
E l e c t r o
n i

c

J
o
u
r n

a l
o
f

P
r
o b a b i l i t y

Electron. J. Probab. 21 (2016), no. 22, 1–41.
ISSN: 1083-6489 DOI: 10.1214/16-EJP4453

Well-posedness of multidimensional diffusion
processes with weakly differentiable coefficients

Dario Trevisan*

Abstract

We investigate well-posedness for martingale solutions of stochastic differential equa-
tions, under low regularity assumptions on their coefficients, widely extending the
results first obtained by A. Figalli in [19]. Our main results are: a very general
equivalence between different descriptions for multidimensional diffusion processes,
such as Fokker-Planck equations and martingale problems, under minimal regularity
and integrability assumptions; and new existence and uniqueness results for diffu-
sions having weakly differentiable coefficients, by means of energy estimates and
commutator inequalities. Our approach relies upon techniques recently developed
jointly with L. Ambrosio in [6], to address well-posedness for ordinary differential
equations in metric measure spaces: in particular, we employ in a systematic way
new representations for commutators between smoothing operators and diffusion
generators.
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1 Introduction

Aim of this article is to study well-posedness (i.e., existence, uniqueness and stability)
for martingale solutions of stochastic differential equations

dXt = b(t,Xt)dt+ σ(t,Xt)dWt, t ∈ (0, T ), (1.1)

providing in particular new results under low regularity assumptions on the coefficients
b : (0, T )×R

d → R
d and σ : (0, T )×R

d → R
d×d.

The classical subject of martingale problems dates back at least to [31], where it
was first shown that continuous and uniformly elliptic covariances a = σσ∗ allow for
uniqueness results which had no counterpart in the usual (Itô-)Cauchy-Lipschitz theory,
provided that the solution to (1.1) is understood in a sufficiently weak sense. Since then,
the theory has been growing, due to its robustness and strong connections with the
theory of semigroups and parabolic PDE’s, also in abstract (metric) frameworks, see e.g.
[17].
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Diffusion processes with weakly differentiable coefficients

Our primary goal here is to show that the techniques originally developed in [6] can
be extended to the stochastic theory as well as specialized to the Euclidean setting,
to extend in a systematic way the results established in the seminal paper [19]. Actu-
ally, most of such techniques, tailored to study well-posedness problems for ordinary
differential equations in metric measure spaces (possibly infinite-dimensional) are also
well-suited to the study of diffusions in metric measure spaces, as developed in the
author’s PhD dissertation. However, in this paper, we deal uniquely with Euclidean
spaces: among various motivations, besides that a wider audience could be mainly
interested in this setting, this allows us to compare new results and techniques with
alternative approaches. Finally, Euclidean spaces are a useful “intermediate” step for
the infinite dimensional theory, e.g. by cylindrical approximations. Thus, the theory
developed here is instrumental to further developments in metric measure spaces.

Therefore, in this article, we adopt the same point of view as in [19], where precise
connections between well-posedness of PDE’s and martingale problems are settled, in
particular for a wide class of diffusion having not necessarily continuous nor elliptic
coefficients, provided that some Sobolev regularity holds. Of course, well-posedness
has to be understood “in average” with respect to L d-a.e. initial condition (here and
below, L d is Lebesgue measure on R

d). More precisely, a formalization akin to that
of DiPerna-Lions (see e.g. [3] for an account of the deterministic theory) is introduced,
the main objects being Stochastic Lagrangian Flows, i.e., Borel families (η(x))x∈Rd of
probability measures on C([0, T ];Rd), such that

i) η(x) solves (1.1), starting from x at t = 0, for L d-a.e. x ∈ R
d;

ii) the push-forward measures (et)♯
∫

η(x) dL d(x), where et is the evaluation map at
t ∈ [0, T ], are absolutely continuous with respect to L d, with uniformly bounded
densities.

Let us stress the fact that, as in the deterministic theory, uniqueness is understood
for flows, thus in a selection sense: we are not claiming well-posedness for L d-a.e.
initial datum. Moreover, we remark that, although the conditions above might read as
perfect analogues of the notion of Regular Lagrangian flows [3, Definition 13], Stochastic
Lagrangian Flows are not necessarily (neither expected to be) deterministic maps of
the initial point only; this is evident when σ = 0 above and any probability concentrated
on possibly non-unique solutions to the ODE give rise to a solution to the martingale
problem. Despite this discrepancy, such a theory provides rather efficient tools to
study stochastic differential equations under low regularity assumptions, in Euclidean
spaces, and together with [24], which deals with analogous issues from a PDE point of
view, has become the starting point for further developments, among which we quote
[28, 26, 18, 36, 37].

Before we proceed with a more detailed description of our results and techniques, let
us stress the fact that we are concerned uniquely with martingale problems, so we do not
address nor compare our results with those obtained for strong solutions of equations
under low regularity assumptions on the coefficients (see the seminal paper [32] and
[22, 15] for more recent results). Rigorous correspondences between martingale (or
weak) and strong solutions may be provided by the classical Yamada-Watanabe theorem
[34] (and extensions, see e.g. [31]). Moreover, the literature on Fokker-Planck equations
for general measures is so vast that we must limit ourselves to a comparison of our
results only with those which are strongly related and look similar in techniques and
mathematical contents: this is done in Section 3.3.

We proceed with a brief description of our contributions developed below, which can
be split into two parts, roughly corresponding to Section 2 (together with Appendix A)
and Section 3.

EJP 21 (2016), paper 22.
Page 2/41

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP4453
http://www.imstat.org/ejp/


Diffusion processes with weakly differentiable coefficients

In the first part, we investigate the problem of abstract equivalence between “Eu-
lerian” and “Lagrangian” descriptions for multidimensional diffusion processes, where
by the former we mean Fokker-Planck equations and the latter consists of solutions to
martingale problems. Although such a correspondence can not be considered novel and
many ideas can be traced back at least to [1] in the theory of ODE’s and DiPerna-Lions
flows, as well as [23] for càdlàg martingale problems, to our knowledge, we provide for
the first time general results valid under somewhat minimal integrability assumptions on
coefficients as well as on solutions. Moreover, we choose to state and prove our results
in such a way that they can be translated with a minimal effort to the case of general
metric measure spaces, a subject of further research.

In this part, the crucial result is Theorem 2.5, which provides a so-called “super-
position principle”, i.e., a (non-canonical) way to lift any probability-valued solution of
a Fokker-Planck equation to some solution of the corresponding martingale problem.
Here, “to lift” means that the 1-marginals of the process which solve the martingale
problem coincide with the given solution of the Fokker-Planck equation. Results in a
similar spirit appear quite often in the literature (see also the comments just below the
statement of Theorem 2.5) and could be traced back to L.C. Young’s theory of generalized
curves. Technically, one could start from already known results such as [19, Theorem
2.6] or [23, Theorem 4.9.17] to provide a slightly shorter proof, but we preferred to
postpone an almost self-contained derivation in Appendix A: indeed, even if we rely on
the results quoted above, it turns out that one has to settle non-trivial technical problems.
In particular, an underlying result is Theorem A.2, where we establish an estimate for
the modulus of continuity of solutions to martingale problems under somewhat minimal
integrability assumptions (based on a refined Lévy-type estimate); an alternative but less
effective approach, based on fractional Sobolev spaces, was developed in the author’s
PhD dissertation. Finally, we point out that we exploit a technique originally devel-
oped in [6, Theorem 7.1], in case of cylindrical approximations, to move from bounded
coefficients to possibly unbounded ones.

In the second part, we address the problem of well-posedness for Fokker-Planck
equations, providing sufficient conditions assuming Sobolev regularity of the coefficients.
We mainly focus on uniqueness issues, which are settled by means of energy or L2 esti-
mates, formally satisfied by any weak solution, under suitable bounds on the divergence
of the driving coefficients: such an approach could be hardly considered novel, as it was
already present in [16], for transport equations. However, our main contribution consists
in a novel and systematic approach to the estimate of the error terms arising in the
approximation procedure, to obtain so-called commutator inequalities: see Section 3.4
for a brief account of the method as well as complete proofs of our crucial resuts. It turns
out that, essentially by means of the same technique, we are able to deal with Sobolev
derivations (Lemma 3.5), Sobolev diffusions (Lemma 3.6) as well as with time-dependent
elliptic diffusions (Lemma 3.7). Such a technique, which ultimately consists in choosing a
Markov semigroup as a smoothing operator and relying on duality arguments as well as
an interpolation à la Bakry-Eméry, has also the advantage of being completely “Eulerian”
and “coordinate free”. Let us point out that such a technique was first developed in [6]
to deal with an analogue problem for derivations in metric measure spaces.

In conclusion, we state and prove two well-posedness results: Theorem 3.1, for
diffusions (1.1) having possibly degenerate coefficients, assuming first order Sobolev
regularity for the drift b and second order Sobolev regularity for the infinitesimal
covariance a = σσ∗ (together with uniform bounds on their divergence); Theorem 3.3,
for the bounded elliptic case, i.e. λ |v|2 ≤ a(v, v) ≤ Λ |v|2 for every v ∈ R

d, with t 7→ at
Lipschitz, where (roughly speaking) regularity assumptions can be reduced of one order
(i.e., no assumption on b, and first order Sobolev regularity for a). Both results entail
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Lagrangian counterparts about well-posedness of flows, see e.g. Corollary 3.2. We
regard such results as chief examples of the strength and versatility of our techniques
for commutator estimates, and we point out that other interesting results could arise in
different situations, such as perturbations of elliptic generators which enjoy some ultra-
(or hyper-) contractivity features, as well as the case of BV-regular coefficients, that we
do not address here.

Acknowledgments. The author has been partially supported by PRIN10-11 grant from
MIUR for the project Calculus of Variations and by Scuola Normale Superiore, during
the project Studio della buona positura di equazioni di evoluzione deterministiche e

stocastiche. The author is a member of the GNAMPA group of the Istituto Nazionale
di Alta Matematica (INdAM). The author thanks his PhD advisors L. Ambrosio and M.
Pratelli, for many discussions before and during the writing of this paper, as well as the
thesis referees D. Bakry and M. Röckner for their useful comments and constructive
criticism, which were taken into great account also while developing this work, in
particular with respect to comparison with existing literature. The author thanks an
anonymous referee for valuable comments, in particular with regards to details of the
proof of Theorem 2.5.

2 Diffusion processes and their equivalent descriptions

In this section, we study abstract correspondences between “Eulerian” and “La-
grangian” descriptions for multidimensional diffusion processes, in particular with
respect to well-posedness results. The main ideas involved are not entirely novel, but
they widely extend those from [19]: here we obtain results under minimal regularity and
integrability assumptions. As already remarked in the introduction, on a technical side,
a crucial tool is the superposition principle for diffusions, Theorem 2.5, whose proof is
deferred to Appendix A.

In Section 2.1, we introduce diffusion operators in R
d, Fokker-Planck equations,

martingale problems and flows; in Section 2.2 we study their equivalences.

2.1 Definitions and basic facts

Throughout, we use the following notation, for v, w ∈ R
d (d ≥ 1) and A, B ∈ R

d×d,

v · w =

d
∑

i=1

viwi, |v|2 = v · v, (v ⊗ w)i,j := viwj , for i, j ∈ {1, . . . d},

A : B =

d
∑

i,j=1

Ai,jBi,j , |A|2 = A : A, A(v, w) = A : (v ⊗ w),

and the following notation for differential calculus on (0, T )×R
d (T ∈ [0,∞)):

ft(·) = f(t, ·), ∂tf =
∂f

∂t
, ∂if =

∂f

∂xi
, ∂i,jf =

∂2f

∂xi∂xj
, for t ∈ [0, T ], i, j ∈ {1, . . . , d},

∇f = (∂if)
d
i=1, ∇2f = (∂i,jf)

d
i,j=1, thus b · ∇f =

d
∑

i=1

bi∂if and a : ∇2f =

d
∑

i,j=1

ai,j∂i,jf,

as well as the notation L d for Lebesgue measure on R
d and ∇∗ for the distributional

adjoint of ∇ (i.e., ∇∗b = − div b on vector fields).
We write M (Rd) for the space of signed (real-valued) Borel measures on R

d (with
finite total variation), M+(Rd) ⊆ M (Rd) for the cone of finite non-negative measures
and P(Rd) ⊆ M+(Rd) for the convex set of Borel probability measures on R

d. We say
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that a curve ν = (νt)t∈(0,T ) ⊆ M (Rd) is Borel if, for every Borel set A ⊆ R
d, the curve

t 7→ νt(A) is Borel; we let |ν| = (|νt|)t∈(0,T ) be the curve of total variation measures. A
curve ν = (νt)t∈(0,T ) ⊆ P(Rd) is narrowly continuous if, for every f ∈ Cb(R

d), t 7→
∫

fdηt
is continuous.

Most of the quantities that we consider below are integrated with respect to the
variable t ∈ (0, T ), with respect to L 1|[0,T ]: when ν = (νt)t∈(0,T ) ⊆ M (Rd) is a Borel

curve, we write |ν| dt for the Borel measure on (0, T )×R
d, A 7→ |ν| (A) =

∫ T

0
|νt| (At)dt,

for A ⊆ (0, T )×R
d Borel. For p, q ∈ [1,∞] and a Borel curve ν = (|νt|)t∈(0,T ) ⊆ M+(Rd),

the space Lp
tL

q
x(ν) is naturally defined and endowed with the Banach norm

‖f‖Lp
tL

q
x(ν)

:=
∥

∥

∥
‖f(t, x)‖Lq

x(νt)

∥

∥

∥

Lp
t (dt)

< ∞,

On the space C([0, T ];Rd) (naturally endowed with the sup norm and its Borel σ-
algebra), we let et : γ 7→ γt := γ(t) ∈ R

d be the evaluation map at t ∈ [0, T ]. The natural
filtration on C([0, T ];Rd) is the increasing family of σ-algebras F = (Ft)t∈[0,T ], with
Ft := σ(es : s ∈ [0, t]). Given η ∈ P(C([0, T ];Rd)), we always let ηt := (et)♯η be the
1-marginal law at t ∈ [0, T ]. Notice that the family η := (ηt)t∈[0,T ] ⊆ P(Rd) is narrowly
continuous.

We let throughout A = C1,2
b ((0, T ) ×R

d)) (respectively, Ac = C1,2
c ((0, T ) ×R

d))) be
the space of uniformly bounded (respectively, compactly supported) and continuously
differentiable functions, once with respect to t ∈ (0, T ) and twice with respect to x ∈ R

d,
with uniformly bounded derivatives (as usual, the superscript (1, 2) counts the number of
derivatives with respect to (t, x), other superscripts may appear, with natural meaning).
We prefer the “abstract” notation A and large parts of the theory can be developed
when “test” functions are replaced by other classes (e.g. as developed throughout the
monograph [23]). We endow A with the norm

‖f‖C1,2
t,x

= sup
(t,x)∈(0,T )×Rd

{

|f(t, x)|+ |∂tf(t, x)|+ |∇f(t, x)|+ |∇2f(t, x)|
}

.

Notice that, by uniform continuity, any f ∈ A extends to [0, T ]×R
d.

Throughout, we always let

a = (ai,j)di,j=1 : (0, T )×R
d → Sym+(R

d), b = (bi)di=1 : (0, T )×R
d → R

d, (2.1)

be Borel, where Sym+(R
d) is the space of symmetric, non-negative definite d×dmatrices.

Next, we define diffusion operators in R
d, measure-valued weak solutions to Fokker-

Planck equations and martingale problems on the interval [0, T ]. Most of these notions
are classical (for a brief historical account, see e.g. the introduction of [31]): for the sake
of clarity we provide definitions and prove some simple facts.

Definition 2.1 (diffusion operator). We let L(= L(a, b)) be the linear differential operator

A ∋ f 7→ Lf =
1

2
a : ∇2f + b · ∇f,

with values in Borel maps on (0, T )×R
d.

We write Ltf := (Lf)t, for t ∈ (0, T ). As usual, the coefficients b, a are referred as
the drift of L and the infinitesimal covariance of L. If a = 0, then L reduces to a linear
first-order operator, i.e. a derivation, and we say that we are in the deterministic case.

Given a diffusion operator L, we let the “Eulerian” description of evolution of parti-
cles “driven” by L consist of weak solutions of Fokker-Planck (or forward Kolmogorov)
equations, in duality with A . Although our main interest lies in solutions to FPE’s that
are narrowly continuous curves of probability measures, we introduce more general
measure valued solutions, as they are useful, e.g. the space of solutions becomes linear.
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Definition 2.2 (weak solutions of FPE’s). A Borel curve ν = (νt)t∈(0,T ) ⊆ M (Rd) is a

weak solution of the Fokker-Planck equation (FPE)

∂tνt = L∗
t νt, on (0, T )×R

d, (2.2)

if it holds
∫ T

0

∫

(|at|+ |bt|) d|νt|dt < ∞ (2.3)

and, for every f ∈ Ac, it holds

∫ T

0

∫

[∂tf(t, x) + Lf(t, x)] dνt(x) dt = 0. (2.4)

With the notation introduced above, condition (2.3) can be restated as a, b ∈ L1
t,x(|ν|).

In what follows, we frequently omit to specify the operator L, that we regard as fixed.

Remark 2.3. A density argument akin to [5, Lemma 8.1.2] allows for proving that

any solution ν = (νt)t∈(0,T ) ⊆ P(Rd) to (2.2) admits a unique narrowly continuous

representative ν̃ = (ν̃)t∈[0,T ], with νt = ν̃t, for L 1-a.e. t ∈ (0, T ). Thanks to this fact, we

may also say that the solution ν starts from ν0 (or that ν0 is the initial law of ν). Moreover,

for every f ∈ A , it holds

∫

ft2dν̃t2 −
∫

ft1dν̃t1 =

∫ t2

t1

∫

[∂tf + Ltf ] dνtdt, for t1, t2 ∈ [0, T ], t1 ≤ t2, (2.5)

Actually, one first proves that (2.5) holds for f ∈ Ac and then extends by density to
f ∈ A . Since this last step requires the introduction of useful cut-off functions, we sketch
it here, for later use. For R ≥ 1, we fix χR : Rd → [0, 1], a smooth function with χR(x) = 1,
for |x| ≤ R, χR(x) = 0, for |x| ≥ 2R, such that |∇χR| ≤ 4R−1 and

∣

∣∇2χR

∣

∣ ≤ 4R−2. Given
f ∈ A , we let fR = fχR ∈ Ac, for which we assume that (2.5) holds. The chain rule
entails

LtfR = (Ltf)χR + ftLtχR + at(∇ft,∇χR), for t ∈ (0, T ),

hence the bound

|LtfR| ≤ |Ltf |+ |ft| |LtχR|+ |at| |∇ft| |∇χR| ≤ C ‖ft‖C2
b
[|at|+ |bt|] .

Letting R → ∞, by dominated convergence, we extend the validity of (2.5).

Next, we introduce solutions of the martingale problem, following [31, Chapter 6]. In
particular, we argue directly on the “canonical” space Ω = C([0, T ];Rd), endowed with
the evaluation process et(γ) = γ(t), t ∈ [0, T ], and its natural filtration.

Definition 2.4 (solution of MP’s). A probability η ∈ P(C([0, T ];Rd)) is a solution of the

martingale problem (MP) (associated to L) if it holds
∫

[

∫ T

0

(|bt| ◦ et + |at| ◦ et) dt
]

dη < ∞ (2.6)

and, for every f ∈ A , the process

[0, T ] ∋ t 7→ ft ◦ et −
∫ t

0

[∂sfs + Lsf ] ◦ esds (2.7)

is a martingale with respect to the natural filtration on C([0, T ];Rd).
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Recall the notation ηt = (et)♯η ∈ P(Rd), t ∈ [0, T ], thus η0 is the initial law of η. As
for FPE’s, we usually omit to specify L, regarded as fixed. Let us remark that a density
argument shows that it makes no difference to require that (2.7) is a martingale only for
f ∈ Ac.

For any solution η of the MP, the integrability assumption (2.6), which is equivalent to
a, b ∈ L1(η), entails that the process [0, T ] ∋ t 7→

∫ t

0
[∂sfs + Lsf ] ◦ esds is well defined, up

to a η-negligible set, as continuous and progressively measurable process. In particular,
it belongs to L∞

loc(η, (Ft)t), i.e. there exists an increasing sequence of stopping times τn,
η-a.s. converging towards T , such that

∫ τn
0

[∂sfs + Lsf ] ◦ esds ∈ L∞(η), for every n ≥ 1:
it is sufficient to let

τn := T ∧ inf

{

t ∈ [0, T ] :

∫ t

0

(|bs| ◦ es + |as| ◦ es) ds ≥ n

}

.

We prefer throughout not to enlarge the filtration F with η negligible sets. This
causes virtually no harm in the exposition, e.g. a martingale M = (Mt)t∈[0,T ] must be
understood in the sense that it holds E[Mt|Fs] = Ms, η-a.s. for every s ≤ t (and the
η-negligible set could not belong to Fs).

When a = 0, solutions to the MP reduce to probability measures concentrated on
absolutely continuous solutions to the ordinary differential equation

d

dt
γt = bt(γt), for L

1-a.e. t ∈ (0, T ).

Indeed, arguing as in [19, Lemma 3.8], it turns out that the martingale (2.7) is constant.
More generally, the quadratic variation process of (2.7) is t 7→

∫ t

0
as(∇fs,∇fs)ds: this

plays a crucial role in estimates for the modulus of continuity of the canonical process,
see e.g. Corollary A.5.

By integration of (2.7) with respect to η (i.e., taking expectation) we deduce that
any solution η of the MP induces, by means of its 1-marginals (ηt)t∈(0,T ) a narrowly
continuous solution of the FPE (2.2). A converse statement is provided by the following
theorem, whose proof is deferred in Appendix A; in the next section, it plays a crucial
role to connect various well-posedness results for FPE’s and MP’s.

Theorem 2.5 (superposition principle). Let ν = (νt)t∈[0,T ] ⊆ P(Rd) be a narrowly

continuous solution of (2.2). Then, there exists η which is a solution to the MP (associated

to the same diffusion operator L) such that, for every t ∈ [0, T ], it holds ηt = νt.

In what follows, we refer to η above as a superposition solution for ν.
We refer to this result as the superposition principle for diffusions: the terminology

originates in the deterministic literature of ODE’s, see [1]: the solution η can be non-
trivially distributed among the possibly non-unique solutions to the ODE, thus introducing
some “randomness” in an otherwise deterministic setting; these probability measures are
nevertheless superpositions of deterministic paths. In the setting of diffusion operators,
solutions are already expected to be random, thus the term is justified only by extension,
although it would be interesting, at least in some cases, to be able to distinguish between
the two “sources of randomness”: this would require us to introduce concepts such as
strong and weak solutions.

As remarked in the introduction, Theorem 2.5 is a quite general result, only the
integrability condition (2.3) being required, which is some sense minimal to give sense to
FPE’s and MP’s (although one may slightly relax it by dealing with local martingale prob-
lems). Our result extends [19, Theorem 2.6], where only uniformly bounded coefficients
are considered; let us mention that results in a similar spirit – that of L.C. Young’s theory
of generalized curves – appear quite often in the literature, e.g. Echeverria’s theorem
[17, Theorem 4.9.17] (see [23] for extensions) in the framework of martingale problems
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in spaces of càdlàg paths, or Smirnov’s decomposition of 1-currents [30] (see also [27]
for an alternative approach, valid also in the case of metric currents). Our strategy
of proof extends that of [19, Theorem 2.6] and should be regarded as a (non-trivial)
counterpart of [5, §8.1 and §8.2] in the setting of multi-dimensional diffusions: although
rather natural, the derivation is not immediate from the available literature (both from
deterministic and stochastic), due to various technical points. The major difficulty in our
proof is to provide estimates for the modulus of continuity of the canonical process (a
problem that would appear also if we wanted to deduce it from Echeverria’s theorem).

Next, we investigate some stability properties enjoyed by solutions of MP’s and FPE’s,
with respect to suitable operations: their proofs are straightforward, so we omit them.

Clearly, all the definitions above can be given with respect to any interval [S, T ] in
place of [0, T ] (when it is not mentioned, we always refer to the interval [0, T ]): solutions
are then well-behaved with respect to the natural restriction map

C([0, T ];Rd) ∋ γ 7→ γ|[S,T ] = (γt)t∈[S,T ] ∈ C([S, T ];Rd).

Proposition 2.6. Let S, T ∈ R, with 0 ≤ S ≤ T , and let η ∈ P(C([0, T ];Rd)) be a

solution of the MP. Let ρ : C([0, T ];Rd) → [0,∞) be a uniformly bounded probability

density (with respect to η), measurable with respect to FS .

Then, the push-forward (ρη)|[S,T ] :=
(

|[S,T ]

)

♯
(ρη) ∈ P(C([S, T ];Rd) is a solution to

the MP associated to L on [S, T ].

The analogous property for FPE’s is obvious: if (νt)t∈(S,T ) is a solution of (2.2), its
restriction (νt)t∈(S,T ) is a solution of the FPE on (S, T )×R

d.
Solutions of FPE’s and MP’s are clearly stable with respect to convex combinations,

as a consequence of Fubini’s theorem.

Proposition 2.7. Let (Z,A, ν̄) be a probability space and let (ηz)z∈Z ⊆ P(C[0, T ];Rd)

be a Borel family, such that, for ν̄-a.e. z ∈ Z, ηz is a solution of the MP (associated to a

fixed diffusion operator L). Moreover, let

∫

Z

∫ T

0

∫

(|bt|+ |at|) dηzdtdν̄(z) < ∞ (2.8)

hold. Then, A 7→ η(A) =
∫

ηz(A) dν̄(z) is a solution of the MP (associated to L).
A somewhat converse result, for disintegration with respect to the initial law, is a

consequence of stability of martingales under conditional expectations with respect to
the σ-algebra F0.

Proposition 2.8. Let η be a solution of the MP and let (η(x))x∈Rd be a regular condi-

tional probability for η with respect to e0. Then, for η0-a.e. x ∈ R
d, η(x) is a solution of

the MP associated to L, with initial law δx.

We conclude this section by introducing a suitable notion of flow associated to a
diffusion operator, roughly consisting of Borel families of solutions of the MP, for a (large,
in some sense) set of initial conditions in R

d. Our aim is to study flows in the DiPerna-
Lions sense (as extended by Figalli to MP’s), thus, we introduce the concept of “regular
flow”, where regularity is usually some growth and/or absolute continuity condition
on the 1-marginals, providing a selection criterion, yielding uniqueness in otherwise
possibly ill-posed problems. To study this notion in sufficient generality, we formulate
such regularity conditions in terms of some set R := R[0,T ] of narrowly continuous
(probability curves that are) solutions of (2.2), which describe the “admissible” class of
dynamics. With this notation, we refer to any ν ∈ R as a R-regular solution of (2.2), and
we say that solution to the MP is R-regular if the curve of its 1-marginals is a R-regular
solution of (2.2). We also let R0 ⊆ P(Rd) be the set of all initial laws of the solutions
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belonging to R[0,T ], which we regard as the set of initial distribution of mass that we are
allowed to transport.

Definition 2.9 (R-MF). A Borel family (η(x))x∈Rd ⊆ P(C([0, T ];Rd)) is said to be a

R-regular martingale flow (R-MF) (associated to L) if the initial law of η(x) is δx, for

every x ∈ R
d, and, for every ν̄ ∈ R0, the probability measure

∫

η(x)dν̄(x) is a R-regular

solution to the MP (associated to L).
We remark that we are not imposing that, for every x ∈ R

d, η(x) is a R-regular
solution to the MP associated to L; the requirement is only in average, with respect to
every admissible initial density ν̄ ∈ R0. Of course, from this condition and Proposition
2.8 we obtain that η(x) is a solution of the MP, for ν̄-a.e. x ∈ R

d, for every ν̄ ∈ R0. For
example, if we let R[0,T ] be the set of all narrowly continuous solutions of (2.2), then we
operate no selection at all, and R-MF’s are Borel selections (η(x))x∈Rd of solutions of
the MP, with η(x) starting at δx, for every x ∈ R

d. The DiPerna-Lions theory is recovered
if we let R be the set of all narrowly continuous solutions νt = utL

d ∈ P(Rd) of (2.2)
with ‖u‖L∞

t,x
< ∞.

We state (without implicitly assuming) some further properties of R-regular solutions
of MP’s and FPE’s that are useful in the next section. The first property is a stability
property with respect to pointwise domination: for every ν̃, ν, narrowly continuous
solution of (2.2) such that, for some C ≥ 0,

ν̃t ≤ Cνt, for every t ∈ [0, T ] and ν ∈ R[0,T ], then ν̃ ∈ R[0,T ]. (2.9)

A useful property is stability with respect to convex combinations, i.e., for any ν̄ ∈ P(Z),

if, ν̄-a.e. z ∈ Z, ηz is R-regular and (2.8) holds, then

∫

ηzdν̄(z) is R-regular. (2.10)

A reasonable converse should be stability with respect to disintegration, but there are
several formulations: given any R-regular η, writing (η(x))x∈Rd for a regular conditional
probability with respect to e0, we may require that

for any ν̄ ∈ P(Rd) with ν̄ ≤ Cη0 for some C > 0, then

∫

η(x)ν̄(x) is R-regular, (2.11)

or alternatively that

for any ν̄ ∈ R0 with ν̄ ≪ η0, then

∫

η(x)ν̄(x) is R-regular, (2.12)

or even that

for η0-a.e. x ∈ R
d, η(x) is a R-regular solution to the MP, (2.13)

which is a rather strong condition: it formally implies the others whenever (2.10) holds
true. Let us also notice that it does not hold when we deal with the DiPerna-Lions class
introduced above, while (2.11) as well as (2.12) hold true. Moreover, an application of
Theorem 2.5 shows that condition (2.11) is equivalent to (2.9).

Due to technical reasons, we must introduce a slight extension of all the notions
above, taking into account a family (R[s,T ])s∈[0,T ], where each R[s,T ] consists of narrowly
continuous solutions of the FPE associated to L, on [s, T ]. Then, we let Rs be the set
of all 1-marginals at time s for solutions belonging to R[s,T ], and we refer to R-regular
solutions of FPE’s and MP’s on [s, T ], by natural extension of the definitions given on the
interval [0, T ]. We also assume that

for any r, s ∈ [0, T ], with r ≤ s, if ν ∈ R[r,T ], then (νt)t∈[s,T ] ∈ R[s,T ], (2.14)
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In particular, for any ν ∈ R[r,T ], one has νs ∈ Rs. We also accordingly extend the notion
of R-MF by considering a family (η(s, x))s∈[0,T ],x∈Rd , where (η(s, x))x∈Rd is a R-MF, for
every s ∈ [0, T ] (notice that we are not requiring joint measurability of (s, x) 7→ η(s, x)).

Remark 2.10 (Markov property). With the notation introduced above, we can state the

Markov property via Chapman-Kolmogorov equations, for a R-MF (η(s, x))s∈[0,T ],x∈Rd ,

η(r, x)t =

∫

η(s, y)t η(r, x)s(dy), ν̄-a.e. x ∈ R
d, for every ν̄ ∈ Rr (2.15)

for every r, s, t ∈ [0, T ] with r ≤ s ≤ t.

We obtain this property as a consequence of uniqueness, arguing e.g. as in [19,

Proposition 3.10]. However, let us remark that it could be be of independent interest to

study regular flows that are also Markov, extending e.g. the approach in [31, Chapter

12]. Finally, much less is known about the strong Markov property for DiPerna-Lions

flows, i.e., the validity of (2.15) with stopping times in place of deterministic times –

perhaps one has to introduce some notion of “regular” stopping times.

2.2 Equivalence between FPE’s, MP’s and flows

The superposition principle provided by Theorem 2.5 allows for establishing a neat
correspondence between “Eulerian” and “Lagrangian” descriptions, transferring well-
posedness results both ways. Such a connection is firmly established in the deterministic
case, see e.g. [2, §4], and in the stochastic setting has been investigated e.g. in [19,
§2], in case of a DiPerna-Lions theory, and in [17, §4], for the classical theory (i.e.,
not in a selection sense). In this section, we provide a complete equivalence between
well-posedness results for R-regular solutions of FPE’s and MP’s.

FPE’s ⇔ MP’s. Equivalence between existence result is straightforward, by lifting
any solution ν of the FPE, we obtain existence of solutions of the MP, so we focus on
uniqueness. A simple result which transfers “uniqueness” is the following one: the non
trivial implication ii) ⇒ i) follows from lifting two different solutions ν1, ν2 (see also [19,
Theorem 2.3]).

Lemma 2.11. Let ν̄ ∈ R0. Then, the following conditions are equivalent:

i) there exists at most one R-regular solution ν of (2.2) with ν0 = ν̄;

ii) if η1, η2 are R-regular solutions of the MP with η10 = η20 = ν̄, then η1t = η2t , for

t ∈ [0, T ].

A stronger uniqueness result, for processes, can be obtained arguing as in [31,
Theorem 6.2.3] or [19, Proposition 5.5]. Let us point out that here there appears a small
gap with the deterministic literature, since a different argument [2, Theorem 9] shows
uniqueness for MP’s assuming only (2.9), while we must consider also intermediate s ∈
[0, T ] (the argument employed therein uses some conditioning which may not preserve
the martingale property in general, but it does when the martingale is deterministic).

Lemma 2.12 (transfer of uniqueness). Let R = (R[s,T ])s∈[0,T ] satisfy (2.14) and (2.9),
with s in place of 0, for every s ∈ [0, T ]. Then, the following conditions are equivalent:

i) for every s ∈ [0, T ] and ν̄ ∈ Rs, there exists at most one ν ∈ R[s,T ] with νs = ν̄.

ii) for every s ∈ [0, T ], if η1, η2 are R-regular solutions of the MP on [s, T ], with η1s = η2s ,

then η
1 = η

2.

Proof. ii) ⇒ i). As in Lemma 2.11, for ν ∈ R[s,T ] with νs = ν̄ we consider a (R-regular)
superposition solution η: the uniqueness assumption entails that its 1-marginals are
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uniquely identified. i) ⇒ ii). The proof relies (implicitly) on the Markov property. Let
s ∈ [0, T ] and η

1, η2 be solutions of the MP on [s, T ], with η1s = η2s . To deduce that
η
1 = η

2, we show that, for every n ≥ 1, the n-marginals of η1 an η
2 coincide, i.e., for any

s ≤ t1 < . . . < tn ≤ T and A1, . . . , An ⊆ R
d Borel, it holds

η
1(et1 ∈ A1, . . . , etn ∈ An) = η

2(et1 ∈ A1, . . . , etn ∈ An). (2.16)

We argue by induction on n ≥ 1, the case n = 1 being a consequence of i) ⇒ ii) in
Lemma 2.11 and property (2.14), i.e. we use the fact that (ηit)t∈[s,T ] for i ∈ {1, 2} are
R-regular solutions, with η1s = η2s . To perform the step from n to n + 1, we argue as
follows. For fixed s ≤ t1 < . . . < tn < tn+1 ≤ T and A1, . . . , An, An+1 ⊆ R

d Borel sets, we
let

ρ :=

∏n
i=1 χAi

(eti)

η1(et1 ∈ A1, . . . , etn ∈ An)
: C([s, T ];Rd) → [0,∞),

i.e., the density of η1 conditioned with respect to
⋂n

i=1 {eti ∈ Ai}. We assume that the
denominator above is not null: otherwise there is nothing to prove. Notice also that
the inductive assumption gives (etn)♯(ρη

1) = (etn)♯(ρη
2), since it amounts to (2.16) with

An ∩B in place of An, for every B ⊆ R
d Borel.

For i ∈ {1, 2}, we let ηi
ρ be the push-forward of the measure ρηi with respect to the

natural restriction from [s, T ] to [tn, T ], and notice that both are R-regular solutions of
the MP on [tn, T ], with identical laws at tn,

(η1ρ)tn = (etn)♯(ρη
1) = (etn)♯(ρη

2) = (η2ρ)tn ,

by Lemma 2.6 and (2.14). By the implication i) ⇒ ii) in Lemma 2.11, we deduce in
particular that (η1ρ)tn+1

= (η2ρ)tn+1
, thus

η
1(et1 ∈ A1, . . . , etn ∈ An, etn+1

∈ An+1)

η1(et1 ∈ A1, . . . , etn ∈ An)
=

η
2(et1 ∈ A1, . . . , etn ∈ An, etn+1

∈ An+1)

η2(et1 ∈ A1, . . . , etn ∈ An)
,

hence we deduce the case n+ 1 of (2.16).

MP’s ⇔ flows. In this case, both notions are “Lagrangian”, thus there is no need
of the superposition principle here: most of the argument are just consequences of
convexity and disintegration of measures.

Although our actual well-posedness results are in the DiPerna-Lions case, where
uniqueness is understood up to m-a.e. equivalence, where m is some “reference” σ-finite
Borel measure on R

d (i.e., m = L d), for the sake of completeness, we provide a result
assuming (2.13).

Proposition 2.13. Consider the following conditions:

i) for every ν̄ ∈ R0, there exists a unique R-regular solution η
ν̄ to the MP, with initial

law ν̄, and the map ν̄ 7→ η
ν̄ is Borel;

ii) for every ν̄ ∈ R0 and R-MF’s (η1(x))x∈Rd , (η2(x))x∈Rd , one has η
1 = η

2, ν̄-a.e. on

R
d.

Then, it always holds i) ⇒ ii), while ii) ⇒ i) holds true provided that some R-MF exists

and both (2.10) and (2.13) hold.

Proof. i) ⇒ ii) is straightforward, since regular conditional probabilities are essentially
unique (a R-MF is in particular a regular conditional probability of

∫

η(x)dν̄(x) with
respect to e0).

To show the implication ii) ⇒ i), let ν̄ ∈ R0 and η
1, η2 be R-regular solutions of the

MP, with initial law ν̄. By disintegrating with respect to e0 and (2.13) we may assume
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that ν̄ = δx̄, for some x̄ ∈ R
d. Let (η(x))x∈Rd be a R-MF (here we use the existence

assumption) and define

η
i(x) := χ{x 6=x̄}η(x) + χ{x=x̄}η

i, for i ∈ {1, 2},

which are two different R-MF’s since, for any µ̄ ∈ R0, it holds, by (2.10),
∫

η
i(x)dµ̄(x) =

∫

{x 6=x̄}
η(x)dµ̄(x) + µ̄(x̄)ηi ∈ R.

The result above is rather unsatisfactory in terms of existence of R-MF’s, which
seems a delicate problem, in general. For example, existence may follow if one assumes
the validity of assumption i), (2.10), (2.13) and that R0 is a Borel of probability measures.
Then, for every x ∈ R

d such that δx ∈ R0, there exists a unique R-regular solution of
the MP, and by suitable definition for x not in such a set, we obtain a R-MF (which is
then unique in the sense above). An easier existence result follows if we assume the
domination condition

for some σ-finite measure m, it holds ν̄ ≪ m, for every ν̄ ∈ R0, (2.17)

as in the DiPerna-Lions case. We also assume that m is minimal in the sense that, for
every A ⊆ R

d Borel with m(A) > 0, there exists some ν̄ ∈ R0 with ν̄(A) > 0.

Proposition 2.14. Let (2.17) hold, and consider the following conditions:

i) for every ν̄ ∈ R0, there exists a unique R-regular solution η
ν̄ to the MP, with initial

law ν̄, and the map ν̄ 7→ η
ν̄ is Borel;

ii) there exists a R-MF’s (η(x))x∈Rd and R-MF’s are m-a.e. unique, i.e. if (η1(x))x∈Rd

and (η2(x))x∈Rd are R-MF’s, then η
1 = η

2, m-a.e. in R
d.

If (2.10) and (2.11) holds, then i) ⇒ ii). If (2.10) and (2.12) are satisfied, then ii) ⇒ i).

Proof. i) ⇒ ii). We have only to settle existence of some R-MF, as uniqueness is trivial.
For any probability ν̄ = um ∈ R0 we consider the unique R-regular solution of the MP
η
u with initial law ν̄ and a regular conditional probability with respect to e0, (ηu(x))x∈Rd .

Then, for any vm ∈ R0, it holds

η
u(x) = η

v(x), m-a.e. x ∈ X such that u(x) > 0 and v(x) > 0. (2.18)

Indeed, it is sufficient to show that, for every ε > 0 and every ρm probability density,
concentrated on {u > ε, v > ε}, with ρ uniformly bounded, it holds

∫

η
u(s)ρ(x)dm(x) =

∫

η
v(x)ρ(x)dm(x).

This, in turn, follows from uniqueness and (2.11): both members above are R-regular
solutions to the MP, with initial law ρm ≤ ε−1Cum.

Next, we notice that there must exists some um ∈ R0 equivalent to m, i.e., such that
u > 0 m-a.e. in R

d, since m is equivalent to the supremum of all the measures in R0

(appropriately rescaled). Then, we define η(x) := η
u(x), for x ∈ R

d. To conclude that
η(x) is a R-MF, we use (2.18): given any probability vm ∈ R0, it holds

∫

η(x)v(x)dm =

∫

η
v(x)v(x)dm = η

v.

To prove ii) ⇒ i), existence of R-regular solutions to the MP, given the existence of a
R-MF is trivial, so we focus on uniqueness. We let η̃, be a R-regular solution of the MP
with some initial law and show that it must coincide with the one induced by the (unique)
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R-MF (η(x))x∈Rd , i.e., η̃ =
∫

η(x)dη̃0(x). To this aim, we let um ∈ R0 be a probability
measure equivalent to m, and consider the measure

η :=
1

2
η̃ +

1

2

∫

η(x)u(x)dm(x),

which is aR-regular solution to theMP by (2.10), whose initial law is again equivalent to
m. By disintegration with respect to e0, we obtain a Borel family of probability measures
(η(x))x∈Rd , which, by (2.12), provides a R-MF and so by uniqueness it coincides with
η(x), for m-a.e. x ∈ R

d, yielding

∫

η(x)

[

1

2
dη̃0(x) +

1

2
u(x)dm(x)

]

=
1

2
η̃ +

1

2

∫

η(x)u(x)dm(x)

from which we conclude.

We end this section with some remarks on standard consequences of uniqueness: the
Markov property and stability with respect to approximation.

As in Remark 2.10, we consider R-regular flows with respect to a family (R[s,T ])s∈[0,T ]

such that (2.14) holds.

Proposition 2.15 (Markov property). Assume that uniqueness holds for R-regular MP’s,

in the sense that, for every s ∈ [0, T ], ν̄ ∈ Rs, there exists a unique R-regular solution

to the MP on [s, T ], with initial law ν̄. Then, for every R-MF (η(s, x))s∈[0,T ],x∈Rd , (2.15)
holds true, for every r, s, t ∈ [0, T ], with r ≤ s ≤ t.

The proof is straightforward from the following identity between measures on
C([s, T ];Rd):

(|[s,T ])♯

[
∫

η(r, x)ν̄(dx)

]

=

∫

η(s, y)

[
∫

η(r, x)sν̄(dx)

]

(dy),

which, in turn, holds true because both terms define R-regular solutions of the MP on
[s, T ], with initial law

∫

η(r, x)sν̄(dx): this is obvious for the right hand side, while for the
left hand side it is a consequence Proposition 2.6 and condition (2.14).

Another well understood, but rather technical, property that sometimes follows
from existence and uniqueness is a non-quantitative version of stability with respect to
approximations, which in this setting would read as follows.

Proposition 2.16 (stability). For n ≥ 1, let an, bn be Borel maps as in (2.1), let Ln :=

L(an, bn) and let ηn solve the MP associated to Ln. If

i) there exists a unique R-regular solution η of the MP associated to L = L(a, b) with
η0 = ν̄,

ii) it holds ηn0 → ν̄ narrowly, an → a and bn → b pointwise as n → ∞,

iii) for some convex, l.s.c functions Θ1, Θ2 as in Theorem A.2 it holds

lim sup
n→∞

∫ T

0

∫

Θ1 (|bnt |) + Θ2 (|ant |) dηnt dt ≤
∫ T

0

∫

Θ1 (|bnt |) + Θ2 (|ant |) dηtdt,

iv) every limit point in C([0, T ];P(Rd)) of (ηn)n≥1 belongs to R,

then η
n → η narrowly in P(C([0, T ];Rd)).

Notice that we do not require that ηn are R-regular: in general it does not even
make sense, since R is a class of solutions to the FPE associated to L, not to Ln. A
proof of the result above would not be difficult, but it would require us to combine some
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technical results, such as those established in Section A.2 and [3, Lemma 23] to establish
that (ηn) is a tight sequence and any limit point provides a R-regular solution to the
MP associated to L; the conclusion is then straightforward from uniqueness. If (2.17)
holds, then m-a.e. convergence in place of pointwise convergence of the coefficients is
sufficient, if we also restrict to solutions ηn whose marginals are absolutely continuous
(as done, e.g. in [19, Theorem 3.7]).

3 Well-posedness results

In this section, we state and prove two results (Theorem 3.1 and Theorem 3.3) about
existence and uniqueness for solutions of the FPE (2.2), belonging to suitable classes of
probability measures. In particular, as we are interested in the DiPerna-Lions theory, we
deal with absolutely continuous with respect to the d-dimensional Lebesgue measure,
µt = utL

d, satisfying some bounds on their density u : [0, T ] × R
d → R. Besides such

integrability conditions on the solution, we require (Sobolev) regularity assumptions on
the coefficients a, b.

In Section 3.1, we give some formal derivation of the energy estimates which even-
tually lead to well-posedness for FPE’s; in Section 3.2, we introduce the notation for
Sobolev spaces and related basic facts; in Section 3.3 we state our results and compare
their with some (related) existing literature; the technical heart of the matter is devel-
oped in Section 3.4, where crucial commutator inequalities are proved; in Section 3.5
we give a proof of main our results.

3.1 Energy estimates and renormalized solutions

As in the classical DiPerna-Lions theory (as well as in [19]), we rely on energy
inequalities satisfied by an absolutely continuous solution u = (ut)t∈[0,T ] of (2.2) (i.e.
µt = utL

d). Let us briefly sketch a formal derivation, where we assume all the quantities
involved being smooth (solutions and coefficients).

The main idea is to write the equation satisfied by t 7→
∫

β(ut(x))dx, where β : R 7→ R

is a smooth function (from a Lagrangian viewpoint, this amounts in choosing, as a test
function, an expression involving the density of the solution u itself). The chain rule
gives ∂tβ(u) = β′(u)L∗(u) and, by linearity, we consider separately the drift and diffusion
terms. Straightforward calculus gives

β′(u)(b ·∇)∗u = β′(u)∇∗(bu) = β′(u)u∇∗b+β′(u)b ·∇u = (b ·∇)∗β(u)+[β′(u)u− β(u)]∇∗b.

For the diffusion part, we first notice the identity (a : ∇2)∗u = −∇∗(a · ∇u)+∇∗((∇∗a)u),
where ∇∗a is the vector field (∇∗a)i = −∑d

j=1 ∂jai,j , for i ∈ {1, . . . , d}. Therefore, we
obtain

β′(u)(a : ∇2)∗u =

=− β′(u)∇∗(a · ∇u) + β′(u)∇∗((∇∗a)u)

=− β′(u)∇∗(a · ∇u) +∇∗((∇∗a)β(u)) + [β′(u)u− β(u)] (∇∗)2a

=−∇∗(a · ∇β(u))− β′′(u)a(∇u,∇u) +∇∗((∇∗a)β(u)) + [β′(u)u− β(u)] (∇∗)2a

=(a : ∇2)∗β(u)− β′′(u)a(∇u,∇u) + [β′(u)u− β(u)] (∇∗)2a

where (∇∗)2a = ∇∗(∇∗a) =
∑

i,j ∂
2
i,jai,j . Summing up, we have the identity

∂tβ(u) = L∗(β(u))− β′′(u)

2
a(∇u,∇u)− [β′(u)u− β(u)] (divL) , (3.1)

where divL := −∇∗b− (∇∗)2a/2. By integrating over Rd, (formally L1 = 0), we deduce

∂t

∫

β(u)dL d = −
∫

β′′(u)

2
a(∇u,∇u)dL d −

∫

[β′(u)u− β(u)] (divL) dL d.
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If β is convex with β(0) = 0, so β′′(z) ≥ 0 and β′(z)z − β(z) ≥ 0, for z ∈ R, we obtain

∂t

∫

β(u)dL d ≤
∫

[β′(u)u− β(u)] (divL)− dL d, (3.2)

which is the key inequality we employ to show existence as well as uniqueness, for
suitable choices of β. For example, letting β(z) = |z|+, we deduce that if u0 ≥ 0, then
ut ≥ 0 for t ∈ [0, T ] (thus, for simplicity, we assume that ut ≥ 0 in what follows). In
particular, to deduce uniqueness for solutions in L∞

t (Lr
x) (for some r > 1), we show that

the difference between any solutions u, v satisfies (3.2), with β(z) = |z|r, and Gronwall
lemma entails a uniform bound with respect to t ∈ (0, T ) for ‖ut − vt‖Lr

x
. Let us also

notice that, with the choice β(z) = |z|2, keeping track of the non-negative terms dropped
above, we would obtain a bound for the “Sobolev energy”

∫

Rd at(∇ut,∇ut)dL
ddt and,

for β(z) = |z|r, with r > 2, of the energy

r(r − 1)

∫ T

0

∫

Rd

ur−2
t at(∇ut,∇ut)dL

ddt =
r(r − 1)

(r/2− 1)2

∫ T

0

∫

Rd

at(∇u
r/2
t ,∇u

r/2
t )dL ddt

In the elliptic case, i.e. if there exists some constant λ > 0 with a(v, v) ≥ λ |v|2 for
every v ∈ R

d, uniformly in (0, T )×R
d, we would deduce that any weak solution u actually

belongs to the Sobolev space L2
t (W

1,2
x ). Moreover, if we have no bounds on divL but

only on (∇∗)2a, and b ∈ L1
t (L

∞
x ), we may still deduce some bound with respect to the

energy z 7→ |z|2,

2

∫

utbt · ∇utdL
d ≤ λ

2

∫

|∇ut|2dL d +
4 ‖bt‖∞

λ

∫

|ut|2dL d,

so that

∂t

∫

|ut|2dL d ≤
∫

|ut|2
[

(

(∇∗)2at
)+

+
4 ‖bt‖∞

λ

]

dL d − λ

2

∫

|∇ut|2dL d,

and again Grownwall inequality leads to a bound for L2
x, uniform in t ∈ [0, T ]. Similarly,

if r > 2, we use the inequality 2ab ≤ a2 + b2 thus, for every ε > 0, the term r
∫

ur−1
t bt ·

∇utdL
d (assume for simplicity that u is non-negative) is estimated with

r

r/2− 1

∫

u
r/2
t bt · ∇u

r/2
t dL d ≤ ε

2

∫

|∇u
r/2
t |2dL d +

r2 ‖bt‖∞
2(r/2− 1)2ε

∫

|ut|rdL d,

and letting ε = λ, we may conclude again by a Grownall argument that

sup
t∈[0,T ]

‖ut‖Lr
x
≤ ‖u0‖Lr

x
exp

{(

1− 1

r

)

∥

∥((∇∗)2a)+
∥

∥

L1
tL

∞

x

+
r

2(r/2− 1)2λ
‖b‖L1

tL
∞

x

}

(3.3)

Let us finally remark that if we integrate (3.1) with respect to some function f ∈ A,
with f ≥ 0 (instead of f = 1), we would deduce

∂t

∫

fβ(u)dL d ≤
∫

(∂t + Lf)β(u)dL d +

∫

f [β′(u)u− β(u)] (divL)− dL d. (3.4)

The inequality above is so useful that weak solutions u of the FPE, which also
satisfy (3.4) for every f ∈ A, f ≥ 0, for (many) smooth convex functions β, are called
renormalized solutions [19, Definition 4.9]. There are abstract results connecting well-
posedness for FPE’s and the fact that every weak solution is renormalized, e.g. [19,
Lemma 4.10] (but see also [12] for a somewhat converse result, in the deterministic
framework); here, for brevity, we limit ourselves to a direct proof of uniqueness of FPE’s
from the validity of (3.1), e.g. with the special choice β(z) = |z|r.

EJP 21 (2016), paper 22.
Page 15/41

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP4453
http://www.imstat.org/ejp/


Diffusion processes with weakly differentiable coefficients

3.2 Sobolev spaces

Before we state and prove our main results, we briefly introduce Sobolev spaces
associated to the operators ∂t and L, together with some useful facts; we use throughout
a compact notation extending that in Section 2.1.

For p, q ∈ [1,∞], the space W 1,p
t (Lq

x) is defined as the space of functions u ∈ Lp
t (L

q
x)

such that the distributional derivative ∂tu is represented by a (unique) g ∈ Lp
t (L

q
x),

∫ T

0

∫

Rd

(∂tf)utdL
ddt = −

∫ T

0

∫

Rd

ftgtdL
ddt, for every f ∈ Ac.

We endow W 1,p
t (Lq

x) with the Banach norm ‖u‖Lp
tL

q
x
+ ‖∂tu‖Lp

tL
q
x
. A standard mollification

argument, with respect to the variable t ∈ (0, 1), gives that A is dense in W 1,p
t (Lq

x), for
p, q < ∞ (for a proof of this and the following results, we refer e.g. to [29, §III.1]). In
particular, the chain rule for ∂t extends to W 1,p

t (Lq
x), thus

∂t(fβ(u)) = (∂tf)β(u) + fβ′(u)∂tu, for every f ∈ A, u ∈ W 1,p
t (Lq

x), β ∈ C1
b (R).

Another straightforward consequence of the density of A is the fact that any u ∈
W 1,p

t (Lq
x) enjoys an absolutely continuous representative, i.e. there exists some ũ ∈

ACp([0, T ];Lq(L d)) such that ũt = ut, for L 1-a.e. t ∈ (0, T ). In particular the map:
T0(u) := ũ0 (trace at 0) is linear and continuous from W 1,p

t (Lq
x) to Lq

x. Moreover, t 7→ ũt

is strongly differentiable at L 1-a.e. t ∈ (0, T ) and it holds d
dt ũ = ∂tu.

We associate to the diffusion operator L some “Sobolev spaces”. An important role in
our deductions is played byDp(L) (for p ∈ [1,∞)), defined as the abstract completion ofA
with respect to the norm ‖f‖Dp(L) := ‖f‖L1

tL
p
x
+‖Lf‖L1

tL
p
x
, which is well defined whenever

a, b ∈ L1
tL

p
x (actually, a more consistent notation for Dp(L) would be L1

t (D
p(Lt))). Let

us remark however that, without further regularity assumptions, the extended operator
Dp(L) ∋ f 7→ Lf ∈ L1

t (L
p
x)may be multi-valued, but the assumptions on L that we impose

in our results entail that the extension is single-valued.

A useful fact is the following: if f ∈ W 1,1
t (Lp

x) ∩ Dp(L), then one can provide a
sequence (fn)n≥1 ⊆ A converging towards f both in W 1,1

t (Lp
x) and Dp(L). Indeed, it is

sufficient to consider first a sequence (gn)n≥1 ⊆ A converging towards f in Dp(L), let ρ
be a smooth probability density on R, and consider the approximation gn,m := gn ∗ ρm
(where we let ρm(t) = mρ(mt), t ∈ R, and we carefully extend gn to a continuous function
outside the set [0, T ] × R

d). For (n,m) → ∞, the sequence gn,m converges towards f

in Dp(L), because g 7→ g ∗ ρm is a contraction in Dp(L), as convolution with respect to
t and the operator L commute; for fixed m ≥ 1, the sequence gn,m converges towards
f ∗ ρm, because g 7→ g ∗ ρm is continuous from L1

t (L
p
x) into W 1,1

t (Lp
x), with norm smaller

than ‖ρm‖∞. Moreover, as m → ∞, f ∗ ρm converges towards f in W 1,1
t (Lp

x), since
f ∈ W 1,1

t (Lp
x) (this is exactly the standard mollification argument providing density of A

in W 1,1
t (Lp

x)). By a diagonal argument, we finally extract a sequence (fn)n≥1 as required.
As a consequence, if u ∈ L∞

t Lr
x (r > 1) is a narrowly continuous solution of (2.2), with a,

b ∈ L1
tL

p
x, then the weak formulation (2.4) extends to f ∈ W 1,1

t (Lr′

x ) ∩Dr′(L):
∫ T

0

∫

[(∂t + Lt)f ]utdL
ddt =

∫

fTuT dL
d −

∫

f0u0dL
d, (3.5)

where by fT ∈ Lr′

x and f0 ∈ Lr′

x we mean the continuous representative of f evaluated at
T and 0.

Similarly, we introduce the space Dp(L, a∇⊗∇) as the abstract completion of A with
respect to the norm ‖|f |+ |Lf |+ a(∇f,∇f)‖L1

tL
p
x
. Clearly, this could be a space smaller
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than Dp(L) and it is useful because the following chain rule holds, for Dp(L, a∇⊗∇),
and γ ∈ C2(R), with γ′ and γ′′ uniformly bounded:

L(γ(u)) = γ′(u)L(u) + γ′′(u)a(∇u,∇u).

As in the previous case, it might be that f 7→ L(f) and f 7→ a(∇f,∇f) are not single-
valued, but the identity above holds true with the natural interpretation (and in our
results we introduce assumptions ensuring that these are well-defined functions).

We always consider the divergence divL be defined in the sense of distributions, i.e.,
as the linear operator Ac ∋ f 7→

∫ T

0

∫

LtfdL
ddt (provided that a, b are locally integrable).

We say that divL ∈ L1
t (L

p
x) if there exists a (necessarily unique) g ∈ L1

t (L
p
x) such that

∫

(0,T )×Rd

LfdL 1+d = −
∫

(0,T )×Rd

fgdL 1+d, for every f ∈ Ac.

Similarly, divL− ∈ L1
t (L

p
x) if, for some g ∈ L1

t (L
p
x), the inequality ≤ in place of equality

above holds, for every f ∈ A, with f ≥ 0. If divL− ∈ L1
t (L

p
x), then we can prove the

following inequality, for u ∈ D1,p(L, a∇ ⊗ ∇), and β ∈ C3(R) convex, with bounded
derivatives as well as β′(z)z − β(z) bounded:

∫

(0,T )×Rd

L(β′(u))udL 1+d ≤
∫

(0,T )×Rd

[β′(u)u− β(u)] divL−dL 1+d. (3.6)

Indeed, let ρ be a smooth convolution kernel on R
d and consider the diffusion operator

Lm with smooth coefficients a ∗ ρm and b ∗ ρm (where we let ρm(x) = mdρ(mx)). If we
also assume u ∈ A, then the inequality above holds true by the derivation as in Section
3.1 above. The general case follows by approximation, letting first m → ∞ and then
choosing un ∈ A converging towards u in u ∈ Dp(L, a∇⊗∇).

Besides these spaces associated with L, let us recall some features of standard
Sobolev spaces and the smoothing properties of the standard heat semigroup (Pα)α≥0

on R
d. For p ∈ [1,∞], we consider spaces

W 1,p
x := {f ∈ Lp

x : ∇f ∈ Lp
x} , W 2,p

x =
{

f ∈ W 1,p
x : ∇2f ∈ Lp

x

}

,

endowed with the usual norms.
A crucial fact for our deductions are quantitative inequalities for the smoothing effect

of the heat semigroup (Pα)α≥0, which can be deduced by straightforward computations
from the heat kernel in R

d. Of course, Pα is a contraction semigroup in W 1,p
x as well as

W 2,p
x ; moreover, integration by parts and Hölder inequality give

√
α ‖∇P

αf‖Lp
x
≤ c ‖f‖Lp

x
for every α ∈ (0,+∞), (3.7)

with c depending on p ∈ [1,∞] only (possibly also on the dimension d). Such inequalities,
called Lp-Γ inequalities in [6], play a fundamental role for our approach to continuity
equations in metric measure spaces: their validity in abstract setups as well as in
Riemannian manifolds follow e.g. from uniform lower bounds on the Ricci curvature.

Arguing similarly, it holds for p ∈ [1,∞], i, j ∈ {1, . . . d},

α
∥

∥∂2
i,jP

αf
∥

∥

Lp
x
≤ c ‖f‖Lp

x
for every α ∈ (0,∞). (3.8)

Let us also notice that, as α ↓ 0, the left hand side in the two inequalities above are
infinitesimal, for a standard density and uniform boundedness argument applies.

Finally, another property that we occasionally use below is that, for p ∈ (1,∞), one
has W 2,p

x = {f ∈ Lp
x : ∆f ∈ Lp

x}, because of the Lp
x-boundedness of the second order

Riesz transform f 7→ ∇2∆−1f , see e.g. [20].
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3.3 Well-posedness: statement of results

We are in a position to state our main well-posedness results, which we split in two
theorems: the first one deals with possibly degenerate diffusions, with Sobolev regular
coefficients.

Theorem 3.1 (degenerate case). Let p ∈ (1,∞], r ≥ 2p/(p − 1), and a, b be as in (2.1),
with

a ∈ L1
t (W

2,p
x ), b ∈ L1

t (W
1,p
x ), and divL− ∈ L1

tL
∞
x .

Then, for every probability density ū ∈ Lr
x, there exists a unique narrowly continuous

solution u = (ut)t∈[0,T ] of the FPE (2.2) with u0 = ū and u ∈ L∞
t (Lr

x).

Actually, the technique employed provides (existence and) uniqueness even without
the assumption that ū is a probability density. As a straightforward consequence of
the result above and the equivalence established in the previous section, we have in
particular the following

Corollary 3.2. Let p, r, a, b be as in the theorem above, let R be the class of narrowly

continuous solutions u of the FPE (2.2), with u ∈ L∞
t (Lr

x). Then, there exists a unique R-

regular martingale flow associated to L(a, b). Moreover, such flow satisfies the Chapman-

Kolmogorov equations (2.15).

Our second statement deals with non-degenerate (elliptic) diffusions, i.e. if it holds,
for some λ > 0, a(v, v) ≥ λ |v|2, for every v ∈ R

d, a.e. in (0, T )×R
d. In such a case, we

can remove one order of Sobolev regularity assumption from both coefficients, but we
introduce Lipschitz regularity for t 7→ at.

Theorem 3.3 (bounded elliptic case). Let p ∈ [2,∞], r ≥ 2p/(p− 2) ∈ [2,∞], and a, b be

as in (2.1), with a ∈ L∞
t (L∞

x ) and elliptic,

∂ta ∈ L∞
t,x, a ∈ L1

t (W
1,p
x ), b ∈ L1

tL
∞
x and ((∇∗)2a)+ ∈ L1

t (L
∞
x ).

Then, for every probability density ū ∈ Lr
x, there exists a unique narrowly continuous

solution u = (ut)t∈[0,T ] of the FPE (2.2) with u0 = ū and u ∈ L∞
t (Lr

x).

Also in this case, as a consequence of the equivalence between Eulerian and La-
grangian descriptions, we obtain well-posedness for R-regular flows: we omit the formal
statement, which reads exactly as Corollary 3.2.

Remark 3.4 (comparison with existing literature). The literature on the subject of

Fokker-Planck equations and martingale problems is so vast and growing that we limit

ourselves to a direct comparison only with very closely related and recent works. In

particular, we stress some aspects which are different from the results appearing in [19],

[24].

In [24], the approach is mostly Eulerian, dealing with FPE’s in divergence form

∂tut +∇∗(utb) =
1

2
∇∗(σσ∗∇ut), on (0, T )×R

d,

with σ : Rd → R
d×k. The main result in [24] provides existence and uniqueness for the

equation above, provided that

b ∈ L1
t (W

1,1
loc ),

b

1 + |x| ∈ L1
t (L

1
x + L∞

x ), ∇∗b ∈ L1
t (L

∞
x )

σ ∈ L2
t (W

1,2
loc ),

σ

1 + |x| ∈ L2
t (L

2
x + L∞

x ).

To compare these assumptions, we must notice as in [24, §5.1] that with our notation

a = σσ∗ and the drift is actually b − 1
2∇∗a. In view of this correspondence, it might
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seem that Theorem 3.1 follows from their weaker assumptions: this follows in principle

from a result of the type σ := a1/2 ∈ L2
t (W

1,2
loc ), if a ∈ L1

t (W
2,2
loc ), extending the well-

known result [31, Lemma 3.2.3] that a1/2 is Lipschitz whenever a ∈ C2. However, their

conclusions are in fact weaker, and actually insufficient in order to obtain correspondent

Lagrangian results: they prove existence and uniqueness in the class of narrowly

continuous probability densities u ∈ L∞
t (L∞

x ) such that σ∇u ∈ L2
t (L

2
x): the latter (weak)

regularity condition then prevents from a straightforward application of the results in

Section 2.2. In conclusion, our result has (apparently) stronger regularity conditions

on the coefficients, but draws stronger results and leads directly to well-posedness of

regular martingale problems and flows.

The problem arising from the condition σ∇u ∈ L2
t (L

2
x), which prevents a Lagrangian

theory, is well understood in [19], where much effort is put in showing, for the bounded

elliptic case, uniqueness in the class of narrowly continuous probability densities u ∈
L2
t (L

2
x) [19, Theorem 4.3]. When compared with the assumptions of Theorem 3.3, an

evident difference is that we require a first order condition a ∈ L1
t (W

1,p
x ), while no such

requirement appear in [19, Theorem 1.3], besides (with our notation) ∇∗a, divL− ∈
L∞
t (L∞

x ). The technique we employ – approximation by the semigroup associated to the

Dirichlet form f 7→
∫

a(∇f,∇f) – is the same as Figalli’s one, and in the elliptic case

the novelty is more conceptual, providing a much cleaner derivation of commutator

estimates, essentially by the same abstract arguments in the elliptic and the degenerate

case. However, in the possibly degenerate case, our results are stronger, compare e.g.

with [19, Theorem 1.4], as we allow for much more general diffusion coefficients, and

possibly unbounded terms – obtaining as well Lagrangian counterparts.

In more recent years, further developments along these research lines appeared

in the literature, as well as different techniques (e.g. Crippa-DeLellis’ technique [14]

was extended to SDE’s in [35, 28]): of course, novelties and improvements appear in

these developments, but to the author’s knowledge that they address different aspects

(such as strong solutions, equations with jumps, quantitative estimates, etc.) and there

is no substantial overlap with our two results above. On the other side, thanks to

the superposition principle (Theorem 2.5), it may be possible to extend such results

and prove well-posedness for Fokker-Planck equations with unbounded coefficients

starting from correspondent Lagrangian results (we thank the anonymous referee for

this comment).

We also point out that the theory of measure-valued solutions (i.e., not necessarily

absolutely continuous) Fokker-Planck equations, at least in the elliptic case, is well-

developed and some results may be compared with ours. For example, [8, Proposition

3.1] entails uniqueness if, for some p ≥ d+ 2, a ∈ L∞
t H1,p

x is elliptic, b ∈ Lp
tL

p
x and t 7→ at

is Hölder continuous (locally uniformly in x). It is immediate to see that there is no

inclusion between such class of coefficients and that of Theorem 3.3, and in particular

the hypothesis of our result are dimension-free (indeed, we are specializing a theory

tailored for infinite dimensional spaces). However, the uniqueness class is smaller in

our case, since we restrict from the very beginning to absolutely continuous solutions,

which is nevertheless sufficient to entail a reasonable Lagrangian theory. Let us point

out some recent developments [7, 9, 11] and in particular [10] which also contains a

survey of known results and methods for the degenerate case. Finally, we point out the

monograph in preparation [33], which contains a detailed study and a vast bibliography

on the subject.

Let us briefly discuss some features of the two theorems above and their proof.
First, existence of weak solutions in the hypothesis stated above is a much easier task
than uniqueness: for example, one can argue by approximation via convolution of the
coefficients (and the initial law) with a smooth kernel, so that the estimates on the
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coefficients are preserved, and one gains enough regularity (e.g. C2 coefficients) so
existence is available even at the Lagrangian level. Then, we have enough regularity so
that the deductions which lead to inequality (3.1) apply and by a Gronwall argument we
deduce a bound in L∞

t (Lr
x), in terms of divL− only, and uniform in the approximation

(in the elliptic case, we argue with (3.3) instead). By extracting a weakly convergent
sequence and by strong convergence of the approximations of the coefficients, we deduce
that any weak limit point in L∞

t (Lr
x) is a weak solution to the FPE (2.2). In the elliptic

case, we deduce as well existence for a solution u ∈ L∞
t (Lr

x)∩L2
t (W

1,2
x ). Let us also recall

the approach [19, Theorem 4.3], which is completely Eulerian (i.e., it relies on PDE’s
techniques only), and has the advantage of yielding easily uniqueness, for solutions
belonging to such a (smaller) space, which does not allow for applications of the theory
developed in Section 2.2.

In order to establish uniqueness of solutions, our aim is to rigorously establish (3.4)
and (3.3), for (any difference of) solutions u ∈ L∞

t (Lr
x). As already remarked, the main

problem is related to the regularity of u, in order to employ the standard calculus
rules. Our strategy relies the well-known smoothing scheme, which dates back at
least to [16]: for α ∈ (0, 1) we introduce some linear operator Pα, acting on functions
defined on (0, T )×R

d such that, by defining uα := P
αu, we obtain an approximation of u

sufficiently regular to rigorously obtain (3.4). Of course, the price that we pay is that uα,
in general, is not a solution of (2.2) and one has to carefully estimate the “error terms”
thus appearing: our novel contribution indeed provides a systematic approach to such
inequalities.

To be more precise, in the cases that we consider, the operators (Pα)α≥0 form a
strongly-continuous Markov symmetric semigroup on L2((0, T )×R

d,L d+1), so that, in
particular, Pα preserves all Lp

tL
q
x spaces, for p, q ∈ [1,∞]. If we also prove that Pα maps

W 1,1
t (Lr′) ∩Dr′(L) into itself, we may write, for f belonging to such space,

∫ T

0

∫

[(∂t + Lt)f ]u
α
t dL

ddt =

∫

fα
T uT dL

d−
∫

fα
0 u0dL

d+

∫ T

0

∫

u [Pα, (∂t + Lt)] fdL
ddt,

(3.9)
since the weak formulation (3.5) extends by density of A in W 1,1

t (Lr′) ∩ Dr′(L). The
commutator term appears as an algebraic way to highlight the identity as an equation
for uα, and all the issue is to show that it is infinitesimal as α ↓ 0.

Next, we prove that Pα has a “smoothing effect”, in a sense that we can choose β′(uα)

as a test function, and apply the chain rule with respect to ∂t and (3.6), so

∂t

∫

β(uα
t )dL

d ≤
∫

Rd

[β′(uα
t )u

α
t − β(uα

t )] divL−
t dL

d +

∫

Rd

ut [P
α, (∂t + Lt)]β

′(uα
t )dL

d,

L 1-a.e. t ∈ (0, T ) and in the sense of distributions on (0, T ). Finally, we let α ↓ 0, and by
strong convergence of uα towards u in L1

t (L
r
x), we are able to conclude, provided

∫

Rd

ut [P
α, (∂t + Lt)]β

′(uα
t )dL

d ≤ ε(α) → 0, in L1(0, T ) as α ↓ 0.

3.4 Commutator inequalities

In this section, we estimate the “error terms” involving the commutator between P
α

and ∂t + L. Our general strategy is a further development of that first introduced in [6],
in the framework of continuity equations in metric measure spaces, and it is completely
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“coordinate free” and depends on an interpolation argument à la Bakry-Émery, namely
∫

u [Pα, ∂t + L] fdL d =

∫

[Pαu(∂t + L)f − u(∂t + L)Pαf ] dL d

=

∫ ∫ α

0

d

ds

[

(Psu)(∂t + L)Pα−sf
]

dsdL d

=

∫ α

0

∫

P
su [∆, ∂t + L]Pα−sfdL dds,

where we let ∆ be the generator of (Pα)α≥0. It turns out that the commutator between
∆ and ∂t + L, reflecting the “relative regularity” between the chosen approximation and
the target diffusion, depends upon natural quantities such as Sobolev regularity of the
coefficients.

In principle, this method provides very general results but, for the ease of exposition,
we address separately only three cases, which are of particular interest: the case of a
commutator between the Euclidean heat semigroup and a Sobolev derivation, which is a
specialization of [6, Lemma 5.8] in the Euclidean case; that of a commutator between
the Euclidean heat semigroup and a second-order Sobolev diffusion, which is apparently
novel, that we settle by performing a “second order” interpolation argument; and finally
that of the commutator between ∂t and a non-degenerate diffusion acting only the
variable x ∈ R

d, with t 7→ at Lipschitz, which provides an alternative approach to Step 2
in [19, Theorem 4.3].

We let throughout q ∈ (1,∞], r, s ∈ (1,∞), with q−1 + r−1 + s−1 = 1 (one can deal
with endpoint cases at the price of more delicate approximations).

Lemma 3.5. Let b ∈ L1
t (W

1,q
x ), u ∈ L∞

t (Lr
x) and f ∈ L∞

x (W 1,s
x ). It holds

∫ T

0

∣

∣

∣

∣

∫

ut[P
α, bt · ∇]ftdL

d

∣

∣

∣

∣

dt ≤ c ‖∇b‖L1
tL

q
x
‖u‖L∞

t Lr
x
‖f‖L∞

t Ls
x
, for α ∈ (0, 1), (3.10)

where c ∈ R is some constant (depending on the dimension d only).

Actually, the proof below shows that ∇b can be replaced with the symmetric part of
the derivative (also called deformation) Dsymb := (∇b+ (∇b)τ )/2, where τ denotes the
transpose operator.

As a consequence of (3.10), the commutator operator L∞
x (W 1,s

x ) ∋ f 7→ [Pα, b · ∇]f ∈
L1
tL

r′

x extends to a linear continuous operator on L∞
t Ls

x. Moreover, a standard density
and uniform boundedness argument entails that, for f ∈ L∞

t Ls
x,

[Pα, b · ∇]f → 0, strongly in L1
t (L

r′

x ) as α ↓ 0.

Proof. It is sufficient to argue assuming that b, u and f are sufficiently smooth, e.g.,
u ∈ Ac, f ∈ A, as well as bi ∈ A, for i ∈ {1, . . . , d}, as the general inequality will follow
by approximation (e.g. by convolution with a smooth kernel). Moreover, we argue at
t ∈ (0, T ) fixed and then integrate over the interval (0, T ): thus we omit to specify
t ∈ (0, T ) in what follows.

The curve s 7→ F (s) =
∫

usb · ∇fα−sdL d is then C1
b (0, α), with

d

ds
F (s) =

∫

(∆us)b · ∇fα−s − usb · ∇(∆fα−s)dL d,

By straightforward integration by parts, we obtain the following alternative expression
for the right hand side above:

d

ds
F (s) =

∫

[(

(∇b+ (∇b)τ )∇us,∇fα−s
)

+ (∇∗b)
(

∇us · ∇fα−s − us∆fα−s
)]

dL d.
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If ∇∗b = 0, the conclusion is immediate, since we may estimate |F (α)− F (0)| ≤
∫ α

0

∣

∣

d
dsF (s)

∣

∣ ds and, by Hölder inequality,

∣

∣

∣

∣

∫

u[Pα, b · ∇]fdL d

∣

∣

∣

∣

≤ 2

∫ α

0

‖Dsymb‖Lq
x
‖∇us‖Lr

x

∥

∥∇fα−s
∥

∥

Ls
x

ds

≤ ‖Dsymb‖Lq
x
‖u‖Lr

x
‖f‖Ls

x

∫ α

0

2ds
√

s(α− s)

≤ 2π ‖Dsymb‖Lq
x
‖u‖Lr

x
‖f‖Ls

x
.

by (3.7) and using
∫ 1

0
(s(1− s))−1/2ds = π.

The general case ∇∗b ∈ Lq
x is slightly more involved: let us first notice that the

term (∇∗b)∇us · ∇fα−s can be estimated as above, adding a contribution π ‖∇∗b‖Lq
x
to

the inequality. Finally, to estimate the contribution of (∇∗b)us∆fα−s we do not put the
absolute value inside integration with respect to s ∈ (0, α), but exchange integration
with respect to x and s, exploiting the identity

∫ α

0

(∇∗b)us∆fα−sds = −(∇∗b)

∫ α

0

us d

ds
fα−sds.

Next, to integrate by parts only “half of the derivative” with respect to s, we simply add
(∇∗b)uα times the quantity

f0 − fα −
∫ α

0

d

ds
fα−s = 0,

thus
∣

∣

∣

∣

∫ α

0

us d

ds
fα−sds

∣

∣

∣

∣

≤
∣

∣uα
(

f0 − fα
)
∣

∣+

∫ α

0

∣

∣(us − uα)∆fα−s
∣

∣ ds,

which, once integrated with respect to x ∈ R
d, by Hölder inequality and (3.8) is bounded

from above by

‖∇∗b‖Lq
x
‖u‖Lr

x
‖f‖Ls

x

(

2 + c

∫ α

0

ds
√

s(s− α)

)

.

This settles an analogue of (3.10) at fixed t ∈ (0, T ), and by integration with respect to
t ∈ (0, T ), we obtain (3.10).

The constant c can be even independent of the dimension d of the underlying space,
provided that assume some bound directly on ‖∇∗b‖Lq

x
, and use a refined, dimension

independent estimate for ‖∆fα−s‖Ls
x
: these are the key observation that lead to well-

posedness on possibly infinite dimensional spaces, as developed in [6].

Lemma 3.6. Let a ∈ L1
t (W

2,q
x ), u ∈ L∞

t (Lr
x) and f ∈ L∞

x (W 2,s
x ). For α ∈ (0, 1), it holds

∫ T

0

∣

∣

∣

∣

∫

ut[P
α, at : ∇2]ftdL

d − α

∫

ut[∆, at : ∇2]PαftdL
d

∣

∣

∣

∣

dt ≤

≤
∥

∥∇2a
∥

∥

L1
tL

q
x
‖u‖L∞

t Lr
x
‖f‖L∞

x Ls
t

(3.11)

where c is some constant (depending on d only). Moreover, for u ∈ L∞
t (Lr

x ∩ Ls
x), it holds

∣

∣

∣

∣

∫

u[Pα, a : ∇2](Pαu)dL d

∣

∣

∣

∣

→ 0, in L1(0, T ), as α ↓ 0. (3.12)

Proof. To establish (3.11), the underlying idea is to formally rewrite a : ∇2f = a :

(∇2∆−1)∆f and exploit the boundedness of the Riesz transform ∇2∆−1 in Ls
x, together

with a second order interpolation along the heat semigroup. To make computations
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more transparent, we argue on coordinates, i.e., we fix i, j ∈ {1, . . . , d} and consider the
commutator

[Pα, ai,j∂2
i,j ]f = P

α(ai,j∂2
i,jf)− ai,j∂2

i,j(P
αf).

As in the proof of the previous lemma, we may also let u ∈ Ac, f and ai,j be sufficiently
regular, e.g. f , ai,j ∈ C4

b ((0, T )×R
d), and argue at fixed t ∈ (0, T ). We consider the curve

[0, α] ∋ s 7→ F (s) :=

∫

usai,j∂2
i,jf

α−sdL d,

which is C1
b (0, α), with

F ′(s) =

∫

us[∆, ai,j∂2
i,j ]f

α−sdL d =

∫

us[∆, ai,j ]∂2
i,jf

α−sdL d,

since the Laplacian and partial derivatives commute. We write hα−s := ∂2
i,jf

α−s =

(∂2
i,jf)

α−s (since derivatives and heat semigroup commute), let b := ∇ai,j and integrate
by parts, obtaining

F ′(s) = 2

∫

usb · ∇hα−sdL d +

∫

us(∆ai,j)hα−sdL d.

Differentiating once more, since F ∈ C2
b (0, α), we obtain

F ′′(s) = 2

∫

us[∆, b · ∇]hα−sdL d +

∫

us[∆, (∆ai,j)]hα−sdL d.

We introduce a second order interpolation based on the Taylor expansion

F (α)− F (0)− αF ′(0) =

∫ α

0

F ′′(σ)(α− σ)dσ,

and we notice that the left hand side gives, up to integration on (0, T ), the left hand side
of (3.11).

Let us notice first how we would conclude in case ∇∗b = ∆ai,j = 0, and then address
the general case. As in the previous lemma, we obtain the identity

∫

us[∆, b · ∇]hα−sdL d = −2

∫

(

(∇2ai,j)∇us,∇hα−s
)

dL d

and we estimate

|F ′′(s)| ≤ 4
∥

∥∇2ai,j
∥

∥

Lq
x
‖∇us‖Lr

x
‖∇hα−s‖Ls

x

≤ c
√

s(α− s)3

∥

∥∇2ai,j
∥

∥

Lq
x
‖u‖Lr

x
‖f‖Ls

x
,

where c is some constant. Integrating with respect to s ∈ (0, α) and exploiting the factor
(α− σ) to compensate the bound the norm of hα−s, we deduce (3.11).

To address the general case, we bound separately the terms
∫ α

0

∫

us[∆, b · ∇]hα−sdL d (α− s)ds and

∫ α

0

∫

us[∆, (∆ai,j)]hα−sdL d (α− s)ds.

(3.13)
To deal with former one, we isolate a “leading term” which involves ∇2ai,j and we

bound the remaining terms it by adding and subtracting suitable quantities, with the
only difficulty that we must take into account the second order expansion. Precisely,
after arguing as in the case ∆ai,j = 0, we are left with estimating

∫ α

0

∫

us(∆ai,j)∆hα−s(α− s)dL dds, (3.14)
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and to this aim we add and subtract
∫ α

0

∫

uα(∆ai,j)∆hα−s(α−s)dL dds =

∫ α

0

∫

uα(∆ai,j)Ri,j∆
2fα−s(α−s)dL dds, (3.15)

where we let Ri,jf := ∂2
i,j∆

−1f be the second-order Riesz transform along the directions
i, j. The difference between the (3.14) and (3.15) is easily bounded and, to conclude, we
exploit the identity

∫ α

0

∆2fα−s(α− s)ds =

∫ α

0

(α− s)∂2
sf

α−sds = −fα + f + α∆fα.

and use the fact that the latter quantity is uniformly bounded (as well as the fact that
Ri,j is a bounded operator).

To estimate the second expression in (3.13), we notice that
∫

us[∆, (∆ai,j)]hα−sdL d =
d

ds

∫

us(∆ai,j)∂2
i,jf

α−sdL d,

thus we integrate by parts with respect to s ∈ (0, α),

∫ α

0

d

ds
us(∆ai,j)∂2

i,jf
α−s(α− s)ds = −αu(∆ai,j)∂2

i,jf
α +

∫ α

0

us(∆ai,j)∂2
i,jf

α−s.

The first term in the right hand side above is bounded by c
∥

∥∆ai,j
∥

∥

Lq
x
‖u‖Lr

x
‖f‖Ls

x
. We

write
∫ α

0

∫

us(∆ai,j)∂2
i,jf

α−sdL dds =

∫ α

0

∫

us(∆ai,j)Ri,j∆fα−sdL dds.

To conclude, we argue once more by adding and subtracting
∫ α

0

∫

uα(∆ai,j)Ri,j∆fα−σdL dds =

∫

uα(∆ai,j)Ri,j(f
α − f)dL d,

and estimating the differences involved. This settles the validity of (3.11), for smooth
functions and at fixed t ∈ (0, T ). By integration and a density argument, the general case
is deduced at once.

Next, we prove (3.12), which follows from the fact that α
∫

u[∆, a : ∇2]u2αdL d is
infinitesimal, as α ↓ 0: indeed, a standard uniform boundedness and density argument
gives that the left hand side in (3.11) is infinitesimal as α ↓ 0. To show it, we initially
argue in the case of smooth functions u, f , and for fixed i, j ∈ {1, . . . , d}, we let b = ∇ai,j

and integrate by parts
∫

u[∆, ai,j∂2
i,j ]f

αdL d = −2

∫

(b · ∇u)∂2
i,jf

αdL d −
∫

u(∆ai,j)∂2
i,jf

αdL d

= −2

∫

(∂2
i,jf)P

α(b · ∇u)dL d −
∫

u(∆ai,j)∂2
i,jf

αdL d

= −2

∫

(∂2
i,jf) {[Pα, b · ∇]u+ (b · ∇uα)} dL d −

∫

u(∆ai,j)∆fαdL d.

Although the intermediate steps require some regularity for u, by the commutator
estimate for Sobolev derivations established in the previous lemma, the resulting identity
extends by continuity to u ∈ L∞

t (Lr
x), f ∈ L∞

t (W 2,s
x ). Next, we specialize to the case

f := uα. By the strong convergence provided by Lemma 3.5 and uniform boundedness
of α∂2

i,ju
α in L∞

1 (Lr
x), we have

α

∣

∣

∣

∣

∫

(∂2
i,ju

α
t )[P

α, bt∇]utdL
d

∣

∣

∣

∣

→ 0, in L1(0, T ) as α ↓ 0.
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Similarly, it holds (recall that the left hand side in (3.8) is infinitesimal)

α

∣

∣

∣

∣

∫

u(∆ai,j)∆fαdL d

∣

∣

∣

∣

≤
∥

∥∆ai,j
∥

∥

Lq
x
‖u‖Lr

x
‖α∂2

i,ju
2α‖Ls

x
→ 0.

Finally, in order to handle the term α
∫

(∂2
i,ju

α)(b∇uα)dL d, the choice f = uα and the
symmetry of a are crucial: we integrate by parts once, and since b = ∇ai,j , we obtain

∫

(∂2
i,ju

α)b · ∇uαdL d = −
d
∑

k=1

∫

[

∂iu
α(∂2

j,ka
i,j)∂ku

α + (∂iu
α)(∂ka

i,j)∂2
k,ju

α
]

dL d.

The first term, when multiplied by α, is clearly bounded and infinitesimal as α ↓ 0, so we
focus on the last one. To show that it is bounded, we recall that a is symmetric and we
are actually interested in bounds for the whole sum on i, j ∈ {1, . . . d}; thus, by coupling
the symmetric terms, it is sufficient to prove that

α

∫

∂iu
α(∂ka

i,j)∂2
k,ju

α + ∂ju
α(∂ka

i,j)∂2
k,iu

αdL d

is infinitesimal. This symmetric expression can be explicitly rewritten as

α

2

∫

(∂ka
i,j)∂k

[

(∂iu
α + ∂ju

α)2 − (∂iu
α)2 − (∂ju

α)2
]

dL d,

and at this stage we integrate by parts once more, obtaining a bound in terms of

α
∥

∥∇2a
∥

∥

Lq
x
‖∇uα‖Lr ‖∇uα‖Ls ,

which is sufficient to conclude (as the left hand side in (3.7) is infinitesimal).

Finally, we deal with the bounded elliptic case: if a is bounded and elliptic, then the
form L2

t (W
1,2
x ) ∈ f 7→

∫

a(∇f,∇f) is a Dirichlet form, with associated Markov semigroup
P
α
a and (self-adjoint) generator ∆af = div(a∇f), on its “abstract” domain D(∆a) (as

given by the general theory of Dirichlet forms). When we choose P
α
a as “smoothing

operator”, the main difficulty is to prove that it preserves regularity with respect to
t ∈ (0, T ), thus we need some estimate for the commutator [Pα

a , ∂t], which we initially
define in following the weak sense, for u ∈ Ac, f ∈ A:

∫

(0,T )×Rd

u[Pα
a , ∂t]fdL

1+d :=

∫

(0,T )×Rd

[(Pα
au)∂tf + (∂tu)P

α
af ] dL

1+d.

Lemma 3.7. Let a be bounded and elliptic, with ∂ta ∈ L∞
t (L∞

x ). Then, for every α ∈ (0, 1),

u ∈ Ac, f ∈ A, it holds
∣

∣

∣

∣

∫

u[Pα
a , ∂t]fdL

1+d

∣

∣

∣

∣

≤ c ‖∂ta‖L∞

t L∞

x
‖u‖L2

tL
2
x
‖f‖L2

tL
2
x
, (3.16)

where c is some constant (depending only on the ellipticity constant λ).

Thanks to this lemma and a density argument, for f ∈ W 1,2
t (L2

x), we deduce that
P
α
af ∈ W 1,2

t (L2
x), and the “strong” commutator [Pα

a , ∂t]f := P
α
a∂tf − ∂tP

α
af is well defined

and it belongs to L2
t (L

2
x). Moreover, the usual uniform boundedness arguments shows

that, for u ∈ L2
t (L

2
x) and any family (fα)α≥0 ⊆ L2

t (W
1,2
x ) converging in L2

t,x, it holds

∫

(0,T )×Rd

u[Pα
a , ∂t]fαdL

1+d → 0, as α ↓ 0.
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Proof. We provide the following analogue of (3.16), where ∂t is replaced by σ−1(Tσ − I),
where T

σf(t, x) = f(t+ σ, x), and I is the identity operator (we also choose σ 6= 0 small
enough, to avoid boundary terms, thanks to the assumption u ∈ Ac):

∣

∣

∣

∣

∣

∫

(0,T )×Rd

u[Pα
a , σ

−1(Tσ − I)]fdL 1+d

∣

∣

∣

∣

∣

≤ c ‖∂ta‖L∞

t L∞

x
‖u‖L2

tL
2
x
‖f‖L2

tL
2
x
,

(which c depending on λ only). Once this is is settled, we may let σ → 0 and pass
to the limit in the weak formulation. Let us notice that the identity operator plays
no role above, and everything reduces to estimate σ−1

∫

u[Pα
a ,T

σ]fdL 1+d. By first-
order interpolation along the semigroup P

s
a, for s ∈ (0, α), it is sufficient to bound the

infinitesimal commutator
∫

us[∆a,T
σ]fα−sdL 1+d =

∫

(

(Tσa)∇us,∇T
σfα−s)

)

−
(

a∇us,∇T
σfα−s

)

dL 1+d,

where we performed integration by parts with respect to the variable x ∈ R
d and the

change of variables t 7→ t+ σ in the first integral. We have therefore the bound
∣

∣

∣

∣

∫

us[∆a,T
σ]fα−sdL 1+d

∣

∣

∣

∣

≤
∫ σ

0

∣

∣

∣

∣

∂r

∫

(Tra)(∇us,∇T
σfα−s)dL 1+d

∣

∣

∣

∣

dr

which by ∂rT
ra = T

r∂ta gives the thesis, after an application of Hölder inequality and
using the smoothing effect in L2

t (L
2
x) of Pa, i.e. ‖∇us‖L2

tL
2
x
≤ (sλ)−1/2 ‖u‖L2

tL
2
x
(a property

which holds in general for semigroups associated to Dirichlet forms, see [13][Proposition
1.4.1]).

It would be natural to extend the argument above for more general exponents beyond
the case above; the main issue being that a smoothing effect for Pa akin to (3.7) is not
ensured by Dirichlet form theory, when the exponent involved is different from 2. It
seems plausible however to replace L2

t (L
2
x) with L∞

t (L2
x) and require only ∂ta ∈ L1

t (L
∞
x )

(as the semigroup acts only fiberwise).

Remark 3.8 (trace semigroup at t = 0). Another consequence of Sobolev regularity of

the lemma above is existence of a “trace” semigroup, e.g. at t = 0, defined as follows:

for f ∈ L2
x, consider a constant extension f(t, x) = f(x) for (t, x) ∈ (0, T ) ×R

d, and let

P
α
0 f be the trace of the Sobolev function P

α
af at t = 0. Alternatively, this can be obtained

as the semigroup generated by the bilinear form given by the trace at 0 of a.

3.5 Proof of well-posedness results

In this section, we address the proof of Theorem 3.1 and Theorem 3.3. As already
remarked, existence is easily settled by approximations, so we focus on uniqueness.

Proof of Theorem 3.1. Let u be the difference between any two narrowly continuous
solutions in L∞

t (Lr
x) and let Pα be the heat semigroup on R

d, extended on (0, T ) × R
d

by acting on each fiber {t} ×R
d, t ∈ [0, T ]. For α > 0, Pα maps W 1,1

t (Lr′

x ) ∩Dr′(L) into
itself, as fα := P

αf is C2
b with respect to the variable x ∈ R

d, for L 1-a.e. t ∈ (0, T ) (to
approximate P

αf with functions in A, we argue by convolution with a smooth kernel
with respect to t ∈ (0, T )), thus (3.9) holds true for f in such a space:

∫ T

0

∫

[(∂t + Lt)f ]u
α
t dL

ddt =

∫

fα
T uT dL

d−
∫

fα
0 u0dL

d+

∫ T

0

∫

u [Pα, (∂t + Lt)] fdL
ddt.

(3.17)
For α > 0, we also have uα ∈ Dr′(L): to use uα as a test function, we deduce that

uα ∈ W 1,1
t (Lr′

x ), which follows directly from the equation satisfied by uα. Indeed, (3.17)
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for f ∈ Ac entails that the distributional derivative ∂tu
α coincides with the distribution

L∗uα, which is represented by a function, namely

L∗uα = ∇∗(buα) +
1

2
(∇∗)2(auα) = −(divL)uα + Luα +

1

2
(∇∗a) · (∇uα) ∈ L1

tL
r′

x .

Therefore, ∂tuα ∈ L1
t (L

r′

x ), and uα admits an absolutely continuous continuous rep-
resentative, which must coincide with the one that we would obtain by acting di-
rectly to the narrowly continuous representative ut with the heat semigroup P

α, at
every t ∈ [0, T ]: it holds in particular uα

0 = 0, since u0 = 0. Moreover, the curve
t 7→

∫

Rd(u
α
t )

2dL d is absolutely continuous, with distributional and L 1-a.e. derivative
d
dt

∫

(uα)2tdL
d = 2

∫

(∂tu
α)uαdL d.

We are in a position to let uα in the weak formulation (3.17), to obtain

∫ T

0

∫

[(∂t + Lt)u
α]uα

t dL
ddt =

∫

(uα
T )

2dL d +

∫

(0,T )×Rd

u [Pα,Lt]u
αdL 1+d.

If we choose instead a test function t 7→ f(t)uα
t , with f ∈ C1

c [0, T ) and we apply (3.6), we
eventually deduce the inequality

d

dt

∫

(uα)2tdL
d ≤

∥

∥divL−
t

∥

∥

L∞

x

∫

Rd

(uα
t )

2dL d +

∫

Rd

ut [P
α, (∂t + Lt)]u

α
t dL

d,

L 1-a.e. t ∈ (0, T ) and in the sense of distributions on (0, T ). Gronwall lemma gives

‖uα‖2L∞

t L2
x
≤ exp

{

∥

∥divL−
∥

∥

L1
tL

∞

x

}

∫ T

0

∣

∣

∣

∣

∫

Rd

ut [P
α, (∂t + Lt)]u

α
t dL

d

∣

∣

∣

∣

dt.

As a consequence of Lemma 3.6, we deduce ‖u‖L∞

t L2
x
≤ lim infα↓0 ‖uα‖L∞

t L2
x
= 0.

Proof of Theorem 3.3. In our smoothing scheme, we choose P
α = P

α
a be the semigroup

associated to the Dirichlet form f 7→
∫

a(∇f,∇f)dL 1+d, as introduced in the previous
section. A first step consists in showing that (3.17) holds true, and we see it as a
consequence of the fact that Pα

a maps W 1,2
t (L2

x) ∩ D2(L) into itself: if f ∈ W 1,2
t (L2

x),
then Lemma 3.7 shows that fα ∈ W 1,2

t (L2
x) as well; to show fα ∈ D2(L), we rely on

the assumption on a ∈ L1
t (W

1,p
x ), and show that the smooth approximations obtained

by means of the standard heat semigroup P
s(fα) converge towards fα in D2(L), i.e.

LPs(fα) → L(fα) in L1
t (L

2
x) (this is the only point where we use the first order regularity

assumption on a). Such convergence can be seen by the commutator lemma for Sobolev
vector fields, Lemma 3.5, noticing that the claim of convergence amounts to show

[L,Ps]fα → 0 in L1
t (L

2
x),

but since derivatives and the standard heat semigroup commute, it holds

[L,Ps]fα =

d
∑

i,j=1

[ai,j∂i,P
s]∂jf

α +

d
∑

i=1

[bi, P
s]∂if

α → 0

since ∂jf
α ∈ L∞

t L2
x and Lemma 3.5 shows convergence towards 0 in L1

tL
2
x, as s ↓ 0.

As a second step, we notice that we may let uα be a test function in (3.17). Indeed,
it holds uα ∈ H1,2(L, a(∇ ⊗ ∇)) by what we just proved, while the fact that ∂tu

α is
represented by some function in L1

tL
2
x follows from a duality argument: for a.e. t ∈ (0, T )

the linear functional f 7→
∫

Rd utLtf
α is bounded in L2

x. From (3.17), we have

∂t

∫

(uα)2tdL
d + 2λ

∫

|∇uα|2 dL d ≤
∫

[

(uα
t )

2(∇∗)2at + utbt∇uα
t + ut [P

α
a , ∂t]u

α
t

]

dL d,
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where we applied (3.6) only for the diffusion part a : ∇2, as we deal with the drift term
separately, using the inequality

|utbt · ∇uα| ≤ λ |∇uα|2 + 4λ−1 |ut|2 |bt|2 ,

to bound the contribution of the drift part. To conclude, we apply Gronwall inequality and
finally let α ↓ 0, using (3.12) to deduce that the commutator term gives no contribution
in the limit and uniqueness holds.

A The superposition principle for multidimensional diffusions

To prove Theorem 2.5, we follow a general scheme, whose structure is shared by
many proofs of superposition principles appearing in the literature, see e.g. [5, Theorem
8.2.1], [2, Theorem 12], [4, Theorem 4.5], [19, Theorem 2.6], [6, Theorem 7.1], that we
summarize below. The derivation is rather elementary, although the “right” underlying
framework would that of Young (or random) measures. For simplicity, we let T = 1 in this
section. Let ν = (νt)t∈[0,1] ⊆ P(Rd) be a narrowly continuous weak solution of the FPE
(2.2). To deduce existence of a superposition solution for ν, we perform the following
steps.

Step 1 (approximation). We build from ν a sequence of solutions (νn)n of FPE’s associ-
ated to diffusion operators (Ln)n, for which the superposition principle is already known
to hold, thus obtaining a sequence of superposition solutions (ηn)n of MP’s. Here, the
difficulty is to exhibit a sufficiently good approximation, so that νn converge towards ν,
e.g., narrowly, and Ln towards L, in a sense to be made precise, as n → ∞.

Step 2 (tightness). We prove that (ηn)n ⊆ P(C([0, 1];Rd)) is tight, yielding a narrow
limit point η. By Ascoli-Arzelà criterion, this step reduces to show uniform bounds on
the modulus of continuity of the canonical process (et)t∈[0,1] with respect to η

n.

Step 3 (limit). From convergence νn → ν, Ln → L, as n → ∞, we conclude that η is a
superposition solution for ν. Here, the problem is to deal with convergence for possibly
non-continuous functions, as they involve the coefficients a, b.

A.1 Approximation

We approximate the limit solution by means of mollification by convolutions or push-
forwards via smooth maps (in probabilistic jargon, by conditioning with respect to some
observables).

Push forward via smooth maps. This technique is inspired by the approach in
[6, Theorem 7.1]. Let π ∈ C2(Rd;Rd) π = (π1, . . . , πd), with uniformly bounded first
and second derivatives. Then, it is possible to define a diffusion operator π(L) on
R

d such that π♯ν := (π♯νt)t∈[0,1] is a solution to the associated FPE (in duality with

A = C1,2
b ((0, T )×R

d)). Indeed, the composition f ◦ π(t, x) := f(t, π(x)) belongs to A, and
if we let f ◦ π in the weak formulation (2.4), the chain rule gives

L(f ◦ π) =
d
∑

i=1

L(πi) [(∂if) ◦ π] +
1

2

d
∑

i,j=1

a(∇πi,∇πj) [(∂i,jf) ◦ π] .

We define, for (t, x) ∈ (0, T )×R
d,

π(a)i,jt (x) := Eνt

[

a(∇πi,∇πj) |π = x
]

=
dπ♯

[

a(∇πi,∇πj)νt
]

dπ♯νt
(x), for i, j ∈ {1, . . . , d},

π(b)it(x) := Eνt

[

L(πi) |π = x
]

=
dπ♯

[

L(πi)νt
]

dπ♯νt
(x), for i ∈ {1, . . . , d}.
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Then, π(L) := L(π(a), π(b)) is a diffusion operator on R
d and the (narrowly continuous)

curve of measures π♯ν is a weak solution of the FPE ∂tπ(ν) = π(L)∗π(ν), in (0, T )×R
d.

Let us remark that π(L) depends upon ν, although it is not evident in the notation.
Since conditional expectations reduce norms and the derivatives of πi are uniformly

bounded, integral bounds on a, b are naturally transferred on π(a), π(b): precisely, we
use the fact that, for every convex, lower semicontinuous function Θ : R → [0,∞] and
non-negative Borel f it holds

∫

Θ(Eνt
[f |π]) dπ♯νt ≤

∫

Θ(f) dν. (A.1)

In particular, uniform bounds on the coefficients are preserved; however, local integra-
bility conditions could be lost.

Mollification by convolutions. This is a more standard technique, already em-
ployed e.g. in [5, Theorem 8.2.1] and [19, Theorem 2.6]. Let ρ ≥ 0 be a smooth
probability density (with respect toL d), with full support. Then, the family of measures
ν ∗ ρ := (νt ∗ ρ)t∈[0,1], solve a FPE associated to a suitably defined diffusion operator.
Indeed, for f ∈ A, it holds f ∗ ρ ∈ A with

L(f ∗ ρ) =
d
∑

i=1

bi∂i(f ∗ ρ) + 1

2

d
∑

i,j=1

ai,j∂i,j(f ∗ ρ) =
d
∑

i=1

bi(∂if) ∗ ρ+
1

2

d
∑

i,j=1

ai,j(∂i,jf) ∗ ρ,

since derivatives and convolution commute. We define

(aρ)i,jt :=
d(ai,jνt) ∗ ρ
d(νt ∗ ρ)

, (bρ)it :=
d(biνt) ∗ ρ
d(νt ∗ ρ)

, for i, j ∈ {1, . . . , d}.

so (νt ∗ ρ)t∈[0,1] is a weak solution of the FPE associated to Lρ := L(aρ, bρ), as

∂t

∫

fd(ν ∗ ρ) =
∫

(∂tf) ∗ ρ dν =

∫

∂t(f ∗ ρ) dν = −
∫

L(f ∗ ρ) dν = −
∫

Lρf d(ν ∗ ρ).

Integrability and regularity properties of aρ and bρ are collected by the following
lemma, see [5, Lemma 8.1.10] for a detailed proof.

Lemma A.1. Let ρ be a smooth probability kernel on R
d with ρ > 0 everywhere and

∣

∣∇iρ
∣

∣ ≤ Cρ, for i ∈ {1, . . . k}, for some constant C ≥ 0. Let µ, ν ∈ M+(Rd), with µ ≪ ν.

Then, it holds µ ∗ ρ ≪ ν ∗ ρ, and the function

d(µ ∗ ρ)
d(ν ∗ ρ) (x) =

∫

ρ(x− y) dµ(y)
∫

ρ(x− y) dν(y)
, for x ∈ R

d

provides a Ck(Rd) version of the density d(µ ∗ ρ)/d(ν ∗ ρ). Moreover, for every convex,

lower semicontinuous function Θ : R → [0,∞], it holds
∫

Θ

(

d(µ ∗ ρ)
d(ν ∗ ρ)

)

d(ν ∗ ρ) ≤
∫

Θ

(

dµ

dν

)

dν. (A.2)

Similar conclusions hold when µ = (µt)t∈[0,1] ⊆ M+(Rd) is a Borel curve and ν =

(νt)t∈[0,1] ⊆ P(Rd) is narrowly continuous, with µt ≪ νt for every t ∈ [0, 1]. In addition, it

holds

sup
t∈[0,1]

∥

∥

∥

∥

d(µt ∗ ρ)
d(νt ∗ ρ)

∥

∥

∥

∥

Ck
b
(B)

< ∞,

for every open bounded set B ⊆ R
d.

When applied to a solution ν = (νt)t∈[0,1] of the FPE (2.2) we deduce that, if a,
b ∈ Lp(ν), then aρ, bρ ∈ Lp(ν ∗ ρ) (for p ∈ [1,∞]) and aρt , b

ρ
t are Ck(Rd), uniformly in

t ∈ [0, 1], with uniformly bounded first and second (spatial) derivatives on compact sets
of [0, T ]×R

d.
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A.2 Tightness

We prove a compactness criterion for solutions of martingale problems, under minimal
integrability conditions on the coefficients. In the deterministic case, tightness is
achieved by estimating the metric velocity of absolutely continuous curves which solve
the ODE; in the stochastic case, we rely on analogous results for martingales, using
Burkholder-Davis-Gundy inequalities and an argument reminiscent of Lévy’s modulus
of continuity for the Brownian motion, to estimate the modulus of continuity of the
canonical process (yielding in some cases Hölder regularity).

Theorem A.2. Let θ, Θ1, Θ2 : [0,+∞) → [0,+∞) be functions with Θ1, Θ2 convex, l.s.c.,

lim
x→∞

θ(x) = lim
x→+∞

Θ1(x)

x
= lim

x→+∞

Θ2(x)

x
= ∞

and, for some constant C ≥ 0, Θ2(2x) ≤ CΘ2(x), for x ≥ 0. Then, there exists some

coercive function Ψ : C([0, 1];R) → [0,+∞] (i.e. {Ψ ≤ c} is compact for every c ≥ 0) such

that, for every filtered probability space (Ω, (Ft)t∈[0,1],P) and progressively measurable

processes ϕ = (ϕt), β = (βt)t, α = (αt)t with

[0, 1] ∋ t 7→ Mt := ϕt −
∫ t

0

βs ds, and [0, 1] ∋ t 7→ M2
t −

∫ t

0

αs ds

P-a.s. continuous local martingales, and α ≥ 0 P-a.s. it holds

E [Ψ(ϕ)] ≤ E

[

θ(ϕ0) +

∫ 1

0

[Θ1 (|βt|) + Θ2 (αt)] dt

]

. (A.3)

Remark A.3. We introduce the “moderate growth” assumption Θ2(2x) ≤ CΘ2(x), for

x ≥ 0, to apply suitable versions of Burkholder-Gundy inequalities. In the proof of

Theorem 2.5, we argue with some Θ2 provided by de la Vallée Poussin criterion: despite

the fact that such growth assumption may fail for Θ2, we may always introduce some

Θ̃2 such that all the assumptions of the theorem above hold, and Θ̃2 ≤ cΘ2, for some

constant c > 0. Hence, if the right hand side in (A.3) is finite, it is finite as well with Θ̃2

in place of Θ2.

A way to build such a Θ̃2 is then via Legendre duality. Indeed, without any loss of

generality, we may assume that the given convex, l.s.c. function Θ2 satisfies Θ2(0) = 0

and (Θ2)
∗(x) = 0, for x ∈ [0, 1], where Θ∗

2(y) = supx≥0 {xy −Θ2(x)}, for y ∈ [0,∞),

is the Legendre transform of Θ2. Indeed, if this is not the case, we may introduce

the function x 7→ Θ2(x) − Θ2(0) + x, for which one has, for some constant c > 0,

(Θ2(x) − Θ2(0) + x) < cΘ2(x), for every x ∈ [0,∞), because Θ2 has “faster than linear

growth” at ∞.

To provide Θ̃2, we first define a convex, l.s.c. function G : [0,∞) → [0,∞] with

G(0) = 0, and then we let Θ̃2(x) := supy≥0 {xy −G(y)}. In particular, the “faster than

linear growth” at ∞ for Θ̃2 turns out to be equivalent to G(y) < ∞ for every y ∈ [0,∞),

and the moderate grow assumptions reads as follows: for some (fixed) c > 0,

cG

(

2

c
y

)

≤ cG (y) , for every y ∈ [0,∞). (A.4)

Finally, Θ̃2 ≤ Θ2, is equivalent to G ≥ Θ∗
2. Motivated by these requirements, we define

e.g.

G(y) := sup
k∈N

3kΘ∗
2

(

(

2

3

)k

y

)

for y ∈ [0,∞).
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Being the supremum of convex, l.s.c. functions null at 0, G is convex, l.s.c. with G(0) = 0.

Since
(

2
3

)k
y < 1 for k sufficiently large, one has G(y) < ∞ and G(y) ≥ Θ∗

2 (y) is obvious.

Finally, one has

3G

(

2

3
y

)

= sup
k∈N

3k+1Θ∗
2

(

(

2

3

)k+1

y

)

≤ G (y) , for every y ∈ [0,∞).

hence (A.4) holds with c = 3.

Proof. Clearly, if the right hand side above is not finite, the conclusion trivially holds.
We prove separately the existence of functions Ψ1 and Ψ2, depending respectively on Θ1,
Θ2 only, taking integer and non-negative values, such that, if we let

Ψ(γ) := θ(|γ0|) + inf
γ1+γ2=γ

{

Ψ1(γ
1) + Ψ2(γ

2)
}

, (A.5)

then Ψ is coercive and (A.3) holds. For every ε > 0, i ∈ {1, 2} we let δi = δi,ε be the
largest number in the form 1/n, (with n ≥ 1 natural) such that Θi(ε

i/δ)δ ≥ ε−1: such a
choice is possible because limx→+∞ Θi(x)/x = ∞. Then, we introduce the closed sets

Ai(ε) :=
{

γ ∈ C([0, 1],R) : sup
k=1,...,δ−1

i

sup
s∈[(k−1)δi,kδi]

|γs − γ(k−1)δi | ≤ ε
}

, (A.6)

and we let Ψi(γ) :=
∑

m≥0(m + 1)χAi(2−m)c . By construction, Ψ(γ) ≤ m entails γ ∈
Ai(2

−k), for every k ≥ m.
To show that Ψ defined by (A.5) is coercive, it is sufficient to apply Ascoli-Arzelà

criterion, noticing that γ ∈ {Ψ ≤ m} can be decomposed as the sum of two curves γ1+γ2,
and γi (i ∈ {1, 2}) admits the following modulus of continuity

ωi,m(x) :=

{

21−k if x ∈ [δi,2−(k+1) , δi,2−k) with k ≥ m,
21−m/δi,2−m if x ∈ [δi,2−m ,+∞).

(A.7)

To show that (A.3) holds, we assume that the right hand side therein is finite. The
assumptions entail therefore that (Mt)t is a P-a.s. continuous local martingale, whose
quadratic variation process is t 7→

∫ t

0
αsds. If we let γ1

t :=
∫ t

0
βsds and γ2

t = Mt, for
t ∈ [0, 1], then the left hand side in (A.3) is smaller than

E
[

θ(ϕ0) + Ψ1(γ
1) + Ψ2(γ

2)
]

≤ E [θ(ϕ0)] +
∑

m≥0

(m+ 1)E
[

χA1(2−m) ◦ γ1 + χA2(2−m) ◦ γ2
]

.

Next, we focus on the addends in the series above, writing for brevity ε in place of 2−m.
For i ∈ {1, 2}, using (A.6), we have

E
[

χAi(ε)c ◦ γi
]

= P
(

sup
k=1,...,δ−1

i

(γi)∗k > ε
)

≤
δ−1
i
∑

k=1

P
(

(γi)∗k > ε
)

,

where we write, (γi)∗k := sups∈[(k−1)δi,kδi] |γi
s − γi

(k−1)δi
|.

Let us focus on the case i = 1 (thus we write δ = δ1, Θ = Θ1). Since |γs − γt| ≤
∫ t

s
|βr| dr, we estimate

P
(

(γ1)∗k > ε
)

≤
E

[

Θ
(

1
δ

∫ kδ

(k−1)δ
|βs| ds

)]

Θ(ε/δ)
≤ εE

[

∫ kδ

(k−1)δ

Θ(|βs|) ds
]

,

where the last inequality is a consequence of Jensen’s inequality and our prelimi-
nary choice for δ. Summing upon k ∈

{

1, . . . , δ−1
}

, we conclude that E [Ψ ◦ γ] ≤
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c
∫ 1

0
E [Θ (|βs|)] ds, for some constant c ≥ 0 (in this case, the constant does not even

depend upon Θ).

To deal with the case i = 2 (again, we omit to specify i in what follows), i.e., the
martingale part, for each k ∈

{

1, . . . , δ−1
}

, we estimate from above,

P (M∗
k > ε) ≤ E

[

Θ
(

(M∗
k )

2/δ
)]

Θ(ε2/δ)
≤ cΘ

E

[

Θ
(

1
δ

∫ kδ

(k−1)δ
αsds

)]

Θ(ε2/δ)
,

where cΘ is some constant depending on Θ only: indeed, it is sufficient to apply
Burkholder-Davis-Gundy inequalities, e.g. in the form [25, Theorem 2.1], to the martin-
gale Ms := δ−1/2Ms+(k−1)δ, s ∈ [0, δ] and the convex function with “moderate growth”
x 7→ Θ(x2). By Jensen’s inequality and our definition of δε we conclude that

E

[

Θ
(

1
δ

∫ kδ

(k−1)δ
αsds

)]

Θ(ε2/δ)
≤ εE

[

∫ kδ

(k−1)δ

Θ(αs) ds

]

.

As in the previous case, by summing upon k ∈
{

0, . . . , δ−1
}

, we deduce that

E
[

χA(ε)c ◦M
]

≤ εcΘE

[
∫ 1

0

Θ(αs) ds

]

and so we deduce the desired bound for E [Ψ(M)].

Corollary A.4. In the situation of the theorem above, let Θ1(x) = |x|p1 and Θ2(x) = |x|p2 ,

for p1, p2 ∈ (1,∞) and assume that the right hand side in (A.3) is finite. Then, for every

r > 0 with r < r(p1, p2) := min
{

1− 1
p1
, 1
2

(

1− 1
p2

)}

, it holds

P

(

lim sup
h↓0

sup
|t−s|≤h

|ϕt − ϕs|
|t− s|r = 0

)

= 1.

Proof. It is sufficient to let δi := ε1/r, for i ∈ {1, 2}. Thanks to this choice, the probabilities
of Ai(2

−m)c decay sufficiently fast as m → ∞ so that, by Borel-Cantelli lemma, there
exists P -a.s. some m ≥ 1 such that the curve (ϕt)t∈[0,1] can be written as a sum of two
curves having ωi,m, defined in (A.7), as a modulus of continuity. This entails r-Hölder
estimates for ϕ: since the condition on r is open-ended, by arguing with a r̃ slightly
larger than r, the thesis follows.

It is not clear if ϕ in the previous corollary is actually P-a.s. Hölder continuous with
exponent r(p1, p2): one might exploit the existence of functions Θ̃i (i ∈ {1, 2}) with
Θ̃i(x)/ |x|pi → ∞ as x → ∞, and the right hand side in (A.3) still finite, but it seems
insufficient.

Corollary A.5. Let a, b be Borel maps as in (2.1), let η ∈ P(C([0, 1];Rd)) be a solution

of the martingale problem associated to L(a, b). For any θ, Θ1 and Θ2, as in the theorem

above, let Ψ be the associated coercive functional. Then, for every f ∈ C1,2
b ((0, T )×R

d),

it holds

∫

Ψ(ft ◦ et)dη ≤
∫

θ(|f0|)dη0 +
∫ 1

0

[Θ1(|∂tf + Ltf |) + Θ2(at(∇ft,∇ft))] dηtdt.

Proof. We prove that t 7→ ϕt := ft ◦ et satisfies the assumptions of Theorem A.2, with
βt := (∂t+Lt)ft◦et and αt := at(∇ft,∇ft)◦et. For simplicity of notation, we omit to write
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et below (since its appearance is quite natural). Since both f and f2 ∈ C1,2
b ((0, T )×R

d),
both

t 7→ Mf
t := ft − f0 −

∫ t

0

(∂s + Ls)f ds, and t 7→ Mf2

t := f2
t − f2

0 −
∫ t

0

(∂s + Ls)f
2 ds

are martingales. By developing (Mf
t )

2, we see that

t 7→ (Mf
t )

2 −
∫ t

0

(∂s + Ls)f
2 ds− 2

∫

(∂s + Ls)f

[
∫ t

s

(∂r + Lr)fdr − ft

]

ds

is also a martingale. We add and subtract the process t 7→ 2
∫ t

0
fs(∂t + L)fsds, thus

t 7→ (Mf
t )

2 −
∫ t

0

αs ds+ 2

∫ t

0

(∂s + Ls)f

[

ft − fs −
∫ t

s

(∂r + Lr)fdr

]

ds

is a martingale. To conclude, we notice that

t 7→
∫ t

0

(∂s + Ls)f

[

ft − fs −
∫ t

s

(∂r + Lr)f dr

]

ds =

∫ t

0

βs

(

Mf
t −Mf

s

)

ds

is a local martingale (see also [31, Theorem 1.2.8]). Indeed, by a stopping time argument,
we are easily reduced to the case where Mf is replaced by a martingale M with
M1 ∈ L∞(P), thus

∫ t

0
βs (Mt −Ms) ds ∈ L1(P), for t ∈ [0, 1]. To prove that increments are

orthogonal, we let t ∈ [0, 1] and show that

E

[
∫ 1

0

βs (M1 −Ms) ds | Ft

]

=

∫ t

0

βs (Mt −Ms) ds.

By the integrability assumptions, we exchange between conditional expectation and
integration. The thesis follows by direct consideration of the cases, s ∈ [0, t] and
s ∈ (t, 1].

A.3 Limit

In the third step, we assume that the probability measures (ηn)n, obtained as super-
position solutions for a suitable approximating sequence (νn)n narrowly converge in
P(C([0, T ];Rd)) towards some limit η. The fact that η provides a superposition solution
for ν is not straightforward, since we must deal with a limit in the weak formulation,
where terms involving the coefficients a, b appear (in general, they are not continuous).

Indeed, η ∈ P (C([0, 1];Rd)) is a solution of the martingale problem associated to
L(a, b) if and only if the following property holds: for every s, t ∈ [0, 1] with s ≤ t, for
every f ∈ C1,2

c ([0, 1] × R
d) (with ‖f‖C1,2 ≤ 1) and for every bounded continuous and

Fs-measurable function g on C([0, T ];Rd) (with ‖g‖∞ ≤ 1) it holds

∫

g

[

ft ◦ et − fs ◦ es −
∫ t

s

[(∂t + Lr)f ] ◦ er dr
]

dη = 0.

As the correspondent identity holds for ηn and Ln, i.e.

∫

g

[

ft ◦ et − fs ◦ es −
∫ t

s

[(∂t + Ln
r )f ] ◦ er dr

]

dηn = 0,

to deduce that η is a solution to the martingale problem associated to L, since f and ∂tf

are bounded and continuous, the crucial limit is
∫

g

[
∫ t

s

(Ln
r f) ◦ er dr

]

dηn −
∫

g

[
∫ t

s

(Lrf) ◦ er dr
]

dη → 0, (A.8)
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whose validity we now investigate, according to the approximations from Section A.1.
Push forward via smooth maps. For n ≥ 1, let πn ∈ C2

b (R
d,Rd) with (πn)n con-

verging to the identity map locally uniformly and assume that the sequence of first and
second derivatives converge (towards the respective limits), pointwise and uniformly
bounded, i.e., ∇πn(x) → Id for x ∈ R

d, ∇2πn(x) → 0, for every x ∈ R
d, and there exists

some constant C ≥ 0 such that
∣

∣∇iπn(x)
∣

∣ ≤ C, for x ∈ R
d and i ∈ {1, 2}.

Let νn = πn
♯ ν, π

n(L), and let ηn be corresponding superposition solution. To prove
that any narrow limit point η is indeed a superposition solution for ν, with respect to the
diffusion operator L, we add and subtract the term

∫

g

[
∫ t

s

(Lrf) ◦ er dr
]

dηn −
∫

g

[
∫ t

s

(Lrf) ◦ er dr
]

dη

in (A.8), where L = L(a, b) is any diffusion operator on R
d, whose coefficients a, b are

continuous and compactly supported. The difference terms above are infinitesimal as
n → ∞, by narrow convergence of ηn, thus we estimate (A.8), as n → ∞, in terms of

lim sup
n→∞

∫

∣

∣Lnf − Lf
∣

∣ dνn +

∫

∣

∣Lf − Lf
∣

∣ dπ(ν). (A.9)

Let us focus on first term above, at fixed n ≥ 1 (for simplicity of notation, we drop the
dependence upon n). Recalling the definition of π(L),integration with respect to the
push-forward measure gives

∫

∣

∣π(L)f − Lf
∣

∣ dπ♯ν =

∫

∣

∣Eν [L(f ◦ π) |π]− (Lf) ◦ π
∣

∣ dν.

Being (Lf) ◦ π a function of π, up to ν-negligible sets, we have

∫

∣

∣Eν [L(f ◦ π) |π]− (Lf) ◦ π
∣

∣ dν =

∫

∣

∣Eν

[

L(f ◦ π)− (Lf) ◦ π |π
]∣

∣ dν

≤
∫

∣

∣L(f ◦ π)− (Lf) ◦ π
∣

∣ dν,

since conditional expectation reduces L1(ν)-norms. Writing explicitly the difference

L(f ◦π)−(Lf)◦π =
1

2

k
∑

i,j=1

[

a(∇πi,∇πj)− ai,j ◦ π
]

(∂i,jf)◦π+
k
∑

i=1

[

L(πi)− b
i ◦ π

]

(∂if)◦π,

and recalling that ‖f‖C1,2 ≤ 1, we conclude that

∫

∣

∣π(L)f − Lf
∣

∣ dπ♯ν ≤
∫

1

2

k
∑

i,j=1

∣

∣a(∇πi,∇πj)− ai,j ◦ π
∣

∣ dν +

∫ k
∑

i=1

∣

∣

∣
L(πi)− b

i ◦ π
∣

∣

∣
dν.

Letting n → ∞ (recall that π = πn above), using the assumption on the convergence of
πn towards the identity map (in particular, we use Lebesgue dominated convergence w.r.t.
the measure ν), we deduce that (A.9) is bounded from above by twice the expression

∫

1

2

k
∑

i,j=1

∣

∣ai,j − ai,j
∣

∣ dν +

∫ k
∑

i=1

|bi − b
i| dν.

To conclude, we choose a, b that minimize the right hand side above: this can be
made arbitrary small, by the density of continuous and compactly supported functions in
L1(ν)).
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Mollification by convolution. In this case, the argument is similar, and even more
standard, see e.g. [5, Theorem 8.2.1], thus we only sketch it. Given a sequence ρn of
probability densities on R

d such that ρnL d → δ0 narrowly as n → ∞, let νn = ν ∗ ρn and
Ln be the diffusion operator introduced in Section A.1. We add and subtract, in (A.8),

∫

g

[
∫ t

s

Lrf ◦ er dr
]

dηn −
∫

g

[
∫ t

s

Lrf ◦ er dr
]

dη,

where L = L(a, b) has continuous and compactly supported coefficients. Let ω be a
common (bounded and continuous) modulus of continuity for a, b.

As in the previous case, narrow convergence implies that the absolute value of (A.8)
is bounded from above, as n → ∞, by

lim sup
n→∞

∫

∣

∣Lnf − Lf
∣

∣ dνn +

∫

∣

∣Lf − Lf
∣

∣ dν.

First, we prove that limn→∞

∫

|Ln
f − Lf |dνn = 0, where Ln

has coefficients

an :=
d(aν ∗ ρn)
d(ν ∗ ρn)

, b
n
:=

d(bν ∗ ρn)
d(ν ∗ ρn)

.

Indeed, recalling that ‖f‖C1,2 ≤ 1, we estimate

∫

∣

∣

∣
Ln

f − Lf
∣

∣

∣
dνn ≤

∫

|an(x)− a(x)| dνn +

∫

|bn − b| dνn

=

∫

|(aν ∗ ρn)(x)− a(x)(ν ∗ ρn)(x)|+
∣

∣(bν ∗ ρn)(x)− b(x)(ν ∗ ρn)(x)
∣

∣ dx

≤ 2

∫
[
∫

ω(y − x)ρn(y − x)dx

]

ν(dy) = 2

∫

ω(z)ρn(z)dz → 0.

Thanks to this fact, we write

lim sup
n→∞

∫

∣

∣Lnf − Lf
∣

∣ dνn = lim sup
n→∞

∫

∣

∣

∣
Lnf − Ln

f
∣

∣

∣
dνn

= lim sup
n→∞

∫

(

|an − an|+ |bn − b
n|
)

dνn

≤
∫

(

|a− a|+ |b− b|
)

dν

where in the last step we apply (A.2). To conclude, it is sufficient to optimize upon a, b,
by density of continuous and compactly supported functions in L1(ν).

A.4 Proof of Theorem 2.5

We argue by iterating the three-steps scheme, the base case being that of diffusion
operators with smooth and uniformly bounded coefficients. First, we extend the validity
to the case of uniformly bounded coefficients (without any regularity assumption), then
to that of locally bounded coefficients, and finally integrable coefficients. Although
everything could be obtain in a single iteration, we think the approach highlights the
different roles played by different approximation procedures.

Indeed, our crucial improvement with respect to [19, Theorem 2.6] is to move from
uniformly bounded to integrable coefficients, which is rather delicate: by comparison,
in the deterministic case, one is able to deal directly with locally smooth coefficients
(see e.g. [5, Proposition 8.1.8]), essentially because paths either go to infinity, i.e., the
solution explodes in a finite time, or stay in a compact set. Roughly speaking, the source
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of difficulties in the stochastic case is that we have to deal with “averages” of such
behaviours, and moreover the solution to a genuinely stochastic martingale problem is
expected to instantaneously “diffuse” over compact sets (of course, with small probability
as these sets become larger).

Case of smooth and bounded coefficients. Let a, b be Borel maps as in (2.1), with

∫ T

0

[

‖at‖C2
b
(Rd) + ‖bt‖C2

b
(Rd)

]

dt < ∞. (A.10)

Then, the superposition principle holds for every solution ν = (νt)t∈(0,T ) ⊆ P(Rd) of
the FPE (2.2). This follows from two well-known facts: existence of Itô’s stochastic
differential equations and uniqueness for narrowly continuous solutions of FPE’s.

The existence result is standard, with the possible exception of the integrable bounds
with respect to the variable t ∈ [0, T ] (usually, one requires uniform bounds), but in
fact such condition is sufficient for the various applications of Gronwall inequality. For
the sole purpose of establishing a case base for the superposition principle, the usual
stronger assumptions on the coefficients, e.g. a, b ∈ C∞

b ((0, T ) × R
d) would even be

sufficient, at the price of introducing an extra mollification step with respect to the
variable t ∈ [0, T ].

Theorem A.6. Let a, b be Borel maps as in (2.1), satisfying (A.10). Then, for every

ν̄ ∈ P(Rd), there exists a solution η of the MP associated to L(a, b), with η0 = ν̄.

Proof. The assumption a ∈ L1
t (C

2
b (R

d)) entails that the symmetric non-negative square-
root of a, i.e. the (essentially unique) map

σ : [0, T ]×R
d → Sym+(R

d) such that σ2
t = at, L

1-a.e. t ∈ (0, T ),

is bounded and Lipschitz with respect to x ∈ R
d, with Lipschitz constant integrable w.r.t.

t ∈ (0, T ), see e.g. [31, Lemma 3.2.3]. Then, it is sufficient to solve by Picard iteration
the Itô stochastic differential equation

dXt = bt(Xt)dt+ σt(Xt)dWt, X0 = X,

where X is a r.v. independent of the d-dimensional Wiener process W . By Itô formula,
the law of X, i.e. X♯P, is a solution of the martingale problem associated to L(a, b).

Of course, the MP is also well-posed, but we need a stronger uniqueness result,
for narrowly continuous solutions of FPE’s, which is e.g. a consequence of results on
backward Kolmogorov equations. We refer e.g. to the expository notes by [21] for more
details; notice however that, also in this case, the standard literature studies equations
of the form

∂tf = −Ltf + g, in (0, T )×R
d, fT = f̄ , (A.11)

assuming a, b smooth and g ∈ C∞
c ((0, T ) × R

d). A solution to the equation (A.11) is
defined as a function f ∈ C1,2

b ((0, T )×R
d) such that

∂tf(s, x) = −Lsf(s, x) + g(s, x), for (s, x) ∈ (0, T )×R
d, with lim

s↑T
f(s, x) = f̄(x).

To our purposes, we need existence of a solution, together the following regularity
results for the solution f (which entails uniqueness):

sup
t∈[0,T ]

‖ft‖C2
x
≤
(

‖f̄‖C2
x
+ T ‖g‖C2

t,x

)

C

(

∫ T

0

[

‖at‖C2
x
+ ‖bt‖C1

x

]

dt+ T ‖g‖C2
t,x

)

, (A.12)
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where z 7→ C(z) denotes some function depending on the dimension d only (the proof
gives that C has an exponential behaviour). The proof follows by direct differentiation
of the equation, see [31, Theorem 3.2.4] for a detailed derivation. Moreover, as a
consequence of the maximum principle, if f̄ ≥ 0, and g ≥ 0, then the solution f is
non-negative as well.

We are in a position to prove the following result, akin to [5, Proposition 8.1.7]. Again,
we provide a slightly stronger statement than what is needed for the superposition
principle (e.g., we deduce uniqueness for possibly signed solutions of the FPE).

Theorem A.7. Let a, b be Borel maps as in (2.1) with

∫ T

0

‖at‖C2(B) + ‖bt‖C2(B) dt < ∞, for every bounded open B ⊆ R
d,

and ν = (νt)t∈[0,T ] ⊆ M (Rd) be a narrowly continuous solution of the FPE associated

(2.2). If ν0 ≤ 0, then νt ≤ 0, for every t ∈ [0, T ]. Thus, for ν̄ ∈ M (Rd) there exists at most

one narrowly continuous solution ν with ν0 = ν̄.

Proof. Let g ∈ C∞
c ((0, T ) × R

d), with g ≥ 0: it is sufficient to show that
∫

g dν ≤ 0.
Fix R ≥ 1 large enough so that the support of g is contained in (0, T ) × BR(0) and
let χR be a cut-off function, as below Remark 2.3. Notice that letting aR = aχR and
bR = bχR in place of a, b, condition (A.10) holds and LRf = Lf on (0, T ) × BR(0), for
every f ∈ C2

b ((0, T )×R
d).

For ε > 0, let aεR, b
ε
R be a double mollification with respect to the space and time

variables, and define Lε
R = L(aεR, bεR), which is a diffusion operator with smooth and

bounded coefficients, satisfying (A.10) uniformly in ε > 0. Let fε be a solution to the
backward Kolmogorov equation

∂tf
ε = −Lε

Rf
ε + g, fε

T = 0,

and choose fεχR in the weak formulation (2.4), which is admissible because fε ∈
C1,2

b ((0, T )×R
d). Since fε ≤ 0 and ν0 ≤ 0, we have

0 ≥ −
∫

fεχR dν0 =

∫

[χR ∂tf
ε + L(fεχR)] dν

=

∫

[−χR Lε
Rf + L(fεχR)] dν

=

∫

{χR [g + Lε
Rf

ε − Lfε] + fεLχR + a(∇fε,∇χR)} dν

≥
∫

g dν − sup
t∈[0,T ]

‖fε
t ‖C2

b
(Rd)

∫

[χR |aεR − a|+ |bεR − b|+ |LχR|+ |a| |∇χR|] d |ν| .

As ε ↓ 0, since aR = a and bR = b on (0, T ) × B(0, R), the second integral converges to
∫

[|LχR|+ |a| |∇χR|] d |ν|, and supt∈[0,T ] ‖fε
t ‖C2

b
is uniformly bounded in ε > 0, by (A.12).

Finally, we let R → ∞ and conclude, since |∇χR|+ |∇χR| → 0, pointwise and uniformly
bounded.

The superposition principle follows immediately from these two facts: since any weak
solution ν = (νt)t∈(0,T ) admits a narrowly continuous representative ν̃, we let η be the
solution of the MP associated to L(a, b), with ν̄ = ν̃0 (Theorem A.6) and notice that the
curve η = (ηt)t∈[0,T ] is a narrowly continuous solution of the FPE associated to L, with
η0 = ν̃0. By Theorem A.7, we conclude that ηt = ν̃t, for t ∈ [0, T ].

Case of bounded coefficients. We extend the validity of the superposition principle
for diffusions with uniformly bounded coefficients: this already provides an extension of
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[19, Theorem 2.6], as uniform bounds are imposed only with respect to x ∈ R
d. Precisely,

we assume that the coefficients a, b satisfy
∫ T

0

sup
x∈Rd

|at(x)|+ sup
x∈Rd

|bt(x)|dt < ∞. (A.13)

Step 1 (approximation). We argue by convolution with a kernel ρ = a exp(−
√

1 + |x|2).
For ε ∈ (0, 1), let ρε(x) = ε−nρ(x/ε) and notice that

∣

∣∇iρε
∣

∣ ≤ Cε−2ρε, for i ∈ {1, 2},
where C is some absolute constant. Then, νε = ν ∗ ρε solves a FPE with respect to a
diffusion operator with coefficients aε, bε satisfying (the correspondent of) (A.10), as a
consequence of the last statement in Lemma A.1. Existence of superposition solutions
η
ε ∈ P(C([0, T ];Rd)) for the associated martingale problems follows from the smooth

case settled above.

Step 2 (tightness). We notice first that, being (νε0)ε>0 a narrowly convergent sequence
of probability measures (thus, it is also tight), there exists some increasing function
θ : R → R with limz→∞ θ(z) = ∞ such that supε>0

∫

θ(|x|)dνε0 ≤ 1. For R ≥ 1, let then
χR : Rd → [0, 1] be the usual cut-off function and, for i ∈ {1, . . . , d}, let xi

R(x) := xiχR ∈ A .
We rely on the de la Vallée Poussin criterion, which improves the integral bound (A.13)
to one of the form

∫ T

0

Θ

(

sup
x∈Rd

|at(x)|
)

+Θ

(

sup
x∈Rd

|bt(x)|
)

dt < ∞,

for some suitable convex non-decreasing function Θ : [0,∞) → [0,∞) with faster than
linear growth (but moderate, by Remark A.3). We apply Corollary A.5 to the solution ηε

(ε > 0), with f := xi
R ◦ et and θ, Θ1 := Θ, Θ2 := Θ, to obtain some coercive functional

Ψ : C([0, T ];R) → [0,∞] (depending upon θ and Θ only) such that

∫

Ψ(xi
R ◦ γ)dηε(γ) ≤

∫

θ(
∣

∣xi
R

∣

∣)dηε0 +

∫ T

0

∫

(

Θ
(
∣

∣Lε
tx

i
R

∣

∣

)

+Θ
(

aεt (∇xi
R,∇xi

R)
))

dηεt dt.

(A.14)
Since

∥

∥∇xi
R

∥

∥

∞
is uniformly bounded and

∥

∥∇2xi
R

∥

∥

∞
is infinitesimal as R → ∞, we may

let R → ∞, and by lower-semicontinuity of Ψ, Fatou’s lemma and Lebesgue dominated
convergence theorem, we obtain a similar bound with the functions xi in place of xi

R:

∫

Ψ(γi)dηε(γ) ≤
∫

θ(
∣

∣xi
∣

∣)dνε0(x) +

∫ T

0

∫

Θ
(
∣

∣(bε)it
∣

∣

)

+Θ
(

(aε)i,it

)

dνεt dt, (A.15)

where we also make explicit the fact that ηεt = νεt , for t ∈ [0, T ].
Inequality (A.2) and the assumptions on θ entails the uniform bounds for ε > 0

∫

Ψ(γi)dηε(γ) ≤ 1 +

∫ T

0

∫

Θ
(

|bit|
)

+Θ
(

ai,it

)

dνtdt

≤ 1 +

∫ T

0

Θ

(

sup
x∈Rd

|bt(x)|
)

+Θ

(

sup
x∈Rd

|at(x)|
)

dt

Tightness follows since γ 7→∑d
i=1 Ψ(γi) is coercive in C([0, T ];Rd).

Step 3 (limit). This step is fully covered in Section A.3.

Case of locally bounded coefficients. Next, we assume that

∫ T

0

sup
x∈B

[|at(x)|+ |bt(x)|] dt < ∞, for every bounded borel B ⊆ R
d. (A.16)

and we prove the validity of the superposition principle for every weak solution ν =
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(νt)t∈(0,T ) ⊆ P(Rd) of the FPE (2.2) (recall that we also assume (2.3)).
Step 1 (approximation). We approximate via push-forward by smooth maps. For M ≥ 1,
let χM be the usual cut-off function and let πM : Rd 7→ R

d be the map

πM (x) = xχM (x), so that πi
M (x) = xiχM (x) ∈ C2

c (R
d).

By (A.16), it holds
∣

∣L(πi
M )
∣

∣ ≤
∥

∥πi
M

∥

∥

C2 sup|x|≤2M [|a(x)|+ |b(x)|] for x ∈ R
d, i ∈ {1, . . . d},

and similarly
∣

∣

∣
a(∇πi

M ,∇πj
M )
∣

∣

∣
≤
∥

∥πi
M

∥

∥

C1 sup|x|≤2M |a(x)|, for x ∈ R
d, i, j ∈ {1, . . . d}.

Since conditional expectations reduce norms, we deduce that νM := πM (ν) solves a
FPE associated to a diffusion on R

d, whose coefficients aM , bM satisfy (A.13): thus the
previous argument gives superposition solutions ηM .

Step 2 (tightness). The argument is very similar to the previous case, but ultimately
relies on inequality (A.1) instead of (A.2). Indeed, de la Vallée Poussin criterion improves
the integral bound (2.3) to one of the form

∫ T

0

∫

[Θ1(|b|) + Θ2(|a|)] dνtdt < ∞,

for suitable Θ1, Θ2 that fulfil the assumptions of Theorem A.2 (without loss of generality,
Θ2 has moderate growth, by Remark A.3). With such a choice of Θ1, Θ2, and building
θ as in the previous case, since (νM )M>0 is tight, we obtain some coercive functional
Ψ : C([0, T ];R) → [0,∞] (depending upon θ, Θ1 and Θ2 only) such that the following
inequality, completely analogous to (A.14), holds true:

∫

Ψ(xi
R◦γ)dηM (γ)≤

∫

θ(
∣

∣xi
R

∣

∣)dηM0 +

∫ T

0

∫

(

Θ1

(
∣

∣LM
t xi

R

∣

∣

)

+Θ2

(

aMt (∇xi
R,∇xi

R)
))

dηMt dt,

for i ∈ {1, . . . , d}, and any R > 0.
Since

∥

∥∇xi
R

∥

∥

∞
is uniformly bounded and

∥

∥∇2xi
R

∥

∥

∞
is infinitesimal as R → ∞, we may

let R → ∞, and by lower-semicontinuity of Ψ, Fatou’s lemma and Lebesgue dominated
convergence theorem, we obtain a similar bound with the functions xi in place of xi

R:

∫

Ψ(γi)dηM (γ) ≤
∫

θ(
∣

∣xi
∣

∣)dνM0 (x) +

∫ T

0

∫

Θ1

(
∣

∣(bM )it
∣

∣

)

+Θ2

(

(aM )i,it

)

dνεt dt,

where we also make explicit the fact that ηMt = νMt , for t ∈ [0, T ].
Jensen’s inequality in the form (A.1) and the assumptions on θ entail the uniform

bounds
∫

Ψ(γi)dηM (γ) ≤ 1 +

∫ T

0

∫

Θ1

(

|bit|
)

+Θ2

(

ai,it

)

dνtdt

Tightness follows once again because γ 7→∑d
i=1 Ψ(γi) is coercive on C([0, T ];Rd).

Step 3 (limit). This step is described in Section A.3.

General case. The final step consists in removing assumption (A.16).

Step 1 (approximation). We perform once again an approximation via convolution, i.e.,
as in the case of uniformly bounded coefficients. To provide superposition solutions for
the approximating νε, we use the fact that these are solutions to FPE’s associated to
diffusion operators whose coefficients are locally bounded.

Step 2 (tightness). We argue exactly as in the previous cases, i.e. we exploit de la Vallée
Poussin criterion to provide suitable Θ1, Θ2 (again with moderate growth without any
loss of generality, by Remark A.3) and notice that bounds akin to (A.15), uniform in ε > 0,
hold also in this case. By Corollary A.5, tightness follows also in this case.
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Step 3 (limit). This step is covered in Section A.3.

The proof of Theorem 2.5 is then completed. As already remarked at the beginning of
this section, one could combine all the arguments above and prove it starting from the
“base case” with a single combination of mollifications and push-forwards approximations.
On a technical level, the main difficulty is to obtain the result for locally bounded coeffi-
cients, and this is done after we establish the result for uniformly bounded coefficients,
regardless of their regularity, essentially because the push-forward approximation may
not preserve it.
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