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WELL-POSEDNESS OF SYSTEMS OF LINEAR ELASTICITY WITH
DIRICHLET BOUNDARY CONTROL AND OBSERVATION∗
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Abstract. An open-loop system of linear elasticity with Dirichlet boundary control and collo-
cated observation is considered. The main result we obtained states that this system is well-posed
in the sense of Salamon. The result deduces the exponential stability of the closed-loop system
under proportional output feedback. Hence it answers positively an open question proposed by Liu
and Krstić [IMA J. Appl. Math., 65 (2000), pp. 109–121]. Moreover, the well-posedness, together
with the regularity of the open-loop system in the sense of Weiss that was obtained in our sep-
arate paper [S. G. Chai and B. Z. Guo, Feedthrough Operator for Linear Elasticity System with
Boundary Control and Observation, Preprint, School of Computational and Applied Mathematics,
University of the Witwatersrand, South Africa, 2008], makes this infinite-dimensional system parallel
in many ways to a linear finite-dimensional system in the framework of well-posed and regular linear
infinite-dimensional systems.
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1. Introduction and main results. Verifying the well-posedness and regu-
larity of the control systems described by partial differential equations (PDEs) is
important, since, once these properties are established for an infinite-dimensional
linear system, the system can be treated in many ways that parallel those for finite-
dimensional ones. Extensive studies have been done in this direction over the last two
decades. However, only a limited number of PDEs are proved to be well-posed and
regular up to the present (see, e.g., [3, 5, 9, 11, 16, 17, 18, 19, 20, 21, 32, 33]). Those
include the PDEs with control and observation possibly imposed on the subregions
or boundaries.

In this paper, we study the well-posedness and regularity of a system of linear
elasticity. Linear elasticity models the macroscopic mechanical properties of solids
with “small” deformations. A key part of the elasticity theory consists of describing
the deformation of solids under external forces. There are already many contributions
to the controllability, observability, and stabilizability of the linear elastodynamic
systems (see, e.g., [2, 7, 8, 24, 26, 27, 36, 37]). However, in contrast to Neumann
boundary feedbacks, Dirichlet boundary feedbacks had not been considered in the
literature until the strong stability was obtained in [39]. It was also indicated in
Remark 3.2 of [39] that the exponential stability of systems of linear elasticity under
Dirichlet boundary feedbacks is still an open problem, although this property has
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been known for the scalar wave equation [35]. The well-posedness confirmed in our
paper gives an affirmative answer to the problem.

Let Ω ⊂ R
n(n ≥ 2) be a bounded open region with a boundary ∂Ω =: Γ = Γ0∪Γ1

of class C2. Γ0,Γ1 are disjoint parts of the boundary relatively open in ∂Ω with
int(Γ0) �= ∅. Let u(x, t) = (u1(x, t), . . . , un(x, t)) be the displacement vector at the
position x ∈ Ω and time t ∈ R. The strain tensor ε(u) = (εij(u)) is defined by

εij(u) :=
1
2

(
∂ui

∂xj
+
∂uj

∂xi

)
, 1 ≤ i, j ≤ n.

The stress tensor σ(u) = (σij(u)) is given by

σij(u) := λ
n∑

k=1

εkk(u)δij + 2μεij(u) = λdiv(u)δij + μ

(
∂ui

∂xj
+
∂uj

∂xi

)
, 1 ≤ i, j ≤ n,

where δij is the Kronecker delta, i.e., δij = 1 if i = j and δij = 0 otherwise; λ and μ
are the Lamé constants satisfying

μ > 0, nλ+ (n+ 1)μ > 0.

We consider the following system of isotropic linear elasticity:

(1.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

u′′ −∇ · σ(u) = 0 in Ω × (0,∞),

u = 0 on Γ1 × (0,∞),

u = g on Γ0 × (0,∞),

u(0) = u0, u′(0) = u1 in Ω,

y = −σ(A−1u′)ν on Γ0 × (0,∞),

where u′ := ∂u
∂t , u′′ := ∂2u

∂t2 , ν = (ν1, . . . , νn) is the unit normal vector to ∂Ω pointing
towards the exterior of Ω, g = (g1, . . . , gn) is the vector-valued input (or control)
function, y = (y1, . . . , yn) is the vector-valued output (or observation) function, and

(1.2) Au := −∇ · σ(u) ∀ u ∈ D(A) = (H2(Ω) ∩H1
0 (Ω))n.

The system (1.1) can be written more explicitly as

(1.3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u′′ − μΔu − (λ+ μ)∇div(u) = 0 in Ω × (0,∞),

u = 0 on Γ1 × (0,∞),

u = g on Γ0 × (0,∞),

u(0) = u0, u′(0) = u1 in Ω,

y = −μ∂A
−1u′

∂ν
− (λ+ μ)νdiv(A−1u′) on Γ0 × (0,∞),

where in the last line we used the equality

σ(w) · ν = μ
∂w

∂ν
+ (λ+ μ)div(w) when w = 0 on Γ × (0,∞).

A rigorous explanation for the above equality, from a geometric point of view, is
available in [10].
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We consider the system (1.1) (resp., (1.3)) in the state space H = (L2(Ω))n ×
(H−1(Ω))n and the control and observation space U = (L2(Γ0))n. Our main result
in this paper is Theorem 1.1.

Theorem 1.1. Let T > 0, (u0, u1) ∈ H, and g ∈ L2(0, T ;U). There exists a
unique solution (u, u′) ∈ C([0, T ];H) to the system (1.1). Moreover, there exists a
constant CT > 0, independent of (u0, u1, g), such that

‖(u(T ), u′(T ))‖2
H + ‖y‖2

L2(0,T ;U) ≤ CT

[
‖(u0, u1)‖2

H + ‖g‖2
L2(0,T ;U)

]
.

In the case of scalar wave equations, the corresponding interior regularity for
{(u(T ), u′(T ))} in L2(Ω) × H−1(Ω) was given in [28]; instead, the corresponding
regularity of the boundary observation y in L2(0, T ;L2(Γ0)) in the case of second
order hyperbolic equations was asserted in [3]. A different and complete proof for
y ∈ L2(0, T ;L2(Γ0)) in the case of second order hyperbolic equations with constant
coefficients was given in [33]. This same proof has been applied to the wave equation
with variable coefficients in [20] for completeness. In the present paper dealing with
the system of elasticity (1.1) or (1.3), our proof in section 4 for y ∈ L2(0, T ;U) will
follow very closely the strategy of [33], complemented by the analysis of [24] and [25].

In the case of the system of elasticity, the interior regularity of {(u(T ), u′(T ))} in
H was given in Chapter IV of [37] in a dual form. This interior regularity was also
contained in Theorem 1 of [7] on page 148 for a more general Lamé system.

Theorem 1.1 implies that the open-loop system (1.1) is well-posed in the state
space H and the input and output space U in the sense of Salamon (see our paper
[19]). To obtain the exact controllability of system (1.1), we need to suppose that
there exists a fixed point x0 ∈ R

n such that

(1.4) (x− x0) · ν ≤ 0 ∀ x ∈ Γ1.

This means that Γ0 contains all the points x ∈ Γ for which (x− x0) · ν > 0. Set

R := sup{|x− x0| | x ∈ Ω}.

The following result, which comes from Theorem 1.1 of [37] (see also Theorem 1.2 of
[2]), shows that the system (1.1) is exactly controllable.

Theorem 1.2. Assume (1.4) and let T > T0, where T0 is some positive constant
depending only on λ, μ, and R. Then for any given (u0, u1) ∈ H and (u0, u1) ∈ H,
there exists g ∈ L2

loc(R;U) such that the solution to system (1.1) satisfies

u(T ) = u0 and u′(T ) = u1 in Ω.

Remark 1.1. It is trivial to see that (1.4) is satisfied when Γ0 = Γ and Γ1 = ∅.
By virtue of our Theorem 1.1 and Theorem 2.2 of [4] (see also Theorem 3 of

[15]), the system (1.1) is exactly controllable in some time interval [0, T ] if and only
if its closed-loop system under the proportional output feedback g = −ky, k > 0, is
exponentially stable. Set

E(t) =
1
2
‖(u(t), u′(t))‖2

H =
1
2

[
‖u(t)‖2

(L2(Ω))n + ‖A−1/2u′(t)‖2
(L2(Ω))n

]
.

We then have the following corollary of Theorems 1.1 and 1.2.
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Corollary 1.1. The system (1.1) is exponentially stable under the proportional
output feedback g = −ky, k > 0, that is to say, there exist constants M ≥ 1 and δ > 0
such that

E(t) ≤Me−δtE(0)

for all t > 0.
Corollary 1.1 answers affirmatively the question on the exponential stability pro-

posed by Liu and Krstić in [39]. In the same paper, the strong stability for system
(1.1) under the output feedback g = −y was proved by using the Nagy–Foias–Foguel
theory of decomposition of continuous semigroups of contractions.

Very recently, it was shown in [10] that the open-loop system (1.1) is regular in
the state space H and the input and output space U in the sense of Weiss (see our
paper [19]). The analytic expression of the feedthrough operator D was also found in
[10].

Remark 1.2. Set μ = 1 and λ = −1. Then the system (1.1) reduces to a system
of n number of uncoupled scalar wave equations. Theorem 1.1 and regularity claimed
in [10] ensure that this uncoupled system is well-posed and regular. We could thereby
say that our results generalize the corresponding results of [3], [33], and [19] to the
case of systems of linear elasticity.

The remainder of the paper is organized as follows. In section 2, we cast the
system (1.1) into an abstract setting. In section 3, some preliminary results on the
nonhomogeneous boundary value problems for systems of linear elasticity are devel-
oped. The proof of Theorem 1.1 is presented in section 4.

2. Collocated formulation. Let H = (H−1(Ω))n be the dual space of the
Sobolev space (H1

0 (Ω))n with the usual inner product. Let A be the positive self-
adjoint operator in H induced by the bilinear form a(·, ·) defined by

(2.1)
〈Af1, f2〉(H−1(Ω))n×(H1

0 (Ω))n = a(f1, f2)

=
∫

Ω

[μ∇f1 · ∇f2 + (λ+ μ)div(f1) · div(f2)] dx

∀ f1, f2 ∈ (H1
0 (Ω))n.

By means of the Lax–Milgram theorem, A is a canonical isomorphism from
D(A) = (H1

0 (Ω))n onto H . It is easy to show that Af = Af whenever f ∈
(H2(Ω) ∩ H1

0 (Ω))n and that A−1f = A−1f for any f ∈ (L2(Ω))n. Hence A is an
extension of A to the space (H1

0 (Ω))n.
As in [17], it can be easily shown that D(A1/2) = (L2(Ω))n and A1/2 is an

isomorphism from (L2(Ω))n onto H . Define the Dirichlet map Υ by Υg = v, where v
satisfies {

μΔv + (λ+ μ)∇div(v) = 0 in Ω,

v = 0 on Γ1, v = g on Γ0.

It is well known from the elliptic theory (see, e.g., Theorems 10.1.1 and 10.1.2 in
Chapter 10 of [41]) that Υ ∈ L((Hs(Γ0))n, (Hs+1/2(Ω))n) for all s ∈ R. In particular,
Υ ∈ L((L2(Γ0))n, (H1/2(Ω))n). In terms of Υ, one can write the system (1.1) as

(2.2) u′′ +A(u − Υg) = 0.
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Since D(A) is dense in H , so is D(A1/2). We now identify H with its dual H ′.
The following relations hold:

D(A1/2) ↪→ H = H ′ ↪→ D(A1/2)′.

An extension Ã ∈ L(D(A1/2), D(A1/2)′) of A is defined by

〈Ãf1, f2〉D(A1/2)′×D(A1/2) = 〈A1/2f1, A
1/2f2〉H ∀ f1, f2 ∈ D(A1/2).

As a result, (2.2) can be further written in D(A1/2)′ as

u′′ + Ãu+Bg = 0,

where B ∈ L(U,D(A1/2)′) is given by

(2.3) Bg = −ÃΥg ∀ g ∈ U.

Define B∗ ∈ L(D(A1/2), U) by

〈B∗f, g〉U = 〈f,Bg〉D(A1/2)×D(A1/2)′ ∀ f ∈ D(A1/2), g ∈ U.

Then for any f ∈ D(A1/2) and g ∈ (C∞
0 (Γ0))n, we have

〈f,Bg〉D(A1/2)×D(A1/2)′ = 〈f, ÃÃ−1Bg〉D(A1/2)×D(A1/2)′ = 〈A1/2f,A1/2Ã−1Bg〉H
= −〈A1/2f,A1/2Υg〉H = −〈f,Υg〉(L2(Ω))n

= −〈AA−1f,Υg〉(L2(Ω))n = −〈Υ∗AA−1f, g〉U

=
〈
μ
∂A−1f

∂ν
+ (λ+ μ)νdiv(A−1f), g

〉
U

.

In the last step above, we used the fact (see formula (3.3) of [39])

Υ∗Aϕ = −μ∂ϕ
∂ν

− (λ+ μ)νdiv(ϕ) on Γ ∀ ϕ ∈ D(A).

Since (C∞
0 (Γ0))n is dense in U = (L2(Γ0))n, we finally obtain that

(2.4) B∗ =
(
μ
∂A−1

∂ν
+ (λ+ μ)νdiv(A−1)

)∣∣∣∣
Γ0

.

We thus have formulated the open-loop system (1.1) into an abstract form of a
second order system in the state space H = (L2(Ω))n × (H−1(Ω))n and the control
and observation space U = (L2(Γ))n:

(2.5)
{
u′′(t) + Ãu(t) +Bg(t) = 0,
y(t) = −B∗u′(t),

where B and B∗ are defined by (2.3) and (2.4), respectively. The abstract system
(2.5) has been studied in detail in [4] and [15] (see also [35] and Chapter 7 of [31]).
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3. Preliminary results on nonhomogeneous boundary value problems.
In this section, we give some results on the nonhomogeneous boundary value problems
for systems of linear elasticity. These results have appeared in the literature: see [7]
and Chapter IV of [37]. These results parallel those for the scalar wave equation in
[28]. We shall still give the proofs in detail for the sake of completeness and also
because they are fundamental for the present paper. Our proofs follow those of [28].

In what follows, denote Q := Ω × (0, T ), Σ := Γ × (0, T ), L2(Σ) := H0(Σ) =
L2(0, T ;L2(Γ)), H1(Σ) := L2(0, T ;H1(Γ)) ∩ H1(0, T ;L2(Γ)), H−1(Σ) := (H1

0 (Σ))′,
and (L2(Σ))n := L2(0, T ; (L2(Γ))n), (H1(Σ))n := L2(0, T ; (H1(Γ))n)∩H1(0, T ; (L2(Γ))n),
(H−1(Σ))n := ((H1

0 (Σ))n)′.
Extending the value of g to be zero on Γ1, we may assume, without loss of

generality, that Γ0 = Γ = ∂Ω and g is defined on the whole boundary of Ω. Consider
the following system in the finite time interval [0, T ]:

(3.1)

⎧⎪⎪⎨⎪⎪⎩
u′′ −∇ · σ(u) = ϕ in Q,

u = g on Σ,

u(0) = u0, u′(0) = u1 in Ω.

It is seen that when ϕ = 0 and T = +∞, the above system becomes system (1.1)
without the last equation.

Proposition 3.1. For any given T > 0, suppose that⎧⎪⎪⎨⎪⎪⎩
ϕ ∈ L1(0, T ; (H−1(Ω))n),

g ∈ L2(0, T ; (L2(Γ))n),

u0 ∈ (L2(Ω))n, u1 ∈ (H−1(Ω))n.

Then there exists a unique solution u to the system (3.1), which satisfies

(3.2) (u, u′) ∈ C(0, T ; (L2(Ω))n × (H−1(Ω))n)

and

(3.3) σ(u)ν ∈ (H−1(Σ))n.

Remark 3.1. With the same reason presented after Remark 2.5 of [28], it suffices
to show (u, u′) ∈ L∞(0, T ; (L2(Ω))n × (H−1(Ω))n) for the proof of Proposition 3.1.

Remark 3.2. In Proposition 3.1, one can show that u, u′, and σ(u)ν depend
continuously on the related given datum. Similar remarks apply to all regularity
results in what follows.

Remark 3.3. Let ϕ = g = 0 in Proposition 3.1. Then formula (3.2) shows that
(3.1) associates with a C0-semigroup on (L2(Ω))n × (H−1(Ω))n, that is,

(u(t), u′(t)) = eCt(u(0), u′(0)),

where eCt is a C0-semigroup on (L2(Ω))n × (H−1(Ω))n.
In order to prove Proposition 3.1, we need several preliminary lemmas. First, we

consider the following dual system of (3.1):

(3.4)

⎧⎪⎪⎨⎪⎪⎩
w′′ −∇ · σ(w) = ψ in Q,

w = 0 on Σ,

w(0) = 0, w′(0) = 0 in Ω.
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The following result is in Chapter IV of [37] and Proposition 1 of [7] on page 149
for a more general Lamé system.

Lemma 3.1. Suppose that ψ ∈ L1(0, T ; (L2(Ω))n) for some T > 0. Then there
exists a unique solution w to (3.4), which satisfies

(3.5) (w,w′) ∈ L∞(0, T ; (H1(Ω))n × (L2(Ω))n)

and

(3.6) σ(w)ν ∈ (L2(Σ))n.

Proof. From [12], we know that the system (3.4) admits a unique solution sat-
isfying (3.5). Now we need to show only (3.6). First, since Γ is of class C2, we can
always take a vector field h : Ω → R

n of class C1 such that h = ν on Γ (see, e.g.,
Lemma 4.1 of [20]).

For the sake of convenience, we rewrite, in the proof below, the system (3.4) as
follows:

(3.7)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
w′′

i −
∑

j

σij,j(w) = ψi in Q,

wi = 0 on Σ,

wi(0) = 0, w′
i(0) = 0 in Ω,

i = 1, . . . , n,

where σij,j(w) := ∂σij(w)
∂xj

. Here and in what follows for notational simplicity we omit
the range of index of summation.

Denote wi,m := ∂wi

∂xm
, wi,jm := ∂2wi

∂xj∂xm
, (w′

iw
′
i),m := ∂(w′

iw
′
i)

∂xm
. Multiply both sides

of the ith equation of (3.7) by
∑

m hmwi,m and integrate over Q = Ω× (0, T ) by parts
to get

∫ T

0

∫
Ω

ψi

∑
m

hmwi,mdxdt =
∫ T

0

∫
Ω

⎛⎝w′′
i −

∑
j

σij,j(w)

⎞⎠∑
m

hmwi,mdxdt

=
∫

Ω

∑
m

hmwi,mw
′
idx

∣∣∣∣∣
T

0

−
∫ T

0

∫
Γ

∑
m

hmwi,m

∑
j

σij(w)νjdΓdt

+
∫ T

0

∫
Ω

⎛⎝∑
j,m

hm,jσij(w)wi,m +
∑
j,m

hmσij(w)wi,jm − 1
2

∑
m

hm(w′
iw

′
i),m

⎞⎠ dxdt.

First, since

∑
i,j

σij(w)wi,jm =
∑
i,j

σij(w)εij,m(w) =
1
2

∑
i,j

(σij(w)εij(w)),m,

it follows that
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(3.8)∫ T

0

∫
Γ

⎡⎣2
∑
i,j,m

hmwi,mσij(w)νj + (h · ν)
∑

i

⎛⎝w′
iw

′
i −
∑

j

σij(w)εij(w)

⎞⎠⎤⎦ dΓdt
=
∫

Ω

2
∑
i,m

hmwi,mw
′
idx

∣∣∣∣∣∣
T

0

+
∫ T

0

∫
Ω

⎡⎣2
∑
i,j,m

hm,jσij(w)wi,m

−2
∑
i,m

ψihmwi,m + div(h)
∑

i

⎛⎝w′
iw

′
i −
∑

j

σij(w)εij(w)

⎞⎠⎤⎦ dxdt.
Next, since w = 0 on Σ and h = ν on Γ, we have

w′
i = 0, wi,mνj = wi,ννmνj = wi,jνm on Γ,

and hence∑
i,j,m

hmwi,mσij(w)νj = (h·ν)
∑
i,j

σij(w)wi,j = (h·ν)
∑
i,j

σij(w)εij(w) =
∑
i,j

σij(w)εij(w).

The left-hand side of (3.8) is then reduced to∫ T

0

∫
Γ

∑
i,j

σij(w)εij(w)dΓdt.

Now, by Lemma 2.1 of [2],

α

2

∑
i,j

σij(w)εij(w) ≤
∑

i

⎛⎝∑
j

σij(w)νj

⎞⎠2

≤ β

α

∑
i,j

σij(w)εij(w),

where α and β are two positive constants depending only on λ and μ. Hence

∫ T

0

∫
Γ

∑
i

⎛⎝∑
j

σij(w)νj

⎞⎠2

dΓdt ≤ β

α

∫ T

0

∫
Γ

∑
i,j

σij(w)εij(w)dΓdt =
β

α
RHS of (3.8).

Finally, from (3.5), we know that w and w′ depend continuously on ψ, and we
thus conclude from (3.8) that

∫ T

0

∫
Γ

∑
i

⎛⎝∑
j

σij(w)νj

⎞⎠2

dΓdt ≤ C‖ψ‖2
L1(0,T ;(L2(Ω))n)

for some positive constant C. This shows the validity of (3.6).
The first part of Proposition 3.1 is Lemma 3.2 following. When ϕ = 0 in Q and

u0 = u1 = 0 in Ω, Lemma 3.2 was already shown as Theorem 1 of [7] on page 148 for
the more general system. Our proof is slightly different from that in [7] by using the
“lifting theorem” in [29].
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Lemma 3.2. Equation (3.2) in Proposition 3.1 holds true. That is, under the
conditions of Proposition 3.1, we have

(u, u′) ∈ C(0, T ; (L2(Ω))n × (H−1(Ω))n).

Proof. We first prove the result by taking ϕ = 0. This will be split into several
steps.

Step 1. Let u be the solution to (3.1) and let w be the solution to the following
system: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

w′′
i −

∑
j

σij,j(w) = ψi in Q,

wi = 0 on Σ,

wi(T ) = 0, w′
i(T ) = 0 in Ω.

i = 1, . . . , n,

Assume that all data are smooth. We claim that

(3.9) 〈ϕ,w〉Q + 〈σ(u)ν, w〉Σ = −〈u1, w(0)〉Ω + 〈u0, w′(0)〉Ω + 〈u, ψ〉Q + 〈u, σ(w)ν〉Σ.

In fact,

〈ϕ,w〉Q + 〈σ(u)ν, w〉Σ =
∑

i

〈ϕi, wi〉Q +
∑

i

〈∑
j

σij(u)νj , wi

〉
Σ

=
∑

i

〈
u′′i −

∑
j

σij,j(u), wi

〉
Q

+
∑

i

〈∑
j

σij(u)νj , wi

〉
Σ

=
∫ T

0

∫
Ω

∑
i

⎛⎝u′′i −
∑

j

σij,j(u)

⎞⎠widxdt +
∫ T

0

∫
Γ

∑
i,j

σij(u)νjwidΓdt

=
∫

Ω

∑
i

u′iwidx

∣∣∣∣∣
T

0

−
∫

Ω

∑
i

uiw
′
idx

∣∣∣∣∣
T

0

+
∫ T

0

∫
Ω

∑
i

uiw
′′
i dxdt

−
∫ T

0

∫
Γ

∑
i,j

wiσij(u)νjdΓdt+
∫ T

0

∫
Ω

∑
i,j

σij(u)εij(w)dxdt

+
∫ T

0

∫
Γ

∑
i,j

wiσij(u)νjdΓdt

= −
∫

Ω

∑
i

u′i(0)wi(0)dx+
∫

Ω

∑
i

ui(0)w′
i(0)dx +

∫ T

0

∫
Ω

∑
i

uiw
′′
i dxdt

+
∫ T

0

∫
Ω

∑
i,j

σij(w)εij(u)dxdt

= −
∫

Ω

∑
i

u′i(0)wi(0)dx+
∫

Ω

∑
i

ui(0)w′
i(0)dx +

∫ T

0

∫
Ω

∑
i

uiw
′′
i dxdt
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+
∫ T

0

∫
Γ

∑
i,j

uiσij(w)νjdΓdt−
∫ T

0

∫
Ω

∑
i,j

uiσij,j(w)dxdt

= −
∫

Ω

∑
i

u′i(0)wi(0)dx+
∫

Ω

∑
i

ui(0)w′
i(0)dx

+
∫ T

0

∫
Ω

∑
i

ui

⎛⎝w′′
i −

∑
j

σij,j(w)

⎞⎠ dxdt+
∫ T

0

∫
Γ

∑
i,j

uiσij(w)νjdΓdt

= −
∑

i

〈u′i(0), wi(0)〉Ω +
∑

i

〈ui(0), w′
i(0)〉Ω

+
∑

i

〈ui, ψi〉Q +
∑

i

〈
ui,
∑

j

σij(w)νj

〉
Σ

= −〈u1, w(0)〉Ω + 〈u0, w′(0)〉Ω + 〈u, ψ〉Q + 〈u, σ(w)ν〉Σ.

The claim (3.9) is proved.
Since ϕ = 0 in Q and w = 0 on Σ, equality (3.9) yields

(3.10) 0 = −〈u1, w(0)〉Ω + 〈u0, w′(0)〉Ω + 〈u, ψ〉Q + 〈u, σ(w)ν〉Σ.

Step 2. By virtue of Lemma 3.1 and its assumptions, the map

ψ → 〈u1, w(0)〉Ω − 〈u0, w′(0)〉Ω − 〈u, σ(w)ν〉Σ

is continuous on L1(0, T ; (L2(Ω))n). From (3.10), the right-hand side of the above
expression equals 〈u, ψ〉Q. This implies that u belongs to the dual space of
L1(0, T ; (L2(Ω))n):

u ∈ L∞(0, T ; (L2(Ω))n).

Step 3. From the final result in Step 2, we have

u′′ = ∇ · σ(u) ∈ L∞(0, T ; (H−2(Ω))n).

By Theorems 2.3 and 12.4 in Chapter 1 of [38], we get

u′ ∈ L2(0, T ; [(L2(Ω))n, (H−2(Ω))n]1/2) = L2(0, T ; (H−1(Ω))n).

Furthermore, by appealing to the “lifting theorem” in [29] (see also Theorem 7.3.1 of
[31]) we arrive at

u′ ∈ C(0, T ; (H−1(Ω))n) ⊂ L∞(0, T ; (H−1(Ω))n).

Thus Lemma 3.2 is valid when ϕ = 0.
The proof will be complete if we can show the same conclusion for any ϕ ∈

L1(0, T ; (H−1(Ω))n). Let v be the solution to the following system:⎧⎪⎪⎨⎪⎪⎩
v′′ −∇ · σ(v) = ϕ in Q,

v = 0 on Σ,

v(0) = 0, v′(0) = 0 in Ω.
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From [12] we know that there is a unique solution v to the above system, which
satisfies

(v, v′) ∈ L∞(0, T ; (L2(Ω))n × (H−1(Ω))n).

Let u be the solution to the system (3.1) with ϕ = 0. Then u+ v is the solution
to the system (3.1) with ϕ �= 0, and u+ v satisfies (3.2) with u and u′ being replaced
by u+ v and u′ + v′, respectively. The proof is complete.

Lemma 3.3. Consider the system (3.1) with ϕ = 0 and suppose that{
g, g′ ∈ L2(0, T ; (L2(Γ))n),

u0 ∈ (H1(Ω))n, u1 ∈ (L2(Ω))n

with the compatibility condition

g|t=0 = u0|Γ.

Then the solution of (3.1) satisfies

(u′, u′′) ∈ L∞(0, T ; (L2(Ω))n × (H−1(Ω))n).

Proof. We need to prove the result for smooth data only, since the general case
can be accomplished by continuous extension and a density argument. Let γ := u′.
The γ satisfies ⎧⎪⎪⎨⎪⎪⎩

γ′′ −∇ · σ(γ) = 0 in Q,

γ = g′ on Σ,

γ(0) = u1, γ′(0) = ∇ · σ(u0) in Ω.

Since γ′(0) = ∇ · σ(u0) ∈ (H−1(Ω))n, applying Lemma 3.2 to the above system gives

(γ, γ′) ∈ L∞(0, T ; (L2(Ω))n × (H−1(Ω))n).

Lemma 3.3 then follows from the fact γ = u′.
Lemma 3.4. Consider the system in Lemma 3.3. If in addition

g ∈ L∞(0, T ; (H1/2(Γ))n),

then

u ∈ L∞(0, T ; (H1(Ω))n).

Proof. According to Lemma 3.3, we have

∇ · σ(u) = u′′ ∈ L∞(0, T ; (H−1(Ω))n).

Take t as a parameter and consider the Dirichlet problem{
∇ · σ(u) ∈ L∞(0, T ; (H−1(Ω))n),

u|Γ = g ∈ L∞(0, T ; (H1/2(Γ))n).
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Since the Shapiro–Lopatinskij condition holds at each point of the boundary ∂Ω (see
[1, p. 56]), the above boundary value problem is elliptic in the sense of Agmon,
Douglis, and Nirenberg (see [1, p. 53]). By Theorems 10.1.1 and 10.1.2 in Chapter
10 of [41] (take G = Ω, s = −1, p = 2, N = m = n, σj = −2, tj = 2, sj = 0,
j = 1, . . . , n, then κ = 0, τ1 = · · · = τn = 2,

∏N
j=1 H̃

tj+s,p,(τj)(G) = (H̃1,2,(2)(Ω))n,∏N
j=1 H̃

s−sj ,p,(κ−sj)(G) = (H−1,2(Ω))n = (H−1(Ω))n,
∏m

h=1B
s−σh−1/p,p(∂G) =

(H1/2,2(Γ))n = (H1/2(Γ))n), we get

u ∈ L∞(0, T ; (H1(Ω))n).

Lemma 3.5. Suppose that⎧⎪⎪⎨⎪⎪⎩
ϕ ∈ L1(0, T ; (L2(Ω))n),

g ∈ (H1(Σ))n = L2(0, T ; (H1(Γ))n) ∩H1(0, T ; (L2(Γ))n),

u0 ∈ (H1(Ω))n, u1 ∈ (L2(Ω))n

with the compatibility condition

g|t=0 = u0|Γ.

Then the solution u to the system (3.1) satisfies

(3.11) (u, u′) ∈ C([0, T ]; (H1(Ω))n × (L2(Ω))n)

and

(3.12) σ(u)ν ∈ (L2(Σ))n.

Proof. We first prove (3.11). From the proof of Lemma 3.2, it suffices to consider
the case of ϕ = 0. Since g ∈ (H1(Σ))n = L2(0, T ; (H1(Γ))n) ∩H1(0, T ; (L2(Γ))n), it
follows that

g ∈ L2(0, T ; (H1(Γ))n), g′ ∈ L2(0, T ; (L2(Γ))n).

By Theorem 3.1 in Chapter 1 of [38] (take m = 1, j = 0, X = (H1(Γ))n, and
Y = (L2(Γ))n), we know that

g ∈ C(0, T ; [(H1(Γ))n, (L2(Γ))n]1/2) ⊂ L∞(0, T ; (H1/2(Γ))n).

According to Lemmas 3.3 and 3.4, we have

u ∈ L∞(0, T ; (H1(Ω))n), u′ ∈ L∞(0, T ; (L2(Ω))n).

This is (3.11) by Remark 3.1.
Next, we prove (3.12). Assume that all data are smooth and take a vector field

h : Ω → R
n of class C1 such that h = ν on Γ. Using the identity (3.8), we have
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(3.13)∫ T

0

∫
Γ

⎡⎣2
∑
i,j,m

hmui,mσij(u)νj + (h · ν)
∑

i

⎛⎝u′iu′i −∑
j

σij(u)εij(u)

⎞⎠⎤⎦ dΓdt
=
∫

Ω

2
∑
i,m

hmui,mu
′
idx

∣∣∣∣∣∣
T

0

+
∫ T

0

∫
Ω

⎡⎣2
∑
i,j,m

hm,jσij(u)ui,m

−2
∑
i,m

ϕihmui,m + div(h)
∑

i

⎛⎝u′iu′i −∑
j

σij(u)εij(u)

⎞⎠⎤⎦ dxdt.
Since u = g on Γ, we have (see formula (2.49) on page 161 of [28])

ui,mνj = (ui,ννm + Tmgi)νj = ui,ννmνj + Tmgi · νj = (ui,j − Tjgi)νm + Tmgi · νj ,

where Tk, k = 1, . . . , n, are first order differential operators on Γ. Hence∑
i,j,m

hmui,mσi,j(u)νj =
∑
i,j

(h·ν)σij(u)ui,j−
∑
i,j

(h·ν)σij(u)Tjgi+
∑
i,j,m

hmνjσij(u)Tmgi.

Since h = ν on Γ, the left-hand side of (3.13) reduces to∫ T

0

∫
Γ

∑
i,j

[
σij(u)εij(u) − 2σij(u)

(
Tjgi −

∑
m

νmνjTmgi

)
+ (g′i)

2

]
dΓdt.

Set

G := ‖ϕ‖2
L1(0,T ;(L2(Ω))n) + ‖u0‖2

(H1(Ω))n + ‖u1‖2
(L2(Ω))n + ‖g‖2

(H1(Σ))n .

Then the right-hand side of (3.13) can be majorized by CG for some positive constant
C depending only on λ, μ, and Ω.

Again by Lemma 2.1 of [2], we know that∑
i,j

(σij(u))2 ≤ β

α

∑
i,j

σij(u)εij(u),

and hence

σij(u)εij(u) − 2σij(u)

(
Tjgi −

∑
m

νmνjTmgi

)
+ (g′i)

2

= σij(u)εij(u) − 2
√

α

2β
σij(u) ·

√
2β
α

(
Tjgi −

∑
m

νmνjTmgi

)
+ (g′i)

2

≥ σij(u)εij(u) − α

2β
(σij(u))2 − 2β

α

(
Tjgi −

∑
m

νmνjTmgi

)2

+ (g′i)
2

≥ 1
2
σij(u)εij(u) − 2β

α

(
Tjgi −

∑
m

νmνjTmgi

)2

+ (g′i)
2.
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Therefore, from (3.13), we have∫ T

0

∫
Γ

1
2

∑
i,j

σij(u)εij(u)dΓdt ≤ CG

+
∫ T

0

∫
Γ

∑
i,j

⎡⎣2β
α

(
Tjgi −

∑
m

νmνjTmgi

)2

− (g′i)
2

⎤⎦ dΓdt ≤ C′G

for some positive constant C′. Applying Lemma 2.1 of [2], we get

∑
i

⎛⎝∑
j

σij(u)νj

⎞⎠2

≤ β

α

∑
i,j

σij(u)εij(u).

Combine the last two inequalities to yield

∫ T

0

∫
Γ

∑
i

⎛⎝∑
j

σij(u)νj

⎞⎠2

dΓdt ≤ C′′G

for some positive constant C′′. This is (3.12).
Proof of Proposition 3.1. In view of Lemma 3.2, only (3.3) needs to be proved.

This is done by duality as in [28]. Let w be the solution to the following system:

(3.14)

⎧⎪⎪⎨⎪⎪⎩
w′′

i − σij,j(w) = 0 in Q,

wi = pi on Σ,

wi(T ) = 0, w′
i(T ) = 0 in Ω,

i = 1, . . . , n,

where pi, i = 1, . . . , n, satisfy

pi ∈ H1(Σ), pi(T ) = 0 on Γ.

Assuming all data to be smooth, using (3.9) and noticing ψi = 0 in Q and wi = pi on
Σ, we have

〈σ(u)ν, p〉Σ = −〈ϕ,w〉Q + 〈g, σ(w)ν〉Σ − 〈u1, w(0)〉Ω + 〈u0, w′(0)〉Ω.

Applying Lemma 3.5 to the system (3.14) gives

|〈σ(u)ν, p〉Σ| ≤ C ‖p‖(H1(Σ))n

for some positive constant C. Equation (3.3) then follows by taking p ∈ (H1
0 (Σ))n.

To end this section, we introduce some preliminary notation and results in the
theory of pseudodifferential operators. All are classical and standard (see, e.g., [14,
23, 40]).

Let Ω ⊂ R
n be an open set. Define the symbol class Sm(Ω) (m ∈ R) as the set

of p ∈ C∞(Ω × R
n) satisfying that, for any compact K ⊂ Ω, and any multi-index α,

there exists a constant CK such that∣∣Dα
ξ p(x, ξ)

∣∣ ≤ CK(1 + |ξ|)m−|α|
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for all x ∈ K and ξ ∈ R
n.

The scalar pseudodifferential operator P : C∞
0 (Ω) → C∞(Ω) is a map given by

Pu(x) = (2π)−n

∫
ei〈x,ξ〉p(x, ξ)û(ξ)dξ,

where û(ξ) denotes the Fourier transform of u(x). If p(x, ξ) ∈ Sm(Ω), P is said to
belong to OP (Sm(Ω)). We can extend P to be a continuous map from E ′(Ω) to D′(Ω),
where D′(Ω) is the space of all distributions (generalized functions) in Ω and E ′(Ω) is
the space of all distributions (generalized functions) with compact supports in Ω.

We can consider a system of pseudodifferential operators in Ω to be a matrix
of scalar pseudodifferential operators. We still use P to denote, without confusion,
an n × n matrix formed pseudodifferential operator of order m from (C∞

0 (Ω))n to
(C∞(Ω))n:

P :=

⎡⎢⎢⎢⎣
P11 P12 . . . P1n

P21 P22 . . . P2n

...
...

. . .
...

Pn1 Pn2 . . . Pnn

⎤⎥⎥⎥⎦ ,
where Pij , 1 ≤ i, j ≤ n, are scalar pseudodifferential operators of order m. Then for
any u = (u1, u2, . . . , un) ∈ (C∞

0 (Ω))n, the ith component of Pu is defined by

(Pu)i =
n∑

j=1

Pijuj, i = 1, . . . , n.

Again without confusion, we still use OP (Sm(Ω)) to denote the class of matrix formed
pseudodifferential operators of order m. If the principal symbol of Pij is denoted by
σm(Pij), then the principal symbol of P is just the matrix of σm(Pij). The operator
P is called elliptic if its principal symbol (σm(Pij)) is invertible everywhere in Ω.

Many properties of scalar pseudodifferential operators can be generalized to the
case of matrix formed pseudodifferential operators. For instance, the pseudolocal
property of a matrix formed pseudodifferential operator P says that singsupp(Pu) ⊂
supp(u) for all u ∈ (E ′(Ω))n (here singsupp(Pu), the singular support of Pu, is the set
of points in Ω having no open neighborhood to which the restriction of Pu is a (C∞)n

vector-valued function). The Sobolev space continuity of P ∈ OP (Sm(Ω)) means
that P is a continuous map from (Hs

comp(Ω))n to (Hs−m
loc (Ω))n. The commutator of

two matrix formed pseudodifferential operators has the following property: if P1 ∈
OP (Sm1(Ω)), P2 ∈ OP (Sm2(Ω)), then the commutator [P1, P2] := P1P2 − P2P1 ∈
OP (Sm1+m2−1(Ω)).

In the proof of Theorem 1.1, we need to consider the Dirichlet problem of a matrix
formed elliptic pseudodifferential operator P :{

Pu = f in Ω,

u = g on ∂Ω.

The well-developed theory of pseudodifferential boundary value problems can be found
in [14, 40] and the references therein.
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4. Proof of Theorem 1.1. As in section 3, we still assume that g is defined
on Γ by the zero extension of g on Γ1. We rewrite system (1.1) with zero initial data
into the form

(4.1)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u′′ + Au = 0 in Ω × (0,∞),

u = g on Γ × (0,∞),

u(0) = 0, u′(0) = 0 in Ω,

y = −σ(A−1u′)ν on Γ × (0,∞),

where A is defined by (1.2) in section 1.
By virtue of the interior regularity of {(u(T ), u′(T ))} in H we obtained in section

3, Theorem 1.1 is equivalent to saying that the solution to (4.1) satisfies

‖y‖L2(0,T ;U) ≤ CT ‖g‖L2(0,T ;U) ∀ g ∈ L2(0, T ;U).

Since y = −B∗u′ = −σ(A−1u′)ν from (2.5) and (1.1), the above formula is equivalent
to

‖B∗u′‖L2(0,T ;U) ≤ CT ‖g‖L2(0,T ;U) ∀ g ∈ L2(0, T ;U)

or

(4.2)
∥∥σ(A−1u′)ν

∥∥
L2(0,T ;U)

≤ CT ‖g‖L2(0,T ;U) ∀ g ∈ L2(0, T ;U).

The system (4.1) can be transformed into (4.5) through a partition of unity and a
change of variables [22, 24, 25]. The present setting yielding (4.5) is taken from [24, 25].
Let us say a few words about the process. Let (x, y) be the new variables such that x ∈
R

1, y = (y1, . . . , yn−1) ∈ R
n−1. Denote also by Ω the new half-space R

1
x+

×R
n−1
y with

the boundary Γ = ∂Ω = Ω|x=0 = R
n−1
y without confusion, and also keep the notation

u and g for the new solution and new control, respectively. Under such a change of
coordinates, the operator ∂2

t +A is changed locally to −T (x, y)D2
t +P (x, y,Dx, Dy)−

Pl(x, y,Dx, Dy), where the differential operators Dt, Dx, and Dyj , j = 1, . . . , n − 1,
are defined by

Dt :=
1√
−1

∂

∂t
, Dx :=

1√
−1

∂

∂x
, Dyj :=

1√
−1

∂

∂yj
.

T (x, y) denotes a positive definite diagonal matrix (tii(x, y))n
i=1 and 0 < tii(x, y) <

M, i = 1, . . . , n, for all (x, y) ∈ Ω; here M is some positive constant depending on
λ, μ, and the original Ω only. P (x, y,Dx, Dy) denotes the principal term, which is a
matrix formed second order elliptic operator with symbol p(x, y, ξ, η). The entries of
the matrix p(x, y, ξ, η) can be assumed to have the following forms:

(4.3) pij(x, y, ξ, η) :=

{
ξ2 + p̃ij(x, y, ξ, ηk, η

2
k), i = j, k = 1, . . . , n− 1,

p̃ij(x, y, ξ, ηk, η
2
k), i �= j, k = 1, . . . , n− 1,

where the p̃ij(x, y, ξ, ηk, η
2
k), 1 ≤ i, j ≤ n, are of second order in the variables ξ and

ηk but do not contain ξ2 terms. In addition, p̃ij(x, y, ξ, ηk, η
2
k) may depend on x and

y but not on t. Pl(x, y,Dx, Dy) denotes the lower order terms. The boundary output
(or observation) under the transformation can be expressed as

Y = −B((P − Pl)−1T u′) on Γ × (0,∞).
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In the above expression, the symbol of B has the following form (modulo zero order
terms) on the boundary ∂Ω = Ω|x=0:

(4.4) bij(y, ξ, η) :=

{
ξ + b̃ij(y, ηk), i = j, k = 1, . . . , n− 1,

b̃ij(y, ηk), i �= j, k = 1, . . . , n− 1,

where b̃ij(y, ηk), 1 ≤ i, j ≤ n, may be dependent on y but are no worse than the
linear combinations of all variables ηk, k = 1, . . . , n− 1. Denote P := −T (x, y)D2

t +
P (x, y,Dx, Dy). Under the new coordinates, the system (4.1) takes a new form as
shown in [24, 25]:

(4.5)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Pu = −T D2
tu+ Pu = Plu in Ω × (0,∞),

u = g on Γ × (0,∞),

u(0) = 0, u′(0) = 0 in Ω,

Y = −B((P − Pl)−1T u′) on Γ × (0,∞),

where u′ := ∂u
∂t .

We give several remarks concerning the system (4.5). They are essentially conse-
quences of Proposition 3.1 and will be used in the proof of Theorem 1.1.

Remark 4.1. Since the system (4.5) is transformed from the system (4.1) through
a locally smooth and invertible transformation, the new solution keeps many proper-
ties of the old one, including the well-posedness (in the sense of Hadamard) and the
Sobolev regularity. In particular, as a consequence of Proposition 3.1, we assert that
for any g ∈ L2(0, T ; (L2(Γ))n), there exists a unique solution u to the system (4.5),
which satisfies

(4.6) (u, u′) ∈ C([0, T ]; (L2(Ω))n × (H−1(Ω))n), Bu ∈ (H−1(Σ))n,

where Bu comes from σ(u)ν through the locally smooth transformation, and we still
use Σ = Γ × (0, T ).

Since the boundary output (or observation) y = −σ(A−1u′)ν is transformed into
Y = −B((P − Pl)−1T u′) under the transformation, from the analysis above, we can
assert that σ(A−1u′)ν ∈ L2(0, T ;U) = (L2(Σ))n if and only if B((P − Pl)−1T u′) ∈
(L2(Σ))n. Due to the equivalence of Theorem 1.1 and (4.2), Theorem 1.1 is valid if
we can prove that

(4.7) B((P − Pl)−1T u′) ∈ (L2(Σ))n.

Remark 4.2. Through the same transformation from (4.1) to (4.5), the system
(3.1) with g = 0 becomes the following system:

(4.8)

⎧⎪⎪⎨⎪⎪⎩
Pu = T u′′ + Pu = Plu+ ϕ in Ω × (0,∞),

u = 0 on Γ × (0,∞),

u(0) = u0, u′(0) = u1 in Ω,

where we used the same notation u, ϕ, u0, and u1 as in (3.1). By Remark 4.1, for any
ϕ ∈ L1(0, T ; (H−1(Ω))n) and (u0, u1) ∈ (L2(Ω))n × (H−1(Ω))n, there exists a unique
solution u to the system (4.8), which satisfies

(u, u′) ∈ C([0, T ]; (L2(Ω))n × (H−1(Ω))n).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2156 BAO-ZHU GUO AND ZHI-XIONG ZHANG

Write (4.8) in the operator form

d

dt
(u, u′) = C1(u, u′) + C2(u, u′) + (0, T −1ϕ),

where

C1(f1, f2) = (f2,−T −1Pf1), C2(f1, f2) = (0, T −1Plf1).

We see that C2 is a bounded operator on (L(Ω))n × (H−1(Ω))n. By Remarks 3.3 and
4.1, C1 + C2 generates a C0-semigroup on (L(Ω))n × (H−1(Ω))n, and so does C1 due
to the boundedness of C2.

Let w be the solution to (4.8) but with the low order terms removed. It is
associated with the operator C1 only, that is, it satisfies the following system:⎧⎪⎪⎨⎪⎪⎩

Pw = T w′′ + Pw = ϕ in Ω × (0,∞),

w = 0 on Γ × (0,∞),

w(0) = w0, w′(0) = w1 in Ω.

Then for any ϕ ∈ L1(0, T ; (H−1(Ω))n) and (w0, w1) ∈ (L2(Ω))n × (H−1(Ω))n, we
have

(w,w′) ∈ C([0, T ]; (L2(Ω))n × (H−1(Ω))n).

Remark 4.3. As it is stated in Remark 4.1, proving Theorem 1.1 is equivalent to
showing (4.7). Moreover, we claim that (4.7) is further equivalent to

B(P−1u′) ∈ (L2(Σ))n.

In fact, a straightforward computation shows that

(4.9)

(P − Pl)−1T u′ = (P − Pl)−1PP−1T u′

= (P − Pl)−1 ((P − Pl) + Pl)P−1T u′

=
(
I + (P − Pl)−1Pl

)
P−1T u′ = P−1T u′ + (P − Pl)−1PlP

−1T u′

=
(
[P−1, T ] + T P−1

)
u′ + (P − Pl)−1PlP

−1T u′

= T P−1u′ + [P−1, T ]u′ + (P − Pl)−1PlP
−1T u′.

Here [P−1, T ] is the commutator of P−1 and T as defined at the end of section 3.
Since T ∈ OP (S0(Ω)), P ∈ OP (S2(Ω)), and Pl ∈ OP (S1(Ω)), by the properties of
pseudodifferential operators [23], we have [P−1, T ] = P−1T − T P−1 ∈ OP (S−3(Ω))
and (P − Pl)−1PlP

−1T ∈ OP (S−3(Ω)). Furthermore, from the a priori regularity of
u′ in (4.6), we have

[P−1, T ]u′ + (P − Pl)−1PlP
−1T u′ ∈ C([0, T ]; (H2(Ω))n).

Then the trace theorem for Sobolev spaces (see, e.g., Theorem 2.3 of [13]) can be
applied to get

B
(
[P−1, T ]u′ + (P − Pl)−1PlP

−1T u′
)
∈ C([0, T ]; (H1/2(Γ))n) ⊂ (L2(Σ))n.
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This together with (4.9) shows that

B((P − Pl)−1T u′) ∈ (L2(Σ))n if and only if B(T P−1u′) ∈ (L2(Σ))n.

Finally, by the smoothness and invertibility of T , we get

B((P − Pl)−1T u′) ∈ (L2(Σ))n if and only if B(P−1u′) ∈ (L2(Σ))n.

Proof of Theorem 1.1. The proof follows closely [33] for the scalar wave equation.
The proof is done in five steps.

Step 1. In this step, we obtain the a priori estimate

(4.10) Bz′ ∈ (H−1(Σ))n,

where z := P−1u′ and u is the solution to (4.5) with g ∈ L2(0, T ; (L2(Γ))n).
To do this, rewrite (4.5) as the following system:

(4.11)

⎧⎪⎪⎨⎪⎪⎩
u′′ + T −1(P − Pl)u = 0 in Ω × (0,∞),

u = g on Γ × (0,∞),

u(0) = 0, u′(0) = 0 in Ω.

Define the map Υ̃ ∈ L((L2(Γ))n, (H1/2(Ω))n) by Υ̃g = v, where v satisfies{
T −1(P − Pl)v = 0 in Ω,

v = g on Γ.

From the classical elliptic theory (see Chapter 3 of [6] or Theorems 10.1.1 and 10.1.2
in Chapter 10 of [41]), we have

(4.12) Υ̃g ∈ L2(0, T ; (H1/2(Ω))n), B(Υ̃g) ∈ L2(0, T ; (H−1(Ω))n) ⊂ (H−1(Σ))n.

In terms of Υ̃, we can write (4.11) as

u′′ + T −1(P − Pl)(u − Υ̃g) = 0.

Since z = P−1u′, the above equality implies that

(4.13)
Bz′ = BP−1u′′ = −BP−1T −1(P − Pl)(u − Υ̃g)

= −B(P−1T −1(P − Pl)u) + B(P−1T −1(P − Pl)(Υ̃g)).

In order to prove Bz′ ∈ (H−1(Σ))n, we first prove

(4.14) B(P−1T −1(P − Pl)u) ∈ (H−1(Σ))n.

In fact,

(4.15)

B(P−1T −1(P − Pl)u) = BP−1([T −1, P − Pl] + (P − Pl)T −1)u

= BP−1[T −1, P − Pl]u+ BP−1(P − Pl)T −1u

= BP−1[T −1, P − Pl]u+ B(I − P−1Pl)T −1u

= B(T −1u) + B(P−1[T −1, P − Pl] − P−1PlT −1)u

= B(T −1u) + [B, P−1[T −1, P − Pl] − P−1PlT −1]u

+(P−1[T −1, P − Pl] − P−1PlT −1)Bu.
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Since from (4.6), Bu ∈ (H−1(Σ))n, by the smoothness and invertibility of T , it follows
that

(4.16) B(T −1u) ∈ (H−1(Σ))n.

Furthermore, from P−1[T −1, P −Pl] ∈ OP (S−1(Ω)), P−1PlT −1 ∈ OP (S−1(Ω)), and
B ∈ OP (S1(Ω)), we know that P−1[T −1, P − Pl] − P−1PlT −1 ∈ OP (S−1(Ω)) and
[B, P−1[T −1, P − Pl] − P−1PlT −1] ∈ OP (S−1(Ω)). This combines with the a priori
regularity u ∈ C([0, T ]; (L2(Ω))n) to yield

[B, P−1[T −1, P − Pl] − P−1PlT −1]u ∈ C([0, T ]; (H1(Ω))n).

Then by the trace theorem of Sobolev spaces,

(4.17) [B, P−1[T −1, P − Pl] − P−1PlT −1]u ∈ C([0, T ]; (H1/2(Γ))n) ⊂ (H−1(Σ))n.

Again by Bu ∈ (H−1(Σ))n and P−1[T −1, P − Pl] − P−1PlT −1 ∈ OP (S−1(Ω)), we
have

(4.18) (P−1[T −1, P − Pl] − P−1PlT −1)Bu ∈ (H−1(Σ))n.

Combine (4.15), (4.16), (4.17), and (4.18) to obtain

B(P−1T −1(P − Pl)u) = B(T −1u) + [B, P−1[T −1, P − Pl] − P−1PlT −1]u

+(P−1[T −1, P − Pl] − P−1PlT −1)Bu ∈ (H−1(Σ))n.

This is (4.14).
Next, along the same line of proving (4.14) from the a priori regularity u ∈

C([0, T ]; (L2(Ω))n) and Bu ∈ (H−1(Σ))n, we can obtain

(4.19) B(P−1T −1(P − Pl)(Υ̃g)) ∈ (H−1(Σ))n

from (4.12).
Finally, combine (4.13), (4.14), and (4.19) to yield

Bz′ = −B(P−1T −1(P − Pl)u) + B(P−1T −1(P − Pl)(Υ̃g)) ∈ (H−1(Σ))n.

Equation (4.10) is thus concluded.
Step 2. As it was explained in the beginning of this section, through a partition

of unity and a change of variables, the system (4.1) can be transformed into (4.5). As
in [33], we perform a cutoff in time and divide the system (4.5) into two independent
systems.

Since the solution u to (4.5) has zero initial data, one can extend u(t) to be zero
for t < 0. Let φ ∈ C∞

0 (R), |φ| ≤ 1, be a smooth cutoff function in R with φ(t) = 0
for t ≥ (3/2)T and φ(t) = 1 for t ∈ [0, T ]. Set

uc := φu.

Then uc satisfies

(4.20)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Puc = [P , φI]u+ φPlu in Ω × (0,∞),

uc = φg on Γ × (0,∞),

uc(0) = 0, u′c(0) = 0 in Ω,

supp(uc) ⊂ [0, (3/2)T ],
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where I is the n×n identity matrix and φI is thus an n×n diagonal matrix with the
same entries φ.

Now, decompose uc = v + w, where v and w satisfy (4.21) and (4.22) below,
respectively:

(4.21)

⎧⎪⎪⎨⎪⎪⎩
Pv = 0 in Ω × (0,∞),

v = φg on Γ × (0,∞),

v(0) = 0, v′(0) = 0 in Ω,

(4.22)

⎧⎪⎪⎨⎪⎪⎩
Pw = f := [P , φI]u+ φPlu in Ω × (0,∞),

w = 0 on Γ × (0,∞),

w(0) = 0, w′(0) = 0 in Ω.

By (4.6), the solution to (4.5) satisfies (u, u′) ∈ C([0, T ]; (L2(Ω))n × (H−1(Ω))n).
Hence

(4.23) (uc, u
′
c) ∈ C([0, T ]; (L2(Ω))n × (H−1(Ω))n).

Since (u, u′) ∈ C([0, T ]; (L2(Ω))n × (H−1(Ω))n), [P , φI] ∈ OP (S1(Ω×R
1
t )), and Pl ∈

OP (S1(Ω)), we have [P , φI]u ∈ C([0, T ]; (H−1(Ω))n) and φPlu ∈ C([0, T ]; (H−1(Ω))n).
Thus

(4.24) f = [P , φI]u+ φPlu ∈ C([0, T ]; (H−1(Ω))n).

By Remark 4.2, the solution w to (4.22) satisfies

(4.25) (w,w′) ∈ C([0, T ]; (L2(Ω))n × (H−1(Ω))n).

Noticing v = uc − w, from (4.23) and (4.25), we obtain

(4.26) (v, v′) = (uc, u
′
c) − (w,w′) ∈ C([0, T ]; (L2(Ω))n × (H−1(Ω))n).

Next, we show that the a priori estimate obtained in Step 1 is still valid for uc,
that is,

(4.27) Bẑ′ ∈ (H−1(Σ))n,

where ẑ := P−1u′c. In fact, since φ(t) = 1 for t ∈ [0, T ], we have Bẑ′ = B(P−1(φu)′) =
B(P−1u′) = Bz′ on Σ = Γ × (0, T ).

Step 3. We perform a region decomposition in this step, and this step is based
on the work of [24, 25] in the elliptic sector. As shown in (4.5), let ξ ∈ R and
η ∈ R

n−1 be the Fourier variables corresponding to x and y, respectively, and let
p(x, y, ξ, η) be the symbol of P (x, y,Dx, Dy). Then P (x, y,Dx, Dy) = p(x, y,Dx, Dy),
where p(x, y,Dx, Dy) comes from the symbol p(x, y, ξ, η) with ξ and η being replaced
by Dx and Dy, respectively.

Let τ = ρ−
√
−1γ, γ > 0, ρ ∈ R, be the Laplace variable corresponding to t. By

the definition of P in (4.5), the entries of the matrix formed symbol corresponding to
P become

(4.28) pij(x, y, ξ, η, τ) :=

{
−tii(x, y)τ2 + pij(x, y, ξ, η), i = j,

pij(x, y, ξ, η), i �= j,
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where pij(x, y, ξ, η), 1 ≤ i, j ≤ n, are the entries of the matrix formed symbol p(x, y, ξ, η)
as shown in (4.3). We may assume without loss of generality that γ = 0. Then (4.28)
becomes

(4.29) pij(x, y, ξ, η, ρ) :=

{
−tii(x, y)ρ2 + pij(x, y, ξ, η), i = j,

pij(x, y, ξ, η), i �= j.

Due to the symmetry of pij(x, y, ξ, η, ρ) in the variables η and ρ, we can restrict
ourselves to the region R

2n
+ = {(x, y, η, ρ)| (x, y) ∈ Ω, ρ > 0, ηj > 0, j = 1, . . . , n−1}.

As in [24, 25], divide the one quarter η/ρ space R
n
+ = {(η, ρ)| ρ > 0, ηj > 0, j =

1, . . . , n− 1} into three regions:

R1 := {(η, ρ) ∈ R
n
+| ρ < c0|η|},

Rtr := {(η, ρ) ∈ R
n
+| c0|η| ≤ ρ ≤ 2c0|η|},

R2 := {(η, ρ) ∈ R
n
+| ρ > 2c0|η|},

where c0 is some positive constant such that R1 ∪ Rtr is contained in the elliptic
region of the operator P . The value of c0 will be determined by the formula (4.30).

Now, consider the region R1 ∪ Rtr = {(η, ρ) ∈ R
n
+| ρ ≤ 2c0|η|}. Since P is a

matrix formed second order elliptic operator, there exists a constant α > 0 such that
the matrix formed symbol p(x, y, ξ, η) that corresponds to P satisfies

p(x, y, ξ, η)w · w ≥ α(|ξ|2 + |η|2)|w|2 ∀ w ∈ R
n.

Thus by (4.29), the symbol p(x, y, ξ, η, ρ) that corresponds to P satisfies

p(x, y, ξ, η, ρ)w · w = −
n∑

i=1

tiiρ
2w2

i + p(x, y, ξ, η)w · w

≥ −
(

max
i=1,...,n

tii

)
ρ2|w|2 + α(|ξ|2 + |η|2)|w|2

≥ −4c20

(
max

i=1,...,n
tii

)
|η|2|w|2 + α(|ξ|2 + |η|2)|w|2

≥
(
α− 4c20 max

i=1,...,n
tii

)
(|ξ|2 + |η|2)|w|2 in R1 ∪Rtr.

Choosing c0 small enough such that

(4.30) β := α− 4c20 max
i=1,...,n

tii > 0,

we then have

p(x, y, ξ, η, ρ)w · w ≥ β(|ξ|2 + |η|2)|w|2 ≥ β

(
|ξ|2 +

1
2
|η|2 +

1
8c20

ρ2

)
|w|2

≥ βmin
{

1
2
,

1
8c20

}
(|ξ|2 + |η|2 + ρ2)|w|2 in R1 ∪Rtr.

This implies that P is elliptic in the region R1 ∪Rtr.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

WELL-POSEDNESS OF CONTROLLED LINEAR ELASTICITY 2161

Let χ(x, y, t, η, ρ) ∈ C∞ be a homogeneous scalar symbol of order zero with
respect to η and ρ such that 0 ≤ χ(x, y, t, η, ρ) ≤ 1 and

χ(x, y, t, η, ρ) =

{
1 in R1,

0 in R2,
supp(χ) ⊂ R1 ∪Rtr.

Let X ∈ OP (S0(Ω × R
1
t )) be the matrix formed pseudodifferential operator corre-

sponding to χI. Then PX is a matrix formed elliptic pseudodifferential operator of
order two. Similarly to [33], we can prove that

(4.31) (I −X )Bẑ ∈ (L2(Σ))n.

In fact, by the a priori estimate (4.27), we have(
1 + |η|2 + ρ2

)− 1
2 (

√
−1ρ)F(y,t)(Bẑ) ∈ (L2(Rn

η,ρ))
n,

where F(y,t)(Bẑ) is the partial Fourier transform of Bẑ with respect to y and t. Hence∫
Rn

ρ2

1 + |η|2 + ρ2

∣∣∣∣F(y,t)(Bẑ)
∣∣∣∣2dηdρ < +∞.

Since

c20
2 + c20

≤ c20
1

|η|2 + 1 + c20
=

c20|η|2
1 + |η|2 + c20|η|2

≤ ρ2

1 + |η|2 + ρ2
as ρ ≥ c0|η|, |η| ≥ 1,

we have∫
ρ≥c0|η|

∣∣F(y,t)(Bẑ)
∣∣2 dηdρ ≤

∫
ρ≥c0|η|

2 + c20
c20

ρ2

1 + |η|2 + ρ2

∣∣F(y,t)(Bẑ)
∣∣2 dηdρ

≤ 2 + c20
c20

∫
Rn

ρ2

1 + |η|2 + ρ2

∣∣F(y,t)(Bẑ)
∣∣2 dηdρ < +∞.

Hence from the fact supp(1 − χ) = {χ �= 1} ⊂ {ρ ≥ c0|η|}, we have∫
Rn

|1 − χ|2
∣∣F(y,t)(Bẑ)

∣∣2 dηdρ =
∫

supp(1−χ)

|1 − χ|2
∣∣F(y,t)(Bẑ)

∣∣2 dηdρ
≤
∫

ρ≥c0|η|

∣∣F(y,t)(Bẑ)
∣∣2 dηdρ < +∞.

Equation (4.31) is thus verified.
Step 4. By Remark 4.3, proving Theorem 1.1 is equivalent to showing

B(P−1u′) ∈ (L2(Σ))n.

Since φ(t) = 1 for t ∈ [0, T ] and uc = φu, the above assertion is equivalent to

Bẑ ∈ (L2(Σ))n with ẑ = P−1u′c.

Thus from (4.31), the proof of Theorem 1.1 will be accomplished if we can show that

(4.32) XBẑ ∈ (L2(Σ))n.
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Recall that uc = v + w; we have

(4.33) XBẑ = XB(P−1u′c) = XB(P−1(v + w)′) = XB(P−1v′) + XB(P−1w′).

In the rest of this step, we show that XB(P−1v′) ∈ (L2(Σ))n. The proof of XB(P−1w′) ∈
(L2(Σ))n will be done in the next step.

First, we prove

(4.34) XBΦ ∈ (L2(Σ))n,

where Φ := P−1v′ and v is the solution to the system (4.21).
In fact, applying X to both sides of (4.21), we see that Xv satisfies

(4.35)

⎧⎨⎩ PXv = −[X ,P ]v ∈ (H−1(Q̃))n,

Xv|∂Q̃ ∈ (L2(∂Q̃))n,

where henceforth we denote Q̃ := Ω × [−T, 2T ] and Σ̃ := Γ × [−T, 2T ]. Let us say a
few words about this fact. Indeed, by the smoothness of the variable φ, we can extend
the regularity of (v, v′) in (4.26) to

(4.36) (v, v′) ∈ C([−T, 2T ]; (L2(Ω))n × (H−1(Ω))n) ⊂ (L2(Q̃))n × (H−1(Q̃))n.

This together with the fact [X ,P ] ∈ OP (S1(Q̃)) yields the governing equation (4.35):
[X ,P ]v ∈ (H−1(Q̃))n. The boundary ∂Q̃ is composed of three parts: Ω × {−T },
Ω × {2T }, and Σ̃. Considering Σ̃ first, we have Xv|Σ̃ = X (φg) ∈ (L2(Σ̃))n. Second,
since supp(v) ⊂ [0, (3/2)T ], we know that v(·,−T ) = 0 ∈ C∞(Ω) and v(·, 2T ) = 0 ∈
C∞(Ω). By the pseudolocal property of the pseudodifferential operator X , we get
(Xv)(·,−T ) ∈ (C∞(Ω))n and (Xv)(·, 2T ) ∈ (C∞(Ω))n. This implies Xv ∈ (L2(Ω ×
{−T }))n and Xv ∈ (L2(Ω × {2T }))n. We thus have Xv|∂Q̃ = Xv|Σ̃ + Xv|Ω×{−T} +

Xv|Ω×{2T} ∈ (L2(∂Q̃))n, which is the boundary condition of (4.35).
Now since PX is a matrix formed elliptic pseudodifferential operator of order two,

we can apply the classical regularity theory of elliptic pseudodifferential boundary
value problems (see Theorem 4.4 of [13] or [14, 40]) to (4.35) to obtain

(4.37) Xv ∈ (H1/2(Q̃))n + (H1(Q̃))n = (H1/2(Q̃))n,

where the first term in the middle of (4.37) comes from the boundary regularity of
(4.35), and the second term comes from the interior regularity.

Next, recall that Φ = P−1v′. We consider the following elliptic boundary value
problem in the space Q̃ = Ω × [−T, 2T ]:{

PΦ = v′ in Q̃,
Φ|∂Q̃ = 0.

Applying X to both sides of the above system, we obtain

(4.38) PXΦ = Xv′ + [P,X ]Φ =
d

dt
Xv −

[
d

dt
· I,X

]
v + [P,X ]Φ.

Since X ∈ OP (S0(Q̃)), P ∈ OP (S2(Q̃)), and d
dt · I ∈ OP (S1(Q̃)), we have

(4.39) [P,X ] ∈ OP (S1(Q̃)),
[
d

dt
· I,X

]
∈ OP (S0(Q̃)).
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From (4.36), we know that v′ ∈ C([−T, 2T ]; (H−1(Ω))n), and hence

(4.40) Φ = P−1v′ ∈ C([−T, 2T ]; (H1(Ω))n).

Again from (4.36), we have v ∈ (L2(Q̃))n. This together with (4.39) and (4.40)
concludes that

(4.41) −
[
d

dt
· I,X

]
v + [P,X ]Φ ∈ (L2(Q̃))n.

From (4.37) and using the anisotropic Hörmander spaces on page 477 of [23], we have

Xv ∈ (H( 1
2 , 12 )(Q̃))n ⊂ (H(0, 1

2 )(Q̃))n.

In the space H(m,s)(Q̃), m is the order in the normal direction to the plane x = 0
(which plays a significant role) and m+ s is the order in the tangential direction in t
and y. Since d

dt · I is a first order differential operator along the tangential direction,
we have

(4.42)
d

dt
Xv ∈ (H(0,− 1

2 )(Q̃))n ⊂ (H(− 1
2 ,0)(Q̃))n = (H−1/2(Q̃))n.

Finally, by (4.38), (4.41), and (4.42), we need to solve the following boundary
value problem:{

PXΦ ∈ (H−1/2(Q̃))n + (L2(Q̃))n = (H−1/2(Q̃))n,

XΦ|∂Q̃ = 0.

Since PX is elliptic, again by the classical regularity theory of elliptic pseudodiffer-
ential boundary value problems (see Theorem 4.4 of [13] or [14, 40]), we have

XΦ ∈ (H3/2(Q̃))n, B(XΦ) ∈ (L2(Σ̃))n.

Since Q = Ω× (0, T ) ⊂ Q̃ = Ω× [−T, 2T ] and Σ = Γ× [0, T ] ⊂ Σ̃ = Γ× [−T, 2T ], the
above fact implies that

(4.43) XΦ ∈ (H3/2(Q))n, B(XΦ) ∈ (L2(Σ))n.

Moreover, from X ∈ OP (S0(Q)) and B ∈ OP (S1(Q)), we know that [X ,B] ∈
OP (S0(Q)). This together with Φ = P−1v′ ∈ C([−T, 2T ]; (H1(Ω))n) that comes
from (4.40) yields

[X ,B]Φ ∈ C([−T, 2T ]; (H1(Ω))n).

Then by the trace theorem for Sobolev spaces, we have

(4.44) [X ,B]Φ ∈ C([0, T ]; (H1/2(Γ))n) ⊂ (L2(Σ))n.

Thus from (4.43) and (4.44), we have

XBΦ = [X ,B]Φ + B(XΦ) ∈ (L2(Σ))n.

This is (4.34).
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Step 5. This step is devoted to showing

(4.45) XBΨ ∈ (L2(Σ))n,

where Ψ := P−1w′ and w is the solution to the system (4.22). We obtain (4.45) along
the same line of Step 4.

First, apply X to both sides of (4.22) to obtain

(4.46)

⎧⎨⎩ PXw = −[X ,P ]w + XPw = −[X ,P ]w + Xf ∈ (H−1(Q̃))n,

Xw|∂Q̃ ∈ (C∞(∂Q̃))n.

By extending the result in (4.25) to the case of [−T, 2T ], we get

(4.47) (w,w′) ∈ C([−T, 2T ]; (L2(Ω))n × (H−1(Ω))n) ⊂ (L2(Q̃))n × (H−1(Q̃))n.

Similarly, we get f ∈ C([−T, 2T ]; (H−1(Ω))n) ⊂ (H−1(Q̃))n from (4.24). From these
results and the facts X ∈ OP (S0(Q̃)) and [X ,P ] ∈ OP (S1(Q̃)), we obtain PXw ∈
(H−1(Q̃))n. This is the interior regularity of the governing equation of (4.46). More-
over, as in Step 4, we can obtain Xw ∈ (C∞(Ω×{−T }))n and Xw ∈ (C∞(Ω×{2T }))n

by the pseudolocal property of the pseudodifferential operator X . This together with
Xw|Σ̃ = 0 ∈ (C∞(Σ̃))n yields the boundary condition of (4.46).

Once again, apply the classical regularity theory (see Theorem 4.4 of [13] or
[14, 40]) to the elliptic system (4.46) to obtain Xw ∈ (H1(Q̃))n. Hence, from d

dt · I ∈
OP (S1(Q̃)), we have

(4.48)
d

dt
Xw ∈ (L2(Q̃))n.

Next, notice that Ψ = P−1w′. We consider the elliptic boundary value problem{
PΨ = w′ in Q̃,
Ψ|Σ̃ = 0.

Apply X to both sides of the above system to get

(4.49) PXΨ = Xw′ + [P,X ]Ψ =
d

dt
Xw −

[
d

dt
· I,X

]
w + [P,X ]Ψ.

By virtue of (4.47), we know that w′ ∈ C([−T, 2T ]; (H−1(Ω))n), and hence

(4.50) Ψ = P−1w′ ∈ C([−T, 2T ]; (H1(Ω))n).

Again by (4.47), we know w ∈ (L2(Q̃))n. This together with (4.39) and (4.50) yields

(4.51) −
[
d

dt
· I,X

]
w + [P,X ]Ψ ∈ (L2(Q̃))n.

Finally, from (4.48), (4.49), and (4.51), we are led to solving the boundary value
problem

(4.52)

{
PXΨ ∈ (L2(Q̃))n,

XΨ|Σ̃ = 0.
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By the classical regularity theory of elliptic boundary value problems (see, e.g., The-
orem 20.1.2 of [23]), we have

XΨ ∈ (H2(Q̃))n.

This implies that XΨ ∈ (H2(Q))n since Q ⊂ Q̃. By the trace theorem of Sobolev
spaces, we obtain

B(XΨ) ∈ (H1/2(Σ))n ⊂ (L2(Σ))n.

This together with the same argument at the end of Step 4 concludes (4.45).
Combine (4.33), (4.34), and (4.45) to yield

XBẑ = XBΦ + XBΨ ∈ (L2(Σ))n.

This is (4.32). The proof is complete.
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[39] W. J. Liu and M. Krstić, Strong stabilization of the system of linear elasticity by a Dirichlet
boundary feedback, IMA J. Appl. Math., 65 (2000), pp. 109–121.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

WELL-POSEDNESS OF CONTROLLED LINEAR ELASTICITY 2167

[40] S. Rempel and B. W. Schulze, Index Theory of Elliptic Boundary Problems, Akademie-
Verlag, Berlin, 1982.
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