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Abstract
The well-posedness of difference schemes of the initial value problem for delay
differential equations with unbounded operators acting on delay terms in an arbitrary
Banach space is studied. Theorems on the well-posedness of these difference
schemes in fractional spaces are proved. In practice, the coercive stability estimates in
Hölder norms for the solutions of difference schemes of the mixed problems for delay
parabolic equations are obtained.
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1 Introduction
Approximate solutions of the delay differential equations have been studied extensively in
a series of works (see, for example, [–] and the references therein) and developed over
the last three decades. In the literature mostly the sufficient condition

∣∣b(t)∣∣ ≤ Rea(t), t ≥  ()

was considered for the stability of the following test delay differential equation:

dv(t)
dt

+ a(t)v(t) = b(t)v(t –ω), t >  ()

with the initial condition

v(t) = g(t) (–ω ≤ t ≤ ). ()

It is known that delay differential equations can be solved by applying standard numer-
ical methods for ordinary differential equations without the presence of delay. However,
it is difficult to generalize any numerical method to obtain a high order of accuracy al-
gorithms, because high-order methods may not lead to efficient results. It is well known
that even if a(t), b(t) and g(t) are arbitrary differentiable functions, v(t) may not possess
the higher-order derivatives for a sufficiently large t. Therefore, we have non-smooth so-
lution of delay differential equations for given smooth data. This is the main difficulty in
the study of the convergence of numerical methods for delay differential equations.
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Delay partial differential equations arise from various applications, like in climate mod-
els, biology, medicine, control theory, and many others (see, for example, [] and the ref-
erences therein).
The theory of approximate solutions of delay partial differential equations has received

less attention than delay ordinary differential equations. A situation which occurs in de-
lay partial differential equations when the delay term is an operator of lower order with
respect to the other operator term is widely investigated (see, for example, [–] and the
references therein). In the case where the delay term is an operator of the same order with
respect to other operator term, this is studied mainly in a Hilbert space (see, for example,
[] and the references therein). In fact there are very few papers where the delay term is
an operator of the same order with respect to the other operator term, this being inves-
tigated in a general Banach space (see [–]) and in these works, the authors look only
for partial differential equations under regular data. Additionally, approximate solutions
of the delay parabolic equations in the case where the delay term is a simple operator of
the same order with respect to the other operator term were studied recently in papers
[–].
It is known that various initial-boundary value problems for linear evolutionary delay

partial differential equations can be reduced to an initial value problem of the form

⎧⎨
⎩

dv(t)
dt +Av(t) = B(t)v(t –ω) + f (t), t ≥ ,

v(t) = g(t) (–ω ≤ t ≤ )
()

in an arbitrary Banach space E with the unbounded linear operators A and B(t) in E with
dense domains D(A) ⊆ D(B(t)). Let A be a strongly positive operator, i.e. –A is the gener-
ator of the analytic semigroup e–tA (t ≥ ) of the linear bounded operators with exponen-
tially decreasing norm when t → ∞. That means the following estimates hold:

∥∥e–tA∥∥
E �→E ≤ Me–δt ,

∥∥tAe–tA∥∥
E �→E ≤ M, t >  ()

for someM > , δ > . Let B(t) be closed operators.
The strongly positive operator A defines the fractional spaces Eα = Eα(A,E) ( < α < )

consisting of all u ∈ E for which the following norms are finite:

‖u‖Eα = sup
λ>

∥∥λ–αAe–λAu
∥∥
E .

As noted in [], it is important to study the stability of solutions of the initial value prob-
lem () for delay differential equations and of difference schemes for approximate solu-
tions of problem () under the assumption that

∥∥B(t)A–∥∥
E �→E ≤  ()

holds for every t ≥ . This assumption for the delay differential equation () follows from
assumption () in the case when E =R

. Unfortunately, we have not been able to obtain the
stability estimate for the solution of problem () in the arbitrary Banach space E. Neverthe-
less, in [], the coercive stability estimate for the solution of problem () was established,
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when the space E is replaced by the fractional spaces Eα ( < α < ) which is defined above
under the condition

∥∥B(t)A–∥∥
E �→E ≤  – α

M–α
()

for every t ≥ , where M is the constant from equation (). However, the condition () is
stronger than () and E 
= Eα . Finally, in papers [, ], theorems on the well-posedness
in Hölder spaces in t of the initial value problem for the delay parabolic equation

⎧⎨
⎩ε dv(t)

dt +Av(t) = B(t)v(t –ω) + f (t), t ≥ ,

v(t) = g(t) (–ω ≤ t ≤ )
()

in an arbitrary Banach space E with the small positive parameter ε in the high derivative
and with the unbounded linear operators A and B(t) in E with dense domains D(A) ⊆
D(B(t)) were established.
Additionally, using the first and second order of the accuracy implicit difference schemes

for differential equations without the presence of delay, the first and second order of the
accuracy implicit difference schemes,

⎧⎨
⎩


τ
(uk – uk–) +Auk = Bkuk–N + ϕk , ϕk = f (tk),Bk = B(tk), tk = kτ , ≤ k,

Nτ = ω, uk = g(tk), tk = kτ , –N ≤ k ≤ ,
()

⎧⎪⎪⎨
⎪⎪⎩


τ
(uk – uk–) +ASuk = SBkg(tk–N – τ

 ),  ≤ k ≤ N , tk–N = (k –N)τ ,

τ
(uk – uk–) +ASuk = 

SBk(uk–N + uk–N–) + ϕk , ϕk = Sf (tk – τ
 ),

Bk = B(tk – τ
 ), tk = kτ ,N +  ≤ k,

()

are presented for approximate solutions of the initial value problem (). Here, we will put
S = I + 

τA.
The main aim of present paper is to study the well-posedness of the difference schemes

() and ().We establish the coercive stability estimates in fractional spaces Eα ( < α < )
under the assumption (). In practice, the coercive stability estimates in Hölder norms for
the solutions of difference schemes for the approximate solutions of the mixed problem
of delay parabolic equations are obtained.
The paper is organized as follows. In Section , theorems on coercive stability of dif-

ference schemes () and () are established. In Section , the coercive stability estimates
in Hölder norms for the solutions of difference schemes for the approximate solutions of
delay parabolic equations are obtained. Finally, Section  is our conclusion.

2 The well-posedness of difference schemes (9) and (10)
First, we consider the difference scheme () when A– and B(t) commute, i.e.

A–B(t)u = B(t)A–u, u ∈D(A). ()

http://www.advancesindifferenceequations.com/content/2014/1/18
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Theorem  Assume that the condition () holds for every t ≥ , where M is the constant
from (). Then for the solution of the difference scheme (), the estimate

∥∥∥∥uk – uk–
τ

∥∥∥∥
Eα

+ ‖Auk‖Eα

≤ max
–N≤i≤

∥∥Ag(ti)∥∥Eα
+
M–α

 – α

[ [ kN ]∑
n=

sup
(n–)N+≤i≤nN

‖ϕi‖Eα + sup
[ kN ]N+≤i≤k

‖ϕi‖Eα

]
()

holds for any k ≥ . Here and in future we put
∑m

n= an =  if m < .

Proof Let us consider  ≤ k ≤ N . In this case

uk = Rkg() +
k∑
j=

Rk–j+Bjg(tj–N )τ +
k∑
j=

Rk–j+Bjϕjτ = vk +wk ,

where

vk = Rkg() +
k∑
j=

Rk–j+Bjg(tj–N )τ ,

wk =
k∑
j=

Rk–j+Bjϕjτ , R = ( + τA)–.

Let us estimate Avk and Awk for any k ≥ . Using the formula

(I + τA)–k =


(k – )!

∫ ∞


tk–e–te–τ tA dt, k ≥ , ()

condition () and estimates () and (), we obtain

λ–α
∥∥Ae–λAAvk

∥∥
E

≤ λ–α 
(k – )!

∫ ∞


tk–e–t

∥∥Ae–(τ t+λ)AAg()
∥∥
E dt

+ λ–α

k∑
j=

τ


(k – j)!

∫ ∞


tk–je–t

∥∥Ae– (τ t+λ)A


∥∥
E �→E

∥∥BjA–∥∥
E �→E

× ∥∥Ae– (τ t+λ)A
 Ag(tj–N )

∥∥
E dt

≤ λ–α 
(k – )!

∫ ∞


tk–e–t

dt
(tτ + λ)–α

∥∥Ag()∥∥Eα

+ λ–α  – α

M–α

k∑
j=

τ


(k – j)!

∫ ∞


tk–je–t

M–αdt
(tτ + λ)–α

∥∥Ag(tj–N )∥∥Eα

≤ J max
–N≤i≤

∥∥Ag(ti)∥∥Eα
,
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where

J = λ–α 
(k – )!

∫ ∞


tk–e–t

dt
(tτ + λ)–α

+ λ–α( – α)
k∑
j=

τ


(k – j)!

∫ ∞


tk–je–t

dt
(tτ + λ)–α

.

Making the substitution k – j =m and integrating by parts, we obtain

λ–α( – α)
k–∑
m=

τ

m!

∫ ∞


tme–t

dt
(tτ + λ)–α

=  – λ–α

∫ ∞


e–t

dt
(tτ + λ)–α

+ λ–α

∫ ∞



k–∑
m=

[


(m – )!
tm– –


m!

tm
]
e–t

dt
(tτ + λ)–α

=  – λ–α

∫ ∞


e–t

dt
(tτ + λ)–α

+ λ–α

∫ ∞


e–t

dt
(tτ + λ)–α

– λ–α 
(k – )!

∫ ∞


tk–e–t

dt
(tτ + λ)–α

=  – λ–α 
(k – )!

∫ ∞


tk–e–t

dt
(tτ + λ)–α

.

Therefore J =  and

λ–α
∥∥Ae–λAAvk

∥∥
E ≤ max

–N≤i≤

∥∥Ag(ti)∥∥Eα

for every  ≤ k ≤ N and λ > . This shows that

‖Avk‖Eα ≤ max
–N≤i≤

∥∥Ag(ti)∥∥Eα
()

for every  ≤ k ≤ N . Using formula (), and the estimate (), we obtain

λ–α
∥∥Ae–λAAwk

∥∥
E ≤ M–αλ–α

k∑
j=

τ


(k – j)!

∫ ∞


tk–je–t

dt
(tτ + λ)–α

‖ϕj‖Eα .

Applying the inequality

k∑
j=


(k – j)!

tk–j ≤ et ,

we get

λ–α
∥∥Ae–λAAwk

∥∥
E ≤ M–αλ–ατ

∫ ∞



dt
(tτ + λ)–α

sup
≤j≤k

‖ϕj‖Eα

=
M–α

 – α
sup
≤j≤k

‖ϕj‖Eα

http://www.advancesindifferenceequations.com/content/2014/1/18
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for every  ≤ k ≤ N and λ > . This shows that

‖Awk‖Eα ≤ M–α

 – α
sup
≤j≤k

‖ϕj‖Eα ()

for every  ≤ k ≤ N . Using the triangle inequality and the estimates () and (), we get

‖Auk‖Eα ≤ max
–N≤i≤

∥∥g(ti)∥∥Eα
+
M–α

 – α
sup
≤j≤k

‖ϕj‖Eα . ()

Applying mathematical induction, one can easily show that it is true for every k. Actually,
suppose that the estimate () is true for (n – )N ≤ k ≤ nN , n = , , , . . . . Letting k =
m + nN , we have


τ
(um+nN – um+nN–) +Aum+nN = Bm+nNum+nN–N + ϕm+nN ,  ≤ m ≤ N .

Using the estimate (), we obtain

‖Auk‖Eα

≤ max
≤m≤N

‖Aum+nN–N‖Eα +
M–α

 – α
sup

[ kN ]N+≤i≤k
‖ϕi‖Eα

≤ max
–N≤i≤

∥∥Ag(ti)∥∥Eα
+
M–α

 – α

[ kN ]∑
n=

sup
(n–)N+≤i≤nN

‖ϕi‖Eα +
M–α

 – α
sup

[ kN ]N+≤i≤k
‖ϕi‖Eα

≤ max
–N≤i≤

∥∥Ag(ti)∥∥Eα
+
M–α

 – α

[ [ kN ]∑
n=

sup
(n–)N+≤i≤nN

‖ϕi‖Eα + sup
[ kN ]N+≤i≤k

‖ϕi‖Eα

]

for every nN +  ≤ k ≤ (n + )N , n = , , , . . . . Theorem  is proved. �

Now, we consider the difference scheme () when

A–B(t)x 
= B(t)A–x, x ∈D(A)

for some t ≥ .
Recall that (see, for example, [, Chapter , p.]) A is a strongly positive operator

in a Banach space E iff its spectrum σ (A) lies in the interior of the sector of the angle
ϕ,  < ϕ < π , symmetric with respect to the real axis, and if on the edges of this sector,
S = [z = ρeiϕ :  ≤ ρ < ∞] and S = [z = ρe–iϕ :  ≤ ρ < ∞], and outside it the resolvent
(z –A)– is subject to the bound

∥∥(z –A)–
∥∥
E→E ≤ M

 + |z| ()

for some M > . First of all let us give lemmas from the paper [] that will be needed in
the sequel.

http://www.advancesindifferenceequations.com/content/2014/1/18
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Lemma  For any z on the edges of the sector,

S =
[
z = ρeiϕ :  ≤ ρ < ∞]

and S =
[
z = ρe–iϕ :  ≤ ρ <∞]

and outside it the estimate

∥∥A(z –A)–x
∥∥
E ≤ Mα

Mα( +M)–α(–α)α

α( – α)( + |z|)α ‖x‖Eα

holds for any x ∈ Eα . Here and in the future M and M are the same constants as of the
estimates () and ().

Lemma Let for all s ≥  the operator B(s)A– –A–B(s)with domainwhich coincides with
D(A) permit the closure B(s)A– –A–B(s) bounded in E. Then for all τ >  the following
estimate holds:

∥∥A–[Ae–τAB(s) – B(s)Ae–τA]
x
∥∥
E

≤ e(α + )MαM+α
 ( + M)( +M)–α(–α)α‖Q‖E �→E‖x‖Eα

τ –απα( – α)
.

Here Q = A–(AB(s) – B(s)A)A–.
Suppose that

∥∥A–
(
AB(t) – B(t)A

)
A–

∥∥
E �→E

≤ π ( – α)αε

eM+αM+α
 ( + M)( +M)–α+α–α ( + α)

()

holds for every t ≥ . Here and in the future ε is a constant,  ≤ ε ≤ .

The use of Lemmas  and  enables us to establish the following statement.

Theorem  Assume that the condition

∥∥A–B(t)
∥∥
E �→E ≤ ( – α)( – ε)

M–α
()

holds for every t ≥ .Then for the solution of the difference scheme (), the coercive estimate
() holds.

Proof Let us consider  ≤ k ≤ N . Using formula (), we can write

λ–αAe–λAAvk

= λ–α 
(k – )!

∫ ∞


tk–e–tAe–(τ t+λ)AAg()dt

+ λ–α

k∑
j=

τ


(k – j)!

∫ ∞


tk–je–te–

τ t+λ
 ABjAe–

τ t+λ
 AAg(tj–N )dt

http://www.advancesindifferenceequations.com/content/2014/1/18
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+ λ–α

k∑
j=

τ


(k – j)!

∫ ∞


tk–je–tAe–

τ t+λ
 AA–[e– τ t+λ

 AABj – BjAe–
τ t+λ
 A]

Ag(tj–N )dt

= T + T + T.

Using the estimates (), (), and condition (), we obtain

‖T‖E ≤ λ–α 
(k – )!

∫ ∞


tk–e–t

∥∥Ae–(τ t+λ)AAg()
∥∥
E dt

≤ λ–α 
(k – )!

∫ ∞


tk–e–t

dt
(tτ + λ)–α

max
–N≤i≤

∥∥Ag(ti)∥∥Eα
,

‖T‖E ≤ λ–α

k∑
j=

τ


(k – j)!

∫ ∞


tk–je–t

∥∥Ae– τ t+λ
 A∥∥

E→E

∥∥A–Bj
∥∥
E→E

× ∥∥Ae– τ t+λ
 AAg(tj–N )

∥∥
E dt

≤ λ–α( – α)( – ε)
M–α

k∑
j=

τ


(k – j)!

∫ ∞


tk–je–t

M–αdt
(tτ + λ)–α

∥∥Ag(tj–N )∥∥Eα

≤ λ–α( – α)( – ε)
k∑
j=

τ


(k – j)!

∫ ∞


tk–je–t

dt
(tτ + λ)–α

max
–N≤i≤

∥∥Ag(ti)∥∥Eα

for every  ≤ k ≤ N and λ > . Now let us estimate T. By Lemma  and using the estimate
(), we can obtain

‖T‖E ≤ λ–α

k∑
j=

τ


(k – j)!

∫ ∞


tk–je–t

∥∥Ae– τ t+λ
 A∥∥

E→E

× ∥∥A–[Ae– τ t+λ
 ABj – BjAe–

τ t+λ
 A]

Ag(tj–N )
∥∥
E dt

≤ λ–α max
≤k≤N

∥∥A–(ABj – BjA)A–
∥∥
E→E

k∑
j=

τ


(k – j)!

×
∫ ∞


tk–je–t

e( + α)MαM+α
 ( + M)( +M)–α(–α)α

πα( – α)

× M–α dt
(tτ + λ)–α

∥∥Ag(tj–N )∥∥Eα

≤ λ–α( – α)ε
k∑
j=

τ


(k – j)!

∫ ∞


tk–je–t

dt
(tτ + λ)–α

max
–N≤i≤

∥∥Ag(ti)∥∥Eα

for every  ≤ k ≤ N and λ > . Using the triangle inequality, we obtain

λ–α
∥∥Ae–λAAvk

∥∥
E ≤ max

–N≤i≤
J
∥∥Ag(ti)∥∥Eα

for every  ≤ k ≤ N and λ > . This shows that

‖Avk‖Eα ≤ max
–N≤i≤

∥∥Ag(ti)∥∥Eα

http://www.advancesindifferenceequations.com/content/2014/1/18
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for every  ≤ k ≤ N . Using the triangle inequality and the last estimate and (), we get

‖Auk‖Eα ≤ max
–N≤i≤

∥∥Ag(ti)∥∥Eα
+
M–α

 – α
sup
≤i≤k

‖ϕi‖Eα .

In a similar manner as Theorem , applying mathematical induction, one can easily show
that it is true for every k. Theorem  is proved. �

Now we consider the difference scheme (). We have not been able to obtain the same
result for the solution of the difference scheme () in spaces Eα under assumption ().
Nevertheless, for the solution of the difference scheme () the coercive stability estimate
in the norm of same fractional spaces Eα ( < α < ) under the supplementary restriction
of the operator A is established.

Theorem  Suppose that the following estimates hold:

∥∥(I + τA)(I + τAS)–
∥∥
E �→E ≤ ,

∥∥S(I + τA)(I + τAS)–
∥∥
E �→E ≤  +

√



,

()

and

∥∥B(t)A–∥∥
E �→E ≤ ( – α)

M–α( +
√
)
, t ≥ . ()

Then for the solution of the difference scheme (), the coercive estimate () holds.

Proof Let us consider  ≤ k ≤ N . In this case

uk = Rkg() +
k∑
j=

Rk–j+
(
I +

τA


)
Bj

(
g(tj–N ) + g(tj–N–)

)
τ +

k∑
j=

Rk–j+
(
I +

τA


)
ϕjτ

= vk +wk , ()

where

vk = Rkg() +
k∑
j=

Rk–j+
(
I +

τA


)
Bj

(
g(tj–N ) + g(tj–N–)

)
τ ,

wk =
k∑
j=

Rk–j+
(
I +

τA


)
ϕjτ , R =

(
I + τA +

(τA)



)–

.

Let us estimate Avk and Awk for any k ≥ . Using formula (), condition (), and the
estimates () and (), we obtain

λ–α
∥∥Ae–λAAvk

∥∥
E

≤
∥∥∥∥
(
(I + τA)

(
I + τA +

(τA)



)–)k∥∥∥∥
E �→E

http://www.advancesindifferenceequations.com/content/2014/1/18
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× λ–α 
(k – )!

∫ ∞


tk–e–t

∥∥Ae–(τ t+λ)AAg()
∥∥
E dt

+ λ–α

k∑
j=

τ

∥∥∥∥
(
(I + τA)

(
I + τA +

(τA)



)–)k–j∥∥∥∥
E �→E

×
∥∥∥∥
(
I +

τA


)
(I + τA)

(
I + τA +

(τA)



)–∥∥∥∥
E �→E

× 
(k – j)!

∫ ∞


tk–je–t

∥∥Ae– τ t+λ
 A∥∥

E→E

∥∥BjA–∥∥
E→E

×
∥∥∥∥Ae– τ t+λ

 A 

A

(
g(tj–N ) + g(tj–N–)

)∥∥∥∥
E
dt

≤ λ–α 
(k – )!

∫ ∞


tk–e–t

dt
(tτ + λ)–α

∥∥Ag()∥∥Eα
+
( +

√
)


 – α

M–α( +
√
)

×
k∑
j=

τ


(k – j)!

∫ ∞


tk–je–t

M–αdt
(tτ + λ)–α

∥∥∥∥ A
(
g(tj–N ) + g(tj–N–)

)∥∥∥∥
Eα

≤ J max
–N≤i≤

∥∥Ag(ti)∥∥Eα
≤ max

–N≤i≤

∥∥Ag(ti)∥∥Eα

for every  ≤ k ≤ N and λ > . This shows that

‖Avk‖Eα ≤ max
–N≤i≤

∥∥Ag(ti)∥∥Eα
()

for every  ≤ k ≤ N . Using formula (), the condition (), and the estimate (), we obtain

λ–α
∥∥Ae–λAwk

∥∥
E ≤ λ–α

k∑
j=

τ

∥∥∥∥
(
(I + τA)

(
I + τA +

(τA)



)–)k–j∥∥∥∥
E �→E

×
∥∥∥∥
(
I +

τA


)
(I + τA)

(
I + τA +

(τA)



)–∥∥∥∥
E �→E

× 
(k – j)!

∫ ∞


tk–je–t

dt
(tτ + λ)–α

‖ϕj‖Eα

≤ M–αλ–α

k∑
j=

τ


(k – j)!

∫ ∞


tk–je–t

dt
(tτ + λ)–α

‖ϕj‖Eα

≤ M–α

 – α
sup
≤j≤k

‖ϕj‖Eα

for every  ≤ k ≤ N and λ > . This shows that

‖Awk‖Eα ≤ M–α

 – α
sup
≤j≤k

‖ϕj‖Eα ()

for every  ≤ k ≤ N . Using the triangle inequality and the estimates () and (), we get

‖Auk‖Eα ≤ max
–N≤i≤

∥∥g(ti)∥∥Eα
+
M–α

 – α
sup
≤j≤k

‖ϕj‖Eα . ()
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In a similar manner as Theorem , applying mathematical induction, one can easily show
that it is true for every k. Theorem  is established. �

Now, we consider the difference scheme () when

A–B(t)x 
= B(t)A–x, x ∈D(A)

for some t ≥ . Suppose that the operator B(t)A– –A–B(t), with domain which coincides
with D(A), permits the closure bounded in E and that the estimate

∥∥A–
(
AB(t) – B(t)A

)
A–

∥∥
E �→E ≤ π ( – α)α( + α)–( +

√
)–ε

eM+αM+α
 ( + M)( +M)–α+α–α

holds for every t ≥  and some ε ∈ [, ].

Theorem  Assume that all conditions of Theorem  and Theorem  are satisfied. Then
for the solution of the difference scheme (), the estimate () holds.

Proof Let us consider  ≤ k ≤ N . Using formula (), the estimates (), (), and the con-
dition (), we obtain

λ–αAe–λAAvk

=
(
(I + τA)

(
I + τA +

(τA)



)–)k

λ–α 
(k – )!

∫ ∞


tk–e–tAe–(τ t+λ)AAg()dt

+ λ–α

k∑
j=

τ

(
(I + τA)

(
I + τA +

(τA)



)–)k–j(
I +

τA


)
(I + τA)

×
(
I + τA +

(τA)



)– 
(k – j)!

∫ ∞


tk–je–te–

(τ t+λ)A
 BjAe–

(τ t+λ)A


× 

A

(
g(tj–N ) + g(tj–N–)

)
dt

+ λ–α

k∑
j=

τ

(
(I + τA)

(
I + τA +

(τA)



)–)k–j(
I +

τA


)
(I + τA)

×
(
I + τA +

(τA)



)– 
(k – j)!

∫ ∞


tk–je–tAe–

(τ t+λ)A
 A–

× [
e–

(τ t+λ)A
 ABj – BjAe–

(τ t+λ)A


] 

A

(
g(tj–N ) + g(tj–N–)

)
dt

= P + P + P.

Using the estimates (), (), and the condition (), we obtain

‖P‖E ≤
∥∥∥∥
(
(I + τA)

(
I + τA +

(τA)



)–)k∥∥∥∥
E �→E

× λ–α 
(k – )!

∫ ∞


tk–e–t

∥∥Ae–(τ t+λ)AAg()
∥∥
E dt
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≤ λ–α 
(k – )!

∫ ∞


tk–e–t

dt
(tτ + λ)–α

max
–N≤i≤

∥∥Ag(ti)∥∥Eα
,

‖P‖E ≤ λ–α

k∑
j=

τ

∥∥∥∥
(
(I + τA)

(
I + τA +

(τA)



)–)k–j∥∥∥∥
E �→E

×
∥∥∥∥
(
I +

τA


)
(I + τA)

(
I + τA +

(τA)



)–∥∥∥∥
E �→E

× 
(k – j)!

∫ ∞


tk–je–t

∥∥Ae– (τ t+λ)A


∥∥
E→E

∥∥A–Bj
∥∥
E→E

×
∥∥∥∥Ae– (τ t+λ)A




A

(
g(tj–N ) + g(tj–N–)

)∥∥∥∥
E
dt

≤ ( +
√
)


λ–α( – α)( – ε)
M–α( +

√
)

×
k∑
j=

τ


(k – j)!

∫ ∞


tk–je–t

M–α dt
(tτ + λ)–α

∥∥∥∥ A
(
g(tj–N ) + g(tj–N–)

)∥∥∥∥
Eα

≤ ( – α)( – ε)
k∑
j=

τ


(k – j)!

∫ ∞


tk–je–t

λ–α dt
(tτ + λ)–α

max
–N≤i≤

∥∥Ag(ti)∥∥Eα

for every  ≤ k ≤ N and λ > . Now let us estimate P. By Lemma  and using the estimate
(), we obtain

‖P‖E ≤ λ–α

k∑
j=

τ

∥∥∥∥
(
(I + τA)

(
I + τA +

(τA)



)–)k–j∥∥∥∥
E �→E

×
∥∥∥∥
(
I +

τA


)
(I + τA)

(
I + τA +

(τA)



)–∥∥∥∥
E �→E

× 
(k – j)!

∫ ∞


tk–je–t

∥∥Ae– (τ t+λ)A


∥∥
E→E

×
∥∥∥∥A–[Ae– (τ t+λ)A

 Bj – BjAe–
(τ t+λ)A


] 

A

(
g(tj–N ) + g(tj–N–)

)∥∥∥∥
E
dt

≤ λ–α( +
√
)


max
≤j≤N

∥∥A–(ABj – BjA)A–
∥∥
E→E

k∑
j=

τ


(k – j)!

×
∫ ∞


tk–je–t

e( + α)MαM+α
 ( + M)( +M)–α(–α)α

πα( – α)

× M–α dt
(tτ + λ)–α



∥∥Ag(tj–N ) +Ag(tj–N–)

∥∥
Eα

≤ λ–α( – α)ε
k∑
j=

τ


(k – j)!

∫ ∞


tk–je–t

dt
(tτ + λ)–α

max
–N≤i≤

∥∥Ag(ti)∥∥Eα

for every  ≤ k ≤ N and λ > . Using the triangle inequality, we obtain

λ–α
∥∥Ae–λAAvk

∥∥
E ≤ J max

–N≤k≤

∥∥Ag(tk)∥∥Eα
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for every  ≤ k ≤ N and λ > . This shows that

‖Avk‖Eα ≤ max
–N≤k≤

∥∥Ag(tk)∥∥Eα
()

for every  ≤ k ≤ N . Using the triangle inequality and the estimates () and (), we get

‖Auk‖Eα ≤ max
–N≤i≤

∥∥g(ti)∥∥Eα
+
M–α

 – α
sup
≤j≤k

‖ϕj‖Eα .

In a similar manner as Theorem , applying mathematical induction, one can easily show
that it is true for every k. Theorem  is established. �

Note that these abstract results are applicable to the study of the coercive stability of
various delay parabolic equations with local and nonlocal boundary conditions with re-
spect to the space variables. However, it is important to study structure of Eα for space
operators in Banach spaces. The structure of Eα for some space differential and difference
operators in Banach spaces has been investigated in some papers [–]. In Section ,
applications of Theorem  to the study of the coercive stability of the difference schemes
for delay parabolic equations are given.

3 Applications
First, the initial-boundary value problem for one-dimensional delay parabolic equations
is considered:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂u(t,x)
∂t – a(x) ∂u(t,x)

∂x + δu(t,x)

= b(t)(–a(x) ∂u(t–ω,x)
∂x + δu(t –ω,x)) + f (t,x),  < t < ∞,x ∈ (, l),

u(t,x) = g(t,x), –ω ≤ t ≤ ,x ∈ [, l],

u(t, ) = u(t, l) = , –ω ≤ t < ∞,

()

where a(x), b(t), g(t,x), f (t,x) are given sufficiently smooth functions and δ >  is a suffi-
ciently large number. It will be assumed that a(x) ≥ a > . The discretization of problem
() is carried out in two steps. In the first step, the uniform grid space

[, l]h = {x : xr = rh,  ≤ r ≤ K ,Kh = l}

is defined. To formulate the result, one needs to introduce the Banach space
•
Cβ

h =
Cβ ([, l]h) ( < β < ) of the grid functions ϕh(x) = {ϕr}K–

 defined on [, l]h satisfying the
conditions ϕ = ϕK = , equipped with the norm

∥∥ϕh∥∥ •
Cβ
h
=

∥∥ϕh∥∥
Ch

+ sup
≤k<k+τ≤K–

|ϕk+r – ϕk|
τβ

.

Here and in the future, Ch = C([, l]h) is the space of the grid functions ϕh(x) = {ϕr}K de-
fined on [, l]h, equipped with the norm

∥∥ϕh∥∥
Ch

= max
≤k≤K

|ϕk|.

http://www.advancesindifferenceequations.com/content/2014/1/18


Ashyralyev and Agirseven Advances in Difference Equations 2014, 2014:18 Page 14 of 20
http://www.advancesindifferenceequations.com/content/2014/1/18

To the differential operator Ax generated by problem (), we assign the difference oper-
ator Ax

h by the formula

Ax
hϕ

h(x) =
{
–
(
a(x)ϕx̄

)
x,r + δϕr

}K–
 ,

acting in the space of grid functions ϕh(x) = {ϕr}K satisfying the conditions ϕ = ϕK = .
With the help of Ax

h, we arrive at the initial-boundary value problem

⎧⎨
⎩

duh(t,x)
dt +Ax

hu
h(t,x) = b(t)Ax

hu
h(t –ω,x) + f h(t,x), t ≥ ,x ∈ [, l]h,

uh(t,x) = gh(t,x) = g(t,x) (–ω ≤ t ≤ ),x ∈ [, l]h
()

for the system of ordinary differential equations. In the second step, problem () is re-
placed by the first-order accuracy in the difference scheme in t,

⎧⎪⎪⎨
⎪⎪⎩


τ
(uhk (x) – uhk–(x)) +Ax

hu
h
k(x) = b(tk)Ax

hu
h
k–N (x) + f hk (x),

f hk (x) = f h(tk ,x), tk = kτ ,  ≤ k,Nτ = ω,x ∈ [, l]h,

uhk(x) = gh(tk ,x), tk = kτ , –N ≤ k ≤ ,x ∈ [, l]h.

()

Theorem  Assume that

sup
≤t<∞

∣∣b(t)∣∣ ≤  – α

M–α
. ()

Then for the solution of the difference scheme () the following coercive stability estimates
hold:

∥∥τ–(uhk – uhk–
)∥∥ •

Cα [,l]h
+ h–

∥∥�–�+uhk
∥∥ •
Cα [,l]h

≤ M(α)

[
max

–N≤i≤
h–

∥∥�–�+ghi
∥∥ •
Cα [,l]h

+
[ kN ]∑
n=

sup
(n–)N+≤i≤nN

∥∥f hi ∥∥ •
Cα [,l]h

+ sup
[ kN ]N+≤i≤k

∥∥f hi ∥∥ •
Cα [,l]h

]
,

 < α <



()

for all k ≥ , where M(α) does not depend on ghk and f hk . Here and in the future we put

�±ϕh(x) = ±[
ϕh(x± h) – ϕh(x)

]
, x,x± h ∈ [, l]h.

The proof of Theorem  is based on the estimate

∥∥e–tkAx
h
∥∥
Ch→Ch

≤ M, k ≥ ,

and on the abstract Theorem , the positivity of the operatorAx
h in

•
Cβ

h , and on the following
theorem on the structure of the fractional space Eα(Ch,Ax

h).
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Theorem  For any  < α < 
 the norms in the spaces Eα(Ch,Ax

h) and
•
Cα

h are equivalent
uniformly in h [].

Second, the initial nonlocal boundary value problem for one-dimensional delay para-
bolic equations is considered:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂u(t,x)
∂t – a(x) ∂u(t,x)

∂x + δu(t,x)

= b(t)(–a(x) ∂u(t–ω,x)
∂x + δu(t –ω,x)) + f (t,x),  < t < ∞,x ∈ (, l),

u(t,x) = g(t,x), –ω ≤ t ≤ ,x ∈ [, l],

u(t, ) = u(t, l), ux(t, ) = ux(t, l), –ω ≤ t <∞,

()

where a(x), b(t), g(t,x), f (t,x) are given sufficiently smooth functions and δ >  is a suf-
ficiently large number. It will be assumed that a(x) ≥ a > . The discretization of prob-
lem () is carried out in two steps. In the first step, let us use the discretization in
the space variable x. To formulate the result, one needs to introduce the Banach space
Cβ

h = Cβ ([, l]h) ( < β < ) of the grid functions ϕh(x) = {ϕr}K defined on [, l]h satisfying
the conditions ϕ = ϕK , ϕ – ϕ = ϕK – ϕK– equipped with the norm

∥∥ϕh∥∥
Cβ
h
=

∥∥ϕh∥∥
Ch

+ sup
≤k<k+τ≤K

|ϕk+r – ϕk|
τβ

.

To the differential operatorAx generated by problem ()we assign the difference operator
A

x
h by the formula

A
x
hϕ

h(x) =
{
–
(
a(x)ϕx̄

)
x,r + δϕr

}K–
 , ()

acting in the space of grid functions ϕh(x) = {ϕr}K satisfying the conditions ϕ = ϕK , ϕ –
ϕ = ϕK – ϕK–. With the help of Ax

h, we arrive at the initial value problem

⎧⎨
⎩

duh(t,x)
dt +A

x
hu

h(t,x) = b(t)Ax
hu

h(t –ω,x) + f h(t,x), t ≥ ,x ∈ [, l]h,

uh(t,x) = gh(t,x) = g(t,x) (–ω ≤ t ≤ ),x ∈ [, l]h
()

for the system of ordinary differential equations. In the second step, problem () is re-
placed by the first-order accuracy of the difference scheme in t

⎧⎪⎪⎨
⎪⎪⎩


τ
(uhk (x) – uhk–(x)) +A

x
hu

h
k(x) = b(tk)Ax

hu
h
k–N (x) + f hk (x),

f hk (x) = f h(tk ,x), tk = kτ ,  ≤ k,Nτ = ω,x ∈ [, l]h,

uhk(x) = gh(tk ,x), tk = kτ , –N ≤ k ≤ ,x ∈ [, l]h.

()

Theorem Assume that all the conditions of Theorem  are satisfied.Then for the solution
of the difference scheme () the coercive stability estimate () holds.

The proof of Theorem  is based on the estimate

∥∥e–tkAx
h
∥∥
Ch→Ch

≤ M, k ≥ ,
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and on the abstract Theorem , the positivity of the operatorAx
h inC

μ

h , and on the following
theorem on the structure of the fractional space Eα(Ch,Ax

h).

Theorem  For any  < α < 
 the norms in the spaces Eα(Ch,Ax

h) and Cα
h are equivalent

uniformly in h [].

Third, the initial value problem on the range

{
 ≤ t ≤ ,x = (x, . . . ,xn) ∈R

n, r = (r, . . . , rn)
}

for mth-order multidimensional delay differential equations of parabolic type is consid-
ered:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∂u(t,x)
∂t +

∑
|r|=m aτ (x) ∂ |r|u(t,x)

∂xr ···∂xrnn
+ δu(t,x)

= b(t)(
∑

|r|=m aτ (x) ∂ |r|u(t–ω,x)
∂xr ···∂xrnn

+ δu(t –ω,x)) + f (t,x),  < t < ∞,x ∈R
n,

u(t,x) = g(t,x), –ω ≤ t ≤ ,x ∈R
n, |r| = r + · · · + rn,

()

where ar(x), b(t), g(t,x), f (t,x) are given sufficiently smooth functions and δ >  is a suffi-
ciently large number. We will assume that the symbol [ξ = (ξ, . . . , ξn) ∈R

n]

Ax
 (ξ ) =

∑
|r|=m

ar(x)(iξ)r · · · (iξn)rn

of the differential operator of the form

Ax
 =

∑
|r|=m

ar(x)
∂ |r|

∂xr · · · ∂xrnn , ()

acting on the functions defined on the space Rn, satisfies the inequalities

 <M|ξ |m ≤ (–)mAx
 (ξ )≤ M|ξ |m <∞

for ξ 
= , where | ξ |= √|ξ| + · · · + |ξn|. The discretization of problem () is carried out
in two steps. In the first step the uniform grid space Rn

h ( < h ≤ h) is defined as the set
of all points of the Euclidean space Rn whose coordinates are given by

xk = skh, sk = ,±,±, . . . ,k = , . . . ,n.

The difference operator Ax
h = Bx

h + σ Ih is assigned to the differential operator Ax = Bx + σ I ,
defined by equation (). The operator

Bx
h = h–m

∑
m≤|s|≤S

bxs�
s
–�

s
+ · · ·�sn–

n– �sn
n+ ()

acts on functions defined on the entire spaceRn
h . Here s ∈R

n is a vector with nonnegative
integer coordinates,

�k±f h(x) = ±(
f h(x± ekh) – f h(x)

)
,

where ek is the unit vector of the axis xk .
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An infinitely differentiable function ϕ(x) of the continuous argument x ∈R
n that is con-

tinuous and bounded together with all its derivatives is said to be smooth. We say that the
difference operator Ax

h is a λth-order (λ > ) approximation of the differential operator Ax

if the inequality

sup
x∈Rn

h

∣∣Ax
hϕ(x) –Axϕ(x)

∣∣ ≤ M(ϕ)hλ

holds for any smooth function ϕ(x). The coefficients bxs are chosen in such a way that the
operator Ax

h approximates in a specified way the operator Ax. It will be assumed that the
operator Ax

h approximates the differential operator Ax with any prescribed order [, ].
The function Ax(ξh,h) is obtained by replacing the operator �k± in the right-hand side

of the equality () with the expression ±(e±iξkh – ), respectively, and it is called the sym-
bol of the difference operator Bx

h.
It will be assumed that for |ξkh| ≤ π and fixed x the symbol Ax(ξh,h) of the operator

Bx
h = Ax

h – σ Ih satisfies the inequalities

(–)mAx(ξh,h) ≥ M|ξ |m, ∣∣argAx(ξh,h)
∣∣ ≤ φ < φ ≤ π


. ()

Suppose that the coefficient bxs of the operator Bx
h = Ax

h – σ Ih is bounded and satisfies the
inequalities

∣∣bx+ekhs – bxs
∣∣ ≤ Mhε , x ∈R

n
h, ε ∈ (, ]. ()

With the help of Ax
h we arrive at the initial value problem

⎧⎨
⎩(uh(t,x))′ +Ax

huh(t,x) = b(t)Ax
huh(t –ω,x) + f h(t,x), t ≥ ,x ∈R

n
h,

uh(t,x) = gh(t,x) = g(t,x) (–ω ≤ t ≤ ),x ∈ R
n
h,

()

for an infinite system of ordinary differential equations. Now, problem () is replaced by
the first-order accuracy of the difference scheme in t

⎧⎪⎪⎨
⎪⎪⎩


τ
(uhk (x) – uhk–(x)) +Ax

hu
h
k(x) = b(tk)Ax

hu
h
k–N (x) + f hk (x),

f hk (x) = f h(tk ,x), tk = kτ ,  ≤ k,Nτ = ω,x ∈R
n
h,

uhk(x) = gh(tk ,x), tk = kτ , –N ≤ k ≤ ,x ∈R
n
h.

()

To formulate the result, one needs to introduce the spaces Ch = C(Rn
h) and Cβ

h = Cβ (Rn
h)

of all bounded grid functions uh(x) defined on R
n
h , equipped with the norms

∥∥uh∥∥Ch
= sup

x∈Rn
h

∣∣uh(x)∣∣,
∥∥uh∥∥Cβ

h
= sup

x∈Rn
h

∣∣uh(x)∣∣ + sup
x,y∈Rn

h

|uh(x) – uh(x + y)|
|y|β .
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Theorem Assume that all the conditions of Theorem  are satisfied.Then for the solution
of the difference scheme () the following coercive stability estimates hold:

∥∥τ–(uhk – uhk–
)∥∥

Cmα (Rn
h)
+

∑
m≤|s|≤S

h–m
∥∥�

s
–�

s
+ · · ·�sn–

n– �sn
n+ u

h
k
∥∥
Cmα (Rn

h)

≤ M(α)

[
max

–N≤i≤

∑
m≤|s|≤S

h–m
∥∥�

s
–�

s
+ · · ·�sn–

n– �sn
n+ g

h
i
∥∥
Cmα (Rn

h)

+
[ kN ]∑
n=

sup
(n–)N+≤i≤nN

∥∥f hi ∥∥
Cmα (Rn

h)
+ sup

[ kN ]N+≤i≤k

∥∥f hi ∥∥
Cmα (Rn

h)

]
,  < α <


m

for all k ≥ , where M(α) does not depend on ghk and f hk .

The proof of Theorem  is based on the estimate

∥∥e–tkAx
h
∥∥
C(Rn

h)→C(Rn
h)

≤ M, k ≥ ,

and on the abstract Theorem , the positivity of the operator Ax
h in C(Rn

h), and on the fact
that the Eα = Eα(Ax

h,C(R
n
h)) norms are equivalent to the norms Cmα(Rn

h) uniformly in h
for  < α < 

m [, Chapter , p.].

4 Conclusion
In the present paper, the well-posedness of the difference schemes for the approximate
solutions of the initial value problem for delay parabolic equations with unbounded op-
erators acting on delay terms in an arbitrary Banach space is established. Theorems on
the coercive stability of these difference schemes in fractional spaces are established. In
practice, the coercive stability estimates in Hölder norms for the solutions of the differ-
ence schemes for the approximate solutions of the mixed problems for delay parabolic
equations are obtained. Note that in the present paper B(t) is a time variable unbounded
space operator acting on the delay term. The delay w is a positive constant. In general,
it is interesting to consider the delay as a function w(t), dependent on t. A well-known
parabolic problem with delay used in population dynamics is the so-called Hutchinson
equation where B(t) is a time variable bounded nonlinear space operator acting on the
delay term [, ]. It would be interesting to consider the case when B(t) is a nonlinear
unbounded space operator acting on the delay term. Actually, it will be possible after es-
tablishing theorems on the existence, uniqueness, and stability of the solutions, and the
smoothness property of the solutions, and obtaining a suitable contractivity condition of
the numerical solutions.
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