressure. Since we neglect
the surface tension, the pressure is zero on the interface. So on the interface:

(1.4) p=0, onX(t),
(1.5) (1,v) is tangent to the free surface (¢, 3(t)).

We want to find solutions of system (1.1)-(1.5), taking prescribed initial data,
such that for every fixed t > 0, X(¢) approaches the zy-plane at infinity, and
lv(x,y, z;t)| — 0, |ve(z,y, 2;t)] — 0, as |(z,y, 2)| — oco. Since the fluid is assumed
irrotational, incompressible, we can reduce the study of the entire motion to the
motion of the free surface.

The above model is a 3-D water wave model. It is generally known that when
surface tension is neglected, the motion of the interface between an inviscid fluid
and vacuum under the influence of gravity can be subject to Taylor instability [8],
[22]. In a previous work [24], we studied the 2-dimensional water wave model; we
showed that for a 2-D water wave, the sign condition relating to Taylor instability
always holds for nonself-intersecting interface, that is, the motion of the interface
is not subject to Taylor instability. We showed further that the 2-D full nonlinear
water wave problem is uniquely solvable in Sobolev spaces, locally in time, for
any initially nonself-intersecting interface. Earlier works on the well-posedness in
Sobolev spaces of the 2-D water wave problem include Nalimov [18], Yosihara [25],
and Walter Craig [6], where the main results concern the well-posedness of the
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motion of free surface when it is a small perturbation of the still water. Shinbrot
[19] and Kano and Nishida [12] obtained the local existence and uniqueness in time
for both the 2-D and 3-D water wave problems with analytic data. T. Beale,
T. Hou and Lowengrub [1] formulated the Taylor sign condition for an arbitrary
solution and showed that when surface tension is neglected, the linearization of the
2-D full water wave equation about a presumed solution is well-posed provided the
exact solution satisfies the Taylor sign condition. Recently, T. Hou, Z. Teng and
P. Zhang [11] formulated the 3-D Taylor sign condition and extended the results in
[1] to three-dimensional space. However a result on the well-posedness in Sobolev
spaces of the full nonlinear 3-D water wave problem is still missing.

In this paper, we establish the well-posedness in Sobolev spaces of the full non-
linear 3-D water wave problem. We show that the results we obtained for the 2-D
water wave also hold for 3-D, that is, the motion of the 3-D water wave is not
subject to Taylor instability and the full 3-D water wave problem is well-posed in
Sobolev spaces for any nonself-intersecting initial interface. The main difficulty
is that in three-dimensional space, there is no such equivalence as the Riemann
mapping, which we used in 2-D to “flatten out” the water wave and carry out the
calculations; complex analysis does not apply to 3-D either. In this paper, we will
show that Clifford analysis is an effective tool for the 3-D water wave problem,
and we do not need Riemann Mapping to carry out the calculation and obtain
well-posedness results.

The 3-D Taylor sign condition [11] is the following. Let & = (x(«, 8,1), y(a, 5, 1),
z(a, B,t)), where —co < @, 8 < 00, be the parameterization of the interface %(t)
by Lagrangian coordinates (a, 3), that is, &(«, 8,t) = v(€(«, B,1),t) is the velocity
and & (o, B,t) is the acceleration of the particle occupying the position &(«, 3,1)
at time ¢. Let n be the unit normal vector of the interface X(¢) pointing out of the
water region. The sign condition requires that the quantity

(1) a=¢&;-n—(0,0,—-1)-n>cy >0,

for some positive constant ¢y at each point on the interface. In order to understand
our result on 2-D Taylor sign condition, Russ Caflisch and Tom Hou suggested the
following physically more insightful approach. They pointed out that the quantity

a=¢&;-n—(0,0,—1)-n=—-Vp-n,

therefore a > 0 is somewhat equivalent to the fact that p > 0 inside the water region,
and such a fact can be shown as long as the maximum principle applies. We find
that indeed, the pressure p is superharmonic in the water region §2(t). We therefore
are able to show that for the 3-D water wave, the quantity a is also pointwisely
greater than a positive constant depending only on the geometry of the interface,
as long as the interface is nonself-intersecting. A detailed proof will be given in §4.
This proof also applies to 2-D, it is physically more transparent than our original
proof in [24]. The rest of the paper is devoted to showing that this fact implies
well-posedness of the full nonlinear 3-D water wave problem. Clifford analysis is
our main analysis tool. Using Clifford algebra, we can rewrite the system (1.1)-
(1.5) into a system on the free surface, which can be easily reduced to a quasilinear
system. The advantage of our new approach is that it works for all dimensions
n > 2. This approach is however largely inspired by our previous work [24].
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In the next section, we give a brief introduction to Clifford analysis; in §3, we
introduce notations used in this paper and develop some identities; in §4, we for-
mulate the system (1.1)-(1.5) into an equivalent system on the free surface and give
a detailed proof for the fact that condition (1) always holds for nonself-intersecting
free surfaces of 3-D water waves; in §5, we reduce the full water wave system into
a quasilinear system and, at the end of this section, we specify the initial data of
the original water wave system, and convert it into initial data for the quasilinear
system; in §6, we show that the quasilinear system is well-posed in certain classes
of Sobolev spaces; and in §7, we prove that the solution of the quasilinear sys-
tem satisfies the original nonlinear water wave equations, provided the initial data
satisfy the compatibility condition given at the end of §5. We then conclude the
well-posedness result for the full nonlinear 3-D water wave problem.

§2. CLIFFORD ANALYSIS

In this section, we review a few basic notions and facts about Clifford analysis
and potential theory that will be used in this paper. We refer the reader to [2], [10]
and [15] for more on the subject of Clifford analysis.

Clifford numbers. Let V,, be an n-dimensional real linear vector space with basis
{61, €2,... ,en}.

A Clifford algebra C(V;,) is a unitary, associative algebra over the reals, generated
by V,, under the product rule:

(2.1) e2=—1, j=12,...,n; eiej = —eje;, 1]
An element o € C(V,,) has a representation of the form

o= E ogrer, O']ER,

where the summation is over all ordered j-tuples I = {hi,...,h;}, 0<j<n, 1<
hy <--- < hj <n,and ef = ey, ...ep,;, with convention ey = 1; {o;} are called
components of o; in particular, oy is called the real part of ¢ and is denoted by
Ro. The length of o is |o] = (32 0?)Y/2. C(Vh) is generally known as the algebra
of quaternions. In the following, when we write 0 = Y orer or o = > 0, we
always assume that o7 or o; are real numbers. An element o = Y orey € C(V,,) is
called a p-vector if the summation is over ordered p-tuples I only. The conjugate
of a l-vector £ = 3 7 &ie; is defined as € = 3.7 &€, where & = —e;, i = 1,...,n.
Given 1-vectors & = > &e; and = Y.} m;e;, their product &n is the sum of the
negative of their ‘inner product’ and ‘outer product’:

(2.2) En=—-§-n+ENAn,

1
where £ - np =Y 7 &mn and EAn = 5(577 —n€). The inner product £ - 7 is a scalar,
and the outer product £ An is a 2-vector. Notice that when n = 3, the components
of £ An are the same as that of the cross product £ x n, when £ and 7 are regarded
as vectors in 3-space. We will identify the notations £ An and & x n in the following
sections when we study 3-D water waves.
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Clifford analyticity. We begin with some notations. Let f be a function defined
on R?. We denote by 0%f the k-th order partial derivative 85} . 8;’“3 f, where
k=k +-+ksy Wesay f € CI(R?) if f is j-times continuously differentiable,
and all the k-th order derivatives O f, k = 0, 1,..., j, satisfy sup ¢ ga |0" f (2)| < o0;
if the function f is C(V},)-valued, we write f € C7(R%,C(V,)) or f € C/(RY). If
f is defined and continuous on a manifold M, we write f € C(M); we write
feC(M,C(V,))or feC(M)if fisC(V,)-valued. For M C R™, wesay f € Co(M)
if feC(M) and f is compactly supported.

Let Q C R™ be a domain. We denote by Q the closure of €, and by Q¢ the
complement of 2. Assume ¥ is the boundary of 2. We say (2 is a Lipschitz domain
with Lipschitz constant less than or equal to M, if

1. for each £ € 3, there is a ball or a half-space F 2 £, a coordinate system
2 = (21,...,Tn_1), Tpn, With origin at &, and a function ¢ : R"~! — R such that

¢(0) = 0,
6(z") = ¢(y)| < M2’ — 3|, and QN E = {n = (2, 2) : 20 > $(a’)} N E;

2. X can be covered by finitely many E’s from the above collection.
If for each & € X, the function ¢ can be chosen in CV(R"™1), we say Q is a C’
domain. For a ¢V domain Q, j > 1, we say f € C1(X) if f is 1-time continuously
differentiable; we say f € C}(X) if f € C1(X) and f is compactly supported. Let
B.(0) be the ball centered at the origin with radius r. For an unbounded domain
Q, we say % approaches plane z,, = 0 at infinity, if there is a sufficiently large R,
such that outside Br(0), ¥ is a graph (2, ¢(2')) and lim /| ¢(2') = 0.

There are a few different but equivalent ways to define Clifford analyticity. We
use the one given in [10].

Let W be a domain in R", D = Y 7 €;0;,, and D = Y ['€,,. A function
f e C(W,C(Vy,)) is said to be Clifford analytic on W if Df = 0 everywhere on
W. Since DD = DD = A,,, where A, is the Laplacian, the real components of
a Clifford analytic function are necessarily harmonic; on the other hand, if ¢ is a
harmonic function on W, then D¢ and Dp(= —D¢) are Clifford analytic functions.
For a 1-vector-valued function f = >} fie;, we have Df = —divf + curlf, so
=1 fie; is Clifford analytic if and only if

(2.3) divf =0 and curlf =0.

It is clear that when n = 2, Clifford analyticity for 1-vector-valued functions is
equivalent to complex (anti)analyticity.
Let T',, be the fundamental solution for A in R™:

1

= gm(nm2) > 92
wn(2—n) €l TS

1

(2.4) [a(§) = o log [¢], Ln(§) =
T

where w,, is the surface area of the unit sphere in R", and let

_ 2 €
(2.5) K(§) =2DI() = — =, §#0.
wn €]
Assume that 2 is a bounded C? domain in W with boundary ¥. For each £ € X, let
n(¢) = 37 ne; be the unit outer normal to ¥, and let dS be the surface measure
of ¥. We have the following Cauchy Integral Theorem.
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Theorem 2.1 (see [10, Chapter 2], (3.20)Corollary). If f is a Clifford analytic
function on W, then

(2.6) O / g:gnn(@f@ as (),

for each n in the interior of €.

Let f be a C(V,,)-valued function on ¥. We introduce the Hilbert transform of
fonX:

Do) — 2 R S /
Q1) O = —po [ En@fE)dSE). for e,

where p.v. | denotes the principal value of the integral.

Theorem 2.2 (see [10, Chapter 2], (7.1)Theorem). Assume that f€C*(3,C(Vy,)).
Then the Cauchy integral

N
(2.9 Ctn) = - [ Fm© € ds©.  nen
is Clifford analytic on Q, and continues on Q. Moreover
(29) CF€) = 57€) + H(©),  forges.

Theorem 2.3 (see [10, Chapter 2], (7.21)Corollary). Assume that f € C(Q,C(V,,)).
f is Clifford analytic on Q if and only if

(2.10) f&)=HYf(§),  forEex.

Remark 1. For an unbounded C? domain €, Theorems 2.1, 2.2 and 2.3 hold under
the further assumption that f decay at infinity.

Remark 2. Assume further that ¥ approaches plane z,, = 0 at infinity. Then
H*1 =puo. [ K(€ —&n(¢)dS(¢') =0 for £ € X. This is an easy consequence of
(3.22) in [10, Chapter 2].

We introduce a few further notations and results. Assume  is a C? domain
in R™ with boundary ¥ and outer unit normal n. The so-called double layered
potential operator K is defined for the scalar-valued function f on ¥ by

@11) KO = Zpo. /E &0 engseny,  forees,

Wn 1§ — ¢
and the single layered potential operator S is defined by
1 1
2.12 Sf(n) = / f(&)dS(€), for n € R™.
(2.12) ) = 55— . gl © 48 ’

We know from a straightforward calculation that
(2.13) DSf = C(nf).

Let L%(X,dS) be the L? space on ¥ with respect to surface measure dS. We denote
by K* the adjoint of K in L?(,dS), that is,

(2.14) K*f(¢) = —wip.v./Z %ﬂf') ds(&), for £ € 3.

The following result is due to Verchota [23]; see also [13], [14].
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Theorem 2.4 ([23], [13], [14]). Assume that Q and Q¢ are unbounded, connected
Lipschitz domains, and % approaches plane x, = 0 at infinity. Then I £ K :
L?(%,dS) — L?(X,dS) and their adjoints I + K* : L?(2,dS) — L*(X,dS) are
invertible.

Remark. The invertibility result given by Verchota in [23] is for bounded Lipschitz
domains, and by Kenig in [13, Theorem 2.1.5 ] is for unbounded domains where
the boundary is a single Lipschitz graph. Notice that the key elements in their
proof are the Rellich identity [23, Lemma 2.2], [13, Lemma 2.1.8] and a continuity
method [13, Lemma 2.1.7]. For the type of domain in Theorem 2.4, Rellich identity
[23, Lemma 2.2] holds under the assumption that v € C*°(£2), Au = 0 in €, and
u(n) = O(In|*>=™), Vu(n) = O(|n|'™™) at oo. Notice that for any f € Co(2),
u = Sf satisfies these assumptions on both © and Q¢. The proof in [23], [13] can
be modified to give Theorem 2.4.

The following results are consequences of Theorem 2.4 and Coifman-McIntosh-
Meyer [4]. Let Q be as in Theorem 2.4, and let N(u) be a nontangential maximal
function of u on Q.

Theorem 2.5 ([23], [13], [14]). Let Q2 be as in Theorem 2.4. There is a unique
solution u of the Dirichlet problem

Au=0 in €,

(D) u=feL*%,dS)

such that N(u) € L?(3,dS), where the boundary values are taken nontangentially
a.e. Moreover, the solution u has the form

2 [ (£=n)-n()

(2.15) u(n) = o )y T

(I+K)7f(§)dS(€), neQ.
Remark. We can also solve the Dirichlet problem (D) by Kelvin transform (see [7,
page 147]). That is, we first solve the Dirichlet problem on the bounded domain €2

Ai=0 inQ,
a=f on 99,

where Q = {n| # € O} (w.lo.g. we assume 0 ¢ Q) and f(£) = |§|2_"f(w). We
then take

(2.16) u(n) = PP a(), neR
The function u in (2.16) is a solution of (D). Assume that 2 is a C? domain, and ¥ is
given by the graph (z/, $(z')) outside a sufficiently large ball, with lim|,/| o (') =
0, im|,/|— oo Vé(2'), and limy,/_ VV(2') exists and is finite. For f € Cj(¥), a
solution given by (2.16) clearly satisfies u(n) = o(|n|>=™) and Vu(n) = o(|n|t="),
as [n| — oo. It is easy to check that the solution w in (2.16) is the same as the
one in (2.15) if f € Cy(X), and more generally, if f € C(X) and f decay as fast as
o(|n|?>~™) at infinity.
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Theorem 2.6 ([23], [13], [14]). Let 2 be as in Theorem 2.4. There is a unique
solution u of the Neumann problem

Au=0 in £,

(N) ou
o = f € L*(%,dS)

such that N(Vu) € L*(X,dS), where the boundary values are taken nontangentially
a.e. Moreover, the solution u has the form

2 1 *\—1
@17 ) = g | e TR s, nen

In the next section, we will introduce more notations and develop some identities.

§3. GENERAL NOTATIONS AND BASIC IDENTITIES

We make further preparations in this section. Since we are only concerned with
the 3-D water wave, we present this section in the 3-D context.

For the 3-D water wave, we use Clifford algebra C(V3). We regard points (vectors)
¢ = (z,y,2) € R? and their corresponding Clifford 1-vectors & = ze; + yes + ze3
as equivalent, the same notation & can either be a point or its corresponding 1-
vector in different contexts: for example, for vectors ¢ and 7, the multiplication
&n is obtained through Clifford multiplication by regarding &, n as their Clifford
1-vector counterparts; for Clifford 1-vectors &, n and ¢, £(n x ¢) is obtained by
first regarding n and ( as vectors and calculating the cross product n x ¢, then
rewriting n x ¢ as it’s corresponding Clifford 1-vector and calculating the Clifford
multiplication between £ and ) x ¢. This also applies to 1-vectors of operators such
as D = 0yeq + Oyea + O e3, of which V = (0, 0y, 0;) is the vector counterpart.

We give some additional notations of functional spaces. We use &(R%) to indicate
the Schwartz class of functions on RY, i.e. those functions which are infinitely
differentiable, and rapidly decay at infinity. &'(R?) is the distribution space on
R L,(R%) is the L, space on R? with norm ||u|, = ([ |u(z)[P dz)/P. We use
H*(R?%), —0o < s < 00, to indicate Sobolev space which consists of u € &'(R?)
such that (1 + [£])*a(€) € La(R?), and the Sobolev norm of u € H*(R?) is

lulls = ( / (1 -+ €2 a6 2 de) /2.

H*(R%,C(V3)) is the space of C(V3)-valued u such that each component u; of u is
in H*(R?); the norm of u € H*(R? C(V3)) is given by |lulls = (3, |Juz [|?)1/2. We
put ||u| = ||ullo for u € H°(R?) = Ly(R?) or u € H°(R?%,C(V3)). For any function
space A, we say u = u(-,t) € C([0,T], A) if the mapping ¢t € [0,T] — u(-t) is
j-times continuously differentiable from [0,7] to A, and we write u(t) = u(:,t) for
fixed t. For f = f(«a, B,t), we use Oif or f; to denote the partial derivative w.r.t. ¢,
Oaf O fo to denote the derivative w.r.t. a, and ¥ f to denote the k-th order partial
derivative 9* 8152]”, where k = ki + ko. For operators A, B, [A,B] = AB — BA is
the commutator. A pseudo-differential operator P(D) is defined by, for u € &(R?),

P(D)u = (27)~ // £)e'™ S de.

For each fixed t € [0,T], assume & = &(a, 8,t) = z(o, B,t)er + y(a, B8,t)ea +
z(a, B,t)es, —00 < a, B < oo, describes a surface Y(t), which divides space R? into
two unbounded, simply connected, lower and upper C? domains (¢) and Q(t)°.
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fax§ﬁ

|€o¢ X 55'
gives the outer unit normal of Q(t). We define the Hilbert transform on X(t) of

fo(OQﬂﬂf) by

Assume further that ¢ € C1([0,T],C*(R?,C(V3))), éa X &5 # 0 and n =

Hy f(ov, B,t) = H*DF(&(a, B,1), 1),

where F' = F(,t) is the function on X(t) such that f(«,3,t) = F({(a, §,1),t).
That is,

(3.1)
Hyy f (o, B,1) = H*DF(&(a, B,1), 1)

S 2, [ TR g asi
-2 /( (€D aS(E)

w,
—pa. [ / K(¢ — &0, 8,0)) (€ x ) F(a!, 7 1) do’df

In a brief form, we write (
Hy f = pov. //K (€ x &) f' do’dg,

where &, ', £/, £ and f’ stand for {(a, B, 1), §(, B, 1), Owé(a’, B, 1), Ogr€(a, B’ 1)
and f (o', ', t) respectively. Similarly, & and & will be used later as the brief forms
of 9&(a/, 4',t) and 9:&(w, B,t). We define the single, double layered potentials S,
K and the adjoint K* on f = f(«, §,t) similarly as Sf = SF o, Kf = KF o and
K*f = K*F o &. We have the following identities.

Lemma 3.1. Let f = f(a, 3,t) € C([0,T],&(R?)). Then

(32 OnHslf =po. [[ K€ =06 €) x € fi — T da'ds
and

[0, Hyo)f = pov. / / K(E —€) ((n — €)% (€ [l — €1 [1)) dodB,
(3.3)
(05, Hs o)l = pov. / / K(€ —€) (€5 — &) % (€ fl — € fl)) dodB'.

Proof. We prove (3.2) only. (3.3) can be obtained similarly.
We first calculate the quantity

=+ V)K (& x &) + (Eor - V)E (1 % E0) + (& - VK (§ X 1),

where 7 is a (Clifford 1-)vector. Assume K = Kje; + Kaes + Kses, where K,
i=1,2,3, are components of K. For i =1, 2, 3, we have, in vector form, that

— (- VE)Ey, x &+ (§ - VE) 1 % &5 + (§ - VEi) § X 1)
= (- VE)&h % &+ % (€0 - VK& — (- VE)EL)
(3.4) =—(n- VKi)&y x & +nx (6 x &) x VK;)
=~ V)& x &+ (- VK&, x & — (- (€ x §5/))VE
—(n- (€ x &) VK
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The Clifford algebra version of (3.4) is

—(n-VE)&, x &+ (&, - VEi)n x & + (§5 - VK;) &, x
—(n- (6o x &3))DK,

Since K = DI, where T is the fundamental solution for Laplacian A, we have
Z? e;DK;(§) = 0 for &€ # 0. Therefore

— (- V)K(E) (€ % E5) + (€ - VIE(€) (1% E5y) + (€ - VIK () (€ x 1)
3
= eif (- VE(€)) (€ x €) + (b - VE()) (0 % Ep)

(3.5) + (& - VE() (&0 x )}

3
=~ (& x )Y eDK(§) =0,  for £ #0.
1

Now let’s prove (3.2). By definition, we have

(3.6)

[0, Hs()|f = 0:(Hs 1) f) — Hs ) (Ocf)
—pv//at € —€) (€ x €) (f' — fla B,1)) dodf’
—pu. / O (K(€ — €)) (€ % &) (f' — (o ,1)) dodff

+p-v~/ K(& =€) (& X &5 4 &0 X &) (f' = flev, ;1)) da’d'.
Notice that

O (K(§=8) = (& = &) - V)K(E = &), OuK({ =& = (5 - V)E(E =§)

and

IpK(E =& = VIK(E = §).
In (3.5) we take n = & — & and apply to (3.6). We get
(3.7)
01, Hsio)f = o [ (0w (6~ ) x €5
+ 0 K (§ % (& — &I — f) do/dp’
—|—p.’U./ K(fl - 5) (51/60/ X flﬁ/ + g(/)/ X 51/56’)(.]0/ - f(Oé, ﬂa t)) da/dﬁl-
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Applying integration by parts to the first term on the right hand side of (3.7), we
obtain

(3.8)
04 Hyo]f = —pov. / / K(€ —€) (6 — &) % € fl + €0 x (€ — &) fy) da’df

o / / K(€ — €) (6l % €y + € % Eg)(f — [, B.8)) do/dB’
p0. [ K€ =0 6o o + €0 x €I = F(0,5.6) de'ds?
~ po. / K(€ — &) (€ — ) x (€ fly — €1, f3)) do’df.

This gives (3.2). O
fla,

Let f = B,t) be a scalar-valued function in C([0,7],S(R?)), and let

F(&(a,B,t),t) = (a B,t). Let f* = f(n,t), n € Qt), be the harmonic extension
of FF = F(§ t) on Q(t) given by Theorem 2.5. We denote by V¢ f the restriction of
V" on X(t); that is,

(3.9) Vef(a,B,t) = VI (&, B,1),1),
and similarly D¢ f (a, 8, ) = Df(E(, B, 1), 1), Ou f(a, B,t) = O " (&(v, B, 1), 1), ete.

We call V¢ f the space variable gradient of f, to distinguish from the usual gradient
V= (fa,fs). We define the normal derivative of f by

h
(310)  Vaf(0,8.0) = n(€(0,5,0) - Vef(0,5,0) = S (el 5,111
and we denote by Vrf the quantity
(.11) Vr (e, B,0) = n(E(0,5,0) x Ve (0, 6,1).

Vnf is generally known as the Dirichlet-Neumann operator. We get by definition
that

Vef = —n(n()Vef = —n(&)(-n() - Ve f +n(&) x Ve f)
=n(§)Vaf —n(§)Vr/,

and
VoS = n(€) x Vel = g (60 X €9) X Ve
(3.12) o 7 (666 1) ~ €l V1)
- xf |(€ﬁ<9 of —§a0sf) = T10af — 1205,

_ 1 —
where Ty = e=réss T = gogrba

Since f" is harmonic on 2, Df" is Clifford analytic. So by Theorem 2.3, D¢ f =
Hy D¢ f, consequently

n(§)Def = n(§)HenDef = n(&)p-v-/ K(& = &) (§ar x &3 )De f' do'df’
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and

Vaf = —R(@0(&)Def)
= —po. [[ () K€ =0 (& x € Vef) da'ap
oo [[ () x K& =€)+ (€ x ) x Vir) da'dy
— K" (Vaf) 4 p0. [ [ ((© —©)) - (€ Dar ' — o0 ) da'dY
therefore
(3.13) (I +K)(Vaf) = pv- [ [ () x K(E' =) (€0urs” — €10y ) dad.
On the other hand, we know from Theorem 2.6 that f" = 28(—1 + K*)"1Vnaf, so

from (2.13) and Theorem 2.2, Df" = —2C(n(—I + K*)~'Vyf) is continuous on
Q(t) and

(3.14) Def = —(I + Hy)(n(~1 + K*) 7'V f).
We introduce one more notation in this section. We define
(3.15) HS, = nHyn.

A simple calculation shows that for a real scalar-valued function f, R(H% f) = K*f.
We calculate the commutators [0y, V], [Oa, Va] and [0, Vy] in the following
lemma.

Lemma 3.2. For f € C([0,T],&5(R?)), we have

(3.16)
(I +K*) ([0, Valf)

=R (_ntHE(t) (Dﬁf) —n[0, Hy, t)](fo) + nHE(t)(ntanf))

+ [ O XK 9 Ol %sg Mot =0 §B/|€a/)fa')d3(§’)
and
(3.17)
(I +K7) ([0 Vil f)
=R (—naHy)(Def) — nl0a, Hy t)](pg f) + nHsyp) (nanDg f))
o 1 / / ,
+/E(t)n(§)><K(§ &) (0 (|§,X§ﬁ,|§5>f O (g M) 4S(E),

where n; and ng are partial derivatives of n w.r.t. t and « respectively. A similar
identity also holds for [0, Valf.

Proof. We only derive (3.16). (3.17) can be proved similarly.
By definition, we have that
nDef = nHy ) (Def) = —Hg(t)(anf) and

nDe f; = nHy)(De ft) = —Hgp) (nDe fr).
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Therefore
0;(nDe¢ f) — nD;¢ fy = -0 (H§<t) (anf)) + Hy,y)(nDe fr)
—[0r, Hy; ()} (nDe f) — Hy(4y (0 (nD¢ f) — nDe fy).

(3.18)

We know
0t(nDef) —nD¢ fy
—(0t(n-Def) —m-Defy) +0:(n x De f) —n X De fy
=—(0(V nf)_( nft))

(3.19)
+ 0 (7—7(8sfa — &afs)) —

(gﬂfta faftﬁ) by (312)

1
B x €]

[38 5 |
= — [0, Valf + 0¢(

|§a><€|

1
e x &0 o = 01

and
(3.20) [0¢, HS ()] = nyHy(yn + n[0;, Hs)|n + nHys ).

Taking real parts in both sides of (3.18), we get

(00 ValS = ~R([00n, H3 () (0D ) + K* (101, Vil f)

[ o xKE -9 @ e ) for — O
(t)

T o) fi) dS(E)).

(3% 5 i
Therefore

(3.21)
(I +K*)([0r, Valf)

=R (_ntHE(t) (Dﬁf) —n[0, Hz(t ](fo) + nHE(t) (ntanf))

y . o 1
+L@maxK@—@< e %gmm e

This proves (3.16). O

€ar) f3) dS ().

§4. THE EQUATION OF FREE SURFACES AND A KEY LEMMA

We are now ready to study system (1.1)-(1.5). We plan to take a similar ap-
proach as the 2-D water wave (see [24], also [6], [18], [25]), that is, we first convert
(1.1)-(1.5) into a system on the free surfaces. We then reduce this system to a
quasilinear system and solve the quasilinear system, and show that the solution of
the quasilinear system is also a solution of the system on the interface.

In this section, we convert system (1.1)-(1.5) into a system on the free surfaces
and show that the sign condition (1) always hold for the nonself-intersecting 3-
D water wave. As we will see, the sign condition (1) is the key that guarantees
well-posedness of the quasilinear system in Sobolev spaces.

At time ¢, let Q(t) be the water region and let ¥(¢) be the interface. Suppose 3(t)
is described by &(a, 8,t) = x(a, B, t)er +y(a, B, t)ea+ z(a, B, t)es, —00 < a, f < 00,
where («, ) is the Lagrangian coordinates, i.e.

(4.1) &, 0, 1) = v(é(a, B, 1), 1),
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fa gﬁ
|€o¢ X Sﬁl
on the interface, § = v, +v - Vo = —(0,0,1) — Vp. On the other hand, (1.4)
implies that Vp is parallel to n. Therefore, £ + e3 = —Vp = an (each term in
this equation is regarded as a Clifford 1-vector), where

Ip

(4.2) a= (& +e3) - n=—-Vp- n=-—-

From (1.2), (1.3), we know that the C(V3)-valued velocity v(£,t) = vi(&,t)er +
v (€, t)ea+uvs(€, t)es is Clifford analytic on Q(t), so it’s value on E( ): v(€(a, B,1t),t)
= & (a, B, t) satisfies (2.10). The initial value problem for system (1.1)-(1.5) is then
reduced to the following problem:

and suppose the unit normal n = points out of Q(t). From (1.1), we have

(43) &tt +e3 = an,
(4.4) & = Hy e,
(45) §(a7570) :&J(O‘uﬁ)u gt(aaﬁv O) :gl(auﬁ)u

where £ = o(a, 3) describes the initial surface ¥(0) and &; satisfies {1 = Hyx0)&1-
We will establish the existence and uniqueness of solutions of system (4.3)-(4.5),
under the condition that for every t > 0, z(«, 8,t) — 0, &(«, 8,t) — 0, as |a|+|8] —
00.

Given a classical solution of (4.3)-(4.5), we can recover the fluid velocity in the
whole region Q(¢) for every fixed time ¢ by solving the Laplace equation:

Av=0 on Q(t),
v = ft on E(t)

For the 2-D water wave, we showed that the sign condition (1) always holds for
nonself-intersecting interfaces, and (1) was also the key to guaranteeing the well-
posedness of the 2-D water wave problem [24]. This suggests that the sign condition
(1) will be important and can also be true for the 3-D water wave. So before we
proceed further, we study the quantity a defined in (4.2).

Let (t) be the water region, 3(t) the interface of waterwave at time ¢, and sup-
pose X(t) is described by € = £(«, §;t), where (a, 3) is the Lagrangian parameter,
with £, x &g an outward normal of Q(t). We assume that at some time ¢, (o)
and Q(to)¢ are unbounded, simply connected C? domains, and there are constants
Co > 0, p > 0, and vectors e,, eg, such that

1. |&(a, Byto) — E(, B, t0)| > Co(la — &'| 4+ |8 = '), for —o0 < o, f < o0;

2. fa('v tO) —€a, 55('7 to)—&g € HS_l/Z(szc(%))v ft('v tO) € HS+1/2(R276(‘/3))7
(o) € H3(R%,C(V3)); and e, X eg = e3, for some s > 5/2;

3. |£a('7t0) x fﬁ(',toﬂ 2> M-

0
We want to prove that the quantity a = _3_p > 2¢p > 0 pointwisely on X(to)
n

for some constant ¢y > 0.
Apply div to both sides of (1.1): v, +v- Vv = —=V(z + p), and use (1.2), (1.3).
We get

div(v - Vo) = |Vv]? = —A(p + 2),

where |Vv|? = |Vv1 |2+ |Vve|?>+|Vus|?. Let p+2 be the solution in Q(¢g) guaranteed
by Theorem 2.5 (notice that p + z — 1|v|? is harmonic in Q(to)). For any h €
Cd(Z(tg)), h > 0, let w be the harmonic extension of h on (ty) given by Theorem
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2.5. We know from the remark of Theorem 2.5 that w € C1(Q(ty)) and w(n) =
o(|n|=1), Vw(n) = o(Jn|~2) as |n| — oo. Applying Green’s second identity to w and
p+ z (see [9]), we get

/ ((p+z)a—“’ —MM) ds :/ w|Vo[? V.
E(to) 3n 8n Q(to)

Since p = 0 on X(tg) ((1.4)), we have

dp 0z ow
4.6 / w ds = W— — z— dS+/ w|Vo|? dV.
(4.6) ey "Can) 5= J, g e aSE fwl

Let’s now calculate the right hand side of (4.6). Assume X, : z = b is a plane
contained in Q(tp), with upward unit normal n, = (0,0,1). We apply Green’s
second identity again to w and z on the strip region between surfaces (o) and
Yp. Since w and z are harmonic, we have

0z ow 0z ow
w— —2z—)dS = lim w——2z—)dS
~/E(to)( on 811) R—o0 EbﬂBR(O)( 8nb 8115)
0z ow
= —dS —b —dS
/ v 0z 5, Onyg

= / wdS,
po

ow
where fEb 8—dS = 0 is obtained from Green’s identity, the assumption that
ny,
)

Yw(n) = o(|n|~2) as |n| — co and an approximation argument. Therefore

/ w(—@)dS’ / wdS—l—/ w|Vo|* dV
S(to) on X Q(to)

2/ w dS.
3p

Let G = G(n,€) be the (Dirichlet) Green’s function for Q(¢p). We know from
Green’s representation formula that

_ 9G(n,€) or
wi) = [ TG dS©)  forn e 9

(4.7)

Therefore (4.7) implies that

/E(to)h(ﬁ)(—a—n(é))dS(ﬁ)z/ w(n) dS(n)
= [ we [ ZBE asu)asie)
Z(to) p ( )

Since h € C}(X(to)), h > 0 is arbitrary, we conclude

_ o 9Gm. &)
0= —on0) 2 [ Tt dsto)

From the maximal principle, we know there exists a constant ¢y > 0, such that

J, Ttk dS(n) > 2co, for all € € N(to).

Remark. Green’s identities are justified on unbounded domains here because of the
decay properties and the L? integrability of our functions involved.
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Lemma 4.1. Assume that at time tg, the water region Q(to) is an unbounded C*
domain, Q(tg) and Q(tp)¢ are simply connected, and S(to) satisfies assumptions 1.
2. 3. above. Then

9p

(43) o=-© = [ 20 as

> 2¢y > 0,
on s, on( n) Z 2

for all & € E(to), where ¥y : z = b is a plane contained in Q(to), and co > 0 is a
constant depending only on X(to).

As an immediate consequence of Lemma 4.1 and (4.3), we have

(4.9) a=[&: + esl.

Remark 1. Our original proof for the 2-D sign condition [24] doesn’t apply here,
since it uses the Riemann mapping. As we mentioned in §1, the idea of expressing

10)
a as ~ 9P and using the maximal principle is from R. Caflisch and T. Hou. The
n
result of Lemma 4.1 shows that for any solutions of the water wave problem, it is
necessary that the pressure is positive inside the water region. This is consistent
with the physical requirement that pressure is nonnegative.

Remark 2. The prove of Lemma 4.1 is also valid for the 2-D water wave and Lemma
4.1 in the 2-D context coincides with Lemma 3.1 in [24]. In 2-D, the function

fEb agrf&)g) dS(n) is the same as the function h, in Lemma 3.1 of [24].

System (4.3)-(4.5) is still a nonlinear, nonlocal system. A standard method for
solving such a system is to reduce it to a quasilinear system and solve the quasilinear
system. We will do this in the next sections.

§5. REDUCTION TO A QUASILINEAR SYSTEM

In this section, we reduce (4.3)-(4.5) to a quasilinear system. Recall the velocity
v =¢ on X(t) and v is Clifford analytic on €(¢). Therefore d,v, Oyv, 0.v are also
Clifford analytic on the same region. Using the notation in (3.9), we have

(5.1) 028t = Hy1)(0:8t), 0y&e = Hy1)(0y&t), 026 = Hy4)(0:61).

Now let’s reduce the system (4.3)-(4.4). We use the same notations as in the
previous section. Letting N = &, X &3, (4.3) becomes

a
2 = —N.
(5 ) gtt+83 |N|

Taking the derivative with respect to ¢ on both sides of (5.2), we get

(5.3) St = |N|Nt+<|N|> N.
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We first calculate |%Nt. Let N = (Ny,N2,N3), and i = (1,0,0), j = (0,1,0),

k = (0,0,1). In terms of vector calculus, we have
(5.4)
Ny =&ta X Ep +&a X &
= (§a - V)v x &g+ & x (€p- V)V
=1x ((§a - Vv1)s — ({5 - VV1)&a)
+J % ((€a - Vv2)€s — (§5 - V2)8a)
Tk X ((§a - VUs)€s — (§p - Vvs)Sa)
=1x ((€a x &p) X V1) +j x ((§a x §8) X Vv2) +k X ((§a X §p) X Vus)
=({i-Vui+j-Vua+k-Vus)(& % E&p)
— (i (§a x &) Vor = (- (§a x &5)) Vv2 — (k- (§a % &3)) VU3
= —N10,v — NoOyv — N30,v = —(N - V)v = —(N - V)& = —|N|Vnéy;
here we used the fact that i- Vv, +j-Vvs +k-Vuz = 0,v1 +0yv2 +0,v3 = dive = 0.
Therefore

a

(5.5) ]

Nt = —a ant.

a
To calculate the term <W> N, we use the relation
t

a a
(5.6) <W>t N =& — WNt-

Taking the derivative twice with respect to ¢ on both sides of (4.4): § = Hyx )&,
we get

& = OF (Hyy&r) = 0y (Hswyéue + [0, He))&t)
= Hy) &t + [0, Hyy )| 6ot + 01 ([0, Hyy1))6t)

then
(5.7) Eut — Hz(t)fttt = [0}, HE(t)]gtt + O ([8157 HE(t)]ft) :
On the other hand, we have from (5.4), (5.2) and (5.1) that
a a
—WNt = (W N- Vg)ft = ((ftt + k) ’ vf) &
= 2410:&t + Y Oy&e + (210 + 1)0:6¢
= 2 Hyy (1) (0261) + yee s () (0y€t) + (260 + 1) Hy4) (0:61),
therefore
a a
—WNt - HE(t)(_WNt)
(5.8) = T Hy1) (00&t) + Y1) (0y &) + (21 + 1) Hy(r) (9:61)

— Hyypy (244028 + Y200y e + (200 + 1)0:64)
= [wer, He(1y](026t) + [yie, He )] (0y&e) + (26, He ()] (9:&4)-
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Adding (5.8) to (5.7), we obtain

(). ¥~ (). )

a
(5.9) = fttt - Hz(t)fttt - W Ny — HE(t)(_WNt)

= [0, Hz(t)]ftt + O ([3t, Hz(t)]ft)
+ (et Hy))(02€e) + Wit Hey[(9y€t) + [206, Hy (1)) (0261).-

a a a
We want to single out (—) N. Notice that n (—) N = ( ) |N| is a
NI/, N1/, [N
real-valued function, and nHy) = —H;J(t)n; we multiply by —n at the left to both

sides of (5.9), then take the real part. We get on the left hand side

renl (137, > =150 ((557), 2 )
= (g7, i s ((757), 1)
= (m7), W+ (), 1)
=+ ((137), 7).

therefore

sao ) (RN = —RO00 Ho e+ 00 (0 Hiz )
+ [, He)[(02Et) + [y, He)](0y&e) + [21e, Hy )] (926¢)})-

Consequently,

a0 () Y= () WIm = —n+ K0 Rafle 6t

where
F(& &, &) = [0, Hyw)l€ue + O ([0, He)]é)

+ [z, He 1)) (02t) + [y, He)](Oy&t) + (21t Hu0)](0264)-
Placing the highest order terms to the left, we get from (5.2), (5.5), (5.11) the

following equation:

(5'13) e +aVpé& = —H(I + /C*)_l(%{nf(f, &t ftt)})a

7@2 i Z;, and f(&,&, &) is as given in (5.12). Now let’s

calculate f(§,&t, &) Recall that we have calculated the commutator [0, Hs )] f
in Lemma 3.1 for the scalar-valued function f. Applying (3.2) to each component
of & then multiplying e; to the right and adding them up, we obtain

(5.12)

where a = |§: + e3], n =

[0, Hyy1) &0t = p-v-/ K(& = &) {((& — &) x &5 )&t
(5.14) — (& = &) x €0)811p } dodfF’,
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similarly

01, Hylés = pov. / / K(€ — ) {((& — &) % €))L
(5.15) — ((& — &) x &L )i } da'dp's
then

(5.16)
O ([3t, Hz(t)]ft)

=0 [[ K =016 — 6 % €16l — (6 — €) % )63y} de'd?
po [ KE =016~ €) % €lp)6ier = (& =€) X )iy} da'ad
po [ KE =016 — ) % )8 — (& = ) X €6l } da'ad
+po. [[OEE = 9} (6~ €) x )6 — (& — €) x €161y ) da'ds

We want to further reduce the last term in (5.16). Since for any vector 7,

(1 % &)6ta — (0 x €a)étp =1 X {§5(€a - Ve) = al&p - Vi) I
(517)  =nx{(fa x &) x Vel = (Lo x §8)(n- V)& — (0 (€a X €3)) Dee
= (§a x ) (0 V)&,

where in the last equality we used the fact that v is Clifford analytic on (¢), that
is, D& = Du(§) = 0, we get, using (5.17) and (3.5), and integration by parts, that

(5.18)
p-v./ 0K (& = (& — &) x 5 )&lar — (& — &) X E4 )61 } da'dp’

= pw. / OE(E — O} (€l x E4)((& — €) - Ver)€, do/df’

~ po. / / (O K (€, — &) X €5) + 09 K (€1 % (€ — ) H(E — €) - Ve )&l do'd
S / / K(€ —€) (6 — &) % €y (& — ) - O Ve ), da'dB’

—po. / / K(E —€)€ x (6 — E){(& — &) - 05V }E do/df’

+pa. / / K€ — ) {(€— &) x €4 (€ - Ve L
b€ X (€ — &)y - Ve )El} doldd
o / / K(€ — €) (6l % €y + € % E13) (& — £)) - Ve )&l dod.
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We also have from (5.17) that

(5.19)
[, Ho)](026t) + [yee, He)(0yt) + (260, He ) (02&¢)

~ p. / K(€ — &) (€, % €) (€ — &) - Ve ) € da'df
= p. / K€ — ) (6 — €1) % €016 — (€t — ) X €010y} da'd.

Therefore

(5.20)
f(£7 gta gtt)

= 2p [ K =16 — €0 X €60 — (6 — ) X €)1} da'dy
po. [[KE =016~ ) % €96 — (6~ §) X Gl } da'ad
+2p. [[KE - 0106~ €) x )6 — (6 — €) x )} da'ds?
—po [[ K€ - €€ - &) x (6~ &) Ve )i da'as

~po. [[ KE =06 x (€ - (&~ &) 0 Ve ) da'as

oo [[ K€ -01€ -0 x & Ve
+ & x (& — ft)(ﬂg/ - Ve )&} do'dp’
= po [ K = € x 6 X €l (6 ~ ) - Ve de'ds
So we convert (4.3)-(4.4) into the following quasilinear equation: Suppose & =

&(a, B;t) is a solution of (4.3)-(4.4). Let u = &. Then u is necessarily a solution of
the quasilinear equation

(5.21) tr + a Vit = —(1 + K*) T R{RS (€, u,w)}),

where

- u; +e3
a=|u e n=
| t+ 3|7 |Ut+€3|7

t
€(0nfut) = 60,0 + [ (o8 ds. U= G+ Hypw)
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(5.22)
FE ) =2p. / / K€ —€) {((w — 1)) x €580 — ((w — 1) x £1)18}, } da'df

po [ KE =1 =) xuy)ty = (=) x )ty ) da'ad
+2p0 [[KE =91 —) % )t — (0= w) X €)W} da'
+p.o. //K(&' — & u—u) x&G{u—1) - 0 Ve U da'df’

+p.o. //K(&’ —O& x (u—u){(u—1u') 93 Ve Wl da'df’

_pw. / / K(€ — ) {(u— ) x €51ty - Ve )it
+ & x (w—u')(uy - Ve )U'}do/dp’

—pon [ [ K€ =€) (% €+ € x ) (w— ) Vet de'ds's

here Vyu is the normal derivative of u, Vu is the space variable gradient of u and
Hyyu is the Hilbert transform of u with respect to the surface X(t) : § = §(«, §,1)
defined in (5.22) and the lower region (¢) bounded by X(t). For the real-valued
function g,

(5.23) K*g = R{fiHx) (fg)}.

Notice that a solution u of (5.21)-(5.23) is not obviously analytic, and does not
obviously give n = n. In §7, we will show that a solution of (5.21)-(5.23) with
proper initial data is analytic and gives rise to a solution of (4.3)-(4.4).

Initial data. We need to transform the initial data (4.5) into an initial data for
(5.21)-(5.23). We will do so by first finding a formula expressing a, consequently
expressing &, as a function of & and £. Since & + e3 = an, we have

a=-—n({; +e3),
therefore
(5.24) a—n-e3=-—-né; —n xes.

Now taking the derivative with respect to ¢ on both sides of (4.4), we get & =
Oy (Hxy1y&t) = Hxypy et + [0r, Hyy(1) &4, therefore

&t — Hy )&t = [0r, Hyy ) |6r-
Consequently
néy + Hyyyy(néu) = néy — nHy)éu = n [0, Hy))é:.
From (5.24) and the fact that a — n - e3 is a real-valued function, we have
(I +K*)(a—mn-e3) = —R{(I + H5;))(n& +n x e3)}
= —R{n [0, Hy)]& + Hyyp)(n X e3)}
o

(5.25) a=mn-e3— ([ +K) " (R{n[d, Hyw)& + Hyyy(n x e3)})
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where [0;, Hy;1)]é: is as given in (5.15). Since & + e3 = an, we have
(526) {tt = —e3 + (Il . eg)n — n([ —+ K*)—l(%{n [3t, HE(t)]é.t + H;)(t) (n X 63)}).

We can now determine the initial data of (5.21)-(5.23). Assume that the initial
surface ¥(0) divides R? into two simply connected, unbounded C? domains, 3(0)
approaches the xy-plane at infinity, and assume water occupies the lower domain
Q(0). Without loss of generality, we choose the parameterization of X£(0) : £ =
éo(a, B), —o0 < o, f < 00, such that & o X & g is an outer normal of Q(0),

(5.27) 160,00 % &0,8] > 21, —00 < o, f < 00,

for some constant ;1 > 0, and for some unit vectors e,, eg, with e, x eg = es,
€0, —€a — 0, &3 —es — 0 as |a| +|8] — oco. For this parameterization, we know
that there is a constant Cy > 0, such that

(5.28)
éo(, B) — &ole, B)] = 2Co(Ja — '] + |3 = B]),  for — o0 < a,f < cc.
Let

(4.5) (e, 8,0) = &o(a, ), &, 3,0) = &i(a, B)

be the initial data for (4.3)-(4.4), where & satisfies {&; = Hy()1. We take the
corresponding initial data for (5.21)-(5.23)

(529) u(a7670) :uO(avﬁ)v Ut(a,ﬂ,o) :ul(aaﬂ)
such that ug = &;, and
(5.30)

up = —e3 + (ng - e3)ng — no(I + K5) " (R{ng [0, Hy,)Juo + Hyy gy (no X €3)})

where ng is the outer unit normal of ©(0), ICf is the adjoint of the double layer
potential defined by 3(0) and lower region (0), and

01, Hyo)luo = pov. / / K(€ — ) {((uo — 1) X € ) o
(o — 1)) X € o )iy o} da'd

We know ng = %. If ¥(0) further satisfies the assumption 2. of Lemma 4.1,
Uy €3

we have that

(531) ag = |u1 + 83| > 2c¢o

for some positive constant cg.

In the next section, we will study the well-posedness of the quasilinear system
(5.21)-(5.23), with initial data (5.29) satisfying (5.27), (5.28), (4.5), (5.30) and
(5.31).

86. WELL-POSEDNESS OF THE QUASILINEAR SYSTEM

In this section, we show that the quasilinear system (5.21)-(5.23),(5.29) is unique-
ly solvable in certain Sobolev spaces. Our approach is standard. That is we first
solve the linear system defined on a given collection of surfaces X(t), t € [0,T7,
and then use iteration to solve the quasilinear system. Solutions of both the linear
and quasilinear systems are obtained by proper energy estimates, iteration and the
fixed point theorem. This approach is very much the same as in the 2-D case; see
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[24], also [25]. The main difference is that in [24], we used Riemann mapping to
flatten out the interface, therefore the estimates there are in clean and compact
forms, while here we solve (5.21)-(5.23) directly. This involves estimating operators
defined on moving surfaces, therefore technically it is more complicated. We will
use the results of Coifman, McIntosh and Meyer [4] and Coifman, David and Meyer
[5] to estimate our operators. We point out here that for our operators, we don’t
really need such strong results. Our surfaces are more regular than those studied
in [4], [5].

We divide this section into three parts: estimates, linear system, and the quasi-
linear system. Throughout the rest of this paper, we assume that ¢ is a constant
> 1.

Estimates. Let s > 3/2+q. For ¢t € [0,T1], let X(t) : £ = (o, B, 1), —00 < a, B <
00, be a surface dividing R? into two unbounded, simply connected, lower and
upper domains Q(t) and Q(t)°, with &, x s an outer normal of Q(¢). Assume that
there are constants Cy > 0, u > 0, and vectors e,, eg, such that

H1. |{(a, 8,t) — (o, B8, 1)] > Co(la— |+ |8 — F]), for —co < a, 5 < 00, t €
[07 T] )

H2. &, —ea, &5 —eg € CH([0,T], H*"V2(R?,C(V3))), €a X €5 = €3 and & €
C([0,T], H*H/2(R?,C(V3)));

H3. |0 x &3] > 1, for ¢ € [0, T7.

In this part, we establish estimates that are necessary for obtaining an energy
estimate and carrying out an iteration scheme for the linear system defined on X(¢),
t € [0,7]. We will not distinguish the notation of constants appearing in different
contexts if they are determined by the same factors. For fixed ¢, I is the double

layered potential defined on X(t) w.r.t. Q(t), n = %,
a B

derivative defined on X(¢), and dS is the surface measure of X(¢). In the rest of
this section, we use the same notation u to indicate a function u = u(a, 5) and the
function U(&,t) on X(¢), satisfying U(&(a, §,t),t) = u(a, B).

Lemma 6.1 (Sobolev embedding [10]).
HY(R?) C Ly(R*)  for 2<p< 0.

Va is the normal

Lemma 6.2. Let 0 < 7 < 1, let m be an integer > 1, and let s > 1. For a, u €
S(R?), we have
a. ||[a, 0™ (1 + |D)"ull < ko(llallm+rllullg + [|ullm+r—1llallg+1)-
b. |lla, (L+[D*Jull < ko(llallsl[ullq + [Julls—1llallg+1)-
c. |lla, (1 + [D)7Jul| < Kollal|1+qllul|-
d. ||[a, [DI"?]|D[*2ull < kolla]|11qllul-
where ko is a constant independent of a and u.

Lemma 6.2 can be proved easily by using Fourier analysis. We omit the proof.
The following deep result was obtained by Coifman, McIntosh and Meyer [4] for
n = 2, and Coifman, David and Meyer [5] for general n.

Theorem 6.3 ([4], [5], see also [13]). Let § : R* — R be even and C*°, and let
A:R"!' - R, B: R"' — R* be Lipschitz and

K(e.0) - AL Ae) [B) - B)]

|z — | |2 — 2|
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:p.v./K(z,z)g(z) da

is bounded from La(R"™ ') to Lo(R™™1), with
1Tfll < CILfI

Then the operator

where C = C(M,0,n), and |VA|oo <M, |VB|oo < M.

Lemma 6.4. Let t € [0,T] be fized. For u € G(R?), a € HP*(R?), b € HP?(R?),
we have

a. Hyyyy is bounded from H"(R?) to H"(R?), for 0 < r < s+ 1/2, with
syl < b ull

b llas BrsgeyJulle < Frallallmsgrr syl for 1< v < mingpr, s +1/2},

C. ||[CL, [baHE(t)Hu”T < kT,lnaHmaX{nl-l-Q}||meax{r71+q}||u||T—27 for 2 < r <
min{p17p27 s+ 1/2})

d. (£I+K*)7 and (£I + K)~! are bounded from H™=1(R?) to H"~1(R?), for
1<r<s+1/2, with

I+ K5)  ulley < kpollulliy and (£ +K) a1 < keallullr—1,
where ky1 = ky1(Co, p, M (7)), kro = kr2(Co, u, M(r), My1) are constants,
||§oz - ea”max{r—l,l—i—q} + Hgﬁ - eﬁ”max{r—l,l+q} S M(T)7 H(:l:I+ K*)_ln S M17
(I + K*)7L|| is the operator norm of (&I + K*)~t from La(R?) to La(R?).

M

S () X E5(1)
H*(R% C(V3)), then (£1+K*(¢))~! is also bounded from H*(R?) to H*(R?), where
KC*(t) is the adjoint of the double layered potential /C(t) defined on X(t).

Remark. If for some fixed ¢, we assume further that n(t)—es = es €

Proof of a. We first prove a. for r integers, where r = 0,1,...,[s+ 1/2], [s + 1/2]
is the largest integer < s + 1/2. We prove by induction.
When r = 0, a. follows directly from Theorem 6.3 by taking 6 even, § € C™,

and 0(n) = on |n| > Co, B(a, 8) = &(a, B,t) and A = A(«, 8) the components
of {(av, B, 1).

When r = 1, since

nl*’

(6.1) OHypyu = [0, Hypu + Hy(yOu

and from (3.3),

(6.2)

0. tslu=po. [ [ K€ =) (06 - 7€) x (€t~ €aly)) da'ay

o/ 51 /! o /o ! 30
= po [ K€ - O < ) s gﬁj’z<<af—as>x<sg/ua/—fa,uﬁ,>>dacw

= Z ai, Hy )| Diu = Z(ai Hyy®Diu — Hy gy (a;D5u))

i
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where a; are components of 9¢, that is, 9 = " ae;, Dju = —% e; X
o B

(€pua — Eaug), we have

(6.3) 8Hg(t)u = Z(az Hg(t)ﬁiu — HE(t) (a;Diu)) + Hz(t)au,

2

therefore
[Hsyullr < kaallull,

where k1 1 depends on |0€|s, Co, p-
When r = 2, we have from (6.3)

32H§;(t)u = Z{@(al Hg(t)giu) — 6(H§3(t) (azgzu))} + 8Hg(t)5u,

therefore ||Hsypyull2 < ka,1|ull2, where ko1 depends on [0%¢|o + |0€]o0, Co, - By
interpolation, we have that a. holds for all 0 < r < 2.

Now for m > 3, assume that Hy is bounded from H™ *(R?) to H™ '(R?),
where 2 <m —1 < [s + 1/2]. From (6.3),

8mHE(t)u = Z{am_l(ai Hg(t)Qiu) — 8m_1(Hg(t) (a%@Zu))} + 8m_1Hg(t)8u.

Therefore by the induction hypothesis and Lemma 6.2 a., we get
10™ Hyypyul| < Ky, [|wllm

where k/, is a constant depending on ||a; — ¢;||m/, Co, and u; a; — ¢; are components
of &, —eq or £g —eg, m' = max{m — 1,1 + ¢}. In other words, k], is a constant
depending on |{o — eallm/s |63 — €3|lm’, Co, and p. Using the induction hypothesis
again, we obtain that

[Hstyullm < Fmalluflm

where km,1 = km,1(M(m), Co, p), and [|€a — €allms + [|§s — €sllm’ < M(m). This
proves a. for r integers, where 0 < r < [s+1/2], consequently for all 0 < r < [s+1/2]
by interpolation.
Now let’s prove a. for all 0 < r < s+ 1/2. Let 0 < 7 < 1. From (6.3), we also
have that
O™(L+ D) Hsgyu =y _{0™ "1+ |D|)7 (a; Hy ) Diu)

= 0" (1 + D))" (Hyr) (a:Du))}
+ 0™ (1 +|D|)" Hsy4) Ou.
Since a. holds for r = 7, we conclude from a similar induction argument that a.
holds for r =14 7,...,l4+ 7, where l = [s+1/2],if 0 <7 < s+1/2—[s+1/2],

and | = [s+1/2] - 1,if s +1/2—[s+ 1/2] < 7 < 1. Therefore a. holds for all
0<r<s+1/2. O

Proof of b. We only give a detailed proof of b. for r integers. For noninteger r, the
proof can be carried out using interpolation and induction, as we did for a.
Since

Ola. Hsqolu = 0a)Hgyu-+ po. [ [ (a = a)OK(E ~ (€ x )’ da'ag’
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and p.v. [[(a—a")OK (&' —£)(&,, x &y )u’ da’df’ has the type of kernel as in Theorem
6.3, and since [a, Hy)] is bounded from Ly(R?) to Ly(R?), we know that b. holds
for r = 1.

Assume that b. holds for r = m — 1, where 1 <m —1 < min{p;, s+ 1/2}. Since

0™ [a, Hylu = [0™, a]Hyyyu + [a, 0™ Hy ) Ju
(6.4) = [0™, alHsyu + [a, 0™ 0, Hy ) Ju
+ [a, am_ng(t)]au — 8m_1Hg(t)((8a)u)
and from (6.2),
[a, 070, Hsy)] Ju = ad™ 1[0, HsypyJu — 0™ [0, Hy )] (auw)
=aY 0" i, Hew)Diu— 0™ ai, Hy ) Di(au),

where a; — ¢; € Hs_l/Z(R2) are components of £, — e, or {g — eg, and since
[a, 0™ Hyyp))0u = 0™ a, Hyy)0u — [0™ ", a] Hy ) Ou,

we have first by taking m = 2 that b. holds for r = 2, therefore for all 1 < r < 2
by interpolation. For general m, we get from the induction hypothesis, Lemma 6.2
a. and Lemma 6.4 a. that

Ham[aa HE(t)]uH < kgﬁLHaHmax{l+q,m} ”u”m—la

where k!, depends on ||£n — €allm, [|€8 — €8]lm’, Co and u, m’ = max{1+¢q, m—1}.
Using the induction hypothesis again, we obtain

||[a7 HE(t)]uHm < km,l”””m—la

where ki1 = k1 (M(m), Co, ), and ||§a — eallm’ + 1€ — €gllm < M(m). This
proves b. for integer r. O

Proof of ¢c. and d. c. d. are proved in the same way as we did for a. and b. That
is, we first prove by induction for r integers, then by interpolation and induction
for all 2 < r < min{py,p2,s + 1/2} for ¢. and all 1 < r < s+ 1/2 for d. The
induction argument for c. is carried out using identities

8’”[@, [b7 Hg(t)] ]u = [8’”, a] [b7 Hg(t)]u + [a, 8’”‘1[6, [b7 Hg(t)] ] ]u
+1a, 0" b, Hy ) 10u — 0™~ b, Hy)((9a)u),

[87 [b7 Hz(t)] ]U = [81)7 HE(t)]u + [b7 [87 HE(t)] ]U
= [0b, Hyy()Ju + Z[ba [ai, Hs)]D; Ju

= [0b, Hs(y|u + Z{[ba [ai, Hs )] |Diu — [ai, Hs1)|[Di, blu }

and

[a, 0™ b, Hyy)] 10w = 0™~ a, [b, Hsyp) 10u — (0™, al[b, Hy1))0u,
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Theorem 6.3 and Lemma 6.4 b. The induction argument for d. with regard to
(£1 + K*)~! is carried out using Theorem 2.4, identities

(6.5)
OM™(EI+K*) ™ =0 o, (2T + K+ o™ HET+ K)o

= 0" N LT+ KMo, KN LT+ K L+ o™ HET+K*) 1o
and (6.2), and Lemma 6.4 a. b. It is similar for (1 + K)~L. O

As an immediate consequence of Lemma 6.4, (3.13) and (3.14), we have the
following

Corollary 6.5. Let u € G(R?). Then for 1 <r <s-+1/2,

(6.6) Kz (l0aull,—1 + 195ull,—1) < [ Vaulr—1 < k(|| 0aullr—1 + [9pull-—1)
where ko = ky2(Co, u, M(r), M1) > 1, M(r) and My are as in Lemma 6.4.
Lemma 6.6. Let a € H'9(R?). For u,w € &(R?), we have

a.

| (aw Vau + au Vaw) dS|
(1)

< rollallieqlul + ( /

(1)

uVaudS)H)(Juwll+ ([ wVawds)?),
S(8)

b | fsuyw VnudS| < (fyp) u VaudS)? ([y) w Vawds)?,
e | Jsgy wla: ValudS| < rollallrq [ull (]| + (fyp) w VawdS)?)
where ko = ko(Co, i, M, My), and ||€o — eall1i+q + 11€8 — eslli+q < M, My is as in

Lemma 6.4.

Remark. If a—1 € H'*9(R?), Lemma 6.6 holds with ||a||144 in a. and c. replaced
by fla = 1ff14q + 1.

Proof. We prove Lemma 6.6 by Green’s identity.
Let a”, u", and w™ be the harmonic extension, given by Theorem 2.5, of a, u,

p) h
and w on §2(t) respectively. By definition: Vyu = 3% and Green’s second identity,
we have
o h, .,k
/ (aVauw + auVaw)dS = CLM dS
S(t) (t) on
(6.7) 9"
= / —uwdS + 2/ a"Vul - Ve dv.
n(t) on Q(t)
Since
da”
(6.8) | —uwdS| = (Vaa)uw dS| < |Vana|so |uw| dS
s(r) On (1) S(1)

and
2|/ a"Vu - V' dV| §2|ah|oo(/ |vuﬁ|2dV)1/2(/ Vw2 dV)1/?
(6.9) Q(t) Q(t) Q(t)

< 2|a|oo(/ anudS)l/z(/ w VawdS)Y/?
(6 (6
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where in the last inequality we used the maximal principle: |a"|o < |a]oo and
Green’s identity, therefore

|/ (aVpuw + auVaw) dS| < |Vna|oo/ |uw| dS
(6.10) () ()

+2|a|oo(/ anudS)l/Q(/ w VawdS)Y/2.
2(t) 2(t)

Applying Lemma 6.1 and Corollary 6.5 to (6.10), we obtain a.
b. is a consequence of (6.10) by taking a = 1:

|2/ VauwdS| = |/ (Vauw + uVaw) dS|
(1) (1)

< 2(/ anudS)l/Z(/ w VawdS)2,
(1) ()

Now let’s prove c¢. From Green’s identity and by definition, we have

h
/ [a, VpluwdS = awai as — Val(au)wdS
B(t) $(t) on $(t)
fi, b h
(6.11) = / Muﬁ s — 2/ u"Va" - V' dv —/ aual ds
s O a() s O
da" i, b I
= —auwdS —2 u'Va" - Vw" dV,
n(t) on Q(t)
where
(6.12)
|2/ WPVal - V'l dv) < (2/ (uﬁ)2|Vaﬁ|2dV)1/2(2/ Vol 2 dv)L2.
Q(t) Q(t) Q(t)
Assume that @ and @ are the solutions of
Aa = 2|Va"]*> on Q(t), d Au = 0 onQ(t),
a = 0 on X(t), an o = u? onX(t),

given by Theorem 2.5. (Notice that @— (a™)? is harmonic on Q(#).) Since A(u")? =
2|Vu"? > 0 and (u")? = @ on X(t), we have from the maximal principle that
(u™)? < @ on Q(t). Therefore

2/ (uﬁ)2|wﬁ|2dvg2/ a|Vaﬁ|2dV=/ w22 4
() () IO

n

Now from Theorem 2.5, we have that

a(n) = (a")?(n) + /z@ K& —n) n)(I +K)7(@*)(€)dS(E),  neq(),
SO

oa oa
[l < Follgella < RbllalE:
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Consequently,

| [a, Vn]uwdS]
(1)

<l [ uwlds+ ([ wtds) V([ wTawds)?)
(t) (t)

S()
1
< rollalliqllull([lwll + (/ w VawdS)?)
(1)
where ko = ko(Co, p, M, My), and ||€q — ealli+q + 168 — €8ll1+¢ < M, M; is as in
Lemma 6.4. This proves c. O

Remark. Green’s identity is justified here since a”, v, and w” have enough in-

tegrability and u”, w” have enough decay at infinity; see Theorem 2.5 and it’s
remark.

Lemma 6.7. For u € G(R?), we have
(6.13) g ull2 < Jlull® + / S < rolul

where ko = ko(Co, pu, M, M1) > 1, M, My are as in Lemma 6.6.

Proof. We first prove the right hand side inequality of (6.13). Let (Ry, R2) =
(0a|D| 71,05 D|71) be the Riesz transforms on R?

(6.14)
Ruw = (I +K*) " {pov. / / (0(€) x K (€' —€)) - (€ Ruw — £, Ryw) do/df'}.

and let R* be the adjoint of R on L?(3(t),dS). From (3.13) we know Vyu = R|D|u.
Therefore

(6.15)

[ avauds= [ Re@IDuds = [[|DI2(g x &IR* (w) |DI*udads
=(t) =(t)

< / (D12 (€ % €|R* (w)))? dadB) /3 / (ID]Y?u}? dadp)/?
< wolull? 2,

where the last inequality follows from Lemma 6.4 and Lemma 6.2, and k{ =
ko(Co, pos M, My), ||éa — €allitq + 1€ — €slli4g < M, and M; is as in Lemma
6.4. This proves the right hand side inequality of (6.13).

The left hand side inequality of (6.13) is proved similarly. We know from (3.14)
that

(6.16) Ou=—0¢- (I + Hygy)m(—I +K*)"'Vqu).
Since |D| = —R19, — Rz, we can also write | D|u = RV qu, where

Rw = Ri{&a - (I + Hyw)(n(—1 + K£*)'w)}
+ Ro{&s - (I + Hsy)(m(—1 + K*) " 'w)}.
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Let R* be the adjoint of R on L%(X(t),dS). Therefore

1 ~ ~ 1
u |D|udadB = 7uRVnudS:/ R*{——u}VaudsS.
// 1Dl st) [§a X sl =(t) {|§a x &l J

Applying Lemma 6.6 b, we get

~ u
R{—VaudS
/E(t) {|€a X §B|}

< (/ uVaudS)Y?( [ RY{——m—
=(t)

ds)'?,
() |€a X €6| } )

RN g

where

~ U ~ . U _ ~ U
foo ® e TR gy 5 = [ 1PIR gods
< ol | [ UDI2(R (g )? dad)

< “6”“”?/2

Here we used Lemma 6.4 and Lemma 6.2 again in the last inequality. Therefore

[ wiptands < i | )
S(t

and consequently

lull? 5 < Ko(]lull? +/ WV dS).
()
This proves the left hand side inequality of (6.13). O

Using Lemmas 3.1, 3.2 and a similar argument as in Lemma 6.7, we also have
the following

Lemma 6.8. Let a — 1 € H'9(R?). For u € G(R?), we have

| / / auldr, Valu dadB] < wo(la — g + Dllédosgllul?

where ko = ko(Co, u, M, M1), and M and My are as in Lemma 6.6.

Let
a

|€a % 56|7
where a — 1 € H'"(R?) and ) is a constant. Also let (u,v) = [[ uvdadp.

(6.17) G=aVa+A\ a=

Lemma 6.9. Let a —1 € H'9(R?). Assume that there is a constant co > 0, such
that a > ¢o. Assume A > |Vna|ool€a X £8loo + ﬁ. Then for u € G(R?),

(6.18) 1l e < (Guyu) < rallull? )
€0 X €800
Co

where K1 > max{2\ + Ko|a|oo, Ko}, Ko is the constant in Lemma 6.7.
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Proof. Let a™ — 1, u" be the harmonic extensions of a — 1 and u on §(t), given by
Theorem 2.5. From Green’s second identity, we have that

(6.19)

12 h
/ auVpudS = 1/ P LIC 1/ 9a 2 dS—i—/ a"|Vu"'[* dv,
() 2 Jsw on 2 Jy@) On Q)

therefore

/ UV dS > —|Val€n x €3]]l + —0 / VUl 2 av
=(t) o % &aloe Jagr)
co

> —|Vna|soléa x &aloollull® + —/ uVaudS
’ [€a % €aloo (t)
€0 —1y,.112 2
Z_VGOOé-axgooU2+7I€ u — lu ,
|Vnalo| aloo [lull |€ax§ﬁ|m( o llulli/z = [lull®)

where in the first inequality we used the maximal principle that a® > minyg) a >
Co

————— and in the last inequality we used Lemma 6.7. Consequently,
€a X €ploo

0 —

c
G’u,u:/ auVaudS + Mu|? > ———— k- Yul|? ..
() = | ouVaudS 4 Al 2 el

On the other hand, we have from (6.19) that

(Gu,u) = / au VaudS + A|ul?
S(t)
< [Vnaléa x &allool|ull® + |a|oo/Q( : Va2 dV + Aljul®
t

< |Vnasol€a X €ploc[[ull® + lal /E( )anudS+ Al
t

< (IVnals[éa x €ploc + Nl|ull® + rolaloo[ullF/
< (23 + riolaloo) [[ull} 2.

Taking x1 > max{2\ + xo|a|oo, |§°‘xc—§ﬁ|°°n0}, we get (6.18). O
0

Fort € [0,T] and 0 < ¥ <1, let

2:l(t) :51 zfl(aaﬂat)v EQ(t) :62262(0[767{;)5
Z(ﬁvt) : { = 19{1(04,5,15) + (1 - 19){2(0[767{;)'
Assume that X(¢; ¢) satisfies H1 and H3 for all ¢ € [0,7] and 0 < ¢ < 1; and 34 (¢),
Yo(t) satisfy H1, H2', H3, where
H2": &4 — ea, &5 —ep € C([0,T], HY/2(R?,C(V3))), ea X €5 = €3 and & €
L>=([0,T], H*+1/2(R?,C(V4))).

Lemma 6.10. Let t € [0,T] be fived. Then for u € &(R?), a € HP*(R?), b €
HP2(R?%), we have

a. ||(Hs, ) = Hey)ullr < krall§1(t) = &) [lrlully, for 2+q¢<r<s+1/2,

b. |l[a, Hs, 1) — Heylullr < krallalloll§(t) = S@)llrlullr—1, for 2+¢ < r <
min{p, s +1/2},
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c. |[la, b, Hs, 1) — Hsy @yl Julle < Erallalle[0]l1€0 () = S2(8)[|rllullr—2, for 2+q <
r S min{plap2as + 1/2}7

where kr,l = kr,l(C()aMaM(r)); and Hgi,a_ea||r—1+||§i,ﬁ_eﬁ||r—1 < M(T); i=1,2.

Proof. We prove a. only. b., c. can be obtained similarly. Actually, the proof of
c. involves operators of type [a, [b, [c, Hx]]]. An estimate of such operators can be
obtained similar to that in Lemma 6.4 b. We leave c. to the readers.

We know that 0y& = & — &. Since

(6.20) (s ) — () = /O 00, o Judo
and from (3.2),
00, Hsgoulu = poo. [ [ K€ =€) (006 ~ 008") x (€ — €iouly) da’dy
= Z[ai, Hy9.0))Diu
whfere ag are components of 9y& = & — o, that is, & — & = D ase;, and Du =
—&a x &g

€ x &pl?
(6.21)

1 1
|(Hs, @) — Hs,yo))ullr < /0 109, Hs (9, Jul|» di < Z/o @i, Hsy(9;)]Dsull, did

< krall€u(t) = ()l [ullr

where k"r,l = kr)l(co, M, M(T)), and ||€i,a_ea||r—l+ ||€i,ﬁ_eﬁ||r—1 S M(T), = 1, 2.
This proves Lemma 6.10 a. O

Sia X g be the unit normal of ¥;(¢), ¢ = 1,2. Using a
|€i,a X 51,ﬁ|

similar argument and Lemma 3.2 we also have the following

Lemma 6.11. Let t € [0,T] be fized. For u € G(R?), we have
(6.22)
1(Va, = Vg )ullp—1 < kr2[l&2(t) — &) [[ullr, Jor24q<r<s+1/2

where k.2 = ky2(Co, pt, M (1), M), and ||€i o — eallr—1+ &5 —epllr—1 < M(r), for
i =1,2, and supgcg<; |(I +K*)71|| < My, where K is the double layered potential
defined on X(9;t).

e; X (§pua—Eaug), we have from Lemma 6.4 b. that for 2++¢ < r < s+1/2,

For fixed ¢, let n; =

An easy consequence of Lemmas 6.10 and 6.11 is the following

Lemma 6.12. Assume that u € C([0,T],&(R?)), and X(t) satisfies H1, H2 and
H3. Then Hygyu € C([0,T], H"(R?)), and Vqu € C([0,T], H"~*(R?)), for 24q <
r<s-+1/2.

Linear systems. Assume that surfaces X(t), ¢ € [0,T], are given and satisfy the
conditions described at the beginning of the last part, in particular H1, H2 and
H3; and assume V,, is the normal derivative defined on X(¢). Assume that a is a

scalar-valued function such that a—1 € C([0,T], H*(R?)), a; € C([0,T], H'*(R?))
a
and a > ¢qg for some constant ¢y > 0. Let a = —————, and let G be the operator

|€a X §B|’
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in (6.17), with A = supy<;<7(|Vna|co|8a X §sloc + ). We know from

co
|§a X gﬁloo
Lemma 6.1, Corollary 6.5 and our assumption that A is a finite number. Let

Gy = tVn + a[0:, Vi, A = 1 +|D|, and (u,w), = (A"u,A"w). If u, w are
vector-valued or Clifford 1-vector-valued, we define (u,w) = [[u - wdadf, and
(u,w), = (A"u, A"w). For (u,u;) € &(R?) x &(R?), u,u; scalar-valued or vector-
valued, we define

(6.23)
Eq (u,u)

= (ug, ut)s—1 + (Vats, Vaur)s—1 + (GA T, A¥ 1) + (GA ™ 'Vau, A1V au)
+ 62{(UQ, Ua)s—l + (uﬁa uﬂ)s—l + (Vnuaa vnua)s—l + (vnu67 vnuﬂ)s—l};
Eq(u,ut)
= (ug,up)s—1 + (Vate, Vatur)s—1 + (GA ™ u, A7) + (GA* ™' Vau, A1V au),

K

() |3 = [ullZ gy 2 + luel3.

From Corollary 6.5 and Lemma 6.9, we know that
(6.24) R (s ue) 2 < B(uue) < gl(u,ue)2

where & = k(Co, co, i, M (s + ), M1, Ms) > 1 is a constant, and

1
SupT(HSa —ealls—g + 1€ — epllo—y) < M(s + 3),

0<t<
sup [[(I+ K7 < My, sup |la— 1|14q < Mo.
0<t<T 0<t<T

In this part, we solve the initial value problem of the linear system
utt+ﬂVnu:ga OStSTa

(625) u(70) = ug, ut('v 0) =u.

We assume that a and g are scalar-valued, so we are only concerned with a scalar
equation. The approach here is very much the same as for the 2-D case [24]. We only
give the main steps and present in detail those proofs which have major differences
from the 2-D case.

As in the 2-D case, we first consider the linear systems:

utt—l—avnu—eQAu:g, 0<t<T,

(6.26¢) u(-,0) = ug, u(-,0) = u

where A = 93 + 05.

Let

H2": &0 — €a, &g —es € CH[0,T], HS(R?,C(V3))), €a X €5 = e3 and & €
C((0, T), /2 (R, C(Va)).

Lemma 6.13. Let0<e<1,0<T < o0, s >3/2+q, a—1¢€ C([0,T], H*(R?)),
and g € C([0,T], H*(R?)). Assume that X(t),t € [0,T], satisfies H1, H2" and HS.
a. Ifug € H¥", uy € H*, then there exists a unique solution u of (6.26¢), such
that uw € C7([0,T), HS*179), j =0,1,2.
b. Assume further that a; € C([0,T)], H'T9(R?)), and a > co, for some constant
co > 0. Ifu € C¥[0,T],H**177), j = 0,1,2, is a solution of (6.26¢), then u
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satisfies the estimate
t

(6.27) By c(u,ue) SeCtEs7e(uO7u1)+/ e g||3 dr
0

for 0 <t < T, where ¢c = ¢(Co,co, pt, M(s + 1), My, Ma(s), M3, My(s + 1/2)) is a
constant, and

sup (||§a —ealls +1€s —eplls) < M(s+1), sup [la—1fs < Ma(s),
0< 0<t<T
sup |lagllitq < Ms,  sup ||&llsy1/2 < Ma(s +1/2),
0<t<T 0<t<T

M, is as defined in (6.24).

Proof. a. can be proved in the same way as [24, Lemma 5.7 a]. We omit the
proof. We prove (6.27) in detail for u € C7([0,T], H*T277), j = 0,1,2. For u €
CI([0,T), H*T1=7), j = 0,1,2, as stated in this lemma, we can obtain (6.27) as we
did in [24] through an approximation argument.

Let a = ] & so la =1, < e1lla — 1, for 1+ ¢ < r < s —1/2, where
ar = ci(p, [[§a — ea”rv €5 — esllr). Let u € CI([0,T), H**?*77), j = 0,1,2, be a
solution of (6.26¢). We have

(6.28)
d
_Es,e(u7 ut) = 2(utt7 ut)s—l + 2(vnutta vnut)s—l + 2([8157 vn]Ut, vn'UJiE)s—l

dt
+ (GA* L, A5 Yuy) + (GAS Mg, A1) + (GeA L, A5 1)
+ (GAS_lvnu, As_lvnut) + (GAS_lvnut, As_lvnu) + (GtAs_lvnu, As_lvnu)
+ (GAS [0y, VnJu, A1V u) + (GA ™1V pu, A0, Va]u)
+ 26 (Utery Ua ) s—1 + 262(utg, ug)s—1 + 262 (Vntta, Valla)s—1
+ 26 (Vntsg, Vaug)s—1 + 262([0¢, Valta, Vala)s—1 + 262([0¢, Valug, Vaug)s—1
L+ Lt L+ I+ I

where

I = 2(uss, ug)s—1 + (GAT 1, A5 Ty ) + (GAS Ly, A1)
+ 262 (Uter, Uer ) s—1 + 26 (utg, up)s—1,
I = 2(Vnust, Vnur)s—1 + (GA* 7' Vpu, A Vhu) + (GA* ' Vaug, A5V ,u)
+ 262 (Vatta, Vatia)s—1 + 262 (Vntig, Vi) s_1,
I372([0¢, Valug, Vaue)s—1 + 2€%([0r, Valtia, Vata)s—1 + 26 ([0, Valug, Vaug)s—1,
Iy = (GA*7YOy, Valu, A 'Vau) + (GA* ™ 'Vau, A0, Valu),
= (G AT, A1) 4+ (GeAS I Vpu, A5V ).
From Lemmas 3.1, 3.2, 6.2 and 6.4, we know
(6.29) 11196 Valwle—1 < k(I loll + &l wlhg)  for 7 =s,5+1/2,

where k. = k;.(Co, pi, M(r), My), and supy<;<r(|l€a = €allr—1 + (1€ — €sllr—1) <
M(r), r = s,s+ 1/2. Therefore using Corollary 6.5, we get

(6.30) I3 < KLlEellslluellirqlluells + €[luall? + € lugl?) + kall€ells—rlluelZ
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and using Lemma 6.6 a, Corollary 6.5, Lemma 6.7 and (6.29), we have
(6.31)
<] [ (A Vo) VA 00, Vala)
=(t)

+ a(A*TH0r, Valu) Va(A* ™ 'Vau)} dS|
+ 20[(A*10h, Vinu, A1V qu)|
<kl yolla = Uhag + D& s—1y2llullZi o + 1€ lsra/zlullivgllullsss2)-

Since

0t -1 s—1
Is = — (A7) Va(A* " u) dS
° /z(t) |€a X €6|( )Vl )

0 —1 s—1
+/ M ATV 0) Vi (AT V) dS
st 1€a X €ﬁ|( )Vl )

+ / a([00, Vo A=) (A*~1u) dS + / ([0, Vo A"Vt (A1 V ) dS,
S(t) (t)
we have from Lemma 6.6 a, Corollary 6.5, Lemma 6.7 and 6.8 that
(6.32)
5] < K pa(llallieg + DllullZyr 2 + Ko o (la = Ulig + D€
We remark that the constants k., r = s,s +1/2,s+ 1, in (6.29)-(6.32) and in the

following are not the same, but depend on the same factors.
We now estimate I. Since u is a solution of (6.26¢), we have

|2+q||u||§+1/2.

I, =2(Vn(—aVau), Vaug)s—1 + 2(Vag, Vate)s—1 + (a VaA* " ' Vau, A7 Vauy)
+ (a Va A Vous, A7V au) + 20 (A ' Vhus, A5 Vau)
+ 26%([Vn, Oalti, Vatia)s—1 + 26*([Va, Ilut, Vaug)s—1
— 262(Vnut, [Oa, Vinlta)s—1 — 262(Vnut, [08, Vnlug)s—1
=2(=A*"'Vy(a Vau) + a VaA* ' Vau, A7 Vaug) + I,

where

= / [, Vo (A Vit ) (A~ Vtt) dS + 20 (A°~ Vg, A Var)
(6

+2(Vng, Vntr)s—1 + 26 ([Vin, Oaltit, Vntla)s—1 + 262([Vn, Oalts, Vnug)s—1
— 262 (Vntit, [Ons Vilta)s—1 — 262(Vntt, [05, Valus)s—1-
We know from Lemma 6.6 ¢, Corollary 6.5, and Lemmas 6.7, 6.4 and 3.2, that
1] < kopapa(lla = Uligg + Dllwellslullsasz + ko jollgllslluels
+ ko lluells(llualls + luslls)
< k;+1/2(||a —1li4q + D)(fluell + ||u||§+1/2) + k;+1/2||“t||§

/

+1gl1% + €k (luall? + llusll?),

(6.33)
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where k. = k.1 (Co, pu, M(s+ 1), M;). On the other hand,
ATV (aVau) + aVa A ' Vau = —[A*71 Vi (a Vau)
+ Vnla, A* HVpu + [a, Va] A* T Vau.
From a similar argument as in Lemma 6.4, we have
ITA* ™, Vil (a Vau) | < kL4 o ((la = 1ligg + Dllulls + o = Hls-tllulli+q),
while from Lemma 6.2 and Corollary 6.5,
IVl A Vel < Kyl = lwellulls + o = 1ol isq).
Therefore
(A" Vn(a Vau) + a VoA ' Vau, A1V u,)|
< Kepaya((lla = Llieg + Dllulls + lla = s llullipq) uells
+ |([a, Vo] A* ' Vau, A7 Vo))
< Kepayp((lla = Ulig + Dllullsyrsz + la = sllullivq) luells

where in the last inequality we used Lemma 6.6 ¢. Combining (6.33) and (6.34),
we get
(6.35)
T2 <Kiiqa(lla = Uleg + D (el + lullerj2) + Ko polla = Llsllulliegllulls
+gll? + €k (luall? + llusll?)-

(6.34)

Finally using a similar but much easier argument we have that
1] < Kpygo(lla = Ulg + D (luelZ_y + llull?)
(6.36) ki aalla = Uls—allullisglluels—1 + gl
/
Combining (6.28) and (6.30)-(6.36), we obtain

d

o Bscluue) < ¢ (uell + 1wl o + Eluall + llusl?) + gl
< cEBs e (u,ue) + |92

where

c= C(OOv Co, t, M(S + l)a M, sup ||Cl - lev sup ||at||1+qv sup ||€t||8+1/2)a
0<t<T 0<t<T 0<t<T
and ¢’ depends on the same factors as c. Therefore
t
Bl u) < € Buluo,un) + [ e g]2dr
0

This proves (6.27) for u€ C7([0,T], H**277), j = 0,1,2. For ue CI([0,T], H*T177),
j=0,1,2, (6.27) is obtained through an approximation argument. |

Taking € = 0 in the above proof, we get the following estimates for solutions of
(6.25).

Lemma 6.14. Let 0 < T < oo, s > 3/2+q, a —1 € C([0,T], H*(R?)), and
g € C([0,T), H*(R?)). Assume that X(t),t € [0,T), satisfies H1, H2 and HS3, and
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also that a; € C([0,T], H'T4(R?)), a > co, for some constant co > 0. If u €
Ci([0,T), HsTY/2=1/2(R?)), j = 0,1,2, satisfies (6.25), then

t
(6.37) [((t), ue ()2 < w2eD|(ug, ur)|? + & / et =g (r)||2 dr;
0

if further s > 2+ q, then
[((t), ue ()3 < w2 |(ug, u)|3

t
(6.38) + /-”»/0 e (|la = 112 + (1€ 2 + lg(r)I13) dr,

where K is as in (6.24),
dy = d1(Co, co, pt, M (s +1/2), My, Ma(s), M3, My(s +1/2)),
dy = d2(Co, co, pt, M (s +1/2), My, My, Ms, M4(8)702U£T lull1+q)
<t<

are constants, My, Mo, Ms, M(s+1/2), Ma(s), Ma(s+1/2) are as in (6.24) and
Lemma 6.13, and supg<;<r ||§e]ls < Ma(s).

As in the 2-D case [24], we need the following result to guarantee that when
passing to limits, we will get solutions with the desired regularity.

Lemma 6.15. Let 0 < T < oo, s > 3/2+¢q, a —1 € L>*(0,T],H®), g €
L>([0,T],H®), and a — 1,a; € C([0,T], H'*?). Assume that X(t),t € [0,7],
satisfies H1, H2' and HS3, and a > ¢y for some constant co > 0. If (u,us) €
L>([0,T], HsTY/2 x H) N C([0,T), HS+tY/2 x H), s' < s, satisfies (6.25), then
(u,us) € C([0,T), HSTY/2 x H?).

Proof. The proof of Lemma 6.15 is very similar to that of [24, Lemma 5.9], except
that in this proof, we need to apply Lemma 6.11 to X1(¢) = X(¢) and Xa(t) =
S(t+t'), as t’ — 0. We omit the details. O

Finally we have the following well-posedness result for the linear system (6.25).

)
Theorem 6.16. Let 0 < T < oo, s > 5/2+q, a—1 € C([0,T], H*(R?)),
a; € C([0,T), H*49(R?)) and g € C([0,T], H*(R?)). Assume that X(t),t € [0,T],
satisfies H1, H2 and HS3, and a > ¢y, for some constant co > 0. If (ug,u1) €
Hst1/2 x H®, then there is a unique solution u of the linear system (6.25), such
that w € C9([0,T], H*+1/273/2(R?)), j = 0,1,2.

Proof. The uniqueness of solutions is a consequence of Lemma 6.14. The proof of
existence has two steps and is again very similar to that of [24, Theorem 5.10]. In
Step 1, we assume further that Y(t) satisfies H2” and uo € H**!, and we obtain
the solution of (6.25) by taking the limit of solutions of (6.26¢) as ¢ — 0. We use
estimates (6.27) and (6.37) to show that the limit exists. We use Lemma 6.15 to
ensure that the solution has the desired regularity.

In Step 2, we remove the further assumption made in Step 1 by smoothing ug
and X(t), then pass to the limit. The smoothing can be done as usual, that is,
taking X5(t) : &5(t) = &(t) * ¢ and ugs = ug * ¢5, where ¢s(c, ) = 6%(;5(%, g),
¢ € 6(R?), [ ¢ = 1. It is not hard to see that Xs(t) satisfies H2"” and ugs € H** .
We verify in the following that X5(¢) also satisfies H1 and H3, when ¢ < §p, where
0o > 0 is a constant.
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Let (o, 8) = (o, B) + (a1, £1). Since
(55(0‘/75/) - 56(047 ﬁ)) - (g(alvﬁ/) - g(avﬁ))

1
— / %{(55 —&)(a+ 0oy, 5+ 061)}db
0

1
= [ (Ve ~ Ve 01,5+ 05) - (o, 1) 0,
0
and since
[V&s = VE|oo < 0C([|6a — €alli+q + 1€ — esll144) < 6CM,

we have

[65(, 8') = & (e, B)| = (e, B') = &(ev, B)| — SCM (|eu| + |51 ])
> (Co = 0CM)(|Jo — o'| + |8 = B'])

where C' is a universal constant, ||{o — eall144 + €5 — €sll14+q < M. Consequently
Co
(e 8) — &5(@ )1 = Ll — o+ 18- )

C
for0 <6 < ﬁ The fact that &, for § < Jo, satisfies H3 can be verified similarly.

The rest of proof is carried out similar to that of [24, Theorem 5.10]. O

It is clear that Lemmas 6.14 and 6.15 and Theorem 6.16 also hold if g, ug, w1
and the solution u are vector-valued or Clifford 1-vector-valued.

The quasilinear system. Let g(¢,u,us) = —a(I + %)~ (R{Af (¢, u,1)}), where
f = f(&uu), n are as defined in (5.22) and K* is as defined in (5.23). The
following estimates of g and a are easy consequences of results in the estimates
part.

Lemma 6.17. Let 0 < T < o0, s > 3/2+ q. Assume that for t € [0,T], () :
& =¢&(a, B,t) satisfies HI, H2 and H3, and (I + I/C\’/*)_l is bounded from Lo(R?) to
Lo(R2); assume further that u,u; € C([0,T], H*(R%,C(V3))), and |u; +e3] > co, for
some constant cqg > 0. Then

a. g=g(&uu) € C([0,T], H(R?, C(V3))), and

||g||5 S KQ(C()’COMUHM(S)leaM(S)aMt(S))v
where Ky = Kg(C’O,co,u,M(s),Ml,M(s),Mt(s)) is a constant,

sup ([|€a — ealls—1 + 165 — eplls—1) < M(s), sup (I +K*)7H| < My,
0<t<T 0<t<T

with ||(I + K*)~Y|| the operator norm of (I +K*)™ from Ly(R2) to Ly(R?), and

sup |[ulls < M(s), sup _fuls < M(s).
0<t<T 0<t<T

b. a—1=u +es|—1eC(0,T], H(R?)), and
la—1]» < Ko(M(r)),  forl+g<r<s,

where Ko = Ko(My(r)) is a constant, supg<, < [[we]l» < My(r).
c. Assume further that wy € C([0,T], H**9(R?,C(V3))). Then

a; € C([0,T), H*9(R?)),
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and
||at||1+q < Ko, (Mi(1+q), My),
where Ko, = Ka,(M(1 + q), M) is a constant, supg<,<r |[Witll1+q < My, and
M (14 q) is as defined in b.
Proof. b. and c. are easy consequences of Lemmas 6.1 and 6.2.

Notice that fi — Iﬁti—zgl € C((0,T), H*(R2,C(V4))). From the same proof for
t 3

Lemma 6.4 d, we have (I + 6)_1 is bounded from H*(R?) to H*(R?). Notice
further that each term in f(&,u,u;) is an operator of one of the types discussed in
Lemma 6.4, with a, b = u or u;, therefore we have a. O

The following result is a consequence of Lemmas 6.4 and 6.10.
Lemma 6.18. Let s > 3/2+¢q. Fort €[0,T] and 0 <9 <1, let
Si(t) & =N Bi1), Ta(t) 187 = (o B,1),
S(W5t) : € = 9€ (0, B,8) + (1 = )€ (@, B, ).

Assume that X(9;t) satisfies HI, H2, and H3, for allt € [0,T], 0 <9 < 1, with the
same bounds Cy, p and

sup ([[€a — ealls—1 + 1€ — eBHs—l) < M(s) < oo,
0<9<1, 0<t<T

and assume that (I +K*)™* is bounded from La(R2) to Loy(R2), with

sup  [[(T+ K57 < My < o0,
0<9<1, 0<t<T

where ||(I + 6)_1” is the operator norm of (I + I/Cv*)_l from Lo(R?) to Lo(R?).
Assume further that for i = 1,2, u’,ui € C([0,T], H*(R?,C(V3))), with

sup [[u’l|s < M(s) and sup [[uflls < My(s), i=1,2,
0<t<T 0<t<T

and |ul + e3| > co, for some constant co > 0. Then
(6.39)
lg(€!, ut,uy) — 86w )|l < Ko(ll€" = €2lls + flut = w?[ls + [y — i ls),
laCug) — a(uf)lls < Kallup — vl

where Ky = Kg(Co,co,u,M(s),]T/fl,M(s),Mt(s)) and K, = Kq(Mq(s)) are con-
stants.

Now we are ready to solve the initial value problem of the quasilinear system
(5.21)-(5.23), (5.29).

Let 3(0) : € = &(a, B) be a surface that divides R? into two simply connected
regions. Assume that there are vectors en, eg, such that ey x eg = e3, {o,0 —
€ay go,ﬁ —€g S HS—I/Z(R27C(‘/3)),

(640) |§0,ax§0,5|22U7 for —OO<CY,6<OO,
7 (e, B) = &l B)] = 2Co(Ja = o/ + B = B'])  for —oco<a,B < oo
Assume g, u; satisfy (5.30). Therefore fi(0) = ny and K*(0) = K. Let

(6.41) Mo = [[€0.a — ealls—1/2 + l€0,5 — eslls—1/2  and Moy = || +K5) ™.
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Theorem 6.19. Let s > 5/2+q, where ¢ > 1. Assume that ug € H*+1/2(R2,C(13)),
u; € H3(R?,C(V3)), and ag = |uy +e3| > 2co for some constant co > 0. Then there
exists T > 0,

T =T(Co, co, pt, Mo, Mo,1, My),

where M3 = ||uo||§+1/2 + |lu1]|?, such that the system (5.21)-(5.28), (5.29) has a
unique solution w € C7([0,T], H*TY/?2=3i/2(R%,C(V3))), j = 0,1,2. Moreover, the
surfaces

t

() €(t) =& —|—/ u(r) dr, t €1[0,T],

0

satisfy H1-HS.

Remark 1. In this theorem, the assumption that ug, u; satisfy (5.30) is not neces-

sary. The result holds for general ug and uy, if we assume further that (I +K* (0))~t
is bounded from Ly(R?) to Lo(R?). In this case, the existence time 7' also depends
on the operator norm of (I + K*(0))~1.

Remark 2. The assumption u; € H? is a consequence of ng — e3 € H® and the
regularity assumptions on &gy, ug given in this theorem.

Proof. Existence: We prove the existence by the iteration method.
Let 0 < T < oo; we define a set Sy C m?:o CI([0,T), H5T1/?271/2(R?,C(V3))) by

sup (w2 + [lugl|2_, 5) < 4ME,
0<t<T

(6.42) Sr=1u (2412 + lluel?) < 45ME,

sup
0<t<T

inf a= inf |u+e3|>co
0<t<T  0<t<T

where ko = k(Cy, co, pt, 2Mo,2Mo 1, K4 (2My)) is the constant defined in (6.24) and
K,(2M,) is the constant in Lemma 6.17 b. For

£(t) =&+ /0 u(r) dr,

where u € St,, for some T > 0. Since

€ €8] >I60.0 X E0.5] — I( / o (7) dr) X €0 5]

—|§o7ax</0 uﬁ<T>dT>|—|</0 uw)dﬂx(/o up(r) dr)],

t
[€(er, B, 1) = &(a’, 8", 1) = [€o(e, B) = ol B))] —/0 lu(a, B,7) —u(a’, B',7)| dr,
[€a — €alls—1 + 1188 — esllo—1 <llé0.a —€alls—1 + €08 —e€sll—1

+/Ot<||ua<T>||s_% § us()llo_s) dr

t t
K :ic3+/ 0., K*dr, K* :/c;;+/ 0, K*] dr,
0 0
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from Lemmas 6.1, 6.2 and 6.4, we know that there exists a

Ty = Ti(Co, p, Mo, Mo 1,265 M3), 0 < Ty < T,

such that
- >
oglflngl l€a x &al > 1,
. . !l > —_ A el
JntJg(a,8.0) = ¢ 81| = Colla— o]+ |8 = ),
(6.43) sup |[€a — €alls—1 + (1§65 — eplls— 3 < 2Mo,
0<t<Ty
sup |[(1+K*) 7Y < 2Moy, sup [[(1+K7)7Y| < 2Mo1.
0<t<T} 0<t<Ty

Step 1. We construct inductively a sequence u/ € Sp, where 0 < T < T
will be given later. First, we take u’(t) = uy and €°(¢t) = &. It is clear that
u’ € Sp, for any 0 < T < oo and ul, = 0 € C([0,T], H*9). Assume that we
have obtained u™, 0 < m < j, and u™ € Sp for some 0 < T" < T} and u} €
C([0,T], H*9). We define agp = |u1 + ez, go = g(&o,u0,11), and for 1 < m < j,
am = U +es], £ (t) = &H—fot u™(7)dr, and g, = g(€™, u™, u™). We know a,, >
co, for 0 < m < j. From Lemma 6.17, we have that a,, — 1 € C([0,T], H*(R?)),
gm € C([0,T), H*(R?,C(V3))), and da,, € C([0,T], H'*?). Therefore by Theorem
6.16, there is a unique u/*! € ﬂ?:o C([0,T], H¥+1/273/2(R? C(V3))), satisfying the

following equation:
(6.44) Wl + V=g,
. WL 0) =u, W, 0) =1

where Vy, is the normal derivative with respect to the surface &/(t) for fixed ¢,
0 <t <T. We want to show that there is a 0 < T" < Tj, such that u™ € St for
0 < m < j implies Wt € Sp.

Assume that uw/ € Sy, where 0 < T < Ty. From (6.43), Lemma 6.14 (6.37) and
Lemma 6.17, we have

t
@0 O < e 2+ o [ e gy (]2 dr
0

where o = K(Cy, co, ft, 2Mo, 2Mp 1, K4 (2M)) is the constant in (6.42),
di = di1(Cy, co, 1, 2Mo, 2Mo 1, Ko (260 M), Kq,, 260 M),

is the constant defined in inequality (6.37), and K,, is the constant such that
supg<i<r [|0:ajll14q < Ko, From Lemma 6.17 ¢, we know that

(6.45) Ko, = Ko, (2Mo, My),
where supy<;<r ||u{t||1+q < My;. Since from (6.44), u{t = _aj—lvflj—luj +9j-1
therefore

sup |[uly][14q < Mu(Mo, Mo.1, Co, co, i1, M)
0<t<T

where My (Mo, Mo 1, Co, co, 1, Mo) is a constant determined by Mg, Mo 1, Co, co,
1, My. So there exists a constant

K, = K1(Co, co, pt, Mo, Mo 1, M),
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such that

(6.46) sup (W (), (1)2 < K.
0<t<T<T,

Since

: 1
IO+l 013172 < 2luoll? + 2l |2,

t . .
+2A<wﬁ%ﬂﬁ+W@#<msuy

for t < 1 and from (6.44), Lemma 6.17, and the induction hypothesis, there is a
constant

Ky = K5(Co, co, pt, 2Mo, 2Mo 1, Ko (260 M), 260 M),
such that
/)12 + ™ (D12 e < KW (7),u! ™ (7)[2 + 1),
it follows that for all 0 < T' < min{7y, 75,1}, where Ty = L% we have
= 1 29 ) 2_(K1+1)K27

(647)  sup (W02 + 0 (012 1/2) < 2MF + TRk + 1) < 403,

Now assume that 0 < T < min{71,75,1}. From the induction hypothesis,
Lemma 6.14 (6.38), Lemma 6.17 and (6.43), we also have that

W), ] T ()12 < wge™ [ (uo, w) 2

t
(6.48) +mAe =7 (flag — 12 + 612,12 + g5 (P)]12) dr

where ko is as in (6.42),
dy = dy(Co, co, pt, 2Mo,2Mo 1, Ko (2Mo), Kq, . 2Mo, sup W (t)]144)
0<t<T

is the constant defined in (6.38), and K, is as in (6.45). From (6.47) we have that
sup w1 (t)[|14q < 2Mo,
0<t<T

therefore
d/2 < d? = d2(007 Co, K, 2M07 2M0,17 Ka(2MO)7 Kat ) 2M05 2M0)
Moreover we have from Lemma 6.17 and the induction hypothesis that
llaj — 1][s < Ka(2Kk0Mo), ||£g||s+1/2 = [[w/]|s11/2 < 260Mo, |lg;lls < K,

where K, = K,(Co, co, i, 2Mo, 2My 1, 2My, 2k0 M) is the constant determined in
Lemma 6.17 a. Therefore

| (1), uf T ()2 < Kge™ (0, )]
¢
(6.49) + Ko / e (K220 M) + ARZME + Kj)dr
0
< /{'OM2 dat +K3t€d2t,

where

Ks = ro(KZ(2k0Mo) + 4K3MG + K7).
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1 2 2 2
Taking T3 = min{z—, ’“””01?40}, we have for all 0 < T < min{Ty, Ty, T3, 1},
2 3
(6.50) S (W (), ul (8)]2 < ARGME.

We now show that there is a 0 < T < min{Ty, T», T3, 1}, such that

i ; - j j+1 >
odnf i1 () = I fui ™ (8) + es] = co.

Assume that 0 < T < min{T1,T»,T5,1}. By the same argument of (6.45), we have

sup [|0rajy1ll14q < Ka,,
0<t<T

where K, is as defined in (6.45). Therefore

sup [0iaj11|o0 < koKa,,
0<t<T

where kg is the constant from Lemma 6.1.
Taking Ty = —2— and T = min{Ty, Ts, T5, T4, 1}, we have for 0 < ¢ < T,

kO ay
. t

a5e1(t) = (0 + 1] > a0 —/ 10,041 (7) oo d7 = 2¢0 — thoKa, > co.
0

So we have obtained a T > 0, T'=min{Ty, T5, T3, T4, 1 } =T (Co, co, pt, Mo, Mo.1, Mo)
and a sequence w € St, j = 0,1,2,..., such that u/ satisfies the recursive equation
(6.44).

Step 2. We want to show that the sequence W/ € Sr constructed in Step 1
is a Cauchy sequence in some Banach space. Let ti = w/*! — /. Then i €
M=o CY([0,T), H+1/273/2(R?,C(V3))), and ii satisfies

Uy + a; Vit = g,
11(,0)20, ﬁt(v()):()

where g = g; — gj—1 — (a; — a;-1) Vi, — a;_1(Vy, — Vp,_, )w/. From Lemmas
6.18 and 6.11, we know that there is a constant K4 = K4(Co, co, p, Mo, Mo 1, Mo),
such that

18O s—1/2 < Ka(l€7H (1) = € (D)l s-1/2
W) = ()2 + () =] (Ol s-1/2)-
Therefore using Lemma 6.14 (6.37), we get

t
(@B <o [ MO G dr
t
< drK et / |1 (r) — (D)2 dr
0

t . .
+ 4/€0Kz€d1t/0 (W =1 (r) —w (T)||§—1/2 + [Juy l(T) —u (7')”3—1/2)5”

where dy = d1(Co, co, pt, 2Mo, 2 Mo 1, Ko (260 M), Kq, , 2k0Mp) is the constant de-
fined in (6.37) and kg is the constant in (6.42). Since

) — () = tj_lT—jT T
&) — £(1) /O<u (r) — w (1)) dr,



WELL-POSEDNESS OF THE FULL WATER WAVE PROBLEM IN 3-D 487

we have
t
IEL(E) — €1 (t)]|—r o < / W (7) = 1 (7) o1 o T,
0
therefore
/0 |1 (r) — € (r) |2, dr < 12 / =1 () = (7)][2_y p dr
and

(8, 10) 131 o = 1) — W (), ] () = wl ()2 s

t
< droKie™! (1 + 1)/ (=1 () = ()31 + lud (1) —u] ()13 ) d7
0
t . .
< droKfe"(T? + 1)/ (W) = (), ul T () = u (7)) [3- 1 o d
0

This proves that u/ is a Cauchy sequence in ﬂ;:o CI([0,T), H577/2(R?,C(V3))).
Therefore there exists u € ﬂ;‘:o CI([0,T], H*=7/2(R?,C(V3))), such that

1
W —u in ﬂ CI([0,T), H*=9/2(R?,C(V3))).
=0

Furthermore, a; — a = |u; + e3] and g; — g(&,u,1;) in C([0, 7], H5~1/2), where
E=¢& + fotudT. Let j — oo; from (6.44) we get u is a solution of system (5.21)-
(5.23),(5.29), and from (6.43),

t
€(t)=£o+/ u(7) dr, 0<t<T,
0

satisfies HI-H3. We want to further verify that

we () CO([0,T), HH/2I2(R?, C(Vy))).
j=0

Since w/ € S7, we have that
we L=([0,T), H**/2(R?,C(V3))) and u, € L=([0,T], H*(R?,C(V3))).

Using Lemma 6.15 and a similar argument as that of Theorem 5.11 in [24], we get

2
we () CI([0,T), HH/27I2(R?, C(Vy))).
7=0

This proves the existence.
Uniqueness: The uniqueness can be proved by a similar argument as in step 2.
We omit it. O
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§7. THE NONLINEAR WATER WAVE EQUATION

Assume that the initial surface X(0) : £ = & («, ) and initial velocity up are as
given in the initial data part of §5, and that the initial acceleration u; satisfies
(5.30). Assume further that &, up and u; are in the Sobolev spaces as given in
Theorem 6.19. In this section, we show that a solution of the quasilinear system
(5.21)-(5.23), (5.29) is also a solution of the water wave system (4.3),(4.4),(4.5").

Let u be the solution obtained in Theorem 6.19, and let X(¢) : £ = &o(w, 8) +
fo a,B,7)dr, for t € [0,T], where T is the time obtained in Theorem 6.19.
Assume Q(t) and Q(t)¢ are the lower and upper regions with common bound-
ary X(t), N = &, x &3, and n = 5k In order to prove that X(t) : & =
éo(a, B) +f0 u(a, 3, 7)dr, t € [0,T], is a solution of (4.3),(4.4),(4.5), it is enough
to show i = n and u = Hyyu for 0 < ¢ < T. We know when ¢ = 0, 1(0) = n(0)
and up = Hy(g)uo-

We first introduce some notation and develop some identities and lemmas. We
denote by V¢ or V{ = (0,8 ,07) the space valuable gradient with respect to

Q(t) as defined in (3.9), and by V; = (9;,0,,0; ) the space valuable gradient

x 'Yy 1Yz

with respect to Q(¢)¢; V& =n- Vgi are the normal derivatives as defined in (3.10),
Vn =V De, Dgt are the Clifford 1-vector counterparts of V¢ and Vgi respectively;
Hyy) is the Hilbert transform with respect to the region €2(t) as defined in (3.1),
therefore the Hilbert transform with respect to Q(t)¢ is —Hx . For o = o1eq +
o9ea + 03e3 + o123e1€9€3, we denote by o(3) the 3-vector part oiazejeses of o;
ﬁg(t)u = Hygu — {Hy@u}(g) is therefore the 1-vector part of Hyyu. For the
purpose of this section, we do not distinguish the notation for operators bounded
from Lo(R?) to La(R?), they are indicated by either 7 or 7;, i = 1,2,3,. ...

Claim 1. Let f be a real scalar-valued function on R%. Then

(7.1) R{I — Hyw)I =K) fy = f,

where K is the double layered potential operator on X(t) as defined in (2.11).
Claim 1 is straightforward by definition.

Claim 2. Assume that F'= fie1 + faez + fzes, and F'= —Hyx F. Then

(7.2) F=—(I—-Hyu)n{ +K*)"'R(nF)).

Proof. Let F" be the harmonic extension of F on Q(#)¢. Then F" is Clifford analytic
on Q(t)¢. Therefore curl F* = divF" = 0. Since Q(¢)¢ is simply connected, there
is a function f, f harmonic on Q(#)¢, such that F" = D~ f. (7.2) is therefore a
consequence of (3.14). |

Claim 3. Vi + V is a bounded operator from La(3(t),dS) to L2(X(t),dS).
This is a standard result from potential theory; see [15, Theorem 5.2].

Claim 4.

1 - -
(7.3) N; = —§|N|{Vj(u+Hg(t)u) + Vi (u— Hyypyu)}.
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Proof. A calculation as in (5.4) shows that
(u + ffg(t)u)a X fg =+ éa X (u + ﬁg(t)u)ﬁ
= —(N-VE)(u+t Hypu) — N x (D x (u£ Hyyw)).

Since u+ Hyyu and u— Hy, ;) u are the boundary values of Clifford analytic functions
on Q(t) and Q(t)¢ respectively, we have

'Dét(u + Hg(t)u) = 0,
therefore its 2-vector part
'Dg: X (uj: ﬁg(t)u) + D?({Hg(t)u}(g)) =0.
So
N x (D¢ x (w+ Hypu)) = F(éa x &p) x D ({Hypyu} ()
= F[§p0a ({Hxryu}3)) — §als({Hemu} )]
This implies that
(u + flg(t)u)a X fg 4+ &a X (u + ﬁg(t)u)g
= —(N - V&) (u+ Hypu) £ (€500 ({Hywyuh(s) — bads({Hs@yul )]

and
1 ~ B ~
N =uq x &+ & xug = —5[(N- VO (u+ Hyu) + (N - Ve ) (u— Hyw)].
This proofs (7.3). O

A consequence of (7.3) and Claim 3 is that
(7.4) n; = (Va(Hsyu) x n) x n+ T (u— Hy ),
where 7 is a bounded linear operator from La(R?) to La(R?).
Claim 5. Let u be a solution of (5.21)-(5.23). Then
(7.5) {Va(Hsmyw) }3) = {Hs@) (Vas +n4) }3) + 7 (1 — Hypu)
where T is a bounded operator from Ly to Ls.
Proof. Since N Dgt (u+ Hypyu) = 0, we have that its 3-vector part
FN - DF ({Hgwu}(s) — (N x DF) - (u+ Hypuerezes = 0.
From N x Dgt = {30 — £, 03, we have by adding up the above two identities,
(N - D; — N -D; ) {Hspyule) = —2(N x D) - ueiezes,
S0
Va({Hsnu)}ts) = %(Vﬁr + Vi) {Hsw)}s) — (mx De) - uereses.
On the other hand,
(7.6) nDeu = nHy ) (Deu) = (nHyy ) + Hygyn)(Deu) — Hyypy (nDeu).
Taking the 3-vector part of both sides of (7.6), we get
—(n x Dg) -uerezes = {(nHy ) + Hyn)(Dew)}s)
+{Hs @) (Vo — (0 X Dg) X u)}3).
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Notice that

1
Dfu = §'D5 (u — Hg(t)u),

N,
(nxDg) xu= —ﬁ = —1; + 0y(+ )N, and the operator (nHsx ) + Hy;yn)Dg is

1
[NV
a bounded operator from Lo to Lo. Together with Claim 3, we conclude (7.5). O
Claim 6. Let u be a solution of (5.21)-(5.23). Then
(7.7) {(Hg(t)u)tt + aVn(Hg(t)u)}(g) = 71(11 — Hg(t)u) + 7'2(171 - l’l)

where Ty Ta are bounded operators from Lo to Lo.

Proof. We have from integration by parts that
(Hsu) @ = —po. [[ KE =0 x (€ x ) da'dBesecy
= —2pao. [[((€ x ) X VeIL(E - &) deld ercacs

—2pw. //(52,,80/ — &0 — &) -1 dd/dB ereqes

2p0. [[ 1€ = (-0t — & - Ond) del i ereaes

therefore
(7.8)

{(Hsmwi}s) = 2p-v-/ AL — &)} (& - Dot — & - Dp) do/ df'erezes
+ 4p.v./ OAT(E" = &)}y - Dt — &Ly - Dprt)y da' d ereqes
+2p.v. //1“(5’ — &) (& - ot — & - Opt )y da' dF erezes.

Since ND¢(u+ Hy4yu) = 0, we have the 3-vector parts N x Dg- (u+ f[g(t)u)elegeg =
—(N - D¢){Hsyu}(3). Therefore
(&g - Dot — &u - Dgu)ereges = (N X D) - uejeses
= %(N x Dg) - (u— Hygyu)ereses — %(N De){Hsyu}s),
and the term

p.’l}./ ({93{1—‘(5/ — f)}(flﬁ/ . 80/11' — 5:;/ . 85/11’) da'dﬁ'elegeg = T(u — Hg(t)u)

where 7 is a bounded operator from Lo to Lo.
We have that
(55 : 60111 - ga . aﬁu)t = gﬁ . 6aut - ga . aﬁut
=¢p - Oa{a(@ —mn)} — & Op{a(n —n)};

here we used the fact that u; + e3 = an and

(7.10) & - (an)o — & - (an)y = 0

(7.9)
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for any scalar-valued function a. Therefore
p.v./ AT = )}y - artt' — & - Op’)y do/ d ereces

= p.’l}./ 8,5{1—‘(5/ — 5)}(523, . 8a/{a’(f1' - n/)} — fg‘, . 85/{a’(f1' - 1’1’)}) do/dﬂ'elegeg
=7 (0 —n),

where 7 is a bounded operator from Lo to Lo.
Now we look at the last term in (7.8). From (7.9) and (7.10) we have

(€ Oau — &a - Opu)ur = &g - a{a(n —m)} — o - Op{a(n —n)}
+ {5 . Ba{utt — Cll'lt} — fa . Bg{utt — Cll’lt}.

Using (7.10), the fact that u satisfies equation (5.21), Claim 5 and Claim 4, we get
2p.. //F({’ — f)(fg/ O’ — €, - Op )y da’ d B ereze3

—2pu. //r(g’ (€l - O {0Vt + 0’}
+ &, - 9p{a' V! +a'n}}) do/dB ereses + 71 (i — n)
= —{Hy)(aVau + any)}(3) + 71 (0 — n)
= —a{Hs(p (Vat+ 1)} + {8 Hso) Vot + 5} + B~ )
= —a{Vn(Hspw}s) + Ti(h —n) + To(u — Hypu),

where 77 and 75 are bounded operators from Lo to Lo. This proves Claim 6. [

Hs@w): +es
B |(Hsw)e + €3]
unit vector in the direction of (Hx)u) +e3. Then n(0) = n(0), and there is a time
0<To <T,Ty=To(Co,co, pty Mo, Mo.1, M), such that the vector 1 is defined for
0 <t<Tp. Weknow that for 0 <t <Tp,n—n=7T((u— Hz(t)u)t), where 7 is a
bounded operator from Lo to Lo.

We are now ready to show that n = n and u = HyHu for 0 <t <T. Our idea
is to show that u — Hyyu and n — n satisfies a linear differential system, which
together with the initial data n(0) — n(0) = 0 and wy — Hyyyup = 0 implies that
n =nand u = Hypu for 0 < ¢ < Tp. This would give that n = n = n for
0 <t < Tp. The same process can then be applied to Ty < t < 2Tp, and we would
have n = n and u = Hyyu for Ty <t < 2T;. After finitely many steps, we would
have that n = n and u = Hy)u forall0<t<T.

Let u be a solution of (5.21)-(5.23), (5.29). It is easy to see from the derivations
in §5 that u satisfies

Now let’s introduce a new vector n. We define n = to be the

%{fl([ — Hz(t))(utt + aVnu — iltt — Cl(ﬁ . V)il)} = 0,
therefore

(711) %{H(I — Hz(t))(utt + aVnu - iltt — a(n . V)ﬂ)} = T(fl — Il)7
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where 7 is a bounded linear operator from Ly to L. Now
(I = Hy@))(uge + aVpu — Uy — aViail)
= 2(utt + aVnu - iltt — aVnil) — (I + Hz(t))(utt + aVnu - iltt - aVnil)

1
= (u— Hypuw)y + aVa(u — Hypyu) + 5[337 Hyy)](u = Hygyu)
1 _
= 5 (I + Hy)(@(Va + Vi) (4 = Hyou)
— lany, H|9; (w — Hyyu) — [ang, H]0, (4 — Hyyu)
— [ans, H]OZ (u — Hypyu),

where n;, i = 1,2, 3, are components of n, so
(7.12)
(I — Hyy1)) (W + aVput — Uy — aVipll) = (u — Hyw)e + aVa(u — Hyyu)
+Ti(u — Hymyu) + T2 ((u — Hyu)e),
where 77, 75 are bounded operators from Lo to Ls. Therefore from Claim 6,

(7.13)
{(I - Hg(t))(utt + aVau — Uy — avnﬂ)}(g)

= ~{(Hgpywi + aVa(Hspu) ) + Ti(w — Hypu) + To((u — Hypyu)t)
=Ti(u — Hypu) + I2((u — Hymyu):) + T3(d — n),
where 77, 75 73 are bounded operators from Ly to Ly. Now
F = (I — Hy))(ue + aVpu — Uy — aVipil)
— (I = Hs))I = K)"H{(I — Hy))(uer + aVat — Uy — aViall) } 3

is a 1l-vector-valued function satisfying the assumption of Claim 2. From (7.2),
(7.11) and (7.13), we get

F=T(u— Hyuu) + T2((u — Hepw)e) + Ts(A — n),
where 77, 73 73 are bounded from Ly to Lo. Consequently from (7.12) and (7.13),
(u — Hg(t)u)tt + aVn(u — Hg(t)u)
(7.14) =Ti(u— Hypyu) + o((u — Hypu)e) + T3(d — n),

where 77, 75 73 are operators bounded from Lo to Lo.
Now we want to derive an equation of (i —n). Let

¢ =—(I+K) 7 (R{Af(E u,u)}).

(5.21) becomes uy+a Vau = fic. Let b = |(ﬁg(t)u)t+63|. Then (ﬁg(t)u)t+€3 =bn
and

(Hsy(yu)e = big + by,
From (7.14), we have
(Heyw)et +aVa(Hymu)
(7.15) =nc+ Ti(u— Hypu) + T2((u — Hyyu)e) + Ts(
=nc+ Ti(u — Hyu) + Io((u — Hygyw)) + Ts(h — n),

=

_n)
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therefore

(7.16)
by = —aVa(Hypu) + fic — b + 71 (u — Hygyu) + To((u — Hygyu)¢) + Z3(h — n)

= (aVn(Hsuyu) x 1) x iy + T3 (u — Hypu) + To((u — Hygyu)e) + T (0 — n).
Since a —b = T ((u — Hy(s)u)¢) is a bounded operator from Ly to La, we have
fi; = (Vn(Hsu) X 1) x 0y + T3 (u — Hypyu) + To((u — Hyu)) + T3(h — n).
Combining with (7.4), we obtain
(7.17) (0 —n); =T (u— Hypyu) + To((u — Hypyu)¢) + Z3(h — n).

Using the results in the estimate part of §6, it is easy to establish an energy
estimate for system (7.14),(7.17). With the initial data n(0) = n(0) and uy =
Hy,(0)uo, we conclude that

n(t) = n(t) and  u(t) = Hypu(t), for 0 <t < Ty,

so n(t) = n(t) = n(¢) for 0 <t < Ty. Now taking Tp as the initial time, we obtain
n(t) = n(t) and  u(t) = Hypu(t), for Ty <t < 27T.
After finitely many steps, we get
n(t) = n(t) and  u(t) = Hypu(t), for 0 <t <T.

This proves that a solution of (5.21)-(5.23), (5.29) is also a solution of (4.3),(4.4),
(4.5").

We can now state the well-posedness result of the nonlinear waterwave system
(4.3),(4.4),(4.5).

Let &, & = ug be as given in the initial data part of §5. In particular, let
%(0) : € = & (o, B) be a surface that divides R? into two simply connected regions.
Assume that there are vectors e, eg, such that e, X eg = €3, {o.a —€a, {o,8— €8 €
H*~1Y/2(R?,C(V3)); and there are constants p > 0, Cy > 0, such that

|£0,0¢ X go,ﬁl > 2/'67 for —oo < a?ﬁ < 00,
|€o(a, B) — &o(a/, )] > 2Co(Ja — | + |8 = 5')), for — oo < a, 8 < oo.

X
Assume that ng — e3 € H®, where ng = M.
10,0 X 0,51

Theorem 7.1. Let s > 5/2+ q, where ¢ > 1. Assume further that
& € HPV2(R2 C(V3)).

Then there exists T > 0, such that the system (4.3),(4.4),(4.5') has a unique so-
lution £ = &(a, B,t) for 0 < t < T, with the property that the surfaces (t) : £ =
&(a, B,t), 0 <t <T, satisfy HI-H3 of §06, and

& € C([0,T), HH/2712(R?, C(W8))),
for 7 =0,1,2.
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