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WELL-POSEDNESS IN SOBOLEV SPACES
OF THE FULL WATER WAVE PROBLEM IN 3-D

SIJUE WU

§1. Introduction

We consider the motion of the interface separating an inviscid, incompressible,
irrotational fluid from a region of zero density in three-dimensional space; we assume
that the fluid region is below the vacuum, the fluid is under the influence of gravity
and the surface tension is zero. Assume that the density of mass of the fluid is one,
the gravitational field is (0, 0,−1), the free interface is Σ(t) at time t ≥ 0, and the
fluid occupies the region Ω(t). The motion of the fluid is described by

vt + v · ∇v = −(0, 0, 1)−∇p on Ω(t), t ≥ 0 (Euler’s equation),(1.1)

div v = 0 on Ω(t), t ≥ 0 (incompressible),(1.2)

curl v = 0, on Ω(t), t ≥ 0 (irrotational),(1.3)

where v = (v1, v2, v3) is the fluid velocity, p is the fluid pressure. Since we neglect
the surface tension, the pressure is zero on the interface. So on the interface:

p = 0, on Σ(t),(1.4)

(1, v) is tangent to the free surface (t, Σ(t)).(1.5)

We want to find solutions of system (1.1)-(1.5), taking prescribed initial data,
such that for every fixed t ≥ 0, Σ(t) approaches the xy-plane at infinity, and
|v(x, y, z; t)| → 0, |vt(x, y, z; t)| → 0, as |(x, y, z)| → ∞. Since the fluid is assumed
irrotational, incompressible, we can reduce the study of the entire motion to the
motion of the free surface.

The above model is a 3-D water wave model. It is generally known that when
surface tension is neglected, the motion of the interface between an inviscid fluid
and vacuum under the influence of gravity can be subject to Taylor instability [8],
[22]. In a previous work [24], we studied the 2-dimensional water wave model; we
showed that for a 2-D water wave, the sign condition relating to Taylor instability
always holds for nonself-intersecting interface, that is, the motion of the interface
is not subject to Taylor instability. We showed further that the 2-D full nonlinear
water wave problem is uniquely solvable in Sobolev spaces, locally in time, for
any initially nonself-intersecting interface. Earlier works on the well-posedness in
Sobolev spaces of the 2-D water wave problem include Nalimov [18], Yosihara [25],
and Walter Craig [6], where the main results concern the well-posedness of the

Received by the editors December 15, 1997 and, in revised form, August 24, 1998.
1991 Mathematics Subject Classification. Primary 76B15; Secondary 35L99, 35R35.
1991 Financial support provided in part by NSF grant DMS-9600141 and the J. Seward Johnson

Sr. Charitable Trust.

c©1999 American Mathematical Society

445



446 SIJUE WU

motion of free surface when it is a small perturbation of the still water. Shinbrot
[19] and Kano and Nishida [12] obtained the local existence and uniqueness in time
for both the 2-D and 3-D water wave problems with analytic data. T. Beale,
T. Hou and Lowengrub [1] formulated the Taylor sign condition for an arbitrary
solution and showed that when surface tension is neglected, the linearization of the
2-D full water wave equation about a presumed solution is well-posed provided the
exact solution satisfies the Taylor sign condition. Recently, T. Hou, Z. Teng and
P. Zhang [11] formulated the 3-D Taylor sign condition and extended the results in
[1] to three-dimensional space. However a result on the well-posedness in Sobolev
spaces of the full nonlinear 3-D water wave problem is still missing.

In this paper, we establish the well-posedness in Sobolev spaces of the full non-
linear 3-D water wave problem. We show that the results we obtained for the 2-D
water wave also hold for 3-D, that is, the motion of the 3-D water wave is not
subject to Taylor instability and the full 3-D water wave problem is well-posed in
Sobolev spaces for any nonself-intersecting initial interface. The main difficulty
is that in three-dimensional space, there is no such equivalence as the Riemann
mapping, which we used in 2-D to “flatten out” the water wave and carry out the
calculations; complex analysis does not apply to 3-D either. In this paper, we will
show that Clifford analysis is an effective tool for the 3-D water wave problem,
and we do not need Riemann Mapping to carry out the calculation and obtain
well-posedness results.

The 3-D Taylor sign condition [11] is the following. Let ξ = (x(α, β, t), y(α, β, t),
z(α, β, t)), where −∞ < α, β < ∞, be the parameterization of the interface Σ(t)
by Lagrangian coordinates (α, β), that is, ξt(α, β, t) = v(ξ(α, β, t), t) is the velocity
and ξtt(α, β, t) is the acceleration of the particle occupying the position ξ(α, β, t)
at time t. Let n be the unit normal vector of the interface Σ(t) pointing out of the
water region. The sign condition requires that the quantity

a = ξtt · n− (0, 0,−1) · n ≥ c0 > 0,(1)

for some positive constant c0 at each point on the interface. In order to understand
our result on 2-D Taylor sign condition, Russ Caflisch and Tom Hou suggested the
following physically more insightful approach. They pointed out that the quantity

a = ξtt · n− (0, 0,−1) · n = −∇p · n,

therefore a > 0 is somewhat equivalent to the fact that p > 0 inside the water region,
and such a fact can be shown as long as the maximum principle applies. We find
that indeed, the pressure p is superharmonic in the water region Ω(t). We therefore
are able to show that for the 3-D water wave, the quantity a is also pointwisely
greater than a positive constant depending only on the geometry of the interface,
as long as the interface is nonself-intersecting. A detailed proof will be given in §4.
This proof also applies to 2-D, it is physically more transparent than our original
proof in [24]. The rest of the paper is devoted to showing that this fact implies
well-posedness of the full nonlinear 3-D water wave problem. Clifford analysis is
our main analysis tool. Using Clifford algebra, we can rewrite the system (1.1)-
(1.5) into a system on the free surface, which can be easily reduced to a quasilinear
system. The advantage of our new approach is that it works for all dimensions
n ≥ 2. This approach is however largely inspired by our previous work [24].
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In the next section, we give a brief introduction to Clifford analysis; in §3, we
introduce notations used in this paper and develop some identities; in §4, we for-
mulate the system (1.1)-(1.5) into an equivalent system on the free surface and give
a detailed proof for the fact that condition (1) always holds for nonself-intersecting
free surfaces of 3-D water waves; in §5, we reduce the full water wave system into
a quasilinear system and, at the end of this section, we specify the initial data of
the original water wave system, and convert it into initial data for the quasilinear
system; in §6, we show that the quasilinear system is well-posed in certain classes
of Sobolev spaces; and in §7, we prove that the solution of the quasilinear sys-
tem satisfies the original nonlinear water wave equations, provided the initial data
satisfy the compatibility condition given at the end of §5. We then conclude the
well-posedness result for the full nonlinear 3-D water wave problem.

§2. Clifford analysis

In this section, we review a few basic notions and facts about Clifford analysis
and potential theory that will be used in this paper. We refer the reader to [2], [10]
and [15] for more on the subject of Clifford analysis.

Clifford numbers. Let Vn be an n-dimensional real linear vector space with basis

{e1, e2, . . . , en}.

A Clifford algebra C(Vn) is a unitary, associative algebra over the reals, generated
by Vn, under the product rule:

e2
j = −1, j = 1, 2, . . . , n; eiej = −ejei, i 6= j.(2.1)

An element σ ∈ C(Vn) has a representation of the form

σ =
∑

σIeI , σI ∈ R,

where the summation is over all ordered j-tuples I = {h1, . . . , hj}, 0 ≤ j ≤ n, 1 ≤
h1 < · · · < hj ≤ n, and eI = eh1 . . . ehj , with convention e∅ = 1; {σI} are called
components of σ; in particular, σ∅ is called the real part of σ and is denoted by
<σ. The length of σ is |σ| = (

∑
σ2

I )1/2. C(V2) is generally known as the algebra
of quaternions. In the following, when we write σ =

∑
σIeI or σ =

∑
σiei, we

always assume that σI or σi are real numbers. An element σ =
∑

σIeI ∈ C(Vn) is
called a p-vector if the summation is over ordered p-tuples I only. The conjugate
of a 1-vector ξ =

∑n
1 ξiei is defined as ξ =

∑n
1 ξiei, where ei = −ei, i = 1, . . . , n.

Given 1-vectors ξ =
∑n

1 ξiei and η =
∑n

1 ηiei, their product ξη is the sum of the
negative of their ‘inner product’ and ‘outer product’:

ξη = −ξ · η + ξ ∧ η,(2.2)

where ξ · η =
∑n

1 ξiηi and ξ ∧ η =
1
2
(ξη − ηξ). The inner product ξ · η is a scalar,

and the outer product ξ ∧ η is a 2-vector. Notice that when n = 3, the components
of ξ ∧ η are the same as that of the cross product ξ× η, when ξ and η are regarded
as vectors in 3-space. We will identify the notations ξ ∧η and ξ× η in the following
sections when we study 3-D water waves.
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Clifford analyticity. We begin with some notations. Let f be a function defined
on Rd. We denote by ∂kf the k-th order partial derivative ∂k1

x1
. . . ∂kd

xd
f , where

k = k1 + · · · + kd. We say f ∈ Cj(Rd) if f is j-times continuously differentiable,
and all the k-th order derivatives ∂kf , k = 0, 1, . . . , j, satisfy supx∈Rd |∂kf(x)| < ∞;
if the function f is C(Vn)-valued, we write f ∈ Cj(Rd, C(Vn)) or f ∈ Cj(Rd). If
f is defined and continuous on a manifold M , we write f ∈ C(M); we write
f ∈ C(M, C(Vn)) or f ∈ C(M) if f is C(Vn)-valued. For M ⊂ Rn, we say f ∈ C0(M)
if f ∈ C(M) and f is compactly supported.

Let Ω ⊂ Rn be a domain. We denote by Ω the closure of Ω, and by Ωc the
complement of Ω. Assume Σ is the boundary of Ω. We say Ω is a Lipschitz domain
with Lipschitz constant less than or equal to M , if

1. for each ξ ∈ Σ, there is a ball or a half-space E 3 ξ, a coordinate system
x′ = (x1, . . . , xn−1), xn, with origin at ξ, and a function φ : Rn−1 → R such that
φ(0) = 0,

|φ(x′)− φ(y′)| ≤ M |x′ − y′|, and Ω ∩ E = {η = (x′, xn) : xn > φ(x′)} ∩ E;

2. Σ can be covered by finitely many E’s from the above collection.
If for each ξ ∈ Σ, the function φ can be chosen in Cj(Rn−1), we say Ω is a Cj

domain. For a Cj domain Ω, j ≥ 1, we say f ∈ C1(Σ) if f is 1-time continuously
differentiable; we say f ∈ C1

0 (Σ) if f ∈ C1(Σ) and f is compactly supported. Let
Br(0) be the ball centered at the origin with radius r. For an unbounded domain
Ω, we say Σ approaches plane xn = 0 at infinity, if there is a sufficiently large R,
such that outside BR(0), Σ is a graph (x′, φ(x′)) and lim|x′|→∞ φ(x′) = 0.

There are a few different but equivalent ways to define Clifford analyticity. We
use the one given in [10].

Let W be a domain in Rn, D =
∑n

1 ei∂xi , and D =
∑n

1 ei∂xi . A function
f ∈ C(W, C(Vn)) is said to be Clifford analytic on W if Df = 0 everywhere on
W . Since DD = DD = ∆n, where ∆n is the Laplacian, the real components of
a Clifford analytic function are necessarily harmonic; on the other hand, if φ is a
harmonic function on W , then Dφ and Dφ(= −Dφ) are Clifford analytic functions.
For a 1-vector-valued function f =

∑n
1 fiei, we have Df = −divf + curlf , so

f =
∑n

1 fiei is Clifford analytic if and only if

divf = 0 and curlf = 0.(2.3)

It is clear that when n = 2, Clifford analyticity for 1-vector-valued functions is
equivalent to complex (anti)analyticity.

Let Γn be the fundamental solution for ∆ in Rn:

Γ2(ξ) =
1
2π

log |ξ|, Γn(ξ) =
1

ωn(2− n)
|ξ|−(n−2), n > 2,(2.4)

where ωn is the surface area of the unit sphere in Rn, and let

K(ξ) = 2DΓ(ξ) =
2
ωn

ξ

|ξ|n , ξ 6= 0.(2.5)

Assume that Ω is a bounded C2 domain in W with boundary Σ. For each ξ ∈ Σ, let
n(ξ) =

∑n
1 niei be the unit outer normal to Σ, and let dS be the surface measure

of Σ. We have the following Cauchy Integral Theorem.
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Theorem 2.1 (see [10, Chapter 2], (3.20)Corollary). If f is a Clifford analytic
function on W , then

f(η) =
1
ωn

∫
Σ

ξ − η

|ξ − η|n n(ξ)f(ξ) dS(ξ),(2.6)

for each η in the interior of Ω.

Let f be a C(Vn)-valued function on Σ. We introduce the Hilbert transform of
f on Σ:

HΣf(ξ) =
2

ωn
p.v.

∫
Σ

ξ′ − ξ

|ξ′ − ξ|n n(ξ′)f(ξ′) dS(ξ′), for ξ ∈ Σ,(2.7)

where p.v.
∫

denotes the principal value of the integral.

Theorem 2.2 (see [10, Chapter 2], (7.1)Theorem). Assume that f ∈C1(Σ, C(Vn)).
Then the Cauchy integral

Cf(η) =
1

ωn

∫
Σ

ξ − η

|ξ − η|n n(ξ)f(ξ) dS(ξ), η ∈ Ω,(2.8)

is Clifford analytic on Ω, and continues on Ω. Moreover

Cf(ξ) =
1
2
f(ξ) +

1
2
HΣf(ξ), for ξ ∈ Σ.(2.9)

Theorem 2.3 (see [10, Chapter 2], (7.21)Corollary). Assume that f ∈C(Ω, C(Vn)).
f is Clifford analytic on Ω if and only if

f(ξ) = HΣf(ξ), for ξ ∈ Σ.(2.10)

Remark 1. For an unbounded C2 domain Ω, Theorems 2.1, 2.2 and 2.3 hold under
the further assumption that f decay at infinity.

Remark 2. Assume further that Σ approaches plane xn = 0 at infinity. Then
HΣ1 = p.v.

∫
Σ

K(ξ′ − ξ)n(ξ′) dS(ξ′) = 0 for ξ ∈ Σ. This is an easy consequence of
(3.22) in [10, Chapter 2].

We introduce a few further notations and results. Assume Ω is a C2 domain
in Rn with boundary Σ and outer unit normal n. The so-called double layered
potential operator K is defined for the scalar-valued function f on Σ by

Kf(ξ) =
2

ωn
p.v.

∫
Σ

(ξ′ − ξ) · n(ξ′)
|ξ′ − ξ|n f(ξ′) dS(ξ′), for ξ ∈ Σ,(2.11)

and the single layered potential operator S is defined by

Sf(η) =
1

ωn(2− n)

∫
Σ

1
|η − ξ|n−2

f(ξ) dS(ξ), for η ∈ Rn.(2.12)

We know from a straightforward calculation that

DSf = C(nf).(2.13)

Let L2(Σ, dS) be the L2 space on Σ with respect to surface measure dS. We denote
by K∗ the adjoint of K in L2(Σ, dS), that is,

K∗f(ξ) = − 2
ωn

p.v.

∫
Σ

(ξ′ − ξ) · n(ξ)
|ξ′ − ξ|n f(ξ′) dS(ξ′), for ξ ∈ Σ.(2.14)

The following result is due to Verchota [23]; see also [13], [14].
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Theorem 2.4 ([23], [13], [14]). Assume that Ω and Ωc are unbounded, connected
Lipschitz domains, and Σ approaches plane xn = 0 at infinity. Then I ± K :
L2(Σ, dS) → L2(Σ, dS) and their adjoints I ± K∗ : L2(Σ, dS) → L2(Σ, dS) are
invertible.

Remark. The invertibility result given by Verchota in [23] is for bounded Lipschitz
domains, and by Kenig in [13, Theorem 2.1.5 ] is for unbounded domains where
the boundary is a single Lipschitz graph. Notice that the key elements in their
proof are the Rellich identity [23, Lemma 2.2], [13, Lemma 2.1.8] and a continuity
method [13, Lemma 2.1.7]. For the type of domain in Theorem 2.4, Rellich identity
[23, Lemma 2.2] holds under the assumption that u ∈ C∞(Ω), ∆u = 0 in Ω, and
u(η) = O(|η|2−n), ∇u(η) = O(|η|1−n) at ∞. Notice that for any f ∈ C0(Σ),
u = Sf satisfies these assumptions on both Ω and Ωc. The proof in [23], [13] can
be modified to give Theorem 2.4.

The following results are consequences of Theorem 2.4 and Coifman-McIntosh-
Meyer [4]. Let Ω be as in Theorem 2.4, and let N(u) be a nontangential maximal
function of u on Ω.

Theorem 2.5 ([23], [13], [14]). Let Ω be as in Theorem 2.4. There is a unique
solution u of the Dirichlet problem

∆u = 0 in Ω,

u = f ∈ L2(Σ, dS)
(D)

such that N(u) ∈ L2(Σ, dS), where the boundary values are taken nontangentially
a.e. Moreover, the solution u has the form

u(η) =
2
ωn

∫
Σ

(ξ − η) · n(ξ)
|ξ − η|n (I +K)−1f(ξ) dS(ξ), η ∈ Ω.(2.15)

Remark. We can also solve the Dirichlet problem (D) by Kelvin transform (see [7,
page 147]). That is, we first solve the Dirichlet problem on the bounded domain Ω̃

∆ũ = 0 in Ω̃,

ũ = f̃ on ∂Ω̃,

where Ω̃ = {η | η
|η|2 ∈ Ω} (w.l.o.g. we assume 0 /∈ Ω) and f̃(ξ) = |ξ|2−nf( ξ

|ξ|2 ). We
then take

u(η) = |η|2−nũ(
η

|η|2 ), η ∈ Ω.(2.16)

The function u in (2.16) is a solution of (D). Assume that Ω is a C2 domain, and Σ is
given by the graph (x′, φ(x′)) outside a sufficiently large ball, with lim|x′|→∞ φ(x′) =
0, lim|x′|→∞∇φ(x′), and lim|x′|→∞∇∇φ(x′) exists and is finite. For f ∈ C1

0 (Σ), a
solution given by (2.16) clearly satisfies u(η) = o(|η|2−n) and ∇u(η) = o(|η|1−n),
as |η| → ∞. It is easy to check that the solution u in (2.16) is the same as the
one in (2.15) if f ∈ C0(Σ), and more generally, if f ∈ C(Σ) and f decay as fast as
o(|η|2−n) at infinity.
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Theorem 2.6 ([23], [13], [14]). Let Ω be as in Theorem 2.4. There is a unique
solution u of the Neumann problem

∆u = 0 in Ω,

∂u

∂n
= f ∈ L2(Σ, dS)

(N)

such that N(∇u) ∈ L2(Σ, dS), where the boundary values are taken nontangentially
a.e. Moreover, the solution u has the form

u(η) =
2

ωn(n− 2)

∫
Σ

1
|ξ − η|n−2

(−I +K∗)−1f(ξ) dS(ξ), η ∈ Ω.(2.17)

In the next section, we will introduce more notations and develop some identities.

§3. General notations and basic identities

We make further preparations in this section. Since we are only concerned with
the 3-D water wave, we present this section in the 3-D context.

For the 3-D water wave, we use Clifford algebra C(V3). We regard points (vectors)
ξ = (x, y, z) ∈ R3 and their corresponding Clifford 1-vectors ξ = xe1 + ye2 + ze3

as equivalent, the same notation ξ can either be a point or its corresponding 1-
vector in different contexts: for example, for vectors ξ and η, the multiplication
ξη is obtained through Clifford multiplication by regarding ξ, η as their Clifford
1-vector counterparts; for Clifford 1-vectors ξ, η and ζ, ξ(η × ζ) is obtained by
first regarding η and ζ as vectors and calculating the cross product η × ζ, then
rewriting η × ζ as it’s corresponding Clifford 1-vector and calculating the Clifford
multiplication between ξ and η× ζ. This also applies to 1-vectors of operators such
as D = ∂xe1 + ∂ye2 + ∂ze3, of which ∇ = (∂x, ∂y, ∂z) is the vector counterpart.

We give some additional notations of functional spaces. We use S(Rd) to indicate
the Schwartz class of functions on Rd, i.e. those functions which are infinitely
differentiable, and rapidly decay at infinity. S′(Rd) is the distribution space on
Rd. Lp(Rd) is the Lp space on Rd with norm ‖u‖Lp = (

∫
|u(x)|p dx)1/p. We use

Hs(R2), −∞ < s < ∞, to indicate Sobolev space which consists of u ∈ S′(R2)
such that (1 + |ξ|)sû(ξ) ∈ L2(R2), and the Sobolev norm of u ∈ Hs(R2) is

‖u‖s = (
∫

(1 + |ξ|)2s|û(ξ)|2 dξ)1/2.

Hs(R2; C(V3)) is the space of C(V3)-valued u such that each component uI of u is
in Hs(R2); the norm of u ∈ Hs(R2; C(V3)) is given by ‖u‖s = (

∑
I ‖uI ‖2s)1/2. We

put ‖u‖ = ‖u‖0 for u ∈ H0(R2) = L2(R2) or u ∈ H0(R2, C(V3)). For any function
space A, we say u = u(·, t) ∈ Cj([0, T ], A) if the mapping t ∈ [0, T ] → u(·, t) is
j-times continuously differentiable from [0, T ] to A, and we write u(t) = u(·, t) for
fixed t. For f = f(α, β, t), we use ∂tf or ft to denote the partial derivative w.r.t. t,
∂αf or fα to denote the derivative w.r.t. α, and ∂kf to denote the k-th order partial
derivative ∂k1

α ∂k2
β f , where k = k1 + k2. For operators A, B, [A, B] = AB − BA is

the commutator. A pseudo-differential operator P (D) is defined by, for u ∈ S(R2),

P (D)u = (2π)−2

∫∫
P (ξ)û(ξ)eix·ξ dξ.

For each fixed t ∈ [0, T ], assume ξ = ξ(α, β, t) = x(α, β, t)e1 + y(α, β, t)e2 +
z(α, β, t)e3, −∞ < α, β < ∞, describes a surface Σ(t), which divides space R3 into
two unbounded, simply connected, lower and upper C2 domains Ω(t) and Ω(t)c.
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Assume further that ξ ∈ C1([0, T ], C2(R2, C(V3))), ξα × ξβ 6= 0 and n =
ξα × ξβ

|ξα × ξβ |
gives the outer unit normal of Ω(t). We define the Hilbert transform on Σ(t) of
f = f(α, β, t) by

HΣ(t)f(α, β, t) = HΣ(t)F (ξ(α, β, t), t),

where F = F (ξ, t) is the function on Σ(t) such that f(α, β, t) = F (ξ(α, β, t), t).
That is,

HΣ(t)f(α, β, t) = HΣ(t)F (ξ(α, β, t), t)

=
2
ω3

p.v.

∫
Σ(t)

ξ′ − ξ(α, β, t)
|ξ′ − ξ(α, β, t)|3 n(ξ′)F (ξ′, t) dS(ξ′)

= p.v.

∫∫
K(ξ(α′, β′, t)− ξ(α, β, t)) (ξ′α′ × ξ′β′) f(α′, β′, t) dα′dβ′.

(3.1)

In a brief form, we write (3.1) as

HΣ(t)f = p.v.

∫∫
K(ξ′ − ξ) (ξ′α′ × ξ′β′) f ′ dα′dβ′,

where ξ, ξ′, ξ′α′ , ξ′β′ and f ′ stand for ξ(α, β, t), ξ(α′, β′, t), ∂α′ξ(α′, β′, t), ∂β′ξ(α′, β′, t)
and f(α′, β′, t) respectively. Similarly, ξ′t and ξt will be used later as the brief forms
of ∂tξ(α′, β′, t) and ∂tξ(α, β, t). We define the single, double layered potentials S,
K and the adjoint K∗ on f = f(α, β, t) similarly as Sf = SF ◦ ξ, Kf = KF ◦ ξ and
K∗f = K∗F ◦ ξ. We have the following identities.

Lemma 3.1. Let f = f(α, β, t) ∈ C([0, T ], S(R2)). Then

[∂t, HΣ(t)]f = p.v.

∫∫
K(ξ′ − ξ) ((ξt − ξ′t)× (ξ′β′f

′
α′ − ξ′α′f

′
β′)) dα′dβ′(3.2)

and

[∂α, HΣ(t)]f = p.v.

∫∫
K(ξ′ − ξ) ((ξα − ξ′α′ )× (ξ′β′f

′
α′ − ξ′α′f

′
β′)) dα′dβ′,

[∂β , HΣ(t)]f = p.v.

∫∫
K(ξ′ − ξ) ((ξβ − ξ′β′)× (ξ′β′f

′
α′ − ξ′α′f

′
β′)) dα′dβ′.

(3.3)

Proof. We prove (3.2) only. (3.3) can be obtained similarly.
We first calculate the quantity

−(η · ∇)K (ξ′α′ × ξ′β′) + (ξ′α′ · ∇)K (η × ξ′β′) + (ξ′β′ · ∇)K (ξ′α′ × η),

where η is a (Clifford 1-)vector. Assume K = K1e1 + K2e2 + K3e3, where Ki,
i = 1, 2, 3, are components of K. For i = 1, 2, 3, we have, in vector form, that

− (η · ∇Ki)ξ′α′ × ξ′β′ + (ξ′α′ · ∇Ki) η × ξ′β′ + (ξ′β′ · ∇Ki) ξ′α′ × η

= −(η · ∇Ki)ξ′α′ × ξ′β′ + η ×
(
(ξ′α′ · ∇Ki)ξ′β′ − (ξ′β′ · ∇Ki)ξ′α′

)
= −(η · ∇Ki)ξ′α′ × ξ′β′ + η ×

(
(ξ′α′ × ξ′β′)×∇Ki

)
= −(η · ∇Ki)ξ′α′ × ξ′β′ + (η · ∇Ki)ξ′α′ × ξ′β′ − (η · (ξ′α′ × ξ′β′))∇Ki

= −(η · (ξ′α′ × ξ′β′))∇Ki.

(3.4)
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The Clifford algebra version of (3.4) is

− (η · ∇Ki)ξ′α′ × ξ′β′ + (ξ′α′ · ∇Ki) η × ξ′β′ + (ξ′β′ · ∇Ki) ξ′α′ × η

= −(η · (ξ′α′ × ξ′β′))DKi.

Since K = DΓ, where Γ is the fundamental solution for Laplacian ∆, we have∑3
1 eiDKi(ξ) = 0 for ξ 6= 0. Therefore

− (η · ∇)K(ξ) (ξ′α′ × ξ′β′) + (ξ′α′ · ∇)K(ξ) (η × ξ′β′) + (ξ′β′ · ∇)K(ξ) (ξ′α′ × η)

=
3∑
1

ei{−(η · ∇Ki(ξ)) (ξ′α′ × ξ′β′) + (ξ′α′ · ∇Ki(ξ)) (η × ξ′β′)

+ (ξ′β′ · ∇Ki(ξ)) (ξ′α′ × η)}

= −(η · (ξ′α′ × ξ′β′))
3∑
1

eiDKi(ξ) = 0, for ξ 6= 0.

(3.5)

Now let’s prove (3.2). By definition, we have

[∂t, HΣ(t)]f = ∂t(HΣ(t)f)−HΣ(t)(∂tf)

= p.v.

∫∫
∂t

(
K(ξ′ − ξ) (ξ′α′ × ξ′β′)

)
(f ′ − f(α, β, t)) dα′dβ′

= p.v.

∫∫
∂t (K(ξ′ − ξ)) (ξ′α′ × ξ′β′) (f ′ − f(α, β, t)) dα′dβ′

+ p.v.

∫∫
K(ξ′ − ξ) (ξ′tα′ × ξ′β′ + ξ′α′ × ξ′tβ′)(f

′ − f(α, β, t)) dα′dβ′.

(3.6)

Notice that

∂t (K(ξ′ − ξ)) = ((ξ′t − ξt) · ∇)K(ξ′ − ξ), ∂α′K(ξ′ − ξ) = (ξ′α′ · ∇)K(ξ′ − ξ)

and

∂β′K(ξ′ − ξ) = (ξ′β′ · ∇)K(ξ′ − ξ).

In (3.5) we take η = ξ′t − ξt and apply to (3.6). We get

[∂t, HΣ(t)]f = p.v.

∫∫
{∂α′K ((ξ′t − ξt)× ξ′β′)

+ ∂β′K (ξ′α′ × (ξ′t − ξt))}(f ′ − f) dα′dβ′

+ p.v.

∫∫
K(ξ′ − ξ) (ξ′tα′ × ξ′β′ + ξ′α′ × ξ′tβ′)(f

′ − f(α, β, t)) dα′dβ′.

(3.7)
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Applying integration by parts to the first term on the right hand side of (3.7), we
obtain

[∂t, HΣ(t)]f = −p.v.

∫∫
K(ξ′ − ξ)

(
(ξ′t − ξt)× ξ′β′f

′
α′ + ξ′α′ × (ξ′t − ξt) f ′β′

)
dα′dβ′

− p.v.

∫∫
K(ξ′ − ξ) (ξ′tα′ × ξ′β′ + ξ′α′ × ξ′tβ′)(f

′ − f(α, β, t)) dα′dβ′

+ p.v.

∫∫
K(ξ′ − ξ) (ξ′tα′ × ξ′β′ + ξ′α′ × ξ′tβ′)(f

′ − f(α, β, t)) dα′dβ′

= p.v.

∫∫
K(ξ′ − ξ) ((ξt − ξ′t)× (ξ′β′f

′
α′ − ξ′α′f

′
β′)) dα′dβ′.

(3.8)

This gives (3.2).

Let f = f(α, β, t) be a scalar-valued function in C([0, T ], S(R2)), and let
F (ξ(α, β, t), t) = f(α, β, t). Let f} = f}(η, t), η ∈ Ω(t), be the harmonic extension
of F = F (ξ, t) on Ω(t) given by Theorem 2.5. We denote by ∇ξf the restriction of
∇f} on Σ(t); that is,

∇ξf(α, β, t) = ∇f}(ξ(α, β, t), t),(3.9)

and similarly Dξf(α, β, t) = Df}(ξ(α, β, t), t), ∂xf(α, β, t) = ∂xf}(ξ(α, β, t), t), etc.
We call ∇ξf the space variable gradient of f , to distinguish from the usual gradient
∇f = (fα, fβ). We define the normal derivative of f by

∇nf(α, β, t) = n(ξ(α, β, t)) · ∇ξf(α, β, t) =
∂f}

∂n
(ξ(α, β, t), t)(3.10)

and we denote by ∇T f the quantity

∇T f(α, β, t) = n(ξ(α, β, t)) ×∇ξf(α, β, t).(3.11)

∇nf is generally known as the Dirichlet-Neumann operator. We get by definition
that

∇ξf = −n(ξ)n(ξ)∇ξf = −n(ξ)(−n(ξ) · ∇ξf + n(ξ)×∇ξf)

= n(ξ)∇nf − n(ξ)∇T f,

and

∇T f = n(ξ)×∇ξf =
1

|ξα × ξβ |
(ξα × ξβ)×∇ξf

=
1

|ξα × ξβ |
(
ξβ(ξα · ∇f}(ξ))− ξα(ξβ · ∇f}(ξ)

)
=

1
|ξα × ξβ |

(ξβ∂αf − ξα∂βf) = T1∂αf − T2∂βf,

(3.12)

where T1 = 1
|ξα×ξβ |ξβ , T2 = 1

|ξα×ξβ |ξα.
Since f} is harmonic on Ω, Df} is Clifford analytic. So by Theorem 2.3, Dξf =

HΣ(t)Dξf , consequently

n(ξ)Dξf = n(ξ)HΣ(t)Dξf = n(ξ) p.v.

∫∫
K(ξ′ − ξ)(ξ′α′ × ξ′β′)D′ξf ′ dα′dβ′
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and

∇nf = −<(n(ξ)Dξf)

= −p.v.

∫∫
n(ξ) ·K(ξ′ − ξ) ((ξ′α′ × ξ′β′) · ∇′

ξf
′) dα′dβ′

+ p.v.

∫∫
(n(ξ)×K(ξ′ − ξ)) · ((ξ′α′ × ξ′β′)×∇′

ξf
′) dα′dβ′

= −K∗(∇nf) + p.v.

∫∫
(n(ξ)×K(ξ′ − ξ)) · (ξ′β′∂α′f

′ − ξ′α′∂β′f
′) dα′dβ′,

therefore

(I +K∗)(∇nf) = p.v.

∫∫
(n(ξ)×K(ξ′ − ξ)) · (ξ′β′∂α′f

′ − ξ′α′∂β′f
′) dα′dβ′.(3.13)

On the other hand, we know from Theorem 2.6 that f} = 2S(−I +K∗)−1∇nf , so
from (2.13) and Theorem 2.2, Df} = −2C(n(−I + K∗)−1∇nf) is continuous on
Ω(t) and

Dξf = −(I + HΣ(t))(n(−I +K∗)−1∇nf).(3.14)

We introduce one more notation in this section. We define

H∗
Σ = nHΣn.(3.15)

A simple calculation shows that for a real scalar-valued function f , <(H∗
Σf) = K∗f .

We calculate the commutators [∂t,∇n], [∂α,∇n] and [∂β ,∇n] in the following
lemma.

Lemma 3.2. For f ∈ C([0, T ], S(R2)), we have

(I +K∗)([∂t,∇n]f)

= <
(
−ntHΣ(t)(Dξf)− n[∂t, HΣ(t)](Dξf) + nHΣ(t)(ntnDξf)

)
+

∫
Σ(t)

n(ξ)×K(ξ′ − ξ) · (∂t(
1

|ξ′α′ × ξ′β′ |
ξβ′)fα′ − ∂t(

1
|ξ′α′ × ξ′β′ |

ξα′)fβ′) dS(ξ′)

(3.16)

and

(I +K∗)([∂α,∇n]f)

= <
(
−nαHΣ(t)(Dξf)− n[∂α, HΣ(t)](Dξf) + nHΣ(t)(nαnDξf)

)
+

∫
Σ(t)

n(ξ)×K(ξ′ − ξ) · (∂α′(
1

|ξ′α′ × ξ′β′ |
ξβ′)fα′ − ∂α′(

1
|ξ′α′ × ξ′β′ |

ξα′)fβ′) dS(ξ′),

(3.17)

where nt and nα are partial derivatives of n w.r.t. t and α respectively. A similar
identity also holds for [∂β,∇n]f .

Proof. We only derive (3.16). (3.17) can be proved similarly.
By definition, we have that

nDξf = nHΣ(t)(Dξf) = −H∗
Σ(t)(nDξf) and

nDξft = nHΣ(t)(Dξft) = −H∗
Σ(t)(nDξft).
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Therefore

∂t(nDξf)− nDξft = −∂t

(
H∗

Σ(t)(nDξf)
)

+ H∗
Σ(t)(nDξft)

= −[∂t, H
∗
Σ(t)](nDξf)−H∗

Σ(t)(∂t(nDξf)− nDξft).
(3.18)

We know
∂t(nDξf)− nDξft

= −(∂t(n · Dξf)− n · Dξft) + ∂t(n×Dξf)− n×Dξft

= −(∂t(∇nf)− (∇nft))

+ ∂t(
1

|ξα × ξβ |
(ξβfα − ξαfβ))− 1

|ξα × ξβ |
(ξβftα − ξαftβ) by (3.12)

= −[∂t,∇n]f + ∂t(
1

|ξα × ξβ |
ξβ)fα − ∂t(

1
|ξα × ξβ |

ξα)fβ

(3.19)

and

[∂t, H
∗
Σ(t)] = ntHΣ(t)n + n[∂t, HΣ(t)]n + nHΣ(t)nt.(3.20)

Taking real parts in both sides of (3.18), we get

−[∂t,∇n]f = −<([∂t, H
∗
Σ(t)](nDξf)) +K∗([∂t,∇n]f)

−
∫

Σ(t)

n(ξ)×K(ξ′ − ξ) · (∂t(
1

|ξ′α′ × ξ′β′ |
ξβ′)fα′ − ∂t(

1
|ξ′α′ × ξ′β′ |

ξα′ )fβ′) dS(ξ′).

Therefore

(I +K∗)([∂t,∇n]f)

= <
(
−ntHΣ(t)(Dξf)− n[∂t, HΣ(t)](Dξf) + nHΣ(t)(ntnDξf)

)
+

∫
Σ(t)

n(ξ) ×K(ξ′ − ξ) · (∂t(
1

|ξ′α′ × ξ′β′ |
ξβ′)fα′ − ∂t(

1
|ξ′α′ × ξ′β′ |

ξα′)fβ′) dS(ξ′).

(3.21)

This proves (3.16).

§4. The equation of free surfaces and a key lemma

We are now ready to study system (1.1)-(1.5). We plan to take a similar ap-
proach as the 2-D water wave (see [24], also [6], [18], [25]), that is, we first convert
(1.1)-(1.5) into a system on the free surfaces. We then reduce this system to a
quasilinear system and solve the quasilinear system, and show that the solution of
the quasilinear system is also a solution of the system on the interface.

In this section, we convert system (1.1)-(1.5) into a system on the free surfaces
and show that the sign condition (1) always hold for the nonself-intersecting 3-
D water wave. As we will see, the sign condition (1) is the key that guarantees
well-posedness of the quasilinear system in Sobolev spaces.

At time t, let Ω(t) be the water region and let Σ(t) be the interface. Suppose Σ(t)
is described by ξ(α, β, t) = x(α, β, t)e1 +y(α, β, t)e2 +z(α, β, t)e3, −∞ < α, β < ∞,
where (α, β) is the Lagrangian coordinates, i.e.

ξt(α, β, t) = v(ξ(α, β, t), t),(4.1)
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and suppose the unit normal n =
ξα × ξβ

|ξα × ξβ |
points out of Ω(t). From (1.1), we have

on the interface, ξtt = vt + v · ∇v = −(0, 0, 1) − ∇p. On the other hand, (1.4)
implies that ∇p is parallel to n. Therefore, ξtt + e3 = −∇p = an (each term in
this equation is regarded as a Clifford 1-vector), where

a = (ξtt + e3) · n = −∇p · n = − ∂p

∂n
.(4.2)

From (1.2), (1.3), we know that the C(V3)-valued velocity v(ξ, t) = v1(ξ, t)e1 +
v2(ξ, t)e2+v3(ξ, t)e3 is Clifford analytic on Ω(t), so it’s value on Σ(t): v(ξ(α, β, t), t)
= ξt(α, β, t) satisfies (2.10). The initial value problem for system (1.1)-(1.5) is then
reduced to the following problem:

ξtt + e3 = an,(4.3)

ξt = HΣ(t)ξt,(4.4)

ξ(α, β, 0) = ξ0(α, β), ξt(α, β, 0) = ξ1(α, β),(4.5)

where ξ = ξ0(α, β) describes the initial surface Σ(0) and ξ1 satisfies ξ1 = HΣ(0)ξ1.
We will establish the existence and uniqueness of solutions of system (4.3)-(4.5),
under the condition that for every t ≥ 0, z(α, β, t) → 0, ξt(α, β, t) → 0, as |α|+|β| →
∞.

Given a classical solution of (4.3)-(4.5), we can recover the fluid velocity in the
whole region Ω(t) for every fixed time t by solving the Laplace equation:

∆v = 0 on Ω(t),

v = ξt on Σ(t).

For the 2-D water wave, we showed that the sign condition (1) always holds for
nonself-intersecting interfaces, and (1) was also the key to guaranteeing the well-
posedness of the 2-D water wave problem [24]. This suggests that the sign condition
(1) will be important and can also be true for the 3-D water wave. So before we
proceed further, we study the quantity a defined in (4.2).

Let Ω(t) be the water region, Σ(t) the interface of waterwave at time t, and sup-
pose Σ(t) is described by ξ = ξ(α, β; t), where (α, β) is the Lagrangian parameter,
with ξα × ξβ an outward normal of Ω(t). We assume that at some time t0, Ω(t0)
and Ω(t0)c are unbounded, simply connected C2 domains, and there are constants
C0 > 0, µ > 0, and vectors eα, eβ , such that

1. |ξ(α, β, t0)− ξ(α′, β′, t0)| ≥ C0(|α− α′|+ |β − β′|), for −∞ < α, β < ∞;
2. ξα(·, t0)−eα, ξβ(·, t0)−eβ ∈ Hs−1/2(R2, C(V3)), ξt(·, t0) ∈ Hs+1/2(R2, C(V3)),

ξtt(·, t0) ∈ Hs(R2, C(V3)); and eα × eβ = e3, for some s > 5/2;
3. |ξα(·, t0)× ξβ(·, t0)| ≥ µ.

We want to prove that the quantity a = − ∂p

∂n
≥ 2c0 > 0 pointwisely on Σ(t0)

for some constant c0 > 0.
Apply div to both sides of (1.1): vt + v · ∇v = −∇(z + p), and use (1.2), (1.3).

We get

div(v · ∇v) = |∇v|2 = −∆(p + z),

where |∇v|2 = |∇v1|2+|∇v2|2+|∇v3|2. Let p+z be the solution in Ω(t0) guaranteed
by Theorem 2.5 (notice that p + z − 1

2 |v|2 is harmonic in Ω(t0)). For any h ∈
C1

0 (Σ(t0)), h ≥ 0, let w be the harmonic extension of h on Ω(t0) given by Theorem
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2.5. We know from the remark of Theorem 2.5 that w ∈ C1(Ω(t0)) and w(η) =
o(|η|−1), ∇w(η) = o(|η|−2) as |η| → ∞. Applying Green’s second identity to w and
p + z (see [9]), we get∫

Σ(t0)

(
(p + z)

∂w

∂n
− w

∂(p + z)
∂n

)
dS =

∫
Ω(t0)

w|∇v|2 dV.

Since p = 0 on Σ(t0) ((1.4)), we have∫
Σ(t0)

w(− ∂p

∂n
) dS =

∫
Σ(t0)

(w
∂z

∂n
− z

∂w

∂n
) dS +

∫
Ω(t0)

w|∇v|2 dV.(4.6)

Let’s now calculate the right hand side of (4.6). Assume Σb : z = b is a plane
contained in Ω(t0), with upward unit normal nb = (0, 0, 1). We apply Green’s
second identity again to w and z on the strip region between surfaces Σ(t0) and
Σb. Since w and z are harmonic, we have∫

Σ(t0)

(w
∂z

∂n
− z

∂w

∂n
) dS = lim

R→∞

∫
Σb∩BR(0)

(w
∂z

∂nb
− z

∂w

∂nb
) dS

=
∫

Σb

w
∂z

∂z
dS − b

∫
Σb

∂w

∂nb
dS

=
∫

Σb

w dS,

where
∫
Σb

∂w

∂nb
dS = 0 is obtained from Green’s identity, the assumption that

∇w(η) = o(|η|−2) as |η| → ∞ and an approximation argument. Therefore∫
Σ(t0)

w(− ∂p

∂n
) dS =

∫
Σb

w dS +
∫

Ω(t0)

w|∇v|2 dV

≥
∫

Σb

w dS.

(4.7)

Let G = G(η, ξ) be the (Dirichlet) Green’s function for Ω(t0). We know from
Green’s representation formula that

w(η) =
∫

Σ(t0)

h(ξ)
∂G(η, ξ)
∂n(ξ)

dS(ξ) for η ∈ Ω(t0).

Therefore (4.7) implies that∫
Σ(t0)

h(ξ)(− ∂p

∂n
(ξ)) dS(ξ) ≥

∫
Σb

w(η) dS(η)

=
∫

Σ(t0)

h(ξ)(
∫

Σb

∂G(η, ξ)
∂n(ξ)

dS(η)) dS(ξ).

Since h ∈ C1
0 (Σ(t0)), h ≥ 0 is arbitrary, we conclude

a = − ∂p

∂n
(ξ) ≥

∫
Σb

∂G(η, ξ)
∂n(ξ)

dS(η).

From the maximal principle, we know there exists a constant c0 > 0, such that∫
Σb

∂G(η,ξ)
∂n(ξ) dS(η) ≥ 2c0, for all ξ ∈ Σ(t0).

Remark. Green’s identities are justified on unbounded domains here because of the
decay properties and the L2 integrability of our functions involved.
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Lemma 4.1. Assume that at time t0, the water region Ω(t0) is an unbounded C2

domain, Ω(t0) and Ω(t0)c are simply connected, and Σ(t0) satisfies assumptions 1.
2. 3. above. Then

a = − ∂p

∂n
(ξ) ≥

∫
Σb

∂G(η, ξ)
∂n(ξ)

dS(η) ≥ 2c0 > 0,(4.8)

for all ξ ∈ Σ(t0), where Σb : z = b is a plane contained in Ω(t0), and c0 > 0 is a
constant depending only on Σ(t0).

As an immediate consequence of Lemma 4.1 and (4.3), we have

a = |ξtt + e3|.(4.9)

Remark 1. Our original proof for the 2-D sign condition [24] doesn’t apply here,
since it uses the Riemann mapping. As we mentioned in §1, the idea of expressing

a as − ∂p

∂n
and using the maximal principle is from R. Caflisch and T. Hou. The

result of Lemma 4.1 shows that for any solutions of the water wave problem, it is
necessary that the pressure is positive inside the water region. This is consistent
with the physical requirement that pressure is nonnegative.

Remark 2. The prove of Lemma 4.1 is also valid for the 2-D water wave and Lemma
4.1 in the 2-D context coincides with Lemma 3.1 in [24]. In 2-D, the function∫
Σb

∂G(η,ξ)
∂n(ξ) dS(η) is the same as the function hα in Lemma 3.1 of [24].

System (4.3)-(4.5) is still a nonlinear, nonlocal system. A standard method for
solving such a system is to reduce it to a quasilinear system and solve the quasilinear
system. We will do this in the next sections.

§5. Reduction to a quasilinear system

In this section, we reduce (4.3)-(4.5) to a quasilinear system. Recall the velocity
v = ξt on Σ(t) and v is Clifford analytic on Ω(t). Therefore ∂xv, ∂yv, ∂zv are also
Clifford analytic on the same region. Using the notation in (3.9), we have

∂xξt = HΣ(t)(∂xξt), ∂yξt = HΣ(t)(∂yξt), ∂zξt = HΣ(t)(∂zξt).(5.1)

Now let’s reduce the system (4.3)-(4.4). We use the same notations as in the
previous section. Letting N = ξα × ξβ , (4.3) becomes

ξtt + e3 =
a

|N |N.(5.2)

Taking the derivative with respect to t on both sides of (5.2), we get

ξttt =
a

|N |Nt +
(

a

|N |

)
t

N.(5.3)
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We first calculate
a

|N |Nt. Let N = (N1, N2, N3), and i = (1, 0, 0), j = (0, 1, 0),

k = (0, 0, 1). In terms of vector calculus, we have

Nt = ξtα × ξβ + ξα × ξtβ

= (ξα · ∇)v × ξβ + ξα × (ξβ · ∇)v

= i× ((ξα · ∇v1)ξβ − (ξβ · ∇v1)ξα)

+ j× ((ξα · ∇v2)ξβ − (ξβ · ∇v2)ξα)

+ k× ((ξα · ∇v3)ξβ − (ξβ · ∇v3)ξα)

= i× ((ξα × ξβ)×∇v1) + j× ((ξα × ξβ)×∇v2) + k× ((ξα × ξβ)×∇v3)

= (i · ∇v1 + j · ∇v2 + k · ∇v3)(ξα × ξβ)

− (i · (ξα × ξβ))∇v1 − (j · (ξα × ξβ))∇v2 − (k · (ξα × ξβ))∇v3

= −N1∂xv −N2∂yv −N3∂zv = −(N · ∇)v = −(N · ∇ξ)ξt = −|N |∇nξt;

(5.4)

here we used the fact that i ·∇v1 + j ·∇v2 +k ·∇v3 = ∂xv1 +∂yv2 +∂zv3 = divv = 0.
Therefore

a

|N |Nt = −a∇nξt.(5.5)

To calculate the term
(

a

|N |

)
t

N , we use the relation

(
a

|N |

)
t

N = ξttt −
a

|N |Nt.(5.6)

Taking the derivative twice with respect to t on both sides of (4.4): ξt = HΣ(t)ξt,
we get

ξttt = ∂2
t (HΣ(t)ξt) = ∂t

(
HΣ(t)ξtt + [∂t, HΣ(t)]ξt

)
= HΣ(t)ξttt + [∂t, HΣ(t)]ξtt + ∂t

(
[∂t, HΣ(t)]ξt

)
;

then

ξttt −HΣ(t)ξttt = [∂t, HΣ(t)]ξtt + ∂t

(
[∂t, HΣ(t)]ξt

)
.(5.7)

On the other hand, we have from (5.4), (5.2) and (5.1) that

− a

|N |Nt = (
a

|N | N · ∇ξ)ξt = ((ξtt + k) · ∇ξ) ξt

= xtt∂xξt + ytt∂yξt + (ztt + 1)∂zξt

= xttHΣ(t)(∂xξt) + yttHΣ(t)(∂yξt) + (ztt + 1)HΣ(t)(∂zξt),

therefore

− a

|N |Nt −HΣ(t)(−
a

|N |Nt)

= xttHΣ(t)(∂xξt) + yttHΣ(t)(∂yξt) + (ztt + 1)HΣ(t)(∂zξt)

−HΣ(t) (xtt∂xξt + ytt∂yξt + (ztt + 1)∂zξt)

= [xtt, HΣ(t)](∂xξt) + [ytt, HΣ(t)](∂yξt) + [ztt, HΣ(t)](∂zξt).

(5.8)
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Adding (5.8) to (5.7), we obtain(
a

|N |

)
t

N −HΣ(t)

((
a

|N |

)
t

N

)
= ξttt −HΣ(t)ξttt −

a

|N |Nt −HΣ(t)(−
a

|N |Nt)

= [∂t, HΣ(t)]ξtt + ∂t

(
[∂t, HΣ(t)]ξt

)
+ [xtt, HΣ(t)](∂xξt) + [ytt, HΣ(t)](∂yξt) + [ztt, HΣ(t)](∂zξt).

(5.9)

We want to single out
(

a

|N |

)
t

N . Notice that n
(

a

|N |

)
t

N = −
(

a

|N |

)
t

|N | is a

real-valued function, and nHΣ(t) = −H∗
Σ(t)n; we multiply by −n at the left to both

sides of (5.9), then take the real part. We get on the left hand side

<{−n{
(

a

|N |

)
t

N −HΣ(t)

((
a

|N |

)
t

N

)
}}

=
(

a

|N |

)
t

|N |+ <{H∗
Σ(t)

((
a

|N |

)
t

|N |
)
}

=
(

a

|N |

)
t

|N |+K∗
((

a

|N |

)
t

|N |
)

= (I +K∗)
((

a

|N |

)
t

|N |
)

,

therefore

(I+K∗)
(

(
a

|N | )t|N |
)

= −<(n{[∂t, HΣ(t)]ξtt + ∂t

(
[∂t, HΣ(t)]ξt

)
+ [xtt, HΣ(t)](∂xξt) + [ytt, HΣ(t)](∂yξt) + [ztt, HΣ(t)](∂zξt)}).

(5.10)

Consequently,(
a

|N |

)
t

N =
(

a

|N |

)
t

|N |n = −n(I +K∗)−1(<{nf(ξ, ξt, ξtt)})(5.11)

where

f(ξ, ξt, ξtt) = [∂t, HΣ(t)]ξtt + ∂t

(
[∂t, HΣ(t)]ξt

)
+ [xtt, HΣ(t)](∂xξt) + [ytt, HΣ(t)](∂yξt) + [ztt, HΣ(t)](∂zξt).

(5.12)

Placing the highest order terms to the left, we get from (5.2), (5.5), (5.11) the
following equation:

ξttt + a∇nξt = −n(I +K∗)−1(<{nf(ξ, ξt, ξtt)}),(5.13)

where a = |ξtt + e3|, n =
ξtt + e3

|ξtt + e3|
, and f(ξ, ξt, ξtt) is as given in (5.12). Now let’s

calculate f(ξ, ξt, ξtt). Recall that we have calculated the commutator [∂t, HΣ(t)]f
in Lemma 3.1 for the scalar-valued function f . Applying (3.2) to each component
of ξtt then multiplying ej to the right and adding them up, we obtain

[∂t, HΣ(t)]ξtt = p.v.

∫∫
K(ξ′ − ξ) {((ξt − ξ′t)× ξ′β′)ξ

′
ttα′

− ((ξt − ξ′t)× ξ′α′)ξ
′
ttβ′} dα′dβ′,(5.14)
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similarly

[∂t, HΣ(t)]ξt = p.v.

∫∫
K(ξ′ − ξ) {((ξt − ξ′t)× ξ′β′)ξ

′
tα′

− ((ξt − ξ′t)× ξ′α′)ξ
′
tβ′} dα′dβ′;(5.15)

then

∂t

(
[∂t, HΣ(t)]ξt

)
= p.v.

∫∫
K(ξ′ − ξ) {((ξtt − ξ′tt)× ξ′β′)ξ

′
tα′ − ((ξtt − ξ′tt)× ξ′α′)ξ

′
tβ′} dα′dβ′

+ p.v.

∫∫
K(ξ′ − ξ) {((ξt − ξ′t)× ξ′tβ′)ξ

′
tα′ − ((ξt − ξ′t)× ξ′tα′)ξ

′
tβ′} dα′dβ′

+ p.v.

∫∫
K(ξ′ − ξ) {((ξt − ξ′t)× ξ′β′)ξ

′
ttα′ − ((ξt − ξ′t)× ξ′α′)ξ

′
ttβ′} dα′dβ′

+ p.v.

∫∫
∂t{K(ξ′ − ξ)} {((ξt − ξ′t)× ξ′β′)ξ

′
tα′ − ((ξt − ξ′t)× ξ′α′)ξ

′
tβ′} dα′dβ′.

(5.16)

We want to further reduce the last term in (5.16). Since for any vector η,

(η × ξβ)ξtα − (η × ξα)ξtβ = η × {ξβ(ξα · ∇ξ)− ξα(ξβ · ∇ξ)}ξt

= η × {(ξα × ξβ)×∇ξ}ξt = (ξα × ξβ)(η · ∇ξ)ξt − (η · (ξα × ξβ))Dξξt

= (ξα × ξβ)(η · ∇ξ)ξt,

(5.17)

where in the last equality we used the fact that v is Clifford analytic on Ω(t), that
is, Dξξt = Dv(ξ) = 0, we get, using (5.17) and (3.5), and integration by parts, that

p.v.

∫∫
∂t{K(ξ′ − ξ)} {((ξt − ξ′t)× ξ′β′)ξ

′
tα′ − ((ξt − ξ′t)× ξ′α′)ξ

′
tβ′} dα′dβ′

= p.v.

∫∫
∂t{K(ξ′ − ξ)} (ξ′α′ × ξ′β′)((ξt − ξ′t) · ∇ξ′)ξ′t dα′dβ′

= p.v.

∫∫
{∂α′K ((ξ′t − ξt)× ξ′β′) + ∂β′K (ξ′α′ × (ξ′t − ξt))}((ξt − ξ′t) · ∇ξ′)ξ′t dα′dβ′

= −p.v.

∫∫
K(ξ′ − ξ) (ξ′t − ξt)× ξ′β′{(ξt − ξ′t) · ∂α′∇ξ′}ξ′t dα′dβ′

− p.v.

∫∫
K(ξ′ − ξ) ξ′α′ × (ξ′t − ξt){(ξt − ξ′t) · ∂β′∇ξ′}ξ′t dα′dβ′

+ p.v.

∫∫
K(ξ′ − ξ) {(ξ′t − ξt)× ξ′β′(ξ

′
tα′ · ∇ξ′)ξ′t

+ ξ′α′ × (ξ′t − ξt)(ξ′tβ′ · ∇ξ′)ξ′t} dα′dβ′

− p.v.

∫∫
K(ξ′ − ξ) (ξ′tα′ × ξ′β′ + ξ′α′ × ξ′tβ′)((ξt − ξ′t) · ∇ξ′)ξ′t dα′dβ′.

(5.18)
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We also have from (5.17) that

[xtt, HΣ(t)](∂xξt) + [ytt, HΣ(t)](∂yξt) + [ztt, HΣ(t)](∂zξt)

= p.v.

∫∫
K(ξ′ − ξ) (ξ′α × ξ′β) ((ξtt − ξ′tt) · ∇ξ′) ξ′t dα′dβ′

= p.v.

∫∫
K(ξ′ − ξ) {((ξtt − ξ′tt)× ξ′β′)ξ

′
tα′ − ((ξtt − ξ′tt)× ξ′α′)ξ

′
tβ′} dα′dβ′.

(5.19)

Therefore

f(ξ, ξt, ξtt)

= 2 p.v.

∫∫
K(ξ′ − ξ) {((ξtt − ξ′tt)× ξ′β′)ξ

′
tα′ − ((ξtt − ξ′tt)× ξ′α′ )ξ

′
tβ′} dα′dβ′

+ p.v.

∫∫
K(ξ′ − ξ) {((ξt − ξ′t)× ξ′tβ′)ξ

′
tα′ − ((ξt − ξ′t)× ξ′tα′)ξ

′
tβ′} dα′dβ′

+ 2 p.v.

∫∫
K(ξ′ − ξ) {((ξt − ξ′t)× ξ′β′)ξ

′
ttα′ − ((ξt − ξ′t)× ξ′α′)ξ

′
ttβ′} dα′dβ′

− p.v.

∫∫
K(ξ′ − ξ) (ξ′t − ξt)× ξ′β′{(ξt − ξ′t) · ∂α′∇ξ′}ξ′t dα′dβ′

− p.v.

∫∫
K(ξ′ − ξ) ξ′α′ × (ξ′t − ξt){(ξt − ξ′t) · ∂β′∇ξ′}ξ′t dα′dβ′

+ p.v.

∫∫
K(ξ′ − ξ) {(ξ′t − ξt)× ξ′β′(ξ

′
tα′ · ∇ξ′)ξ′t

+ ξ′α′ × (ξ′t − ξt)(ξ′tβ′ · ∇ξ′)ξ′t} dα′dβ′

− p.v.

∫∫
K(ξ′ − ξ) (ξ′tα′ × ξ′β′ + ξ′α′ × ξ′tβ′)((ξt − ξ′t) · ∇ξ′)ξ′t dα′dβ′.

(5.20)

So we convert (4.3)-(4.4) into the following quasilinear equation: Suppose ξ =
ξ(α, β; t) is a solution of (4.3)-(4.4). Let u = ξt. Then u is necessarily a solution of
the quasilinear equation

utt + a∇nu = −ñ(I + K̃∗)−1(<{ñf(ξ, u, ut)}),(5.21)

where

a = |ut + e3|, ñ =
ut + e3

|ut + e3|
,

ξ(α, β, t) = ξ(α, β, 0) +
∫ t

0

u(α, β, s) ds, U =
1
2
(u + HΣ(t)u),
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f(ξ, u, ut) = 2 p.v.

∫∫
K(ξ′ − ξ) {((ut − u′t)× ξ′β′)U

′
α′ − ((ut − u′t)× ξ′α′)U

′
β′} dα′dβ′

+ p.v.

∫∫
K(ξ′ − ξ) {((u− u′)× u′β′)U

′
α′ − ((u− u′)× u′α′)U

′
β′} dα′dβ′

+ 2 p.v.

∫∫
K(ξ′ − ξ) {((u− u′)× ξ′β′)U

′
tα′ − ((u− u′)× ξ′α′)U

′
tβ′} dα′dβ′

+ p.v.

∫∫
K(ξ′ − ξ) (u− u′)× ξ′β′{(u− u′) · ∂α′∇ξ′}U′ dα′dβ′

+ p.v.

∫∫
K(ξ′ − ξ) ξ′α′ × (u− u′){(u− u′) · ∂β′∇ξ′}U′ dα′dβ′

− p.v.

∫∫
K(ξ′ − ξ) {(u− u′)× ξ′β′(u

′
α′ · ∇ξ′)U′

+ ξ′α′ × (u− u′)(u′β′ · ∇ξ′)U′} dα′dβ′

− p.v.

∫∫
K(ξ′ − ξ) (u′α′ × ξ′β′ + ξ′α′ × u′β′)((u− u′) · ∇ξ′)U′ dα′dβ′;

(5.22)

here ∇nu is the normal derivative of u, ∇ξu is the space variable gradient of u and
HΣ(t)u is the Hilbert transform of u with respect to the surface Σ(t) : ξ = ξ(α, β, t)
defined in (5.22) and the lower region Ω(t) bounded by Σ(t). For the real-valued
function g,

K̃∗g = <{ñHΣ(t)(ñg)}.(5.23)

Notice that a solution u of (5.21)-(5.23) is not obviously analytic, and does not
obviously give ñ = n. In §7, we will show that a solution of (5.21)-(5.23) with
proper initial data is analytic and gives rise to a solution of (4.3)-(4.4).

Initial data. We need to transform the initial data (4.5) into an initial data for
(5.21)-(5.23). We will do so by first finding a formula expressing a, consequently
expressing ξtt, as a function of ξt and ξ. Since ξtt + e3 = an, we have

a = −n(ξtt + e3),

therefore

a− n · e3 = −nξtt − n× e3.(5.24)

Now taking the derivative with respect to t on both sides of (4.4), we get ξtt =
∂t(HΣ(t)ξt) = HΣ(t)ξtt + [∂t, HΣ(t)]ξt, therefore

ξtt −HΣ(t)ξtt = [∂t, HΣ(t)]ξt.

Consequently

n ξtt + H∗
Σ(t)(n ξtt) = n ξtt − nHΣ(t)ξtt = n [∂t, HΣ(t)]ξt.

From (5.24) and the fact that a− n · e3 is a real-valued function, we have

(I +K∗)(a − n · e3) = −<{(I + H∗
Σ(t))(nξtt + n× e3)}

= −<{n [∂t, HΣ(t)]ξt + H∗
Σ(t)(n× e3)}

so

a = n · e3 − (I +K∗)−1(<{n [∂t, HΣ(t)]ξt + H∗
Σ(t)(n× e3)})(5.25)
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where [∂t, HΣ(t)]ξt is as given in (5.15). Since ξtt + e3 = an, we have

ξtt = −e3 + (n · e3)n− n(I +K∗)−1(<{n [∂t, HΣ(t)]ξt + H∗
Σ(t)(n× e3)}).(5.26)

We can now determine the initial data of (5.21)-(5.23). Assume that the initial
surface Σ(0) divides R3 into two simply connected, unbounded C2 domains, Σ(0)
approaches the xy-plane at infinity, and assume water occupies the lower domain
Ω(0). Without loss of generality, we choose the parameterization of Σ(0) : ξ =
ξ0(α, β), −∞ < α, β < ∞, such that ξ0,α × ξ0,β is an outer normal of Ω(0),

|ξ0,α × ξ0,β | ≥ 2µ, −∞ < α, β < ∞,(5.27)

for some constant µ > 0, and for some unit vectors eα, eβ , with eα × eβ = e3,
ξ0,α− eα → 0, ξ0,β − eβ → 0 as |α|+ |β| → ∞. For this parameterization, we know
that there is a constant C0 > 0, such that

|ξ0(α, β) − ξ0(α′, β′)| ≥ 2C0(|α− α′|+ |β − β′|), for −∞ < α, β < ∞.

(5.28)

Let

ξ(α, β, 0) = ξ0(α, β), ξt(α, β, 0) = ξ1(α, β)(4.5′)

be the initial data for (4.3)-(4.4), where ξ1 satisfies ξ1 = HΣ(0)ξ1. We take the
corresponding initial data for (5.21)-(5.23)

u(α, β, 0) = u0(α, β), ut(α, β, 0) = u1(α, β)(5.29)

such that u0 = ξ1, and

u1 = −e3 + (n0 · e3)n0 − n0(I +K∗0)−1(<{n0 [∂t, HΣ(0)]u0 + H∗
Σ(0)(n0 × e3)})

(5.30)

where n0 is the outer unit normal of Ω(0), K∗0 is the adjoint of the double layer
potential defined by Σ(0) and lower region Ω(0), and

[∂t, HΣ(0)]u0 = p.v.

∫∫
K(ξ′ − ξ) {((u0 − u′0)× ξ′0,β′)u

′
0,α′

− ((u0 − u′0)× ξ′0,α′)u
′
0,β′} dα′dβ′.

We know n0 =
u1 + e3

|u1 + e3|
. If Σ(0) further satisfies the assumption 2. of Lemma 4.1,

we have that

a0 = |u1 + e3| ≥ 2c0(5.31)

for some positive constant c0.
In the next section, we will study the well-posedness of the quasilinear system

(5.21)-(5.23), with initial data (5.29) satisfying (5.27), (5.28), (4.5′), (5.30) and
(5.31).

§6. Well-posedness of the quasilinear system

In this section, we show that the quasilinear system (5.21)-(5.23),(5.29) is unique-
ly solvable in certain Sobolev spaces. Our approach is standard. That is we first
solve the linear system defined on a given collection of surfaces Σ(t), t ∈ [0, T ],
and then use iteration to solve the quasilinear system. Solutions of both the linear
and quasilinear systems are obtained by proper energy estimates, iteration and the
fixed point theorem. This approach is very much the same as in the 2-D case; see
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[24], also [25]. The main difference is that in [24], we used Riemann mapping to
flatten out the interface, therefore the estimates there are in clean and compact
forms, while here we solve (5.21)-(5.23) directly. This involves estimating operators
defined on moving surfaces, therefore technically it is more complicated. We will
use the results of Coifman, McIntosh and Meyer [4] and Coifman, David and Meyer
[5] to estimate our operators. We point out here that for our operators, we don’t
really need such strong results. Our surfaces are more regular than those studied
in [4], [5].

We divide this section into three parts: estimates, linear system, and the quasi-
linear system. Throughout the rest of this paper, we assume that q is a constant
> 1.

Estimates. Let s ≥ 3/2 + q. For t ∈ [0, T ], let Σ(t) : ξ = ξ(α, β, t), −∞ < α, β <
∞, be a surface dividing R3 into two unbounded, simply connected, lower and
upper domains Ω(t) and Ω(t)c, with ξα × ξβ an outer normal of Ω(t). Assume that
there are constants C0 > 0, µ > 0, and vectors eα, eβ, such that

H1. |ξ(α, β, t) − ξ(α′, β′, t)| ≥ C0(|α − α′|+ |β − β′|), for −∞ < α, β < ∞, t ∈
[0, T ];

H2. ξα − eα, ξβ − eβ ∈ C1([0, T ], Hs−1/2(R2, C(V3))), eα × eβ = e3 and ξt ∈
C([0, T ], Hs+1/2(R2, C(V3)));

H3. |ξα × ξβ | ≥ µ, for t ∈ [0, T ].
In this part, we establish estimates that are necessary for obtaining an energy

estimate and carrying out an iteration scheme for the linear system defined on Σ(t),
t ∈ [0, T ]. We will not distinguish the notation of constants appearing in different
contexts if they are determined by the same factors. For fixed t, K is the double

layered potential defined on Σ(t) w.r.t. Ω(t), n =
ξα × ξβ

|ξα × ξβ |
, ∇n is the normal

derivative defined on Σ(t), and dS is the surface measure of Σ(t). In the rest of
this section, we use the same notation u to indicate a function u = u(α, β) and the
function U(ξ, t) on Σ(t), satisfying U(ξ(α, β, t), t) = u(α, β).

Lemma 6.1 (Sobolev embedding [10]).

Hq(R2) ⊂ Lp(R2) for 2 ≤ p ≤ ∞.

Lemma 6.2. Let 0 ≤ τ < 1, let m be an integer ≥ 1, and let s ≥ 1. For a, u ∈
S(R2), we have

a. ‖[a, ∂m(1 + |D|)τ ]u‖ ≤ k0(‖a‖m+τ‖u‖q + ‖u‖m+τ−1‖a‖q+1).
b. ‖[a, (1 + |D|)s]u‖ ≤ k0(‖a‖s‖u‖q + ‖u‖s−1‖a‖q+1).
c. ‖[a, (1 + |D|)τ ]u‖ ≤ k0‖a‖1+q‖u‖.
d. ‖[a, |D|1/2]|D|1/2u‖ ≤ k0‖a‖1+q‖u‖.
where k0 is a constant independent of a and u.

Lemma 6.2 can be proved easily by using Fourier analysis. We omit the proof.
The following deep result was obtained by Coifman, McIntosh and Meyer [4] for

n = 2, and Coifman, David and Meyer [5] for general n.

Theorem 6.3 ([4], [5], see also [13]). Let θ : Rk → R be even and C∞, and let
A : Rn−1 → R, B : Rn−1 → Rk be Lipschitz and

K(z, x) =
A(z)−A(x)
|z − x|n θ

[
B(z)−B(x)
|z − x|

]
.
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Then the operator

Tf(z) = p.v.

∫
K(z, x) g(x) dx

is bounded from L2(Rn−1) to L2(Rn−1), with

‖Tf‖ ≤ C‖f‖

where C = C(M, θ, n), and |∇A|∞ ≤ M , |∇B|∞ ≤ M .

Lemma 6.4. Let t ∈ [0, T ] be fixed. For u ∈ S(R2), a ∈ Hp1(R2), b ∈ Hp2(R2),
we have

a. HΣ(t) is bounded from Hr(R2) to Hr(R2), for 0 ≤ r ≤ s + 1/2, with
‖HΣ(t)u‖r ≤ kr,1‖u‖r,

b. ‖[a, HΣ(t)]u‖r ≤ kr,1‖a‖max{r,1+q}‖u‖r−1, for 1 ≤ r ≤ min{p1, s + 1/2},
c. ‖[a, [b, HΣ(t)] ]u‖r ≤ kr,1‖a‖max{r,1+q}‖b‖max{r,1+q}‖u‖r−2, for 2 ≤ r ≤

min{p1, p2, s + 1/2},
d. (±I +K∗)−1 and (±I +K)−1 are bounded from Hr−1(R2) to Hr−1(R2), for

1 ≤ r ≤ s + 1/2, with

‖(±I +K∗)−1u‖r−1 ≤ kr,2‖u‖r−1 and ‖(±I +K)−1u‖r−1 ≤ kr,2‖u‖r−1,

where kr,1 = kr,1(C0, µ, M(r)), kr,2 = kr,2(C0, µ, M(r), M1) are constants,

‖ξα − eα‖max{r−1,1+q} + ‖ξβ − eβ‖max{r−1,1+q} ≤ M(r), ‖(±I +K∗)−1‖ ≤ M1,

‖(±I +K∗)−1‖ is the operator norm of (±I +K∗)−1 from L2(R2) to L2(R2).

Remark. If for some fixed t, we assume further that n(t)−e3 =
ξα(t)× ξβ(t)
|ξα(t)× ξβ(t)|−e3 ∈

Hs(R2, C(V3)), then (±I+K∗(t))−1 is also bounded from Hs(R2) to Hs(R2), where
K∗(t) is the adjoint of the double layered potential K(t) defined on Σ(t).

Proof of a. We first prove a. for r integers, where r = 0, 1, . . . , [s + 1/2], [s + 1/2]
is the largest integer ≤ s + 1/2. We prove by induction.

When r = 0, a. follows directly from Theorem 6.3 by taking θ even, θ ∈ C∞,

and θ(η) =
1
|η|3 , on |η| ≥ C0, B(α, β) = ξ(α, β, t) and A = A(α, β) the components

of ξ(α, β, t).
When r = 1, since

∂HΣ(t)u = [∂, HΣ(t)]u + HΣ(t)∂u(6.1)

and from (3.3),

[∂, HΣ(t)]u = p.v.

∫∫
K(ξ′ − ξ) ((∂ξ − ∂′ξ′)× (ξ′β′u

′
α′ − ξ′α′u

′
β′)) dα′dβ′

= p.v.

∫∫
K(ξ′ − ξ)(ξ′α′ × ξ′β′)

−ξ′α′ × ξ′β′
|ξ′α′ × ξ′β′ |2

((∂ξ − ∂′ξ′)× (ξ′β′u
′
α′ − ξ′α′u

′
β′)) dα′dβ′

=
∑

i

[ai, HΣ(t)]Diu =
∑

i

(ai HΣ(t)Diu−HΣ(t)(aiDiu))

(6.2)
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where ai are components of ∂ξ, that is, ∂ξ =
∑

aiei, Diu = − ξα × ξβ

|ξα × ξβ |2
ei ×

(ξβuα − ξαuβ), we have

∂HΣ(t)u =
∑

i

(ai HΣ(t)Diu−HΣ(t)(aiDiu)) + HΣ(t)∂u,(6.3)

therefore

‖HΣ(t)u‖1 ≤ k1,1‖u‖1,
where k1,1 depends on |∂ξ|∞, C0, µ.

When r = 2, we have from (6.3)

∂2HΣ(t)u =
∑

i

{∂(ai HΣ(t)Diu)− ∂(HΣ(t)(aiDiu))}+ ∂HΣ(t)∂u,

therefore ‖HΣ(t)u‖2 ≤ k2,1‖u‖2, where k2,1 depends on |∂2ξ|∞ + |∂ξ|∞, C0, µ. By
interpolation, we have that a. holds for all 0 ≤ r ≤ 2.

Now for m ≥ 3, assume that HΣ(t) is bounded from Hm−1(R2) to Hm−1(R2),
where 2 ≤ m− 1 < [s + 1/2]. From (6.3),

∂mHΣ(t)u =
∑

i

{∂m−1(ai HΣ(t)Diu)− ∂m−1(HΣ(t)(aiDiu))}+ ∂m−1HΣ(t)∂u.

Therefore by the induction hypothesis and Lemma 6.2 a., we get

‖∂mHΣ(t)u‖ ≤ k′m‖u‖m

where k′m is a constant depending on ‖ai−ci‖m′ , C0, and µ; ai−ci are components
of ξα − eα or ξβ − eβ, m′ = max{m − 1, 1 + q}. In other words, k′m is a constant
depending on ‖ξα− eα‖m′ , ‖ξβ − eβ‖m′ , C0, and µ. Using the induction hypothesis
again, we obtain that

‖HΣ(t)u‖m ≤ km,1‖u‖m

where km,1 = km,1(M(m), C0, µ), and ‖ξα − eα‖m′ + ‖ξβ − eβ‖m′ ≤ M(m). This
proves a. for r integers, where 0 ≤ r ≤ [s+1/2], consequently for all 0 ≤ r ≤ [s+1/2]
by interpolation.

Now let’s prove a. for all 0 ≤ r ≤ s + 1/2. Let 0 < τ < 1. From (6.3), we also
have that

∂m(1 + |D|)τHΣ(t)u =
∑

i

{∂m−1(1 + |D|)τ (ai HΣ(t)Diu)

− ∂m−1(1 + |D|)τ (HΣ(t)(aiDiu))}
+ ∂m−1(1 + |D|)τHΣ(t)∂u.

Since a. holds for r = τ , we conclude from a similar induction argument that a.
holds for r = 1 + τ, . . . , l + τ , where l = [s + 1/2], if 0 < τ ≤ s + 1/2 − [s + 1/2],
and l = [s + 1/2] − 1, if s + 1/2 − [s + 1/2] < τ < 1. Therefore a. holds for all
0 ≤ r ≤ s + 1/2.

Proof of b. We only give a detailed proof of b. for r integers. For noninteger r, the
proof can be carried out using interpolation and induction, as we did for a.

Since

∂[a, HΣ(t)]u = (∂a)HΣ(t)u + p.v.

∫∫
(a− a′)∂K(ξ′ − ξ)(ξ′α′ × ξ′β′)u

′ dα′dβ′,
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and p.v.
∫∫

(a−a′)∂K(ξ′−ξ)(ξ′α′×ξ′β′)u
′ dα′dβ′ has the type of kernel as in Theorem

6.3, and since [a, HΣ(t)] is bounded from L2(R2) to L2(R2), we know that b. holds
for r = 1.

Assume that b. holds for r = m− 1, where 1 ≤ m− 1 < min{p1, s + 1/2}. Since

∂m[a, HΣ(t)]u = [∂m, a]HΣ(t)u + [a, ∂mHΣ(t)]u

= [∂m, a]HΣ(t)u + [a, ∂m−1[∂, HΣ(t)] ]u

+ [a, ∂m−1HΣ(t)]∂u− ∂m−1HΣ(t)((∂a)u)

(6.4)

and from (6.2),

[a, ∂m−1[∂, HΣ(t)] ]u = a∂m−1[∂, HΣ(t)]u− ∂m−1[∂, HΣ(t)](au)

= a
∑

i

∂m−1[ai, HΣ(t)]Diu−
∑

i

∂m−1[ai, HΣ(t)]Di(au),

where ai − ci ∈ Hs−1/2(R2) are components of ξα − eα or ξβ − eβ , and since

[a, ∂m−1HΣ(t)]∂u = ∂m−1[a, HΣ(t)]∂u− [∂m−1, a]HΣ(t)∂u,

we have first by taking m = 2 that b. holds for r = 2, therefore for all 1 ≤ r ≤ 2
by interpolation. For general m, we get from the induction hypothesis, Lemma 6.2
a. and Lemma 6.4 a. that

‖∂m[a, HΣ(t)]u‖ ≤ k′′m‖a‖max{1+q,m}‖u‖m−1,

where k′′m depends on ‖ξα−eα‖m′ , ‖ξβ−eβ‖m′ , C0 and µ, m′ = max{1+ q, m−1}.
Using the induction hypothesis again, we obtain

‖[a, HΣ(t)]u‖m ≤ km,1‖u‖m−1,

where km,1 = km,1(M(m), C0, µ), and ‖ξα − eα‖m′ + ‖ξβ − eβ‖m′ ≤ M(m). This
proves b. for integer r.

Proof of c. and d. c. d. are proved in the same way as we did for a. and b. That
is, we first prove by induction for r integers, then by interpolation and induction
for all 2 ≤ r ≤ min{p1, p2, s + 1/2} for c. and all 1 ≤ r ≤ s + 1/2 for d. The
induction argument for c. is carried out using identities

∂m[a, [b, HΣ(t)] ]u = [∂m, a][b, HΣ(t)]u + [a, ∂m−1[∂, [b, HΣ(t)] ] ]u

+ [a, ∂m−1[b, HΣ(t)] ]∂u− ∂m−1[b, HΣ(t)]((∂a)u),

[∂, [b, HΣ(t)] ]u = [∂b, HΣ(t)]u + [b, [∂, HΣ(t)] ]u

= [∂b, HΣ(t)]u +
∑

i

[b, [ai, HΣ(t)]Di ]u

= [∂b, HΣ(t)]u +
∑

i

{[b, [ai, HΣ(t)] ]Diu− [ai, HΣ(t)][Di, b]u }

and

[a, ∂m−1[b, HΣ(t)] ]∂u = ∂m−1[a, [b, HΣ(t)] ]∂u− [∂m−1, a][b, HΣ(t)]∂u,
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Theorem 6.3 and Lemma 6.4 b. The induction argument for d. with regard to
(±I +K∗)−1 is carried out using Theorem 2.4, identities

∂m(±I +K∗)−1 = ∂m−1[∂, (±I +K∗)−1] + ∂m−1(±I +K∗)−1∂

= −∂m−1(±I +K∗)−1[∂,K∗](±I +K∗)−1 + ∂m−1(±I +K∗)−1∂

(6.5)

and (6.2), and Lemma 6.4 a. b. It is similar for (±I +K)−1.

As an immediate consequence of Lemma 6.4, (3.13) and (3.14), we have the
following

Corollary 6.5. Let u ∈ S(R2). Then for 1 ≤ r ≤ s + 1/2,

k−1
r,2 (‖∂αu‖r−1 + ‖∂βu‖r−1) ≤ ‖∇nu‖r−1 ≤ kr,2(‖∂αu‖r−1 + ‖∂βu‖r−1)(6.6)

where kr,2 = kr,2(C0, µ, M(r), M1) ≥ 1, M(r) and M1 are as in Lemma 6.4.

Lemma 6.6. Let a ∈ H1+q(R2). For u, w ∈ S(R2), we have
a.

|
∫

Σ(t)

(aw∇nu + au∇nw) dS|

≤ κ0‖a‖1+q(‖u‖+ (
∫

Σ(t)

u∇nu dS)
1
2 )(‖w‖+ (

∫
Σ(t)

w∇nw dS)
1
2 ),

b. |
∫
Σ(t)

w∇nu dS| ≤ (
∫
Σ(t)

u∇nu dS)
1
2 (

∫
Σ(t)

w∇nw dS)
1
2 ,

c. |
∫
Σ(t) w [a,∇n]u dS| ≤ κ0‖a‖1+q‖u‖(‖w‖+ (

∫
Σ(t) w∇nw dS)

1
2 )

where κ0 = κ0(C0, µ, M, M1), and ‖ξα − eα‖1+q + ‖ξβ − eβ‖1+q ≤ M , M1 is as in
Lemma 6.4.

Remark. If a− 1 ∈ H1+q(R2), Lemma 6.6 holds with ‖a‖1+q in a. and c. replaced
by ‖a− 1‖1+q + 1.

Proof. We prove Lemma 6.6 by Green’s identity.
Let a}, u}, and w} be the harmonic extension, given by Theorem 2.5, of a, u,

and w on Ω(t) respectively. By definition: ∇nu =
∂u}

∂n
and Green’s second identity,

we have ∫
Σ(t)

(a∇nu w + au∇nw) dS =
∫

Σ(t)

a
∂(u}w})

∂n
dS

=
∫

Σ(t)

∂a}

∂n
uw dS + 2

∫
Ω(t)

a}∇u} · ∇w} dV.

(6.7)

Since

|
∫

Σ(t)

∂a}

∂n
uw dS| = |

∫
Σ(t)

(∇na)uw dS| ≤ |∇na|∞
∫

Σ(t)

|uw| dS(6.8)

and

2|
∫

Ω(t)

a}∇u} · ∇w} dV | ≤ 2|a}|∞(
∫

Ω(t)

|∇u}|2 dV )1/2(
∫

Ω(t)

|∇w}|2 dV )1/2

≤ 2|a|∞(
∫

Σ(t)

u∇nu dS)1/2(
∫

Σ(t)

w∇nw dS)1/2

(6.9)
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where in the last inequality we used the maximal principle: |a}|∞ ≤ |a|∞ and
Green’s identity, therefore

|
∫

Σ(t)

(a∇nu w + au∇nw) dS| ≤ |∇na|∞
∫

Σ(t)

|uw| dS

+ 2|a|∞(
∫

Σ(t)

u∇nu dS)1/2(
∫

Σ(t)

w∇nw dS)1/2.

(6.10)

Applying Lemma 6.1 and Corollary 6.5 to (6.10), we obtain a.
b. is a consequence of (6.10) by taking a = 1:

|2
∫

Σ(t)

∇nu w dS| = |
∫

Σ(t)

(∇nu w + u∇nw) dS|

≤ 2(
∫

Σ(t)

u∇nu dS)1/2(
∫

Σ(t)

w∇nw dS)1/2.

Now let’s prove c. From Green’s identity and by definition, we have∫
Σ(t)

[a,∇n]u w dS =
∫

Σ(t)

aw
∂u}

∂n
dS −

∫
Σ(t)

∇n(au)w dS

=
∫

Σ(t)

∂(a}w})
∂n

u} dS − 2
∫

Ω(t)

u}∇a} · ∇w} dV −
∫

Σ(t)

au
∂w}

∂n
dS

=
∫

Σ(t)

∂a}

∂n
uw dS − 2

∫
Ω(t)

u}∇a} · ∇w} dV,

(6.11)

where

|2
∫

Ω(t)

u}∇a} · ∇w} dV | ≤ (2
∫

Ω(t)

(u})2|∇a}|2 dV )1/2(2
∫

Ω(t)

|∇w}|2 dV )1/2.

(6.12)

Assume that ã and ũ are the solutions of{
∆ã = 2|∇a}|2 on Ω(t),

ã = 0 on Σ(t), and
{

∆ũ = 0 on Ω(t),
ũ = u2 on Σ(t),

given by Theorem 2.5. (Notice that ã−(a})2 is harmonic on Ω(t).) Since ∆(u})2 =
2|∇u}|2 ≥ 0 and (u})2 = ũ on Σ(t), we have from the maximal principle that
(u})2 ≤ ũ on Ω(t). Therefore

2
∫

Ω(t)

(u})2|∇a}|2 dV ≤ 2
∫

Ω(t)

ũ|∇a}|2 dV =
∫

Σ(t)

u2 ∂ã

∂n
dS.

Now from Theorem 2.5, we have that

ã(η) = (a})2(η) +
∫

Σ(t)

K(ξ′ − η) · n(ξ′)(I +K)−1(a2)(ξ′) dS(ξ′), η ∈ Ω(t),

so

| ∂ã

∂n
|∞ ≤ k0‖

∂ã

∂n
‖q ≤ κ′0‖a‖21+q.
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Consequently,

|
∫

Σ(t)

[a,∇n]u w dS|

≤ κ′0‖a‖1+q(
∫

Σ(t)

|uw| dS + (
∫

Σ(t)

u2 dS)1/2(
∫

Σ(t)

w∇nw dS)1/2)

≤ κ0‖a‖1+q‖u‖(‖w‖+ (
∫

Σ(t)

w∇nw dS)
1
2 )

where κ0 = κ0(C0, µ, M, M1), and ‖ξα − eα‖1+q + ‖ξβ − eβ‖1+q ≤ M , M1 is as in
Lemma 6.4. This proves c.

Remark. Green’s identity is justified here since a}, u}, and w} have enough in-
tegrability and u}, w} have enough decay at infinity; see Theorem 2.5 and it’s
remark.

Lemma 6.7. For u ∈ S(R2), we have

κ−1
0 ‖u‖21/2 ≤ ‖u‖2 +

∫
Σ(t)

u∇nu dS ≤ κ0‖u‖21/2(6.13)

where κ0 = κ0(C0, µ, M, M1) ≥ 1, M , M1 are as in Lemma 6.6.

Proof. We first prove the right hand side inequality of (6.13). Let (R1, R2) =
(∂α|D|−1, ∂β|D|−1) be the Riesz transforms on R2,

Rw = (I +K∗)−1{p.v.

∫∫
(n(ξ)×K(ξ′ − ξ)) · (ξ′β′R1w − ξ′α′R2w) dα′dβ′},

(6.14)

and letR∗ be the adjoint ofR on L2(Σ(t), dS). From (3.13) we know∇nu = R|D|u.
Therefore

∫
Σ(t)

u∇nu dS =
∫

Σ(t)

R∗(u)|D|u dS =
∫∫

|D|1/2(|ξα × ξβ |R∗(u)) |D|1/2u dαdβ

≤ (
∫∫

{|D|1/2(|ξα × ξβ |R∗(u))}2 dαdβ)1/2(
∫∫

{|D|1/2u}2 dαdβ)1/2

≤ κ′0‖u‖21/2,

(6.15)

where the last inequality follows from Lemma 6.4 and Lemma 6.2, and κ′0 =
κ′0(C0, µ, M, M1), ‖ξα − eα‖1+q + ‖ξβ − eβ‖1+q ≤ M , and M1 is as in Lemma
6.4. This proves the right hand side inequality of (6.13).

The left hand side inequality of (6.13) is proved similarly. We know from (3.14)
that

∂u = −∂ξ · (I + HΣ(t))(n(−I +K∗)−1∇nu).(6.16)

Since |D| = −R1∂α −R2∂β , we can also write |D|u = R̃∇nu, where

R̃w = R1{ξα · (I + HΣ(t))(n(−I +K∗)−1w)}
+ R2{ξβ · (I + HΣ(t))(n(−I +K∗)−1w)}.
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Let R̃∗ be the adjoint of R̃ on L2(Σ(t), dS). Therefore∫∫
u |D|u dαdβ =

∫
Σ(t)

1
|ξα × ξβ |

uR̃∇nu dS =
∫

Σ(t)

R̃∗{ 1
|ξα × ξβ |

u}∇nu dS.

Applying Lemma 6.6 b, we get∫
Σ(t)

R̃∗{ u

|ξα × ξβ |
}∇nu dS

≤ (
∫

Σ(t)

u∇nu dS)1/2(
∫

Σ(t)

R̃∗{ u

|ξα × ξβ |
}∇nR̃∗{ u

|ξα × ξβ |
} dS)1/2,

where∫
Σ(t)

R̃∗{ u

|ξα × ξβ |
}∇nR̃∗{ u

|ξα × ξβ |
} dS =

∫∫
u |D|(R̃∗{ u

|ξα × ξβ |
}) dαdβ

≤ ‖u‖1/2(
∫∫

(|D|1/2(R̃∗{ u

|ξα × ξβ |
}))2 dαdβ)1/2

≤ κ′0‖u‖21/2.

Here we used Lemma 6.4 and Lemma 6.2 again in the last inequality. Therefore∫∫
u |D|u dαdβ ≤

√
κ′0(

∫
Σ(t)

u∇nu dS)1/2‖u‖1/2,

and consequently

‖u‖21/2 ≤ κ0(‖u‖2 +
∫

Σ(t)

u∇nu dS).

This proves the left hand side inequality of (6.13).

Using Lemmas 3.1, 3.2 and a similar argument as in Lemma 6.7, we also have
the following

Lemma 6.8. Let a− 1 ∈ H1+q(R2). For u ∈ S(R2), we have

|
∫∫

au[∂t,∇n]u dαdβ| ≤ κ0(‖a− 1‖1+q + 1)‖ξt‖2+q‖u‖21/2,

where κ0 = κ0(C0, µ, M, M1), and M and M1 are as in Lemma 6.6.

Let

G = a∇n + λ, a =
a

|ξα × ξβ |
,(6.17)

where a− 1 ∈ H1+q(R2) and λ is a constant. Also let (u, v) =
∫∫

uv dαdβ.

Lemma 6.9. Let a− 1 ∈ H1+q(R2). Assume that there is a constant c0 > 0, such
that a ≥ c0. Assume λ ≥ |∇na|∞|ξα × ξβ |∞ +

c0

|ξα × ξβ |∞
. Then for u ∈ S(R2),

κ−1
1 ‖u‖21/2 ≤ (Gu, u) ≤ κ1‖u‖21/2(6.18)

where κ1 ≥ max{2λ + κ0|a|∞,
|ξα × ξβ |∞

c0
κ0}, κ0 is the constant in Lemma 6.7.
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Proof. Let a} − 1, u} be the harmonic extensions of a− 1 and u on Ω(t), given by
Theorem 2.5. From Green’s second identity, we have that

∫
Σ(t)

au∇nu dS =
1
2

∫
Σ(t)

a} ∂(u})2

∂n
dS =

1
2

∫
Σ(t)

∂a}

∂n
u2 dS +

∫
Ω(t)

a}|∇u}|2 dV,

(6.19)

therefore∫
Σ(t)

au∇nu dS ≥ −|∇na |ξα × ξβ ||∞‖u‖2 +
c0

|ξα × ξβ |∞

∫
Ω(t)

|∇u}|2 dV

≥ −|∇na|∞|ξα × ξβ |∞‖u‖2 +
c0

|ξα × ξβ |∞

∫
Σ(t)

u∇nu dS

≥ −|∇na|∞|ξα × ξβ |∞‖u‖2 +
c0

|ξα × ξβ |∞
(κ−1

0 ‖u‖21/2 − ‖u‖2),

where in the first inequality we used the maximal principle that a} ≥ minΣ(t) a ≥
c0

|ξα × ξβ |∞
, and in the last inequality we used Lemma 6.7. Consequently,

(Gu, u) =
∫

Σ(t)

au∇nu dS + λ‖u‖2 ≥ c0

|ξα × ξβ |∞
κ−1

0 ‖u‖21/2.

On the other hand, we have from (6.19) that

(Gu, u) =
∫

Σ(t)

au∇nu dS + λ‖u‖2

≤ |∇na |ξα × ξβ ||∞‖u‖2 + |a|∞
∫

Ω(t)

|∇u}|2 dV + λ‖u‖2

≤ |∇na|∞|ξα × ξβ |∞‖u‖2 + |a|∞
∫

Σ(t)

u∇nu dS + λ‖u‖2

≤ (|∇na|∞|ξα × ξβ |∞ + λ)‖u‖2 + κ0|a|∞‖u‖21/2

≤ (2λ + κ0|a|∞)‖u‖21/2.

Taking κ1 ≥ max{2λ + κ0|a|∞,
|ξα × ξβ |∞

c0
κ0}, we get (6.18).

For t ∈ [0, T ] and 0 ≤ ϑ ≤ 1, let

Σ1(t) : ξ1 = ξ1(α, β, t), Σ2(t) : ξ2 = ξ2(α, β, t),

Σ(ϑ; t) : ξ = ϑξ1(α, β, t) + (1− ϑ)ξ2(α, β, t).

Assume that Σ(ϑ; t) satisfies H1 and H3 for all t ∈ [0, T ] and 0 ≤ ϑ ≤ 1; and Σ1(t),
Σ2(t) satisfy H1, H2′, H3, where

H2′: ξα − eα, ξβ − eβ ∈ C([0, T ], Hs−1/2(R2, C(V3))), eα × eβ = e3 and ξt ∈
L∞([0, T ], Hs+1/2(R2, C(V3))).

Lemma 6.10. Let t ∈ [0, T ] be fixed. Then for u ∈ S(R2), a ∈ Hp1(R2), b ∈
Hp2(R2), we have

a. ‖(HΣ1(t) −HΣ2(t))u‖r ≤ kr,1‖ξ1(t)− ξ2(t)‖r‖u‖r, for 2 + q ≤ r ≤ s + 1/2,
b. ‖[a, HΣ1(t) − HΣ2(t)]u‖r ≤ kr,1‖a‖r‖ξ1(t) − ξ2(t)‖r‖u‖r−1, for 2 + q ≤ r ≤

min{p1, s + 1/2},
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c. ‖[a, [b, HΣ1(t)−HΣ2(t)] ]u‖r ≤ kr,1‖a‖r‖b‖r‖ξ1(t)− ξ2(t)‖r‖u‖r−2, for 2 + q ≤
r ≤ min{p1, p2, s + 1/2},
where kr,1 = kr,1(C0, µ, M(r)), and ‖ξi,α−eα‖r−1+‖ξi,β−eβ‖r−1 ≤ M(r), i = 1, 2.

Proof. We prove a. only. b., c. can be obtained similarly. Actually, the proof of
c. involves operators of type [a, [b, [c, HΣ] ] ]. An estimate of such operators can be
obtained similar to that in Lemma 6.4 b. We leave c. to the readers.

We know that ∂ϑξ = ξ1 − ξ2. Since

(HΣ1(t) −HΣ2(t))u =
∫ 1

0

[∂ϑ, HΣ(ϑ;t)]u dϑ(6.20)

and from (3.2),

[∂ϑ, HΣ(ϑ;t)]u = p.v.

∫∫
K(ξ′ − ξ) ((∂ϑξ − ∂ϑξ′)× (ξ′β′u

′
α′ − ξ′α′u

′
β′)) dα′dβ′

=
∑

i

[ai, HΣ(ϑ;t)]Diu

where ai are components of ∂ϑξ = ξ1 − ξ2, that is, ξ1 − ξ2 =
∑

aiei, and Diu =
−ξα × ξβ

|ξα × ξβ |2
ei×(ξβuα−ξαuβ), we have from Lemma 6.4 b. that for 2+q ≤ r ≤ s+1/2,

‖(HΣ1(t) −HΣ2(t))u‖r ≤
∫ 1

0

‖[∂ϑ, HΣ(ϑ;t)]u‖r dϑ ≤
∑

i

∫ 1

0

‖[ai, HΣ(ϑ;t)]Diu‖r dϑ

≤ kr,1‖ξ1(t)− ξ2(t)‖r‖u‖r

(6.21)

where kr,1 = kr,1(C0, µ, M(r)), and ‖ξi,α−eα‖r−1+‖ξi,β−eβ‖r−1 ≤ M(r), i = 1, 2.
This proves Lemma 6.10 a.

For fixed t, let ni =
ξi,α × ξi,β

|ξi,α × ξi,β |
be the unit normal of Σi(t), i = 1, 2. Using a

similar argument and Lemma 3.2 we also have the following

Lemma 6.11. Let t ∈ [0, T ] be fixed. For u ∈ S(R2), we have

‖(∇n1 −∇n2)u‖r−1 ≤ kr,2‖ξ1(t)− ξ2(t)‖r‖u‖r, for 2 + q ≤ r ≤ s + 1/2
(6.22)

where kr,2 = kr,2(C0, µ, M(r), M1), and ‖ξi,α−eα‖r−1 +‖ξi,β−eβ‖r−1 ≤ M(r), for
i = 1, 2, and sup0≤ϑ≤1 ‖(I +K∗)−1‖ ≤ M1, where K is the double layered potential
defined on Σ(ϑ; t).

An easy consequence of Lemmas 6.10 and 6.11 is the following

Lemma 6.12. Assume that u ∈ C([0, T ], S(R2)), and Σ(t) satisfies H1, H2 and
H3. Then HΣ(t)u ∈ C([0, T ], Hr(R2)), and ∇nu ∈ C([0, T ], Hr−1(R2)), for 2+ q ≤
r ≤ s + 1/2.

Linear systems. Assume that surfaces Σ(t), t ∈ [0, T ], are given and satisfy the
conditions described at the beginning of the last part, in particular H1, H2 and
H3; and assume ∇n is the normal derivative defined on Σ(t). Assume that a is a
scalar-valued function such that a−1 ∈ C([0, T ], Hs(R2)), at ∈ C([0, T ], H1+q(R2))
and a ≥ c0 for some constant c0 > 0. Let a =

a

|ξα × ξβ |
, and let G be the operator
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in (6.17), with λ = sup0≤t≤T (|∇na|∞|ξα × ξβ |∞ +
c0

|ξα × ξβ |∞
). We know from

Lemma 6.1, Corollary 6.5 and our assumption that λ is a finite number. Let
Gt = at∇n + a[∂t,∇n], Λ = 1 + |D|, and (u, w)r = (Λru, Λrw). If u, w are
vector-valued or Clifford 1-vector-valued, we define (u, w) =

∫∫
u · w dα dβ, and

(u, w)r = (Λru, Λrw). For (u, ut) ∈ S(R2) ×S(R2), u, ut scalar-valued or vector-
valued, we define

Es,ε(u, ut)

= (ut, ut)s−1 + (∇nut,∇nut)s−1 + (GΛs−1u, Λs−1u) + (GΛs−1∇nu, Λs−1∇nu)

+ ε2{(uα, uα)s−1 + (uβ, uβ)s−1 + (∇nuα,∇nuα)s−1 + (∇nuβ,∇nuβ)s−1},
Es(u, ut)

= (ut, ut)s−1 + (∇nut,∇nut)s−1 + (GΛs−1u, Λs−1u) + (GΛs−1∇nu, Λs−1∇nu),

|(u, ut)|2s = ‖u‖2s+1/2 + ‖ut‖2s.

(6.23)

From Corollary 6.5 and Lemma 6.9, we know that

κ−1|(u, ut)|2s ≤ Es(u, ut) ≤ κ|(u, ut)|2s(6.24)

where κ = κ(C0, c0, µ, M(s + 1
2 ), M1, M2) > 1 is a constant, and

sup
0≤t≤T

(‖ξα − eα‖s− 1
2

+ ‖ξβ − eβ‖s− 1
2
) ≤ M(s +

1
2
),

sup
0≤t≤T

‖(I +K∗)−1‖ ≤ M1, sup
0≤t≤T

‖a− 1‖1+q ≤ M2.

In this part, we solve the initial value problem of the linear system

utt + a∇nu = g, 0 ≤ t ≤ T,

u(·, 0) = u0, ut(·, 0) = u1.
(6.25)

We assume that a and g are scalar-valued, so we are only concerned with a scalar
equation. The approach here is very much the same as for the 2-D case [24]. We only
give the main steps and present in detail those proofs which have major differences
from the 2-D case.

As in the 2-D case, we first consider the linear systems:

utt + a∇nu− ε2∆u = g, 0 ≤ t ≤ T,

u(·, 0) = u0, ut(·, 0) = u1

(6.26ε)

where ∆ = ∂2
α + ∂2

β .
Let
H2′′: ξα − eα, ξβ − eβ ∈ C1([0, T ], Hs(R2, C(V3))), eα × eβ = e3 and ξt ∈

C([0, T ], Hs+1/2(R2, C(V3))).

Lemma 6.13. Let 0 < ε < 1, 0 < T < ∞, s ≥ 3/2 + q, a− 1 ∈ C([0, T ], Hs(R2)),
and g ∈ C([0, T ], Hs(R2)). Assume that Σ(t), t ∈ [0, T ], satisfies H1, H2 ′′ and H3.

a. If u0 ∈ Hs+1, u1 ∈ Hs, then there exists a unique solution u of (6.26ε), such
that u ∈ Cj([0, T ], Hs+1−j), j = 0, 1, 2.

b. Assume further that at ∈ C([0, T ], H1+q(R2)), and a ≥ c0, for some constant
c0 > 0. If u ∈ Cj([0, T ], Hs+1−j), j = 0, 1, 2, is a solution of (6.26ε), then u
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satisfies the estimate

Es,ε(u, ut) ≤ ectEs,ε(u0, u1) +
∫ t

0

ec(t−τ)‖g‖2s dτ(6.27)

for 0 ≤ t ≤ T , where c = c(C0, c0, µ, M(s + 1), M1, M2(s), M3, M4(s + 1/2)) is a
constant, and

sup
0≤t≤T

(‖ξα − eα‖s + ‖ξβ − eβ‖s) ≤ M(s + 1), sup
0≤t≤T

‖a− 1‖s ≤ M2(s),

sup
0≤t≤T

‖at‖1+q ≤ M3, sup
0≤t≤T

‖ξt‖s+1/2 ≤ M4(s + 1/2),

M1 is as defined in (6.24).

Proof. a. can be proved in the same way as [24, Lemma 5.7 a]. We omit the
proof. We prove (6.27) in detail for u ∈ Cj([0, T ], Hs+2−j), j = 0, 1, 2. For u ∈
Cj([0, T ], Hs+1−j), j = 0, 1, 2, as stated in this lemma, we can obtain (6.27) as we
did in [24] through an approximation argument.

Let a =
a

|ξα × ξβ |
, so ‖a − 1‖r ≤ c1‖a − 1‖r, for 1 + q ≤ r ≤ s − 1/2, where

c1 = c1(µ, ‖ξα − eα‖r, ‖ξβ − eβ‖r). Let u ∈ Cj([0, T ], Hs+2−j), j = 0, 1, 2, be a
solution of (6.26ε). We have

d

dt
Es,ε(u, ut) = 2(utt, ut)s−1 + 2(∇nutt,∇nut)s−1 + 2([∂t,∇n]ut,∇nut)s−1

+ (GΛs−1u, Λs−1ut) + (GΛs−1ut, Λs−1u) + (GtΛs−1u, Λs−1u)

+ (GΛs−1∇nu, Λs−1∇nut) + (GΛs−1∇nut, Λs−1∇nu) + (GtΛs−1∇nu, Λs−1∇nu)

+ (GΛs−1[∂t,∇n]u, Λs−1∇nu) + (GΛs−1∇nu, Λs−1[∂t,∇n]u)

+ 2ε2(utα, uα)s−1 + 2ε2(utβ , uβ)s−1 + 2ε2(∇nutα,∇nuα)s−1

+ 2ε2(∇nutβ,∇nuβ)s−1 + 2ε2([∂t,∇n]uα,∇nuα)s−1 + 2ε2([∂t,∇n]uβ,∇nuβ)s−1

= I1 + I2 + I3 + I4 + I5

(6.28)

where

I1 = 2(utt, ut)s−1 + (GΛs−1u, Λs−1ut) + (GΛs−1ut, Λs−1u)

+ 2ε2(utα, uα)s−1 + 2ε2(utβ , uβ)s−1,

I2 = 2(∇nutt,∇nut)s−1 + (GΛs−1∇nu, Λs−1∇nut) + (GΛs−1∇nut, Λs−1∇nu)

+ 2ε2(∇nutα,∇nuα)s−1 + 2ε2(∇nutβ,∇nuβ)s−1,

I3
=2([∂t,∇n]ut,∇nut)s−1 + 2ε2([∂t,∇n]uα,∇nuα)s−1 + 2ε2([∂t,∇n]uβ,∇nuβ)s−1,

I4 = (GΛs−1[∂t,∇n]u, Λs−1∇nu) + (GΛs−1∇nu, Λs−1[∂t,∇n]u),

I5 = (GtΛs−1u, Λs−1u) + (GtΛs−1∇nu, Λs−1∇nu).

From Lemmas 3.1, 3.2, 6.2 and 6.4, we know

‖[∂t,∇n]w‖r−1 ≤ k′r(‖ξt‖r−1‖w‖r + ‖ξt‖r‖w‖1+q) for r = s, s + 1/2,(6.29)

where k′r = k′r(C0, µ, M(r), M1), and sup0≤t≤T (‖ξα − eα‖r−1 + ‖ξβ − eβ‖r−1) ≤
M(r), r = s, s + 1/2. Therefore using Corollary 6.5, we get

|I3| ≤ k′s‖ξt‖s(‖ut‖1+q‖ut‖s + ε2‖uα‖2s + ε2‖uβ‖2s) + k′s‖ξt‖s−1‖ut‖2s(6.30)
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and using Lemma 6.6 a, Corollary 6.5, Lemma 6.7 and (6.29), we have

|I4| ≤ |
∫

Σ(t)

{a(Λs−1∇nu)∇n(Λs−1[∂t,∇n]u)

+ a(Λs−1[∂t,∇n]u)∇n(Λs−1∇nu)} dS|
+ 2λ|(Λs−1[∂t,∇n]u, Λs−1∇nu)|
≤ k′s+1/2(‖a− 1‖1+q + 1)(‖ξt‖s−1/2‖u‖2s+1/2 + ‖ξt‖s+1/2‖u‖1+q‖u‖s+1/2).

(6.31)

Since

I5 =
∫

Σ(t)

at

|ξα × ξβ |
(Λs−1u)∇n(Λs−1u) dS

+
∫

Σ(t)

at

|ξα × ξβ |
(Λs−1∇nu)∇n(Λs−1∇nu) dS

+
∫

Σ(t)

a([∂t,∇n]Λs−1u)(Λs−1u) dS +
∫

Σ(t)

a([∂t,∇n]Λs−1∇nu)(Λs−1∇nu) dS,

we have from Lemma 6.6 a, Corollary 6.5, Lemma 6.7 and 6.8 that

|I5| ≤ k′s+1/2(‖at‖1+q + 1)‖u‖2s+1/2 + k′s+1/2(‖a− 1‖1+q + 1)‖ξt‖2+q‖u‖2s+1/2.

(6.32)

We remark that the constants k′r, r = s, s + 1/2, s + 1, in (6.29)-(6.32) and in the
following are not the same, but depend on the same factors.

We now estimate I2. Since u is a solution of (6.26ε), we have

I2 =2(∇n(−a∇nu),∇nut)s−1 + 2(∇ng,∇nut)s−1 + (a∇nΛs−1∇nu, Λs−1∇nut)

+ (a∇nΛs−1∇nut, Λs−1∇nu) + 2λ(Λs−1∇nut, Λs−1∇nu)

+ 2ε2([∇n, ∂α]ut,∇nuα)s−1 + 2ε2([∇n, ∂β ]ut,∇nuβ)s−1

− 2ε2(∇nut, [∂α,∇n]uα)s−1 − 2ε2(∇nut, [∂β ,∇n]uβ)s−1

= 2(−Λs−1∇n(a ∇nu) + a∇nΛs−1∇nu, Λs−1∇nut) + I ′2,

where

I ′2 =
∫

Σ(t)

[a,∇n](Λs−1∇nut)(Λs−1∇nu) dS + 2λ(Λs−1∇nut, Λs−1∇nu)

+ 2(∇ng,∇nut)s−1 + 2ε2([∇n, ∂α]ut,∇nuα)s−1 + 2ε2([∇n, ∂β ]ut,∇nuβ)s−1

− 2ε2(∇nut, [∂α,∇n]uα)s−1 − 2ε2(∇nut, [∂β ,∇n]uβ)s−1.

We know from Lemma 6.6 c, Corollary 6.5, and Lemmas 6.7, 6.4 and 3.2, that

|I ′2| ≤ k′s+1/2(‖a− 1‖1+q + 1)‖ut‖s‖u‖s+1/2 + k′s+1/2‖g‖s‖ut‖s

+ ε2k′s+1‖ut‖s(‖uα‖s + ‖uβ‖s)

≤ k′s+1/2(‖a− 1‖1+q + 1)(‖ut‖2s + ‖u‖2s+1/2) + k′s+1/2‖ut‖2s
+ ‖g‖2s + ε4k′s+1(‖uα‖2s + ‖uβ‖2s),

(6.33)
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where k′s+1 = k′s+1(C0, µ, M(s + 1), M1). On the other hand,

−Λs−1∇n(a∇nu) + a∇nΛs−1∇nu = −[Λs−1,∇n](a∇nu)

+∇n[a, Λs−1]∇nu + [a,∇n]Λs−1∇nu.

From a similar argument as in Lemma 6.4, we have

‖[Λs−1,∇n](a∇nu)‖ ≤ k′s+1/2((‖a− 1‖1+q + 1)‖u‖s + ‖a− 1‖s−1‖u‖1+q),

while from Lemma 6.2 and Corollary 6.5,

‖∇n[a, Λs−1]∇nu‖ ≤ k′s+1/2(‖a− 1‖1+q‖u‖s + ‖a− 1‖s‖u‖1+q).

Therefore

|(−Λs−1∇n(a ∇nu) + a∇nΛs−1∇nu, Λs−1∇nut)|
≤ k′s+1/2((‖a− 1‖1+q + 1)‖u‖s + ‖a− 1‖s‖u‖1+q)‖ut‖s

+ |([a,∇n]Λs−1∇nu, Λs−1∇nut)|
≤ k′s+1/2((‖a− 1‖1+q + 1)‖u‖s+1/2 + ‖a− 1‖s‖u‖1+q)‖ut‖s

(6.34)

where in the last inequality we used Lemma 6.6 c. Combining (6.33) and (6.34),
we get

|I2| ≤k′s+1/2(‖a− 1‖1+q + 1)(‖ut‖2s + ‖u‖2s+1/2) + k′s+1/2‖a− 1‖s‖u‖1+q‖ut‖s

+ ‖g‖2s + ε4k′s+1(‖uα‖2s + ‖uβ‖2s).

(6.35)

Finally using a similar but much easier argument we have that

|I1| ≤ k′s+1/2(‖a− 1‖1+q + 1)(‖ut‖2s−1 + ‖u‖2s)
+ k′s+1/2‖a− 1‖s−1‖u‖1+q‖ut‖s−1 + ‖g‖2s−1.(6.36)

Combining (6.28) and (6.30)-(6.36), we obtain

d

dt
Es,ε(u, ut) ≤ c′(‖ut‖2s + ‖u‖2s+1/2 + ε2‖uα‖2s + ε2‖uβ‖2s) + ‖g‖2s

≤ cEs,ε(u, ut) + ‖g‖2s
where

c = c(C0, c0, µ, M(s + 1), M1, sup
0≤t≤T

‖a− 1‖s, sup
0≤t≤T

‖at‖1+q, sup
0≤t≤T

‖ξt‖s+1/2),

and c′ depends on the same factors as c. Therefore

Es,ε(u, ut) ≤ ectEs,ε(u0, u1) +
∫ t

0

ec(t−τ)‖g‖2s dτ.

This proves (6.27) for u∈Cj([0, T ], Hs+2−j), j = 0, 1, 2. For u∈Cj([0, T ], Hs+1−j),
j = 0, 1, 2, (6.27) is obtained through an approximation argument.

Taking ε = 0 in the above proof, we get the following estimates for solutions of
(6.25).

Lemma 6.14. Let 0 < T < ∞, s ≥ 3/2 + q, a − 1 ∈ C([0, T ], Hs(R2)), and
g ∈ C([0, T ], Hs(R2)). Assume that Σ(t), t ∈ [0, T ], satisfies H1, H2 and H3, and
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also that at ∈ C([0, T ], H1+q(R2)), a ≥ c0, for some constant c0 > 0. If u ∈
Cj([0, T ], Hs+1/2−j/2(R2)), j = 0, 1, 2, satisfies (6.25), then

|(u(t), ut(t))|2s ≤ κ2ed1t|(u0, u1)|2s + κ

∫ t

0

ed1(t−τ)‖g(τ)‖2s dτ ;(6.37)

if further s ≥ 2 + q, then

|(u(t), ut(t))|2s ≤ κ2ed2t|(u0, u1)|2s

+ κ

∫ t

0

ed2(t−τ)(‖a− 1‖2s + ‖ξt‖2s+1/2 + ‖g(τ)‖2s) dτ,(6.38)

where κ is as in (6.24),

d1 = d1(C0, c0, µ, M(s + 1/2), M1, M2(s), M3, M4(s + 1/2)),

d2 = d2(C0, c0, µ, M(s + 1/2), M1, M2, M3, M4(s), sup
0≤t≤T

‖u‖1+q)

are constants, M1, M2, M3, M(s + 1/2), M2(s), M4(s + 1/2) are as in (6.24) and
Lemma 6.13, and sup0≤t≤T ‖ξt‖s ≤ M4(s).

As in the 2-D case [24], we need the following result to guarantee that when
passing to limits, we will get solutions with the desired regularity.

Lemma 6.15. Let 0 < T < ∞, s ≥ 3/2 + q, a − 1 ∈ L∞([0, T ], Hs), g ∈
L∞([0, T ], Hs), and a − 1, at ∈ C([0, T ], H1+q). Assume that Σ(t), t ∈ [0, T ],
satisfies H1, H2 ′ and H3, and a ≥ c0 for some constant c0 > 0. If (u, ut) ∈
L∞([0, T ], Hs+1/2 × Hs) ∩ C([0, T ], Hs′+1/2 × Hs′), s′ < s, satisfies (6.25), then
(u, ut) ∈ C([0, T ], Hs+1/2 ×Hs).

Proof. The proof of Lemma 6.15 is very similar to that of [24, Lemma 5.9], except
that in this proof, we need to apply Lemma 6.11 to Σ1(t) = Σ(t) and Σ2(t) =
Σ(t + t′), as t′ → 0. We omit the details.

Finally we have the following well-posedness result for the linear system (6.25).

Theorem 6.16. Let 0 < T < ∞, s ≥ 5/2 + q, a − 1 ∈ C([0, T ], Hs(R2)),
at ∈ C([0, T ], H1+q(R2)) and g ∈ C([0, T ], Hs(R2)). Assume that Σ(t), t ∈ [0, T ],
satisfies H1, H2 and H3, and a ≥ c0, for some constant c0 > 0. If (u0, u1) ∈
Hs+1/2 × Hs, then there is a unique solution u of the linear system (6.25), such
that u ∈ Cj([0, T ], Hs+1/2−j/2(R2)), j = 0, 1, 2.

Proof. The uniqueness of solutions is a consequence of Lemma 6.14. The proof of
existence has two steps and is again very similar to that of [24, Theorem 5.10]. In
Step 1, we assume further that Σ(t) satisfies H2′′ and u0 ∈ Hs+1, and we obtain
the solution of (6.25) by taking the limit of solutions of (6.26ε) as ε → 0. We use
estimates (6.27) and (6.37) to show that the limit exists. We use Lemma 6.15 to
ensure that the solution has the desired regularity.

In Step 2, we remove the further assumption made in Step 1 by smoothing u0

and Σ(t), then pass to the limit. The smoothing can be done as usual, that is,

taking Σδ(t) : ξδ(t) = ξ(t) ∗ φδ and u0,δ = u0 ∗ φδ, where φδ(α, β) =
1
δ2

φ(
α

δ
,
β

δ
),

φ ∈ S(R2),
∫

φ = 1. It is not hard to see that Σδ(t) satisfies H2′′ and u0,δ ∈ Hs+1.
We verify in the following that Σδ(t) also satisfies H1 and H3, when δ ≤ δ0, where
δ0 > 0 is a constant.
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Let (α′, β′) = (α, β) + (α1, β1). Since

(ξδ(α′, β′)− ξδ(α, β)) − (ξ(α′, β′)− ξ(α, β))

=
∫ 1

0

d

dθ
{(ξδ − ξ)(α + θα1, β + θβ1)} dθ

=
∫ 1

0

(∇ξδ −∇ξ)(α + θα1, β + θβ1) · (α1, β1) dθ,

and since

|∇ξδ −∇ξ|∞ ≤ δC(‖ξα − eα‖1+q + ‖ξβ − eβ‖1+q) ≤ δCM,

we have
|ξδ(α′, β′)− ξδ(α, β)| ≥ |ξ(α′, β′)− ξ(α, β)| − δCM(|α1|+ |β1|)

≥ (C0 − δCM)(|α− α′|+ |β − β′|)
where C is a universal constant, ‖ξα − eα‖1+q + ‖ξβ − eβ‖1+q ≤ M . Consequently

|ξδ(α′, β′)− ξδ(α, β)| ≥ C0

2
(|α− α′|+ |β − β′|)

for 0 < δ ≤ C0

2CM
. The fact that ξδ, for δ ≤ δ0, satisfies H3 can be verified similarly.

The rest of proof is carried out similar to that of [24, Theorem 5.10].

It is clear that Lemmas 6.14 and 6.15 and Theorem 6.16 also hold if g, u0, u1

and the solution u are vector-valued or Clifford 1-vector-valued.

The quasilinear system. Let g(ξ, u, ut) = −ñ(I + K̃∗)−1(<{ñf(ξ, u, ut)}), where
f = f(ξ, u, ut), ñ are as defined in (5.22) and K̃∗ is as defined in (5.23). The
following estimates of g and a are easy consequences of results in the estimates
part.

Lemma 6.17. Let 0 < T < ∞, s ≥ 3/2 + q. Assume that for t ∈ [0, T ], Σ(t) :
ξ = ξ(α, β, t) satisfies H1, H2 and H3, and (I + K̃∗)−1 is bounded from L2(R2) to
L2(R2); assume further that u, ut ∈ C([0, T ], Hs(R2, C(V3))), and |ut +e3| ≥ c0, for
some constant c0 > 0. Then

a. g = g(ξ, u, ut) ∈ C([0, T ], Hs(R2, C(V3))), and

‖g‖s ≤ Kg(C0, c0, µ, M(s), M̃1,M(s),Mt(s)),

where Kg = Kg(C0, c0, µ, M(s), M̃1,M(s),Mt(s)) is a constant,

sup
0≤t≤T

(‖ξα − eα‖s−1 + ‖ξβ − eβ‖s−1) ≤ M(s), sup
0≤t≤T

‖(I + K̃∗)−1‖ ≤ M̃1,

with ‖(I + K̃∗)−1‖ the operator norm of (I + K̃∗)−1 from L2(R2) to L2(R2), and

sup
0≤t≤T

‖u‖s ≤M(s), sup
0≤t≤T

‖ut‖s ≤Mt(s).

b. a− 1 = |ut + e3| − 1 ∈ C([0, T ], Hs(R2)), and

‖a− 1‖r ≤ Ka(Mt(r)), for 1 + q ≤ r ≤ s,

where Ka = Ka(Mt(r)) is a constant, sup0≤t≤T ‖ut‖r ≤Mt(r).
c. Assume further that utt ∈ C([0, T ], H1+q(R2, C(V3))). Then

at ∈ C([0, T ], H1+q(R2)),
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and

‖at‖1+q ≤ Kat(Mt(1 + q),Mtt),

where Kat = Kat(Mt(1 + q),Mtt) is a constant, sup0≤t≤T ‖utt‖1+q ≤ Mtt, and
Mt(1 + q) is as defined in b.

Proof. b. and c. are easy consequences of Lemmas 6.1 and 6.2.

Notice that ñ =
ut + e3

|ut + e3|
∈ C([0, T ], Hs(R2, C(V3))). From the same proof for

Lemma 6.4 d, we have (I + K̃∗)−1 is bounded from Hs(R2) to Hs(R2). Notice
further that each term in f(ξ, u, ut) is an operator of one of the types discussed in
Lemma 6.4, with a, b = u or ut, therefore we have a.

The following result is a consequence of Lemmas 6.4 and 6.10.

Lemma 6.18. Let s ≥ 3/2 + q. For t ∈ [0, T ] and 0 ≤ ϑ ≤ 1, let

Σ1(t) : ξ1 = ξ1(α, β, t), Σ2(t) : ξ2 = ξ2(α, β, t),

Σ(ϑ; t) : ξ = ϑξ1(α, β, t) + (1 − ϑ)ξ2(α, β, t).

Assume that Σ(ϑ; t) satisfies H1, H2, and H3, for all t ∈ [0, T ], 0 ≤ ϑ ≤ 1, with the
same bounds C0, µ and

sup
0≤ϑ≤1, 0≤t≤T

(‖ξα − eα‖s−1 + ‖ξβ − eβ‖s−1) ≤ M(s) < ∞,

and assume that (I + K̃∗)−1 is bounded from L2(R2) to L2(R2), with

sup
0≤ϑ≤1, 0≤t≤T

‖(I + K̃∗)−1‖ ≤ M̃1 < ∞,

where ‖(I + K̃∗)−1‖ is the operator norm of (I + K̃∗)−1 from L2(R2) to L2(R2).
Assume further that for i = 1, 2, ui, ui

t ∈ C([0, T ], Hs(R2, C(V3))), with

sup
0≤t≤T

‖ui‖s ≤M(s) and sup
0≤t≤T

‖ui
t‖s ≤Mt(s), i = 1, 2,

and |ui
t + e3| ≥ c0, for some constant c0 > 0. Then

‖g(ξ1, u1, u1
t )− g(ξ2, u2, u2

t )‖s ≤ Kg(‖ξ1 − ξ2‖s + ‖u1 − u2‖s + ‖u1
t − u2

t ‖s),

‖a(u1
t )− a(u2

t )‖s ≤ Ka‖u1
t − u2

t‖s

(6.39)

where Kg = Kg(C0, c0, µ, M(s), M̃1,M(s),Mt(s)) and Ka = Ka(Mt(s)) are con-
stants.

Now we are ready to solve the initial value problem of the quasilinear system
(5.21)-(5.23), (5.29).

Let Σ(0) : ξ = ξ0(α, β) be a surface that divides R3 into two simply connected
regions. Assume that there are vectors eα, eβ , such that eα × eβ = e3, ξ0,α −
eα, ξ0,β − eβ ∈ Hs−1/2(R2, C(V3)),

|ξ0,α × ξ0,β | ≥ 2µ, for −∞ < α, β < ∞,

|ξ0(α, β) − ξ0(α′, β′)| ≥ 2C0(|α − α′|+ |β − β′|) for −∞ < α, β < ∞.
(6.40)

Assume u0, u1 satisfy (5.30). Therefore ñ(0) = n0 and K̃∗(0) = K∗0 . Let

M0 = ‖ξ0,α − eα‖s−1/2 + ‖ξ0,β − eβ‖s−1/2 and M0,1 = ‖(I +K∗0)−1‖.(6.41)
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Theorem 6.19. Let s ≥ 5/2+q, where q > 1. Assume that u0∈Hs+1/2(R2, C(V3)),
u1 ∈ Hs(R2, C(V3)), and a0 = |u1 + e3| ≥ 2c0 for some constant c0 > 0. Then there
exists T > 0,

T = T (C0, c0, µ, M0, M0,1,M0),

where M2
0 = ‖u0‖2s+1/2 + ‖u1‖2s, such that the system (5.21)-(5.23), (5.29) has a

unique solution u ∈ Cj([0, T ], Hs+1/2−j/2(R2, C(V3))), j = 0, 1, 2. Moreover, the
surfaces

Σ(t) : ξ(t) = ξ0 +
∫ t

0

u(τ) dτ, t ∈ [0, T ],

satisfy H1–H3.

Remark 1. In this theorem, the assumption that u0, u1 satisfy (5.30) is not neces-
sary. The result holds for general u0 and u1, if we assume further that (I+K̃∗(0))−1

is bounded from L2(R2) to L2(R2). In this case, the existence time T also depends
on the operator norm of (I + K̃∗(0))−1.

Remark 2. The assumption u1 ∈ Hs is a consequence of n0 − e3 ∈ Hs and the
regularity assumptions on ξ0, u0 given in this theorem.

Proof. Existence: We prove the existence by the iteration method.
Let 0 < T < ∞; we define a set ST ⊂

⋂2
j=0 Cj([0, T ], Hs+1/2−j/2(R2, C(V3))) by

ST =

u

∣∣∣∣∣∣∣∣∣∣

sup
0≤t≤T

(‖u‖2s + ‖ut‖2s−1/2) ≤ 4M2
0,

sup
0≤t≤T

(‖u‖2s+1/2 + ‖ut‖2s) ≤ 4κ2
0M2

0,

inf
0≤t≤T

a = inf
0≤t≤T

|ut + e3| ≥ c0

(6.42)

where κ0 = κ(C0, c0, µ, 2M0, 2M0,1, Ka(2M0)) is the constant defined in (6.24) and
Ka(2M0) is the constant in Lemma 6.17 b. For

ξ(t) = ξ0 +
∫ t

0

u(τ) dτ,

where u ∈ ST0 , for some T0 > 0. Since

|ξα × ξβ | ≥|ξ0,α × ξ0,β | − |(
∫ t

0

uα(τ) dτ) × ξ0,β |

− |ξ0,α × (
∫ t

0

uβ(τ) dτ)| − |(
∫ t

0

uα(τ) dτ) × (
∫ t

0

uβ(τ) dτ)|,

|ξ(α, β, t) − ξ(α′, β′, t)| ≥ |ξ0(α, β) − ξ0(α′, β′)| −
∫ t

0

|u(α, β, τ) − u(α′, β′, τ)| dτ,

‖ξα − eα‖s− 1
2

+ ‖ξβ − eβ‖s− 1
2
≤‖ξ0,α − eα‖s− 1

2
+ ‖ξ0,β − eβ‖s− 1

2

+
∫ t

0

(‖uα(τ)‖s− 1
2

+ ‖uβ(τ)‖s− 1
2
) dτ,

K̃∗ = K∗0 +
∫ t

0

[∂τ , K̃∗] dτ, K∗ = K∗0 +
∫ t

0

[∂τ ,K∗] dτ,
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from Lemmas 6.1, 6.2 and 6.4, we know that there exists a

T1 = T1(C0, µ, M0, M0,1, 2κ2
0M2

0), 0 < T1 ≤ T0,

such that
inf

0≤t≤T1
|ξα × ξβ | ≥ µ,

inf
0≤t≤T1

|ξ(α, β, t)− ξ(α′, β′, t)| ≥ C0(|α− α′|+ |β − β′|),

sup
0≤t≤T1

‖ξα − eα‖s− 1
2

+ ‖ξβ − eβ‖s− 1
2
≤ 2M0,

sup
0≤t≤T1

‖(I + K̃∗)−1‖ ≤ 2M0,1, sup
0≤t≤T1

‖(I +K∗)−1‖ ≤ 2M0,1.

(6.43)

Step 1. We construct inductively a sequence uj ∈ ST , where 0 < T ≤ T1

will be given later. First, we take u0(t) ≡ u0 and ξ0(t) ≡ ξ0. It is clear that
u0 ∈ ST , for any 0 < T < ∞ and u0

tt = 0 ∈ C([0, T ], H1+q). Assume that we
have obtained um, 0 ≤ m ≤ j, and um ∈ ST for some 0 < T ≤ T1 and um

tt ∈
C([0, T ], H1+q). We define a0 = |u1 + e3|, g0 = g(ξ0, u0, u1), and for 1 ≤ m ≤ j,
am = |um

t + e3|, ξm(t) = ξ0 +
∫ t

0 um(τ) dτ , and gm = g(ξm, um, um
t ). We know am ≥

c0, for 0 ≤ m ≤ j. From Lemma 6.17, we have that am − 1 ∈ C([0, T ], Hs(R2)),
gm ∈ C([0, T ], Hs(R2, C(V3))), and ∂tam ∈ C([0, T ], H1+q). Therefore by Theorem
6.16, there is a unique uj+1 ∈

⋂2
j=0 C([0, T ], Hs+1/2−j/2(R2, C(V3))), satisfying the

following equation:

u
j+1
tt + aj∇nj u

j+1 = gj ,

uj+1(·, 0) = u0, uj+1
t (·, 0) = u1

(6.44)

where ∇nj is the normal derivative with respect to the surface ξj(t) for fixed t,
0 ≤ t ≤ T . We want to show that there is a 0 < T ≤ T1, such that um ∈ ST for
0 ≤ m ≤ j implies uj+1 ∈ ST .

Assume that uj ∈ ST , where 0 < T ≤ T1. From (6.43), Lemma 6.14 (6.37) and
Lemma 6.17, we have

|(uj+1(t), uj+1
t (t))|2s ≤ κ2

0e
d1t|(u0, u1)|2s + κ0

∫ t

0

ed1(t−τ)‖gj(τ)‖2s dτ,

where κ0 = κ(C0, c0, µ, 2M0, 2M0,1, Ka(2M0)) is the constant in (6.42),

d1 = d1(C0, c0, µ, 2M0, 2M0,1, Ka(2κ0M0), Kat , 2κ0M0),

is the constant defined in inequality (6.37), and Kat is the constant such that
sup0≤t≤T ‖∂taj‖1+q ≤ Kat . From Lemma 6.17 c, we know that

Kat = Kat(2M0,Mtt),(6.45)

where sup0≤t≤T ‖u
j
tt‖1+q ≤ Mtt. Since from (6.44), uj

tt = −aj−1∇nj−1u
j + gj−1,

therefore

sup
0≤t≤T

‖uj
tt‖1+q ≤Mtt(M0, M0,1, C0, c0, µ, M0)

where Mtt(M0, M0,1, C0, c0, µ, M0) is a constant determined by M0, M0,1, C0, c0,
µ, M0. So there exists a constant

K1 = K1(C0, c0, µ, M0, M0,1,M0),
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such that

sup
0≤t≤T≤T1

|(uj+1(t), uj+1
t (t))|2s ≤ K1.(6.46)

Since

‖uj+1(t)‖2s + ‖uj+1
t (t)‖2s−1/2 ≤ 2‖u0‖2s + 2‖u1‖2s−1/2

+ 2
∫ t

0

(‖uj+1
t (τ)‖2s + ‖uj+1

tt (τ)‖2s−1/2) dτ

for t ≤ 1 and from (6.44), Lemma 6.17, and the induction hypothesis, there is a
constant

K2 = K2(C0, c0, µ, 2M0, 2M0,1, Ka(2κ0M0), 2κ0M0),

such that

‖uj+1
t (τ)‖2s + ‖uj+1

tt (τ)‖2s−1/2 ≤ K2(|(uj+1(τ), uj+1
t (τ))|2s + 1),

it follows that for all 0 < T ≤ min{T1, T2, 1}, where T2 =
M2

0

(K1 + 1)K2
, we have

sup
0≤t≤T

(‖uj+1(t)‖2s + ‖uj+1
t (t)‖2s−1/2) ≤ 2M2

0 + TK2(K1 + 1) ≤ 4M2
0.(6.47)

Now assume that 0 < T ≤ min{T1, T2, 1}. From the induction hypothesis,
Lemma 6.14 (6.38), Lemma 6.17 and (6.43), we also have that

|(uj+1(t), uj+1
t (t))|2s ≤ κ2

0e
d′2t|(u0, u1)|2s

+ κ0

∫ t

0

ed′2(t−τ)(‖aj − 1‖2s + ‖ξj
t ‖2s+1/2 + ‖gj(τ)‖2s) dτ,(6.48)

where κ0 is as in (6.42),

d′2 = d2(C0, c0, µ, 2M0, 2M0,1, Ka(2M0), Kat , 2M0, sup
0≤t≤T

‖uj+1(t)‖1+q)

is the constant defined in (6.38), and Kat is as in (6.45). From (6.47) we have that

sup
0≤t≤T

‖uj+1(t)‖1+q ≤ 2M0,

therefore

d′2 ≤ d2 = d2(C0, c0, µ, 2M0, 2M0,1, Ka(2M0), Kat , 2M0, 2M0).

Moreover we have from Lemma 6.17 and the induction hypothesis that

‖aj − 1‖s ≤ Ka(2κ0M0), ‖ξj
t ‖s+1/2 = ‖uj‖s+1/2 ≤ 2κ0M0, ‖gj‖s ≤ Kg,

where Kg = Kg(C0, c0, µ, 2M0, 2M0,1, 2M0, 2κ0M0) is the constant determined in
Lemma 6.17 a. Therefore

|(uj+1(t), uj+1
t (t))|2s ≤ κ2

0e
d2t|(u0, u1)|2s

+ κ0

∫ t

0

ed2(t−τ)(K2
a(2κ0M0) + 4κ2

0M2
0 + K2

g) dτ

≤ κ2
0M2

0e
d2t + K3te

d2t,

(6.49)

where

K3 = κ0(K2
a(2κ0M0) + 4κ2

0M2
0 + K2

g).
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Taking T3 = min{ ln 2
d2

,
κ2

0M2
0

K3
}, we have for all 0 < T ≤ min{T1, T2, T3, 1},

sup
0≤t≤T

|(uj+1(t), uj+1
t (t))|2s ≤ 4κ2

0M2
0.(6.50)

We now show that there is a 0 < T ≤ min{T1, T2, T3, 1}, such that

inf
0≤t≤T

aj+1(t) = inf
0≤t≤T

|uj+1
t (t) + e3| ≥ c0.

Assume that 0 < T ≤ min{T1, T2, T3, 1}. By the same argument of (6.45), we have

sup
0≤t≤T

‖∂taj+1‖1+q ≤ Kat ,

where Kat is as defined in (6.45). Therefore

sup
0≤t≤T

|∂taj+1|∞ ≤ k0Kat ,

where k0 is the constant from Lemma 6.1.
Taking T4 =

c0

k0Kat

and T = min{T1, T2, T3, T4, 1}, we have for 0 ≤ t ≤ T ,

aj+1(t) = |uj+1
t (t) + 1| ≥ a0 −

∫ t

0

|∂τaj+1(τ)|∞ dτ ≥ 2c0 − tk0Kat ≥ c0.

So we have obtained a T > 0, T =min{T1, T2, T3, T4, 1}=T (C0, c0, µ, M0, M0,1,M0)
and a sequence uj ∈ ST , j = 0, 1, 2, . . . , such that uj satisfies the recursive equation
(6.44).

Step 2. We want to show that the sequence uj ∈ ST constructed in Step 1
is a Cauchy sequence in some Banach space. Let û = uj+1 − uj . Then û ∈⋂2

j=0 Cj([0, T ], Hs+1/2−j/2(R2, C(V3))), and û satisfies

ûtt + aj∇nj û = ḡ,

û(·, 0) = 0, ût(·, 0) = 0

where ḡ = gj − gj−1 − (aj − aj−1)∇nj u
j − aj−1(∇nj − ∇nj−1 )uj . From Lemmas

6.18 and 6.11, we know that there is a constant K4 = K4(C0, c0, µ, M0, M0,1,M0),
such that

‖ḡ(t)‖s−1/2 ≤ K4(‖ξj−1(t)− ξj(t)‖s−1/2

+ ‖uj−1(t)− uj(t)‖s−1/2 + ‖uj−1
t (t)− uj

t (t)‖s−1/2).

Therefore using Lemma 6.14 (6.37), we get

|(û, ût)|2s−1/2 ≤ κ0

∫ t

0

ed1(t−τ)‖ḡ(τ)‖2s−1/2 dτ

≤ 4κ0K
2
4ed1t

∫ t

0

‖ξj−1(τ) − ξj(τ)‖2s−1/2 dτ

+ 4κ0K
2
4ed1t

∫ t

0

(‖uj−1(τ) − uj(τ)‖2s−1/2 + ‖uj−1
t (τ) − uj

t (τ)‖2s−1/2) dτ

where d1 = d1(C0, c0, µ, 2M0, 2M0,1, Ka(2κ0M0), Kat , 2κ0M0) is the constant de-
fined in (6.37) and κ0 is the constant in (6.42). Since

ξj−1(t)− ξj(t) =
∫ t

0

(uj−1(τ) − uj(τ)) dτ,
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we have

‖ξj−1(t)− ξj(t)‖s−1/2 ≤
∫ t

0

‖uj−1(τ)− uj(τ)‖s−1/2 dτ,

therefore ∫ t

0

‖ξj−1(τ) − ξj(τ)‖2s−1/2 dτ ≤ t2
∫ t

0

‖uj−1(τ)− uj(τ)‖2s−1/2 dτ

and

|(û, ût)|2s−1/2 = |(uj+1(t)− uj(t), uj+1
t (t)− uj

t(t))|2s−1/2

≤ 4κ0K
2
4ed1t(t2 + 1)

∫ t

0

(‖uj−1(τ) − uj(τ)‖2s−1/2 + ‖uj−1
t (τ) − uj

t (τ)‖2s−1/2) dτ

≤ 4κ0K
2
4ed1T (T 2 + 1)

∫ t

0

|(uj−1(τ)− uj(τ), uj−1
t (τ)− uj

t (τ))|2s−1/2 dτ.

This proves that uj is a Cauchy sequence in
⋂1

j=0 Cj([0, T ], Hs−j/2(R2, C(V3))).
Therefore there exists u ∈

⋂1
j=0 Cj([0, T ], Hs−j/2(R2, C(V3))), such that

uj → u in
1⋂

j=0

Cj([0, T ], Hs−j/2(R2, C(V3))).

Furthermore, aj → a = |ut + e3| and gj → g(ξ, u, ut) in C([0, T ], Hs−1/2), where
ξ = ξ0 +

∫ t

0
u dτ . Let j → ∞; from (6.44) we get u is a solution of system (5.21)-

(5.23),(5.29), and from (6.43),

ξ(t) = ξ0 +
∫ t

0

u(τ) dτ, 0 ≤ t ≤ T,

satisfies H1–H3. We want to further verify that

u ∈
2⋂

j=0

Cj([0, T ], Hs+1/2−j/2(R2, C(V3))).

Since uj ∈ ST , we have that

u ∈ L∞([0, T ], Hs+1/2(R2, C(V3))) and ut ∈ L∞([0, T ], Hs(R2, C(V3))).

Using Lemma 6.15 and a similar argument as that of Theorem 5.11 in [24], we get

u ∈
2⋂

j=0

Cj([0, T ], Hs+1/2−j/2(R2, C(V3))).

This proves the existence.
Uniqueness: The uniqueness can be proved by a similar argument as in step 2.

We omit it.
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§7. The nonlinear water wave equation

Assume that the initial surface Σ(0) : ξ = ξ0(α, β) and initial velocity u0 are as
given in the initial data part of §5, and that the initial acceleration u1 satisfies
(5.30). Assume further that ξ0, u0 and u1 are in the Sobolev spaces as given in
Theorem 6.19. In this section, we show that a solution of the quasilinear system
(5.21)-(5.23), (5.29) is also a solution of the water wave system (4.3),(4.4),(4.5′).

Let u be the solution obtained in Theorem 6.19, and let Σ(t) : ξ = ξ0(α, β) +∫ t

0 u(α, β, τ) dτ , for t ∈ [0, T ], where T is the time obtained in Theorem 6.19.
Assume Ω(t) and Ω(t)c are the lower and upper regions with common bound-

ary Σ(t), N = ξα × ξβ , and n =
N

|N | . In order to prove that Σ(t) : ξ =

ξ0(α, β) +
∫ t

0
u(α, β, τ) dτ , t ∈ [0, T ], is a solution of (4.3),(4.4),(4.5′), it is enough

to show ñ = n and u = HΣ(t)u for 0 ≤ t ≤ T . We know when t = 0, ñ(0) = n(0)
and u0 = HΣ(0)u0.

We first introduce some notation and develop some identities and lemmas. We
denote by ∇ξ or ∇+

ξ = (∂+
x , ∂+

y , ∂+
z ) the space valuable gradient with respect to

Ω(t) as defined in (3.9), and by ∇−
ξ = (∂−x , ∂−y , ∂−z ) the space valuable gradient

with respect to Ω(t)c; ∇±
n = n · ∇±

ξ are the normal derivatives as defined in (3.10),
∇n = ∇+

n ; Dξ, D±ξ are the Clifford 1-vector counterparts of∇ξ and∇±
ξ respectively;

HΣ(t) is the Hilbert transform with respect to the region Ω(t) as defined in (3.1),
therefore the Hilbert transform with respect to Ω(t)c is −HΣ(t). For σ = σ1e1 +
σ2e2 + σ3e3 + σ123e1e2e3, we denote by σ(3) the 3-vector part σ123e1e2e3 of σ;
H̃Σ(t)u = HΣ(t)u − {HΣ(t)u}(3) is therefore the 1-vector part of HΣ(t)u. For the
purpose of this section, we do not distinguish the notation for operators bounded
from L2(R2) to L2(R2), they are indicated by either T or Ti, i = 1, 2, 3, . . . .

Claim 1. Let f be a real scalar-valued function on R2. Then

<{(I −HΣ(t))(I −K)−1f} = f,(7.1)

where K is the double layered potential operator on Σ(t) as defined in (2.11).

Claim 1 is straightforward by definition.

Claim 2. Assume that F = f1e1 + f2e2 + f3e3, and F = −HΣ(t)F . Then

F = −(I −HΣ(t))(n(I +K∗)−1<(nF )).(7.2)

Proof. Let F } be the harmonic extension of F on Ω(t)c. Then F } is Clifford analytic
on Ω(t)c. Therefore curlF } = divF } = 0. Since Ω(t)c is simply connected, there
is a function f , f harmonic on Ω(t)c, such that F } = D−f . (7.2) is therefore a
consequence of (3.14).

Claim 3. ∇+
n +∇−

n is a bounded operator from L2(Σ(t), dS) to L2(Σ(t), dS).

This is a standard result from potential theory; see [15, Theorem 5.2].

Claim 4.

Nt = −1
2
|N |{∇+

n (u + H̃Σ(t)u) +∇−
n (u− H̃Σ(t)u)}.(7.3)
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Proof. A calculation as in (5.4) shows that

(u± H̃Σ(t)u)α × ξβ + ξα × (u± H̃Σ(t)u)β

= −(N · ∇±
ξ )(u± H̃Σ(t)u)−N × (D±ξ × (u± H̃Σ(t)u)).

Since u+HΣ(t)u and u−HΣ(t)u are the boundary values of Clifford analytic functions
on Ω(t) and Ω(t)c respectively, we have

D±ξ (u±HΣ(t)u) = 0,

therefore its 2-vector part

D±ξ × (u± H̃Σ(t)u)±D±
ξ ({HΣ(t)u}(3)) = 0.

So

N × (D±ξ × (u± H̃Σ(t)u)) = ∓(ξα × ξβ)×D±
ξ ({HΣ(t)u}(3))

= ∓[ξβ∂α({HΣ(t)u}(3))− ξα∂β({HΣ(t)u}(3))].
This implies that

(u± H̃Σ(t)u)α × ξβ + ξα × (u± H̃Σ(t)u)β

= −(N · ∇±
ξ )(u± H̃Σ(t)u)± [ξβ∂α({HΣ(t)u}(3))− ξα∂β({HΣ(t)u}(3))]

and

Nt = uα × ξβ + ξα × uβ = −1
2
[(N · ∇+

ξ )(u + H̃Σ(t)u) + (N · ∇−
ξ )(u− H̃Σ(t)u))].

This proofs (7.3).

A consequence of (7.3) and Claim 3 is that

nt = (∇n(H̃Σ(t)u)× n)× n + T (u−HΣ(t)u),(7.4)

where T is a bounded linear operator from L2(R2) to L2(R2).

Claim 5. Let u be a solution of (5.21)-(5.23). Then

{∇n(HΣ(t)u)}(3) = {HΣ(t)(∇nu + nt)}(3) + T (u−HΣ(t)u)(7.5)

where T is a bounded operator from L2 to L2.

Proof. Since ND±ξ (u±HΣ(t)u) = 0, we have that its 3-vector part

∓N · D±ξ ({HΣ(t)u}(3))− (N ×D±ξ ) · (u± H̃Σ(t)u)e1e2e3 = 0.

From N ×D±ξ = ξβ∂α − ξα∂β , we have by adding up the above two identities,

(N · D+
ξ −N · D−ξ )({HΣ(t)u}(3)) = −2(N ×Dξ) · u e1e2e3,

so

∇n({HΣ(t)u)}(3)) =
1
2
(∇+

n +∇−
n )({HΣ(t)u)}(3))− (n×Dξ) · u e1e2e3.

On the other hand,

nDξu = nHΣ(t)(Dξu) = (nHΣ(t) + HΣ(t)n)(Dξu)−HΣ(t)(nDξu).(7.6)

Taking the 3-vector part of both sides of (7.6), we get

−(n×Dξ) · u e1e2e3 = {(nHΣ(t) + HΣ(t)n)(Dξu)}(3)
+ {HΣ(t)(∇nu− (n×Dξ)× u)}(3).
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Notice that

Dξu =
1
2
Dξ(u−HΣ(t)u),

(n×Dξ)× u = − Nt

|N | = −nt + ∂t(
1
|N | )N , and the operator (nHΣ(t) +HΣ(t)n)Dξ is

a bounded operator from L2 to L2. Together with Claim 3, we conclude (7.5).

Claim 6. Let u be a solution of (5.21)-(5.23). Then

{(HΣ(t)u)tt + a∇n(HΣ(t)u)}(3) = T1(u−HΣ(t)u) + T2(ñ− n)(7.7)

where T1 T2 are bounded operators from L2 to L2.

Proof. We have from integration by parts that

{HΣ(t)u}(3) = −p.v.

∫∫
K(ξ′ − ξ)× (ξ′α′ × ξ′β′) · u′ dα′dβ′e1e2e3

= −2 p.v.

∫∫
((ξ′α′ × ξ′β′)×∇ξ′)Γ(ξ′ − ξ) · u′ dα′dβ′e1e2e3

= −2 p.v.

∫∫
(ξ′β′∂α′ − ξ′α′∂β′)Γ(ξ′ − ξ) · u′ dα′dβ′e1e2e3

= 2 p.v.

∫∫
Γ(ξ′ − ξ)(ξ′β′ · ∂α′u

′ − ξ′α′ · ∂β′u
′) dα′dβ′e1e2e3,

therefore

{(HΣ(t)u)tt}(3) = 2 p.v.

∫∫
∂2

t {Γ(ξ′ − ξ)}(ξ′β′ · ∂α′u
′ − ξ′α′ · ∂β′u

′) dα′dβ′e1e2e3

+ 4 p.v.

∫∫
∂t{Γ(ξ′ − ξ)}(ξ′β′ · ∂α′u

′ − ξ′α′ · ∂β′u
′)t dα′dβ′e1e2e3

+ 2 p.v.

∫∫
Γ(ξ′ − ξ)(ξ′β′ · ∂α′u

′ − ξ′α′ · ∂β′u
′)tt dα′dβ′e1e2e3.

(7.8)

Since NDξ(u+HΣ(t)u) = 0, we have the 3-vector parts N×Dξ ·(u+H̃Σ(t)u)e1e2e3 =
−(N · Dξ){HΣ(t)u}(3). Therefore

(ξβ · ∂αu− ξα · ∂βu)e1e2e3 = (N ×Dξ) · u e1e2e3

=
1
2
(N ×Dξ) · (u− H̃Σ(t)u)e1e2e3 −

1
2
(N · Dξ){HΣ(t)u}(3),

and the term

p.v.

∫∫
∂2

t {Γ(ξ′ − ξ)}(ξ′β′ · ∂α′u
′ − ξ′α′ · ∂β′u

′) dα′dβ′e1e2e3 = T (u−HΣ(t)u)

where T is a bounded operator from L2 to L2.
We have that

(ξβ · ∂αu− ξα · ∂βu)t = ξβ · ∂αut − ξα · ∂βut

= ξβ · ∂α{a(ñ− n)} − ξα · ∂β{a(ñ− n)};(7.9)

here we used the fact that ut + e3 = añ and

ξβ · (an)α − ξα · (an)β = 0(7.10)
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for any scalar-valued function a. Therefore

p.v.

∫∫
∂t{Γ(ξ′ − ξ)}(ξ′β′ · ∂α′u

′ − ξ′α′ · ∂β′u
′)t dα′dβ′e1e2e3

= p.v.

∫∫
∂t{Γ(ξ′ − ξ)}(ξ′β′ · ∂α′{a′(ñ′ − n′)} − ξ′α′ · ∂β′{a′(ñ′ − n′)}) dα′dβ′e1e2e3

= T (ñ− n),

where T is a bounded operator from L2 to L2.
Now we look at the last term in (7.8). From (7.9) and (7.10) we have

(ξβ · ∂αu− ξα · ∂βu)tt = ξtβ · ∂α{a(ñ− n)} − ξtα · ∂β{a(ñ− n)}
+ ξβ · ∂α{utt − ant} − ξα · ∂β{utt − ant}.

Using (7.10), the fact that u satisfies equation (5.21), Claim 5 and Claim 4, we get

2 p.v.

∫∫
Γ(ξ′ − ξ)(ξ′β′ · ∂α′u

′ − ξ′α′ · ∂β′u
′)tt dα′dβ′e1e2e3

= 2 p.v.

∫∫
Γ(ξ′ − ξ)(−ξ′β′ · ∂α′{a′∇n′u

′ + a′n′t}

+ ξ′α′ · ∂β′{a′∇n′u
′ + a′n′t}) dα′dβ′e1e2e3 + T1(ñ− n)

= −{HΣ(t)(a∇nu + ant)}(3) + T1(ñ− n)

= −a{HΣ(t)(∇nu + nt)}(3) + {[a, HΣ(t)](∇nu +
Nt

|N | )}(3) + T1(ñ− n)

= −a{∇n(HΣ(t)u)}(3) + T1(ñ− n) + T2(u−HΣ(t)u),

where T1 and T2 are bounded operators from L2 to L2. This proves Claim 6.

Now let’s introduce a new vector n̂. We define n̂ =
(H̃Σ(t)u)t + e3

|(H̃Σ(t)u)t + e3|
to be the

unit vector in the direction of (H̃Σ(t)u)t +e3. Then n̂(0) = ñ(0), and there is a time
0 < T0 ≤ T , T0 = T0(C0, c0, µ, M0, M0,1,M0), such that the vector n̂ is defined for
0 ≤ t ≤ T0. We know that for 0 ≤ t ≤ T0, ñ− n̂ = T ((u −HΣ(t)u)t), where T is a
bounded operator from L2 to L2.

We are now ready to show that ñ = n and u = HΣ(t)u for 0 ≤ t ≤ T . Our idea
is to show that u − HΣ(t)u and n̂ − n satisfies a linear differential system, which
together with the initial data n̂(0) − n(0) = 0 and u0 − HΣ(t)u0 = 0 implies that
n̂ = n and u = HΣ(t)u for 0 ≤ t ≤ T0. This would give that ñ = n̂ = n for
0 ≤ t ≤ T0. The same process can then be applied to T0 ≤ t ≤ 2T0, and we would
have ñ = n and u = HΣ(t)u for T0 ≤ t ≤ 2T0. After finitely many steps, we would
have that ñ = n and u = HΣ(t)u for all 0 ≤ t ≤ T .

Let u be a solution of (5.21)-(5.23), (5.29). It is easy to see from the derivations
in §5 that u satisfies

<{ñ(I −HΣ(t))(utt + a∇nu− Utt − a(ñ · ∇)U)} = 0,

therefore

<{n(I −HΣ(t))(utt + a∇nu− Utt − a(n · ∇)U)} = T (ñ− n),(7.11)
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where T is a bounded linear operator from L2 to L2. Now

(I −HΣ(t))(utt + a∇nu− Utt − a∇nU)

= 2(utt + a∇nu− Utt − a∇nU)− (I + HΣ(t))(utt + a∇nu− Utt − a∇nU)

= (u−HΣ(t)u)tt + a∇n(u−HΣ(t)u) +
1
2
[∂2

t , HΣ(t)](u−HΣ(t)u)

− 1
2
(I + HΣ(t))(a(∇n +∇−

n )(u−HΣ(t)u))

− [an1, H ]∂−x (u−HΣ(t)u)− [an2, H ]∂−y (u−HΣ(t)u)

− [an3, H ]∂−z (u−HΣ(t)u),

where ni, i = 1, 2, 3, are components of n, so

(I −HΣ(t))(utt + a∇nu− Utt − a∇nU) = (u−HΣ(t)u)tt + a∇n(u−HΣ(t)u)

+ T1(u−HΣ(t)u) + T2((u−HΣ(t)u)t),

(7.12)

where T1, T2 are bounded operators from L2 to L2. Therefore from Claim 6,

{(I −HΣ(t))(utt + a∇nu− Utt − a∇nU)}(3)
= −{(HΣ(t)u)tt + a∇n(HΣ(t)u)}(3) + T1(u−HΣ(t)u) + T2((u−HΣ(t)u)t)

= T1(u−HΣ(t)u) + T2((u−HΣ(t)u)t) + T3(n̂− n),

(7.13)

where T1, T2 T3 are bounded operators from L2 to L2. Now

F = (I −HΣ(t))(utt + a∇nu− Utt − a∇nU)

− (I −HΣ(t))(I −K)−1{(I −HΣ(t))(utt + a∇nu− Utt − a∇nU)}(3)
is a 1-vector-valued function satisfying the assumption of Claim 2. From (7.2),
(7.11) and (7.13), we get

F = T1(u−HΣ(t)u) + T2((u−HΣ(t)u)t) + T3(n̂− n),

where T1, T2 T3 are bounded from L2 to L2. Consequently from (7.12) and (7.13),

(u−HΣ(t)u)tt + a∇n(u−HΣ(t)u)

= T1(u−HΣ(t)u) + T2((u−HΣ(t)u)t) + T3(n̂− n),(7.14)

where T1, T2 T3 are operators bounded from L2 to L2.
Now we want to derive an equation of (n̂− n). Let

c = −(I + K̃∗)−1(<{ñf(ξ, u, ut)}).

(5.21) becomes utt+a∇nu = ñc. Let b = |(H̃Σ(t)u)t+e3|. Then (H̃Σ(t)u)t+e3 = bn̂
and

(H̃Σ(t)u)tt = bn̂t + btn̂.

From (7.14), we have

(HΣ(t)u)tt + a∇n(HΣ(t)u)

= ñc + T1(u−HΣ(t)u) + T2((u−HΣ(t)u)t) + T3(n̂− n)

= n̂c + T1(u−HΣ(t)u) + T2((u−HΣ(t)u)t) + T3(n̂− n),
(7.15)
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therefore

bn̂t = −a∇n(H̃Σ(t)u) + n̂c− btn̂ + T1(u−HΣ(t)u) + T2((u−HΣ(t)u)t) + T3(n̂− n)

= (a∇n(H̃Σ(t)u)× n̂t)× n̂t + T1(u−HΣ(t)u) + T2((u−HΣ(t)u)t) + T3(n̂− n).

(7.16)

Since a− b = T ((u−HΣ(t)u)t) is a bounded operator from L2 to L2, we have

n̂t = (∇n(H̃Σ(t)u)× n̂t)× n̂t + T1(u−HΣ(t)u) + T2((u−HΣ(t)u)t) + T3(n̂− n).

Combining with (7.4), we obtain

(n̂− n)t = T1(u−HΣ(t)u) + T2((u−HΣ(t)u)t) + T3(n̂− n).(7.17)

Using the results in the estimate part of §6, it is easy to establish an energy
estimate for system (7.14),(7.17). With the initial data n̂(0) = n(0) and u0 =
HΣ(0)u0, we conclude that

n̂(t) = n(t) and u(t) = HΣ(t)u(t), for 0 ≤ t ≤ T0,

so ñ(t) = n̂(t) = n(t) for 0 ≤ t ≤ T0. Now taking T0 as the initial time, we obtain

ñ(t) = n(t) and u(t) = HΣ(t)u(t), for T0 ≤ t ≤ 2T0.

After finitely many steps, we get

ñ(t) = n(t) and u(t) = HΣ(t)u(t), for 0 ≤ t ≤ T.

This proves that a solution of (5.21)-(5.23), (5.29) is also a solution of (4.3),(4.4),
(4.5′).

We can now state the well-posedness result of the nonlinear waterwave system
(4.3),(4.4),(4.5′).

Let ξ0, ξ1 = u0 be as given in the initial data part of §5. In particular, let
Σ(0) : ξ = ξ0(α, β) be a surface that divides R3 into two simply connected regions.
Assume that there are vectors eα, eβ , such that eα× eβ = e3, ξ0,α− eα, ξ0,β − eβ ∈
Hs−1/2(R2, C(V3)); and there are constants µ > 0, C0 > 0, such that

|ξ0,α × ξ0,β | ≥ 2µ, for −∞ < α, β < ∞,

|ξ0(α, β) − ξ0(α′, β′)| ≥ 2C0(|α− α′|+ |β − β′|), for −∞ < α, β < ∞.

Assume that n0 − e3 ∈ Hs, where n0 =
ξ0,α × ξ0,β

|ξ0,α × ξ0,β |
.

Theorem 7.1. Let s ≥ 5/2 + q, where q > 1. Assume further that

ξ1 ∈ Hs+1/2(R2, C(V3)).

Then there exists T > 0, such that the system (4.3),(4.4),(4.5 ′) has a unique so-
lution ξ = ξ(α, β, t) for 0 ≤ t ≤ T , with the property that the surfaces Σ(t) : ξ =
ξ(α, β, t), 0 ≤ t ≤ T , satisfy H1–H3 of §6, and

ξt ∈ Cj([0, T ], Hs+1/2−j/2(R2, C(V3))),

for j = 0, 1, 2.
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