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WELL-POSEDNESS OF THE FREE BOUNDARY PROBLEM IN
INCOMPRESSIBLE MHD WITH SURFACE TENSION

CHANGYAN LI AND HUI LI

ABSTRACT. In this paper, we study the two phase flow problem with surface tension in the
ideal incompressible magnetohydrodynamics. We first prove the local well-posedness of the
two phase flow problem with surface tension, then demonstrate that as surface tension tends
to zero, the solution of the two phase flow problem with surface tension converges to the
solution of the two phase flow problem without surface tension.

1. INTRODUCTION

1.1. Presentation of the problem. In this paper, we consider the two phase flow problem
with surface tension in the ideal incompressible MHD. The incompressible MHD system can
be written as

podmu+pu-Vu—h-Vh+Vp=0 in Qr,
(1.1) divu =0, divh=0 in Qp,
oh4+u-Vh—h-Vu=0 in Qr,

where u is the fluids velocity, h is the magnetic field, p denotes the pressure. We study the
solution of () which are smooth on each side of a smooth interface I'(t) in a domain €.
More precisely, we let

Q= T2 X [_17 1]7 F(t) = {$ € Q|$3 = f(t7$l)7x, = ($1,$2) € T2}7

OF ={z e Qlus 2 f(t.2)),2' € T?}, Qr = [J {t} xOf.
te(0,T)
For simplicity of notation we write PoE = p*, where p* are two constants that represent the
density of the fluids on each side of the free boundary. We also define

ut = u|Q;—L, h* = h|Q;—La pr = p|Q§E,

which are smooth in Op and satisfy

prout + ptut - Vut —h-Vht + Vpt =0 in  OF,
(1.2) divu®* =0, divh® =0 in  OF,
9h* +u* - Vh* —h* - Vu*© =0 in Qf.

On the moving interface I'y, we impose the following boundary conditions:

vx’f
V14|V f?
(1.4) ut -N=09,f, ht N=0 on Iy,

1

(1.3) pl:=p" —p~ =cH(f) =0V ( ),
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where o is the surface tension coefficient, H(f) is the mean curvature of the surface, N =
(=01 f,—02f,1) is the normal vector of the surface. Condition ([3]) means that there is
surface tension acting on the free boundary. Condition (I4]) means that the free boundary
is moving with the fluid, and the magnetic will not pass through the free boundary.

On the artificial boundary I't = T? x {£1}, we also assume that

(1.5) uy =0, h3y =0 on I
The system (2] is supplement with the initial data:
(1.6) ut(0,2) = ui(z), h*(0,2) =hi(z) in OF,
which satisfies
divuf = 0,divh =0 in QF,
(1.7) uj -No=uy -No,hj -Nog=h; -Ny=0 on Ty,
uy, =0, hiz =0 on T

The system ([L2)-(L7) is called the two-phase flow problem for incompressible MHD. One
of main goals in this paper is to study the local well-posedness and the zero surface tension
limit of this system.

We remark that the divergence-free restriction on h¥ is a compatibility condition. Applying
the divergence operator to the third equation of (L2), we have

9y divh® + u® - Vdivh™ = 0.

Therefore, if divhT = 0, the solution of (IL2)-(L3) will satisfies divh®* = 0 for V¢ > 0. A
similar argument can be applied to yield that h*™ - N = 0 if ha—L -Ng=0.

1.2. Background and related works. In inviscid flow, a surface across which there is
a discontinuity in fluid velocity is called a vortex sheet. In the absence of surface tension
and magnetic field, it is well known that the vortex sheet problem of incompressible fluids
is ill-posed due to the Kelvin-Helmholtz instability [25]. During the past several decades,
researches have found that such instability can be stabilized by surface tension. For irrota-
tional flow, Ambrose [5] and Ambrose-Masmoudi [6] proved the local well-posedness of vortex
sheets with surface tension for in two and three dimensions respectively. For general prob-
lem with vorticity, Shatah-Zeng [32] established a priori estimates in a geometric approach,
and Cheng-Coutand-Shkoller [I2/[T3] proved the local well-posedness of the three dimensional
problems. For other results about the vortex sheet problems, we refer the readers to [8[T0,42].

In the mid-twentieth century, Syrovatskij [30] and Axford [I] found that the magnetic
field has a stabilization effect on the Kelvin-Helmholtz instability. The Syrovatskij stability
condition can be expressed as:

(1.8) [u]* < 2(h** + [h7[?), on Iy,

[u] x h*|? +|[u] x h™ |2 <2/h" x h™|?, on T},

where [u] = (ut —u").

In the recent decades, great progress has been made in studying the stabilizing effect of
the Syrovatskij condition (L8]). Morando-Trakhinin-Trebeschi [28] proved a priori estimates
with a loss of derivatives for the linearized system. Furthermore, under a strong stability
condition

(1.9) max(|[u] x h*,[u] x h™]) < |h™ x h™|, on T,
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Trakhinin [35] proved an a priori estimate for the linearized problem without loss of derivative.
For the nonlinear current-vortex sheet problem, Coulombel-Morando-Secchi-Trebeschi [15]
proved an a priori estimate under the strong stability condition (I.9). Recently, Sun-Wang-
Zhang [31] gave the first rigorous confirmation of the stabilizing effect of the magnetic field
on Kelvin-Helmholtz instability under the Syrovatskij stability condition (L9). We also refer
to some related works [IT36L37.39] on the compressible problem and works [17,[19120129,38]
on the plasma-vacuum problem.

The aim of this paper is to show the local well-posednss for the current-vortex sheet problem
with surface tension. That is to say, the magnetic field do not destroy the stabilization effect
of surface tension. Under additional assumption that the Syrovatskij condition holds, we
also show that, as surface tension tends to zero, the solution of the two phase flow problem
with surface tension converges to the solution of the two phase flow problem without surface
tension. The framework we used in this paper is developed in [3I]. The basic idea is study
the evolution equation of the free surface where the surface tension leads to a third-order
term. Inspired by Alazard-Burq-Zuliy [2], we use paraproduct decomposition to analysis the
most nontrivial third-order term, and find that the evolution equation is strictly hyperbolic.

In the free boundary problem of inviscid flow where there is only one fluid, the Rayleigh-
Taylor instability, instead of the Kelvin-Helmholtz instability, may occur. There are a lot of
remarkable literatures studying such problems [3[T4l16123l3340/41l43]. From a mathematical
point of view, the elastodynamics have similar structures to the magnetohydrodynamics.
In a very recent work, Gu-Lei [I8] proved the local well-posedness of the free-boundary in
incompressible elastodynamics with surface tension.

1.3. Main results. Now, let us state our main results.

Theorem 1.1. Assume s > 6 is an integer and fy € HSJFI(’]I'Q),ugE,ha—L € HS(QgE), o >0,
pt =p~ =1, moreover we assume that there exists ¢y € (0, %) so that

—(1 = 2co) < fo < (1 —2c).

Then there exists a time T' > 0 such that system (L2)-(LT) admits a unique solution (f,u, h)
in [0,T)] satisfying

L fe L>([0,T), H(T?)),

2. ut, bt e L=([0,T), H*(QF)),

3. ~(1—=cp) < f < (1—co).

Before state the result of zero surface tension limit, we introduce a Syrovatskij type stability
condition:

1
(L10) A [u)) it it (1 + b e)? +

hi o1+ hj p2)?
el 24 p2=1 pT + p~ (_1901 _2%02)

pt+p~
— (viep1 + vap2)? > ¢ > 0,

Vetp~

where v; = G- [w;].

With such stability condition, Sun-Wang-Zhang [31] prove the local well-posedness of
current-vortex sheet problem without surface tension for the case p™ = p~ = 1 and we [24]
get the similar results for the general case p™, p~ > 0.

Under the assumption that the initial data satisfies the stability condition (I.I0]), we prove
that as o tends to 0, the solution of the two-phase flow problem got in [31] is the limit of the
solutions got in Theorem [Tl Indeed, we have the following result.
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Theorem 1.2. Assume s > 6 is an integer and fo € Herl(’]I'z),u(jf,h(j)E € HS(QaE), o >0,
pt =p~ =1, moreover we assume that there exists ¢y € (0, %) so that

L. —(1—2¢o) < fo < (1 - 2cp),
2. A(hE, [ug]) > 2¢o.

Then there exist T > 0 independent of o such that system (L2)-(L1) admits a unique solution
(f7,u’,h?) in [0,T] satisfying

1 f7 € 1°((0,T), H+Y(T?)),

2. w’E W € L(0,T), H* (),

3. —(1 - CO) < fU < (1 - CQ),

4. A(h*, [u]) > .

Moreover, as o tends to 0, the solution (f7,u?, h”) converges to the solution (f,u, h) of the

system (L2)-(L10) with o = 0.

Remark 1.3. Our method is also applicable to the general case p™,p~ > 0. In this case,
the surface tension term is a little more complex, however the evolution equation of the free
surface is also strictly hyperbolic. As surface tension goes to 0, the limit of solutions to this
problem is the solution got in [2])]. For the one fluid problem that there is no fluid and no
magnetic in the upper domain, we can also prove local well-posedness by using the method
developed herein. The key steps to prove these results can be found in Section 7.

The rest of this paper is organized as follows. In Section 2, we will introduce the reference
domain, harmonic coordinate, and the Dirichlet-Neumann operator. In Section 3, we refor-
mulate the system into a new formulation. Section 4 provides the uniform estimates for the
linearized system. In Section 5 and Section 6, we construct an iteration map and prove the
existence and uniqueness of the solution. Section 7 shows that the approach developed in
this paper can be applied to some other cases.

2. REFERENCE DOMAIN, HARMONIC COORDINATE AND DIRICHLET-NEUMANN OPERATOR

In this section, we recall some fundamental lemmas on the harmonic coordinate and
Dirichlet-Neumann operators.

We first introduce some notations used throughout this paper. We denote by C(-,-) a
positive constant or a positive nondecreasing function depending only on its variables which
may be different from line to line. We use x = (x1,x2,z3) to denote the coordinates in the
fluid region, and use 2/ = (1, x2) to denote the natural coordinates on the interface or on the
top/bottom boundary I'*t. In addition, we will use the Einstein summation notation where
a summation from 1 to 2 is implied over repeated index (i.e. a;b; = a1b; + azbs).

For a function g : Qf — R, we denote Vg = (919, dag, 39), and for a function n : T?> — R,

Vn = (01n, 02n). For a function g : ij — R, we can define its trace on I'y, which are denoted
by g(z'). Thus, for i = 1,2,

0ig(z') = 0ig(a’, f(2)) + Osg(2’, f())0i f ().
We denote by || - || ;. (@), || - ||zrs the Sobolev norm on Q]jf and T? respectively. Moreover,

for operator P defined on H*(T?), we denote its operator norm by

1Pllrs—sme = sup [P fl[pe.
[1£l]ers <1
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To solve the free boundary problem, we introduce a fixed reference domain. Let I'y be a
fixed graph given by

I = {(y17y27y3) Ys = f*(ylyy2)},
where f, satisfies fTQ f+«(y')dy" = 0. The reference domain is given by

Q* - T2 X (_17 1)7 Q*:t = {y € Q*‘y?) 2 f*(yl7y2)7y, € T2}

We will look for a free boundary that lies close to the reference domain. For this purpose, we
define

Y(0,k) = {f € H*T?) : |f = fill an(re) < 0}
For f € Y(4,k), we define I‘f,Q}',QJT by

Ipi={r € QYles = f(t, 2,2 € ’]I‘2}, Q]jf ={z € WYlzz = f(t,2),2' € ']I‘z}.

We denote by Ny := (=0, f,—02f,1) the outward normal vector of Q; on I'y, and ny :=

N;/+/1+ |V f[2. Then we need to introduce the harmonic coordinate. For given f € Y (4, k),
we define a map @jf S QF - Q]jf by the harmonic extension:

Ay@}t = 0 Yy S Q*:t7
(2.1) Ty, f(v) = W, F (W) y €T,
Ly, £1) = (y, £1) y € T2

For each Ty, there exists 6y = do(||f«|lyw1.¢) > 0 so that <I>jf is a bijection whenever § < dy.
Then, there exists an inverse map @jf‘l : ij — QF such that

1.5t — prtodt—l —
<I>f oCI)f—CI)fOCI)f = 1d.
We list some properties of the harmonic coordinate (see [31] for example):

Lemma 2.1. Let f € T(dy,s — %) for s > 3. Then there exists a constant C depending only
on &y and Hf*||H57% so that

1. Ifue H"(ij) for o €10, s], then
[[uo CP}tHHG(Qf) < CHUHHG(Q}‘:)‘
2. Ifuec H°(QF) for o € [0,5], then
Juo (I)jvt_l”Hcr(Q?L) < CHU”HJ(Qf)-
3. Ifu,v € H°(QF) for o € [2,5], then
HUUHHU(Q}‘:) < C”UHHG(QJ{E)HUHHG(Q;%)'

Now we introduce the Dirichlet-Neumann operator which maps the Dirichlet boundary
value of a harmonic function to its Neumann boundary value. For any g(z') € H*(T?), we
denote by ’ijg the harmonic extension from I'y to ij:

AH7g=0 z e QF,
(2.2) (Hy9)(@, f(2') = g(2') a € T?
OsH g(a', +1) =0 & e T2
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Then we define the Dirichlet-Neumann operator:
def
Nig= FN; - (VHg) Ir, -
We will use the following properties from [3,[31].

Lemma 2.2. [t holds that
1. /\/'JfE is a self-adjoint operator:

WNFp,0) = (0, NF), Vo0 € H(T?);

2. N fc 18 a positive operator:

(NF6,6) = [VHF6|2, e, 2 0, Vo € H2(T?);

L2( Q
Especially, if [1o ¢(x")da’ =0, there exists ¢ > 0 depending on co, || f|lw1. such that
1
N7°6,0) 2 cllMF ol o2y Z ellol . Yo € Hx(T?).

3. /\/’fE is a bijection from HYTY(T?) to HE(T?) for k > 0, where

H(T?) == H*(T?)({¢ € L*(T?) : /Tz o(x)dz" = 0}.

3. REFORMULATION OF THE PROBLEM

In this section, we derive a new system that is equivalent to the original system ([2])-(L5).
The new system consists of the following quantities:

The height function of the interface: f;

The scaled normal velocity on the interface: § = ut - N £

The vorticity and current in the fluid region: w =V x u,& =V X h;

The average of the tangential part of the velocity and the magnetic field on the top
and bottom fixed boundary:

agt(t):/ Gt AN d, bR = [ W, £1)da (i = 1,2).
T2 T2

3.1. Evolution of the Scaled Normal Velocity. Let

(3.1) 0(t,2') L u(t,a, f(t, 7)) - Ny(t,2'),
we have
(3.2) o f(t,x") = 0(t,2").

In this subsection, we will derive the evolution equation of #. To this end, we need the
following elementary lemma, which can be proved by direct calculation.

Lemma 3.1. [F1] For u = u* h*, we have

(3.3) (w: V) Ny — g Nj (- Nyp) |y prar) = w101 (1w Nj) + 1000 (w; Nj) + Y w100, f.
1,7=1,2
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With the help of Lemma B} we deduce from ([2]) that
8t9 = (8tu+ + 83u+8tf) . Nf + U.+ . 8th‘x3:f(t,x’)

1 1
—(—ut - Vu" + p—+h+ -Vh' — p_+vp+ +03uT 0y f) Ny —u” (0101 f, 0204 f,0) |y = pr.00)
1
=((-u™ - V)uT + Ggu (™ - Np)) - Ny o - (07 V)™ - Ny
1

1 1
= = 2(uf 010+ uf 00) — Ny Vo' — > ufuf00;f + p= > bfhtoo;f,
ij=1,2 ij=1,2
and similarly,
1 1
010 = —2(u; 010 +uy 0af) — —Ny - Vp~ — Z u; uy 0;05f + — Z h; h; 90;f.
P i,j=1,2 i,j=1,2
Therefore, it holds that
1 1
2(uf 010 +uf 0,0) + —Ny-Vp* + Y wful00;f —— Y b0t f
P ij=1,2 i,j=1,2
(3.4) 1 1
=2(u; 010 +uy 020) + —Ny - Vp~ + > wiw; 0,0;f —— Y hih;0:0;f.
P irj=1,2 Piimie
From the first equation of (2] and the boundary condition (LH]), we get
Ap* = tr(Vh*)? — pFtr(Vu®)?  in Qf,
and
dsp™ =0 on T
Recalling the definition of harmonic extension Hf, we have the following representation for
the pressure p*:
pi = %?Qi + pipui7ui — Pht hts

where py+ ,+ denotes the solution of the elliptic equation

Apy+ v+ = —tr(VvEvvT) in Q]jf,
(3.5) Pyt vyt =0 on Iy,
€3 Vpy= v+ =0 on I'*

Thus, we infer from (34]) that
1 S | o
p_+Nf : V,Hfg — p__Nf : VHf]_?
1 1
= — [2(uf 010 + u3 020) + Ny - V(pys ut — SrPent) > (ufuf - F@j@j)aiajf]
ij=1,2

1 N
+ [2(w; 010 + 15 020) + Np - V(pu- - — S Pnon) > (wuy - ik )0:0; ]

© =)

i,j=1,2

A _
=—g"+g.
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Recalling the definition of Dirichlet-Neumann operator, we rewrite the above equality as

(T R
—p—+Nf]_9 N =y +9 .

As pt —p~ =0oH(f) on I'y, we have

_ 1
pt=N; (g7 —yg ip—jFNfaH(f))
where
— 1 1
Ny € —Nf +—N7.
e
Moreover, it’s easy to see
NF = (= 4 ) YW+ =W - N7
¥ = o) W =V - D),
_ 1 1 _ 1 _
N; _(—++—_) I(Nf——J,(Nf—Nf )
P P P
and
I ) e v A eI S S e S Vel VAR P

NN NG = PP s N — P NN WV — )
PRE N T 2 N TR Ry T e 2y T R Wy T



FREE BOUNDARY PROBLEM IN INCOMPRESSIBLE MHD 9

Accordingly, we obtain that
(3.6)

1 1 ~ -1 1
00 = Nip* =g = NGNG (9" =97 + =NpoH(D) ="
1 ~ 1 1 o ~—1 o ~-1 .
_p_+/\/];|'j\ff g —p—_Nfo g++ﬁf\/’;—/\/’f NfH(f)
tot 4o g 1 — 1
P9 P9 (N+—N_)Nf (gt —97)

pt+pT pt+pT
g

At A B + A
:m(fr/\/’f +p  N)H(f)
2
- W((P uf 4+ p"uy)010 + (pTug + pTuy )0:20)
- % > (ot ul — bR+ puiu; — by hy)0i0;f
prtp ij=1,2
—_— N N N N+ - N )H
+p++p N7 = N7 NG Pl — w)010 + (w5 — u)9:0)
1 1 _
T ——— (N} = Nf )Nf (i;g(m; - p—+@jhj - uuj 4o hi h)0:0; f)
1 _
- me' (V0 put ut = Potnt) + V(O Pu-u- — Pn-n-))
1
s ——— N NN, PN - (V0 Pt —Pptnt) — V(0 Pu-u- — Pu-n-))-

Here P : L?(T?) — L?(T?) denotes the projection operator such that

Pg=g-(9),

where (g) := [ gdz’. We can apply the operator P to some of the terms in B8] for the
same reason as in [31]], since it does not change the formulation of this system by the fact
that PgT = g7 .

From now on until Section 7, we will only discuss the case p™ = p~ = 1 for simplicity, and
there is no essential difference between this case and the general case.

3.2. Equations for the Vorticity and Current. Now we derive the equations for
(3.7) wt =V xut,  £F=Vxht

It follows from (L) by direct calculation that (w™,£%) satisfies

(3.8)
O™ +ut - Vw® —h* . VEF = wt . Vut — ¢+ . Vht in QF,
0i€* +ut  VEF — bt Vb =¢F - Vut —wF  VhE - 2377 Vi x VA in QF.
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3.3. Tangential velocity and magnetic field on I'*. As in [3I], we need to derive the
evolution equations of the following quantities:

(3.9) aE(t) = / wE( e+ 1)de!, bE(E) = / BE (o, 1)da
T2 T2
From the fact that u?jf(t, 2, £1) =0, we deduce that for i = 1,2
dpui + ufajuf — hf(‘?jh?ﬂ ~9ipt =0 on T*
As a result, it holds that

Dot + / (uE0juE — hEOE )’ =0,
T+

or equivalently

t
(3.10) @ (t) = a (0) — / / (u; Oju; — by 0;h) (2, t')da' dt'.
0 JI+
Similarly, we have
t
(3.11) bE(t) = b5(0) —/ / (u; 05y — by Oyu) (2, t)da' dt’.
0 JIr+

3.4. Solvability Conditions for the Div-Curl System. In order to recover the divergence-
free velocity field or magnetic field from its curled part, we need to solve the following div-curl
System:

curlu® = w*,  divu® = ¢* in Q?,

+
(3.12) u - -Ny=0 on Iy,

ut ez =0, / wds' =aF(i=1,2) on IT,
T+

i

The solvability of the above system was obtained by [31] under the following compatibility
conditions:

Cl. divw®™ =0 in ijf
C2. [rx wide' =0,
C3. [p2 0da’ = :FfQthE gFdx.

4. ENERGY ESTIMATES FOR THE LINEARIZED SYSTEM

In this section, we linearize the equivalent system derived in Section 3 around given func-
tions (f,u™, h*) and give the energy estimates for the linearized system. We assume that
there exists T' > 0 such that for any ¢ € [0, T], there holds

1(*, B5) w1 (8) + | w2 (1) < Lo,

3o () 11 ey 4 1001 ey )+ 1 ey () + B g 6) < L,
[(8eu™, 0™ 1.0 (£) < Lo,

1f = Fill yor 1 (8) < o,

—(1—=co) < f(t,2') < (1 —cp),
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and
divu® = divh® =0 in Qf,
h* N; =0, u* N;=09,f on Ty,
ugE:h?jf:O on I+

Here s > 6 is a integer and Lg, L1, Lo, ¢y, dp are positive constants.

4.1. Paralinearization of Nfc and H. The third order term %(N;H(f) + N H(f)) in
B3 is a fully nonlinear term of f, and is difficult to linearize by conventional methods. To
overcome this difficulty, we use the paralinearization approach developed in [2,[4]. Here we
follow the presentation by Métivier in [26].

Definition 4.1. Vm € R, we say that a symbol a € X if and only if a has the form

0= o™ 4 g(m=1)

with
a™(t,x,€) = F(Vf(t,x),£),
a(m_l)(t,x,ﬁ) — Z Ga(vf(t7x)7§)8§f(t7x)7
|a|=2
such that:

e T, maps real-valued functions to real-valued functions;

o F € O% is a real-valued function of (¢,€) € RY x (RAN0), and homogeneous of order
m in &, with a continuous function C = C(¢) > 0 such that F(¢,&) > C(Q)|&|™ for
V(. &) € RY x (RD\0);

o Gy is a C™ complez-valued function of (¢,€) € RY x (RA\0), homogeneous of order
m—11in¢.

Let m € R and A, B is two operator of order m, we say A ~ B if A — B is of order m — 2.
We first list some important properties.

Proposition 4.2. [2/Let m,m' € R. Then
(1) IfaeX™ andbe ™ then T,T) ~ Tasp where ab € ymtm’ s given by

ath = a™pm) 4 gm=Dp(m") o (m)p(m’=1) | lafa(m) - 9,b™),
i
(2) IfaeX™, then (T,)* ~ Ty, where b € ¥™ is given by
—— 1
b= a(m) + a(m—l) + Z(am . ag)a(m).
Proof. From (A22)), we can see that for p = 2
a(m)Lp(m!) — a(m)b(m;)+la a(m),azbm’ Hi—y Hp—m—m/+2 W?2,00 ).

[Taem T, T 1, | < OV fllwzee)

Also, for p = 1, it holds that

1Ty m) Ty 1) — Ty om0 | sy pri—m—mr 2. < C(|V f 2,00 ),

”Ta(mfl)Tb(m’) - Ta(mfl)b(m’) HH;J‘_)H/,Lfm*m’JﬁQ S C(vaHWQv"O)
Moreover, (A implies that

”Ta(m—l)Tb(m’—l) ”H[J._)H[J.*M*ml“ﬁz < C(”Vf”wz,oo)



12 CHANGYAN LI AND HUI LI

The desired conclusion of the first point comes from the Sobolev embeddong H*T! C W3,
Furthermore, it also shows that afb € 7™
Similarly, the second point follows from (A.3]). O

Next, we show the paralinearization of the Dirichlet-Neumann operator and the mean
curvature operator.

Lemma 4.3. [2] Assume that (f,1) € H5T1(T?) x H5+%(']I‘2), then
NFG =Tyt + RE(fo) + 1 (F.9), N7 = T+ By (f, ) + 1 (. 6).
Here the symbols \* = A*D) 4 X\FO) gre given by

AW =MD = A+ [VIPR)ER - (V] - 92,

=0) — _H+0) = "1 rqiv(a® L EO R v
A A =) {div(a'VV f) + i0: A Vo',
with
1
00 R & tl € BNV v 2
S w1 AP AL

Moreover, we have the estimates

VR ey + IR (FDN oy < CU s 0l as) 1y
It (Fb) ey + T (F) g < O ) 198 s

H"3

Proof. 1t is well known that the Dirichlet-Neumann operator is an elliptic operator of order
1, and the expression of its principal symbol A(!) and its subprincipal symbol A is given
in [22]. We claim that the Dirichlet-Neumann operator ./\/'f_ can be reformulated as

Nf_Qﬁ:T)\f(T[)—TBf)_TVVf_‘_’rl—(f)w)v

which satisfies

I (Rl oy < UL ) IV e
Here
- V-V +No a
= N , V:=Vy—-BVf.

For the proofs of the above claim, we refer the readers to [2].
Then, we let Ry (f,v) = —T\-Tpf — Ty - Vf. By using Proposition with m = 0,1,
one can see that

TS oy < CUANa)I TSI, 00

< CUANas 10l 1l yor g
1Ty - V£l oy < CULMaD IV ey < CUFNas 10l as) NIy

which means that [|Ry (f, o)l .-y < CULf s [0 as) 171 ory -

7 —

The proof for N ]T is similar. O

(ST (S
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Lemma 4.4. [2/Assume that f € H51(T?), we shall paralinearize the H(f) = div(——se)

VIHV ]2
as H(f) = —=Tyf + 7o, where | = 1@ +1M) s given by
Vf-€)?

1) = (14 19 5P) (e - L L

(4.2) , +IV/]
i

l(l) = _5(896 ’ 85)1(2)7
and ry € L®(0,T; H*~5/2) satisfying
(43 sl e .o gze-52) < CI L omaesn).

Remark 4.5. From the expression of \* and I, one can see that \* € ! and | € ¥2, and
they are both elliptic symbols.

Based on the above results, we have
N7 H(f) = =T\ Tif + Tyera + Ry (f, H(f)) + 1 (f, H(f)),
Ny H(f) = =Tn-Tif + Ta-r2 + Ry (f, H(f)) + i (f, H(f))-
By using Lemma and Lemma 4] one can see that
ITerall,o g + T3 rell, .y < CUFLa)lraloy < CULNL a0y
IRY (F H D oy + IR HDI ey < CUS )N ey

I

I (DN oy + I G H Oy < CUAL ) Lo,

2

(4.4)

Accordingly, we rewrite the three order term as

(4.5) SNFH() + N7 H(f) = —ST0f + TR,
where
AT LA =@ \+(0) L 2—(0)
A= + ;
2 2
A A
and R = Tyry + R (f, H(f)) + 1 (f, H(f) +Ta-ra+ Ry (£, H(f)) + 77 (£, H(f)) satisfying
(4.6) IR,y < CUSI por OIS zzssr

Next, we symmetrize the above paradifferential operator T)1;.
Proposition 4.6. [J/Let ¢ € X° and vy € Y3 be defined by
q=(1+[VIP)2,
~ = VIO 4 %(85 -9,V I@ND),
3

%)
v 7(1%-)

then T,T\T; ~ T, T, T, and T ~ (T)*.

Proof. From Proposition 2] one can see that proving T,7\T; ~ T,T,T, and Ty, ~ (T’,)* is
equivalent to showing that

1 1 3
A1) + 5060 0:(1PAD) = (vi) + Z0c(v3

N[0

) . a:(:Q7
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and
Im(3) = —%(35 9,72,
where
M= 1ND 4 WA 4 @) N0) 4 %35)\(1) - 0,1P),
iy = (132 12443 ¢ %357(%’ 0,3,
The above equalities can be easily verified by direct symbolic calculation. O

We introduce the paradifferential operator 73 with the symbol

3 2s

8= () ¥ e nsl/2,

Lemma 4.7. For all p € R, there exists an non-decreasing function C, such that
ITs, T ) grus=2 s e < C(Ln).
Proof. From the definition, we have
93 - aﬂ(%) — 357(%) -9,
Thus, one can arrive at the result of this lemma by using Proposition O

It is clear that T} is an elliptic operator, whose commutator with 7T’ is better than (V)s—1,
and we will use it to obtain estimates in Sobolev spaces. This is the reason we introduce such
operator.

At the end of this subsection, we present some properties that will be useful in proving
energy estimates.

Lemma 4.8. For all p € R, it holds that

(4.7) 1 Torqll e e + 1 Tou8ll sy T W Tl a3 < C(L1),
(4.8) [ Topqllmn—me +1Toll s pru—svd T 1 To2o Ml a3 < C(L1, La),
(4.9) 1 Torqllern—smn + 1 Tosll 0 iesrd H 1 Tor 4 a3 < C (L)

_1
Proof. Recalling the expression of ¢, 3,7, one can easily verify that d;q € I'Y, 9,8 € Fg 2 and

3
Oy € I'g. The definition of I']" is given in Appendix A. Then, with the help of Proposition
[A.2] and Sobolev embedding, we deduce that

s 1 3
| Tougll e ie + 1 Towsll e rumses T 1 Tonll, umg < COMQ(Oea), My 2(0:8), Mg (8¢))
< Ol fllwaee, 10:fllwzee) < O flras [10cf 1l m4) < C(La).
The other estimates can be obtained in the same way. O

Lemma 4.9. For all function a € H 2 and (NS Hs_%, it holds that
1T3[Ty, all| 2 < C(L1)|all

[T, alTgpll 2 < C(La)llall oy

[Ty, alibll 2 < C(L1)|all

[ SV

)

.

Ty

ey e
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Proof. From Lemma [A.G] we have
ITs(Ty a2 < CEDI Ty aldl ..
By using Bony’s decomposition, we rewrite [Tg, ali) as
[Ty, aly =Ty(a)) — aTyp = T, Top + Ty Tya + TyRp(a, ) — T, Ty — Tr,pa — Rg(a,T,))
=Ty, T,)Y + TyTya — Tr,pa + T,Rp(a,v) — Rp(a, Ty).

With the help of Lemma [A.3] Propositon [AJ5] Lemma [A.6 and Proposition [AJ7] one can
deduce that

et
IT,Tyal

s < CU lweelallwr el . g < CEDlall .y 1. s
< Ol oy < OLlal 410l 5.

< OTgiluelal .y < CITlselal .y < Ol 41915
< C(|lflwr) IR (a, )HH#% < o@)llal. 3 19, 3.

< Ol -

1
H°™2
1
)

1Tz, pall
1T, R5(a, )
)

| ot ot
HRB(G Ty 1

|
s o Il g < C@olall,. 1]
Combining the above estimates yields

1 Tovq | s b + | T, 6] L+ 1 Tos < C(L).

HH—>H“*’ -
The other two inequalities of this lemma can be proved in a similar way. ]

Hu— P55

4.2. Linearized System of (f,#). In this subsection, we linearize the system of (f, ), and
give it’s energy estimates. From (B.6) and ([@3H]), we derive the following linearized system

o f =0
(4.10) 00 == 2T — (wf +u7)00 + (uf +u3)0:0)
1 oA ARt o —e— = - o
T 9 2 (uwj — hihi +uyu; —hih; )8i8jf+g+ZR,
i,7=1,2
where
1 o~ o o
g =5 Wf = NON; P Y (whuf — bFLS —uiuy + b hy)0i0; f)
i,j=1,2
t (Nlj_ N )Nf P((uf — uy )519 + (uf — uy )020)
1
(4.11) ~ N7 VPutwt = Pnnt) - §Nf V(Pu-u = Pn-n)
1 o1
+ 5('/\/?_ o Nf )Nf PNf ’ V(pu+7u+ — Phtht —Puu- —|—ph,7h,)
g o~ —1 B
_Z(Nf—/\/f Wi (NFH(f) =N H(f))
dZCfgl +92+ 93+ 94+ 95,
and

R =Ty+rg +Rf(f7H(f)) +7’f_(f,H(f)) +Ty\-12 +R1_(f7H(f)) +7’1_(f,H(f))

We emphasize that all the paradifferential operators T)+, 717, and the remainders rf, Rf, )
here are defined by the given function f.
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_l’_

Defining w; = %(gj +u; ), and v; = %(gz — u; ), we rewrite the linearized system as:

_ o _ _
Of =- 5 (If) =2 | Z w; ;0 f
1,j=1,2
(4.12) . L .
+ 5 Z (—2w,~wj — 2?)in +ﬁi ﬁj +ﬁi hj )8Za]f +g+ ZR
i,j=1,2

We remark that sz 0 fdz' may not vanish since we have performed the linearization. For
this linear system, we have the following energy estimate.

Proposition 4.10. Assume s > 6, given initial data (0o, fo) € He 2 x H5+1(T?), there erists
a unique solution (0, f) € C([O,T];HS_% X HS+1(T2)) to the system (Z.10) from (0o, fo) so
that

=112 12 =12
tes[lé%](ﬂatfHHs,% + ”fHHH% + o || fllzs+1)

T
<Ol L)l + Mol + ol Aol + [ T,y + 0% IRIR, ydr)eCeottar,

5-3

Proof. We only present the uniform estimates, which ensure the existence and uniqueness of
the solution. For convenience, we put all the terms can be bounded by C(Lo, L1, La)|| f[|3.+1
in R;, and terms that can be bounded by C(L07L17L2)(”f”25+% + |10 2 57%) in Ry. We

start the energy estimates from %(%(((% + w;0;) T Ty f, (8¢ + wi0)TsT, f).

1 B _ B B
5&((& + wi)TgTy f, (O + wid)) TsTy f) =(0; TsTy f, (O + widi) 5Ty f)
+ <wiataiTﬁqu, (8t + wiai)TﬁquT>
+ ((&twi)@TgTqﬁ (E?t + ’wiai)TﬁquT>

ety 1T 4111,

It follows from Proposition [A.2] and Lemma [A.6] that
111 < O LI,y + 10712,y
From (412]), we deduce by using Lemma [4.8] that
I =(TaTy0; f, (0r + widi) T T, f) + <T835qu+ TBTaqu’ (Or + wi0;)TT, f)
+ 2T3T9,40u f + To, T30 f + To,5T0,q.f , (Or + wi0) T T, f)
:(Tgch‘)ff, (8t + wiai)TgquT> + Ro
o _ _
=- §<T5TqT,\Tzf7 (O + wi0;) TTy f)

+ <TﬁTQ(_2wiaiatf)a (8t + wi(?i)TﬁTqﬁ

1 1 _
+ (TaTy[(—wiw; — viv; + gﬁfﬁf + 50y 15)0:0; f1, (0 + widi) TT4 f)

+ (TgTy(a + TR), (3 + wid)TT,f) + Ry

4 L4+ L+ L+ R,
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With the help of Proposition 6], Lemma 7] and Lemma [£9] we have

I =

TT, I\ f, (8 + wi0;) T3T, f)

o
(L) Ty TTo f (0r + widi) TT, f)

AN AN|[ AN A N Q

<(((T’Y)* - T’Y)T’YTﬁ + T’Y[T57 Tw] + [Tﬁv T’Y]T’Y)qu7 (O + wiai)Tﬁqu>

(Ts(TI\T, — Ty T, Ty) [, (9 + wi0;) T T, f)
(TyTsTy f, Ty (0 + w;0,)T5T, f) + Ro
=~ 5 (LIT, [ 0, T5T, f)
+ Z(T,YTBT[] F. (0w Ty T5T, f) + %(T,YTBTQ F. (Toy + wiThy — [Ty, wi):) ToT, ) + Ry
_ %8t(T,YTBTq F T, T5T,f) + (02 + 0)Ry + Ry.
Similarly, it follows from Proposition and Lemma that
Iy = —2TaTyw;idi0; f, (8 + wi0;) TaTy f) = —2(w;00, T Ty f, (8 + wi0;) TTy f) + Ro.
Therefore, we have

I+ 1] =— <w,~8,~8tTgqu, (8t + wiai)TﬁquT> + R,
— (Wi T Ty f, wid TpTy f) — (widid TsTy f, O TpTyf) + Ro

B 1 _ B _
(’wiaiTgqu), wi&-TBqu) + (5(8iwi)6tT5qu + (atwi)&@tTgqu, 8tTBqu> + Ry

- (0
1d -
§d—\|wiaiTBqu||%2 + Ry.

For the same reason, let a; = w;, v;, hZ ,h; , one can deduce that

<T5Tqaiaj8i8jf, (0 + wkak)TBqu>
:(aiaja-a'TgT Fs (O + wkO) T Ty f) + Re
—(a;0;T5Ty f, a;0i(0y + wid)TsT, f) + Ro
_ (aja.TBT f, 0 (a; 0, 18T, ) — (ajajTgqu,wkak(aiaiTBqu)> + Ry

— 5T, 1R + B

It follows that

1d| |
2dt 2dt

And obviously, it holds that
<ol _y +o?IRIZ,_y +CEa, LTI,y + 1012, ).

d _
by 05T, f | + Ro.

1
I3 = ZE”

|widT5T, fI7 2 i TTy 72 — 5= b T Ty fl 72 —

4dt|

Putting the above estimates together, we arrive at

(13)  L(oB(t) + Ba(t) < O(Ly, L)o&a(t) + (1) + oI,y +*IRI .

dt
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Here E1, Es, &1, and & are energy functionals
1 _
Ey = ZHTVTﬁquHQL%
7112 1 7112 Loy 7112 Lo 7112
By = @+ wid)T5Ty 3 — SoiddToTy I3 + I ST, 3 + 7llby ST, 73,
and
E1(t) = 1 fllFrerrs &) = IFIP .y + 11012y
By Proposition [A.2] and Lemma 9] one can easily seen that
1 _ _ _ _
By = LTI, 1R < O[T, 5 < CLITy e < OLo) T e
10 + wid) T T, 72

<C(ITosTyfllre + 1 TsToigf 2 + 1TTg0: fll 12 + llwill oo 10T Ty £l 2)
<C(Lo)(IF] + 1011l

1 . 1 . 1, _ _
= 0T Tyl + 16 OToT, Fllz + b7 HTST, Flzz < C(Lo)I|

Her% Hsf%)7

Hs+% 5
which means that
oFE1 + Ey < C(LO)(O'E:L + 52).

On the other hand, as T',, Tj3, and T}, are all elliptic operators, 0&1+&; could also be controlled
by 0 Fy + Es. Indeed, v € %2,

€12 + IVFPIEP? — (Vf - €)°
1+[Vf)

wlw

(414)  42(2,6) = VAIR(z,€) = ( )T > (14 C(Lo))"1¢]2,

which have positive lower bound in x. We also have § € Es_%, and ¢ € V. As a result, it
holds that

o\ fIlss1 <C(Lo)a(ITy fllFrsr + 1 F1I72)
SC(LO)U(HTBquHig +1F172) < C(LO)J(HT’YTﬁTqJFHiI% +1£1172),
IFI2 oy @1z + C@IFIIL2) < C(Lo) (eI T TsTaf I3 + C(o)l1f]122),
Hatin{S,% <C(Lo)(ITsTy0: f1I72 + 10: f1172)
<C(Lo) (100 + wid) TaTy fll7> + ||f||§{s+% + 110 £ 2)
<C(Lo) (0 + wid) T Ty f 72 + oI5 TTe 5 + C(o)lIfllzz + 106 fll72)-

Here we use Proposition [A.8] Proposition [A.9] and the Gagliardo-Nirenberg interpolation
3
inequality, and C(o) is determined by o and (1 4+ C(Ly))~ 1. As a conclusion, we have

(4.15) 0€1+ &(t) < C(Lo)(0Er + Bz + C(0) | f72 + 10:f1I72)-

It is easily seen that

d _ _ _ _
E(C(U)HfH%z +110:f1I72) < Clo Lo)IFIF, oy +10eF17 _y) + llgllZe + | RIZ2.
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Thus we get by (£I3]) that

1 AT 72
tes[lé%]{aé’l(t) + &(t)} <C(o, Lo){UHfOHHs+1 F ol ey T 101 .y

T T
+/ gl _1 +o®|IRI? i dr+ C(Ll,Lg)/ o€ (1) + EQ(T)dT}.
0 o2 2 0
One can get the desired estimates by Gronwall’s inequality. O
Remark 4.11. Notice that —%Hviaﬂngquig + MR OTST, fN|2 + HIki O, T5T, f||22 may not
be positive. We add an extra C(o)||f||3. to ensure that
_ 1 . 1 . 1 _ _
AT TT I — IOTST I + I 0T T, 3 + SIhTOTST I + Co)l 73
> || 12

Here C(o) will get bigger as o gets smaller, and this leads to the above estimates depending
on o. If the stability condition [LIO) holds, we no longer need to introduce C(o)| f|32, and
the energy estimate will not depend on o. We will discuss this kind of problems in Section 6.

Lemma 4.12. It holds that

HtE

ol +o?IRI%, 4 < C(L).

Proof. The estimate of ||RHH37 1 s given in ([@4)). By using Proposition [A.T2]and Proposition
[A.13] we have

gl < C(L)lI(u u; —hihf + b b )00 f1 s
< (L)) (u* hi)HHs $IFy <L),

lg2ll .-y < C(L)llw™l .5 18ll .-y < C(L),

(g3, @)l .1 < C(Ll)(HV(pu+ wt — Put )| ey IV Pu- - = -0l 1)
< C(L)(IV (put u+ _ph+,h+)HHS(Q}r) +IV(Pu- u- —Ph*,h*)”Hs(Q;))
< C(L1)|[(u ahi)HHs(ij) < C(Ly),
ol|lRll, .-y < C(Li)ofllgs+ < C(L).
This end the proof. 0

4.3. The Linearized System of (w,§). From (B.8]), we introduce the following linearized
system:

(4.16) @t +ut - Vot —ht. VET = oF . Vut — €. Vhi,
' O& +ut . VET —ht Vet =5 . Vut —o* . Vht - 230 VuF x VA,

which gives

B (@F + &) +ut V(@ + &) —hT- Vet + &)
3

—(@* + &) Vu* - (@ +&) Vh* - Z wt x VhE.
=1

Therefore, we introduce w® = @t + Ei which satisfies

(4.17) dw™ + (uF — bF) . Vot = o* . V(ut — h¥) - 2V x VA,



20 CHANGYAN LI AND HUI LI

We define
+
MTSELJ;):(u—h)i(t,Xi(t,x)), xGQi
X*+(0,2) =1d. r e,

where the Id means the identity map. Recalling that h™ - N ¢ =0, one can see that X £(t,)
is a flow map from Q to Q?(t) Then we have

deo™® (¢, X*£(t, :c))
dt

This is a linear ODE system, and the existence of @™ + E’i follows immediately. So do
wt — .Ei. Next, we give the energy estimates for (w®, éi).

= (@ - V(u" —h*) =2V x V) (t, X*(t,2)),  weQp

Proposition 4.13. It holds that

-+ 2 px
t:[%%](“‘” (t)HHs—l(Q;E) + HE ( )”Hs 1 Qi ) (1 + HwO ”Hs 1 Qi + ”50 Hsfl(Qj%))e
Proof. Using the fact that u* - N; = d,f and h*. N =0, we deduce from ([AI7) that

1d s—1__=+ 2
2dt/9% |V ™ (t, z)|“dx

1
= / Vile® v lgwtde + - Vet 2 (ut - n)do
Q:l: 2 Ff

C(LI)T

1
< /i Vilgt . vl (ut - h?) - Veot|ds + 3 Ve o 2 (u® - n)do
Q Ty

+ OL L+ [T O s gy + IE 1 o)

< l/i(ui — ) V(| o e 4
Q
f

5 3 ), Vet 2 (ut - n)do

+ OLA+ SO 102, + IE O 10
1 . o _ -
=~ [, divia® OV e + O+ Ol ) + IE Ol o)
f

< C(Ly)(+ @™ @) (%) +IE@)17,. 10%))-

Similarly, we have

1d el — _ B -
3 Q?W H@® — €5)de < O(L) (1 + [&F )13, - +IEE D2, )

The desired estimate follows from the Gronwall’s inequality. g

To solve velocity and magnetic field from the vorticity and current (&¥, Ei), we need to
verify the following compatibility conditions.

Lemma 4.14. It holds that

d _+ o d - 4+ r
a/ri(,ug dx =0, o Fiﬁg dxr' = 0.

Proof. The proof is straightforward, we refer the readers to [31]. O
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5. CONSTRUCTION AND CONTRACTION OF THE ITERATION MAP

Assume that
fo EHS+1(T2)7 ug:vhg: EHS(Q}Z)a
which satisfy
— (1 =2¢0) < f(2') < (1 —2cp);

for some constant ¢g € (0, 3).
Let f, = fo, and QF = ijo be the reference region. The initial data (f1, (0¢.f)r, w*il, £*il, aﬁ, bfcl)
for the equivalent system is defined as follows:

fi=fo, (Of)1=1uy (2" fo(x")) - (=01 fo, —Oafo,1);

+ _ + + _ +.
w,; = curlug, +7 = curlhg;

aj;:/ ug (2!, +1)da, biﬂ;:/ hi (2!, +1)da’,
T2 T2
which satisfy

o' 2 frll e + 172l ey + @i €D prema ity + 1)1l ey

for some constant My > 0. Then we define the following functional space.

+ +
+ Jag; | + [b7] < Mo,

Definition 5.1. Let s > 6 be a integer. Given two constant My, My > 0 with My > 2My, we
define the space X, = X, (T, M, My) be the collection of (f,wE, €F, aF, bF) that satisfies

PRAVIRRS)

(£(0),0:£(0),wi(0),£5(0),a;°(0),6:(0)) = (fr, (Ouf)r1, wip. &7, a7, b37),

Hf(t ) - f*HHsf% < 50,
sup (2l () + 11y (0
te[0,7

+ (@i € o102y (8) + 100 F 1| oy (8) + 071 () + [0571(2)) < M,
Sup (10w, B o2y (1) + 107 Fll o2 (1) + |0pa[(2) + 007 |(1)) < Mo,
. O f(t,2")dx" = 0.
Next, we will construct an iteration map
Fo o Xp(T, My, My) — X, (T, My, My),

Folf wh e5 o b8) ¥ (F o € at,bd),

* 2 8x 0V 0 Yy

with suitable constants 1", My, M.

5.1. Recover the bulk region, velocity and magnetic field. We define
~ 4 def i _ ~%+ def qj _
ot = PV (wio®rt), & = PiV(ES o)),
where <I>]? (QF Qf is the harmonic coordinate map, and PJ?“VaJjE = wT — V¢t with
A¢pt = divw®  in Qf,
D30T =0 on I't,
¢t =0 on I'y.
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. SO ) e
We introduce the projection operator P]‘}IV to ensure that (wi,é ) satisfy conditions (C1)
and (C2) defined in Section 3.3. It is obvious that

1@ E)Oll 1 o) < C),

~ ~+
0,0 ) Ol -2y < CO, M)

Then, we define u® and h* as the solution of

(curlu®™ = &F,  divut =0 in Q?,

Y

ui-Nf:(‘)tf on Iy,

ut.e3 =0, / wide' = o (i =1,2) on I'*F,
\ T+

~=+
curlh™ = ¢, divht =0 in ij,
h*. N;=0 on I,
h* . e3 =0, hide' =b6(i=1,2) on I'F
T+

with initial data
ut(0) =uf, h*(0)=hi.
It follows from Proposition [A.10] that
[0 sty < CORUTE g gty + 100f] oy + laf 0]+ e ()]) < COM),

~+
0¥ o) < COMUE lgoms(q) + 1650 + b3 (1)]) < COL).
Using the same argument to treat d;u® and 9;h™, we deduce that

Hatu:tHHsfl(Q?) < C(M17M2)7 ”8thi”H5,1(Q%) < C(M17M2)7

which implies

t
M,
I (1) < 0 oo+ [ 008 o () < T2+ TCOM M),

M,
Ih* e (£) < 2+ TC(My, Mo).

Similar argument shows that
My
[fllwzee < 5 T TC(M).
Besides, it holds that
1F(8) = follee < W[ (E) = foll oy STNOS oy < T M.
By choosing T small enough, we have

M,
70, TC(Ml,Mg) §C(].

TM, < min{50,co}, TC(Ml) + TC(Ml,MQ) <
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Taking Lo = My, L1 = My, Ly = C(Mj, Ms), we conclude that for V¢ € [0,T:
1.—(1—cp) < f(t,2") < (1 — o),
2., b)) [wr.ee (1) + [ fllwaoe (1) < Lo,
3£ — £,y <
A0 2 ageen () 1 () 1960 ey 0 05 gty (0) 05 e (6 < L,
5.1 (0pu™, 80 ) |[wri.e0 (£) < Lo

5.2. Deﬁnlng the Iteration Map. Given (f,u®, h®) which is constructed from (f, wF, €5, aF, b5).

Z’Z

Let fi and (@ ,£ ) be the solutions of the linearized systems (4.10) and (£I6) with initial
data
(£1(0),0(0),@*(0),€(0)) = (fo, (Oef)1 wiy €5).

of =wtod}, & =¢
t 3
w0 =0t~ [ [ S o~k ond el
0 JI+*%
7j=1

t 3
b (t) = b:5(0) - / / > (uroshi — hroud) (2! ) da'dt.
0 Jr+?%
7j=1

Then we have the iteration map F, as follows
def _
Fo(fwk €5 af b)) < (07 & af b)),
where f(t,2") = Pfi(t,2") + (fo). Hence, (f) = (fo) and [1, 0, f(¢,2")dz’ = 0 for t € [0,T].

Proposition 5.2. There exists My, My, T > 0 depending on oy, My, o so that F, is a map
from X, (T, My, Ms) to itself.

We define

Proof. According to Definition 5] the initial conditions are automatically satisfied. It follows
from Proposition E.10] and Proposition E.13] that

inr £ _
sup (02| Fll s (8) + 11| g (8) + 105 | rom o (2)
te[0,T
FIE D ems (&) + 10Ny () < Clco, 0, Mo)eCloMumT,
We first take M large enough such that C(cg, o, My) < %, then let T' = 1—10C(a, My, Ms)

which is till to be determined. Thus, it is straightforward to derive from (ZI0)), ([£I6]) and
the above estimate that

50 (198 (®)+ 100 sy (1) + 10E- o205 1) < OO
€ )

It is clear that .
@ ()] + |65 (1) < Mo+ TC(My),

|04 ()| + 18,6, (1) < C (M),

— t —
15O = £y < [ @Ayt

At last we take My = C(M;) and meanwhile T is determined. One can see that all the
conditions in Definition [£.1] are satisfied. This complete the proof. O
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5.3. Contraction of the iteration map. Now, we show that F, is contract in X, (T, My, M>).
Suppose (f4, wEA 54, aliA, bfA) and (fB,wtB ¢58, a;-tB, bliB) are two elements in X, (T, My, My)
and
7C —+C g*C —+C 7 4C C C C £C (=£C
(f¢,@f a,¢,0,C) = F(fC,wi€, 656,07, 07°)

* ) * ) ) * ) * )

for C = A, B. We denote by ¢” the difference g — ¢Z.
Proposition 5.3. There exists T = T(cy, 0,00, My) > 0 so that
=p def 1.z = - z+D
52 sup (B 04 157y 0+ 1 s (0 + 162 g0 0
S )
I _ - 4D
@O emsg (8) + 1aFP[(2) + [0 I(t))
1 1
<3, (A7) 4 1570y 05 197 sy O+ 1657 a0
S )
def
1@ P e g (8 + 21 (E) + 0PI (1)) < EP.
Proof. By elliptic estimates, we have

H(I)erEA - (I)]chB”HSfQ(Qf) < C(Ml)HfA - fB”Hsfé < CEP.

2

For C = A, B we define

wC=utod, hi®=h*ody,

and claim that
”u*iC”Hsf?(Qi}) + Hh*iCHHsﬁ(Qf) < CEP.

Indeed, for a vector field v defined on QF, we define
curlevy = <curl(v*jE o (@ijc)_l)) o @?C,
divevE = (div(vf o (cpjfc)—l)) 0 d%.

Thus, for C = A, B, it holds that

curleu®C = &vjfc in QF,

diveuF€ =0 in QF,

uc. Ny = o f¢ on T,

utC . ez =0, / urCdr’ = afC(i = 1,2) on TI'*
T+

Accordingly, we deduce that

curlquf? = &FP 4 (curlp — curly)uf? in QF,

divuf? = (divg — divg)u? in QF,

u?. Na = o fP +ufB. (Nys — Nya) on T,

uf? ez =0, /i uiPde’ = afP(i=1,2)  on I'*
r



FREE BOUNDARY PROBLEM IN INCOMPRESSIBLE MHD 25

Direct calculation shows that
(el — el u? |y s < CIBE = Bl sy < CIFP,. g < OBV,
1B D
[(curlp — curlg)u; HHS,3(Q$) < CE"”,
w8 (Njs =Nyl < CEP.
Then, we get by Proposition [A.10] that

~+D
”u*iD”Hs%(Q;E) < O(|lws HHH(Qf) + HathHHsg + ED) < CE".

Similarly, we have
Hh*iD”Hs%(Qf) <CEP.

Recalling ([B.6]), we deduce that
8tle :éD7
00 = = 2D Ty f0) = (w4 4y 08" + (w5 + 1y )206")

(5.1)
1 _
-5 2 (MZFAM;FA — bR A - ﬁ{Aﬁ;A> 0:0; P + %,
ij=1,2
where

| Q

R = — S (ThaTia — ThsTin) f7

(™ +u?)0:0° + (ug” +QQ_D)82§B)

1 A +A Ap+A —A —A —A;—A
-5 D [(yf i — bR u g = by )
ij=1,2

— (u Puf P = hfPRP 4w Pus P —h{Bh;B)]aiajle

NN

+g* —g”,

and for C = A, B,

1 e | —Cc — _C,—
gC =+ 5(-/\/';& - Nfc)-/\[fc P( Z (Ez—‘i_cﬂ;_c - h:_ch;_c — U ng ¢ "‘ﬁi Cﬁj C)aiajfc)
ij=1,2

+VFE = NFONTe P ((fC —ur©)oeC + (st — uz€)one° )

1
-5 (Nfc : V(pu+c,u+c - ph+C7h+C) + Nye - V(pu,qu,c - phfc,hfc))

1 =1
+ 5(./\/}2 — Nfc )/\/fc PN e - V(pytc ytec — Ppt¢ pt¢ = Py—¢y-¢ + ph7c7hfc)

g
—R+C.
+ 4

It is easy to check that
IR, < CEP.
We give the estimate of §(Ty\aTja — T\s1;5) fB for example, and the other terms can be
treated in a similar way.
(5.2) (TyaTya = TasTin) ¥ =(Tywa — Tyws)Ta fP + (Tyoa = Tyos)Ta f°

+ Th\n(Ty2)a — Tl(Q)B)]FB + T\5(Tj)a — Tm)s)fB.
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Recalling that A(V) = /(1 + [Vf2)[£]2 — (V[ - )2, we have
ADA _\()B

= /(L [VFAP)IER — (V54 )2 — /(L + [VFBR)E — (V2 - €)?
(VA VB (VI VPR - (VI - VB VAP €
VO IVIARER = (V1202 + /(L + VPP — (V7€)
It follows that
|(Tyara = Tas)Tia 2oy CIVIA = V2| Tia P2 g
<CIVfA =V [Pl fP iy < CEP.

s+2- —

In this way , one can deduce that
[(ThaTya — TABTzB)fBHHsg <CE".
Now, we define

def
F(oh” /") Ze—IIT LaTpaTya f 172 + 110 + wf'0) TgaTyn P72 ——Ilu A0 TgaTya fill7

— —||u 8TBAT AleLz + —||h+A6 TBAT Af1||L2 + = Hh ) TBAT AleLz,

where g4 1= (’y( )A ) S =D by following the proof of Proposition [I.10, one can see that

d _ _ _
(RO ")+ CONA I+ 10711 ) < OB + BiP),
where

B = sup (ol AP0 + IR, 5 + 10470 ;).

te[0,7
As (f4 wiA e84 o bEY) € X(T, My, M), it holds that

=D =D = o 7D 7D =D =D
(1A O HIA @12 HIEA @I, 5) < C(R@fi” AP)+C@) AP et 1012 )
Applying Gronwall’s inequality, we have

sup (A" @Ol + 17O,y + 1047 @)

5> < C(eCT —1)EP,
te[0,7

H*"2
which implies

rD D rD cT D
sup (o )| gs—1 + Ol 3 + 119 .5 ) <C(e”" —1)E".
s (17 @leos + 1Ol + 10O p) < OET -1
Similarly,

_ =D
sup <||w*D||H573(Qf) + 1€ ||H573(Q*i)> < O(CT —1)EP,
te[0,T]

From the equation

t 3
(1) = 4;%¢(0) — /0 /F |2 (€0 — hiCo;nEC)daldr,
j=1

we have
=P (t)] < |a;;”| + TCE".
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Similarly,
6,7 (1) < |65;°| + TCEP.
As a conclusion, we arrive at
EP <c@EeT —1+T)EP.

One can achieve the result by taking 7" small enough. O

5.4. The limit system. Proposition shows that there exists a unique fixed point
(f,wi, &5, a, bF) of the map F in X(T M, Ms). Now, we will finish the proof of Theorem

Z L)

L1l and show that one can recover (u™, h*, p*) from (f, w* ,Ei £ bF) which is the unique

Z’Z

solution to the original system (L2)-(L3). We call (f,wi, €L, a3 ,bfc) is the solution system

of (L2)-([TH).

From the construction of F, the fixed point

(f,w®, &5 a7,67) = (fwi 0 @7, & 0 ®7 ! a7, b))

Z’Z

satisfies

a.f =Po,
08 =2 (NFH(F) + N H()) — 5NF = N7ING ™ (W H(P) ~ N H(D)

_ _ 1 -
— (| +u1)010 + (ug + uy)0:20) — 3 Z (w'w) — hi b +uju; — hi hy)00;f

1,j=1,2

NF = NN P Z (whut — hiht —uiu; + b hy)9,0;f)

1
Ny Vpurut = Pornt) = 5Ny VPu- u- = Pp-p-)

(N N )Nf 7DNf ) (V(Pu+,u+ _Ph+,h+) ~V(pu-u- _ph*,h*)>'

Here py+ =+ is defined in ), and (u®, h¥) is the solution to

curlu® = Pfivwi, divu® =0 in Q]jf;

ui'Nf:(?tf on I'y;

ut.es =0, / wide' = a (i = 1,2) on I'*;
T+

3
O = —/Fi > (U505 — h3 0 )da
j=1
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and .
curlh® = P}hv.fi, divh* =0 in Q]jf;
h* N =0 on I'p;

3
ot == [ S ropnt oy
j=1

and (w*, £%) satisfies

Ow™ +ut - Vw® — h* . Vet = wF . vut — ¢F . vht,

3
0i€* +u*  VEF —h* . Vb =¢F . Vut —wF - VhT - 2) Vi x Vif
i=1
Next, we will show that the above system is equivalent to the origin system (L2)-(L3). We
introduce the pressure p* by

P =HP" + putut — Pt

where
—~ -1
with
g5 =2(uf0i0 + u3 020) + Ny - V(pyt ur — Pt ) + Y (wiud — hih)0,0;f.
i,j=1,2
Then, for
k* def out +ut - Vut —h-Vh* + Vpt,
or

k* ¥ 90t +ut . vht — bt vud,

one can check following the proof in Section 9 of [3I] that
curlkt =0, divk® =0 in ij;
ISk N;=0 on [y
kT . e3 =0, /Fi widz' =0(i =1,2) on I,

which means that k* = 0, and (f,u®™, h*, p*) is the unique solution to the original system
C2)-@.a).
6. ZERO SURFACE TENSION LIMIT

In the previous section, we have showed that if (f,ug,hg) satisfies the assumption of
Theorem [[T] there is a unique solution (f7,u?, h?) of system ([2)-(L7) in time [0.77]. To
study the zero surface tension limit, we need to show that if in addition (fy, ug, hg) satisfies

A(h, [uo)) > 2c,

the solution (f9,u%, h?) can be extended to a o independent time T
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Defining energy functionals
= 1T T T 17
G5 = 101+ wf 0T Ty 1735 — 3 107 OKTie Ty 3
4 IO Tao Ty £7)3 + 16O Tyr 17

and

gy (t) :%HfUH%ISJrly g5 () = 117112 oy + 1070y

G°(6) =101,y + 1512 sy + 05 s + ||u“i||Hs<Q;) I s
we give the following uniform a priori estimate.

Proposition 6.1. Assume (f7,u?,h?) is the solution of system (L2)-(L1) from initial data
(fo,10,ho) in [0,T] satisfying

inf A(h°F, [u’))(t) >
tel[IS,T} ( ,[11 ])()—607

it holds that
(6.1) sup G°(t) < CG7(0)e“T,

te[0,7
where C' is a constant independent on o.

Proof. Following the procedures of the proof of Proposition E.10] and Proposition [£13] and
using Lemma [£.12] we can easily deduce that

d
— (0GT+GS + 17172 + 10:f7 |72

62 =
+ ™3, (%) + 15113, 105 +a [+ [6]7]) (1) < P(G7)(1).

Here P(-) is a polynomial whose coefficients are independent on o.
It is clear that

0GT + GE + [l 1 g+ 165 Wy 2 + o]+ 6] < C(G7)G.

From the assumption that the Syrovatskij type stability condition holds, G§(t) is positive [31],
and it holds that

(6.3) G5 (1) < Cleo, |, b [wrce, [ fllweoe ) (G2 (t) + 1 £71172 + 1007 172)-
Furthermore, by Proposition [A.10] we also have

o o o T + + + +
107 ey + 10 ety < COEGE + 105 1Byums gy + €51Ecs ) + 1]+ 1),
Thus G is equivalent to

cr o o + + +
OGT+GE + 11571 + 1007 e + 11yt + IE Ny + 16+ [,

Combing the above results, one can get the desired estimates by (6.2) and Gronwall’s
inequality. O
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Remark 6.2. From Proposition[6 1], we can get uniform estimates for H@tuUiHHs,l(Q}[), and
H(‘)thoiHHsﬂ(Qjﬁc:), which determine the value of A(h°*, [u]). Then, by continuous argument,

it is clear that the solution (f?,u” h?) gotten in Theorem [L1l can be extended to a lifespan
T independent of o .

Thus, Theorem can be proofed as follow:

Proof. The initial data (fo, u(j)t, hac) satisfies all the assumption in Theorem [Tl then there
exist a unique solution (f?,u?,h?) of the system (L2)-(LH) in T7. Moreover, from the
assumption that

A(hﬁ [u()]) > 2cp,

one can see from Proposition and Remark that the solutions can be extended to the
one with a lifespan 7" independent of o. We also denote by (f?,u?, h?) the extended solutions
in [0, 7] that satisfy Therefore,

1. fo € L>([0,T), H"2(T?)),
2. uE h7F € L0, T; H* (9Q5,)),
3. —(1—cp) < f7<(1—cp),
4. A(h® [u]) > ¢.
Next, we introduce

g:l: — u(7:|: ° CI):t

u fo

hi* = h™ o &,
It is easily seen that

o2 ot|2 ot |2
tes[%%] (I1f HHH% I sy, ) + [0S HHS(QfO))(t) <C.

Then there exists a subsequence of {(f?,u?*, u?*)} which converges weakly to some (f, uf, hf)

satisfying

2 +p2 L2 -
tes[lé%] (||f||Hs+% I sy, + 05 ey, ) () < C.

Let ut = uf o @f‘l and h* = hf o @f‘l. By a standard compactness argument, we can
prove that (f,u, h) is a solution of the system (L2])-(L5) with o = 0. O
7. FURTHER DISCUSSION

In this paper, we study the two phase flow problem with surface tension in the ideal
incompressible magnetohydrodynamics. We give a proof of local well-posedness and zero
surface tension limit for the case p™ = p~ = 1. The method developed in this paper still
works for some general cases.

7.1. Case p' # p~. Recall the evolution equation of f ([B.6). For the general problem that
pT,p~ > 0, the three order term is

instead of § (N H(f) + Ny H(f)). Define

M =ptAt +p A" = A 4 \e(0),
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where
N = pF AT 4 5= A=) \e0) = fHA+O0) )= = (0),
Here A+ = A=) + A=) is defined in Section 4. We have
o A 4N o o

— + o NOH(f) = ————TaoTif + ———— R?,

G a @ N A PNDE) = e DT Gy
with remainder term R satisfying

IRl oy < CUFN o ) st

Similar to Proposition 4.0 let

1 /1@ 1
72 = VI 4 1 Ry 1 Lo, 0,) /@),
f 2\ A\e(1) 21
,\/P(g)

7»(%)

we have T, T\oT} ~ T TyoTy and Typ ~ (Typ)*.
Then one can use the method introduced in this paper to get similar results in Theorem L[]
and Theorem The zero surface tension limit solution is the solution constructed in [24].

7.2. Case p™ = 0. For one fluid problem that there is no fluid and no magnetic in the upper
domain, the evolution equation of f is

_ _ _ 1 _
OFf = —2(uy 016 + uy 20) + /;L_Nf H(f) - p—_Nf “V(p Pu-u- — Ph-n-)

=Y wruaaf+— S hihy 0,01,

ij=1,2 ij=1,2

For the three order term ;%N 7 H(f), it holds that

oo o o __

—NyH(f)=——T\-Tif + —R",

p p p
and T,T\-T; ~T,-T,- T, and T~ ~ (T',-)*, where

T l(2>>\—(1>+1 1 Re(A~(0) +l(a 2 0)VIGN-1)
—— 2| A0 2i° ¢ ° '

W—(%)

Then one can get local well-posedness of the one fluid problem by using the method developed
in this paper.

APPENDIX A.

A.1. Paradifferential Operator. In this subsection we will introduce some notations and
results about Bony’s paradifferential calculus. Here we follow the presentation by Métivier
in [26], for the general theory we refer to [9], [2I], [26], [27] and [34].

For p € N, we denote W#>°(T9) the Sobolev spaces of L> functions whose derivatives of
order p are also in L. For p € (0,00)/N, we denote W*>°(T%) the Sobolev spaces of L™
functions whose derivatives of order [p] are uniformly continuous with exponent p — [p].
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Definition A.1. Given p > 0 and m € R, denote by F?(Td) the space of locally bounded

functions a(x,€) on T x R?/{0}, which are C> with respect to & for € # 0 and such that,
for all & € N and all £ # 0, the function x — 8?(1(:5,5) belongs to WP and there exists a
constant C,, such that

10 a(a, ) llwree = Cal(l+ [E)™ 1 VI¢| >

DO =

The seminorm of the symbol is defined by

M™a):= sup  sup ||[(1+ [)I*0¢a(-,€)|wee
la|<3d+1+p|¢[>3

Given a symbol a, the paradifferential operator 7T}, is defined by
Tou(e) = (20)0 [ (€ = n.malé — nn)om)atndn,

where @(z, ) is the Fourier transform of a with respect to the first variable, x (6, £) € C*(R%x
}Rd) is an admissible cutoff function: there exists 1,9 such that 0 < e; < g9 ¥ and

x(O,m) =1 if [0]<eilnl, x(0,m) =0 if 6] = eznl.
and such that for any (6,¢) € R% x R?,
1959 x(0,€)] < Cap(1+ n)~*I71.
The cutoff function ¥(n) € C(R?) satisfies

v(m) =0 for [n|<1, ¥m=1 for [nf=2,
Here we will take the admissible cutoff function x(6, &)

X(0,€) =" Gos(0)ér(n),
k=0

where ((0) =1 for |#] < 1.1,{(#) =0 for |#] > 1.9, and
{ & (0) = ¢ (27%0) forkeZ
0o =Copk =Cp — Cp—1 fork>1
We also introduce the Littlewood-Paley operators Ay, Sy defined by
Agu = FH (op(&)a(€)) for k>0, Apu=0for k <0,
Spu = ZAgu for k € Z.
1<k

In the case when the function a depends only on the first variable x in T,u, we take p = 1.
Then T,u is just the usual Bony’s paraproduct defined by

Tou = Z Sk_3aALu.
k

We have the following well-known Bony’s decomposition (see [7]):
au = Tou + Tya + Rp(u, a),
where the remainder term Rp(u,a) is defined by

Rp(u,a) = Z Apaljpu.
k—€]<2
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We list the main features of symbolic calculus for paradifferential operators, the details of
proof can be find in [26].

Proposition A.2. Let m € R. Ifa € Fg”(']l‘d), then T, is of order m. Moreover, for all
u € R there exists a constant K such that

(A1) 1Tl g ru-m < KMg*(a).
Lemma A.3. If s >0 and s1,s2 € R with s1 + sy = s+ d/2, then we have
RB(w, a)l|gs < Cllal| g ||ul| ez

Proposition A.4. Let m € R, and let p > 0. Ifa € I‘Z"L(Td), be F;”/ (T%), then T,T} — Ty
is of order m +m’ — p where

1 (6% (6%
lor|<p

Furthermore, Y € R there exists a constant K such that
||TaTb - TaﬁbHH#—H“*m*m/+P = KM;n(a)M;n (b)

Proposition A.5. Let m € R, letp > 0, and let a € F;”(']I‘d). Denote by (T,)* the adjoint
operator of Ty, and by a the complex conjugate of a. Then (T,)* — Ty is of order m — p where

1
X (e ale
a” = Z —i|a\a!8€ oya.
lor|<p
Furthermore, Y there exists a constant K such that
I(Ta)* = Tl g mvo < KM ().
If a = a(x) is independent of &, then Ty, is called a paraproduct. From Propositon [A.5 and
Proposition [A.4l we can get:

o If a € H*(T?) and b € HA(T%) with a > 4, 8> 4, then
(A.2) ToTy — Tap is of order — (min{o, S} — g)

o If a € H*(T?) with o > %l, then
d
(A.3) (T,)" =Tz isof order — (a— 5)

Lemma A.6. Let m > 0. Ifa € H%_m(']I'd) and v € HH(TY), then Tyu € HA™(TY).
Moreover,

[Tau]l o < Kllall g, lull e,
where the constant K is independent of a and wu.
Proposition A.7. Let a, 5 € R such that o > %l, 6> %l, then
e VF € C*®, ifa € H*(T?), then
F(a) — F(0) — Tpr(gya € H**~3(T4).
o Ifac H*(TY) and b € HP(T), then ab — T,b — Tya € HO‘+B_%(T‘[). Moreover,
lab —Tab = Toal 0y s-g < Kllallga(ra)lbll s ra)

where the constant K is independent of a, b.
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We also represent here some nonlinear estimates in Sobolev spaces
o If u; € H%(T?), j=1,2, and s1 + s9 > 0, then ujus € H*(T?); if

d
so <sj, j=1,2, and 30§31+32—§, then

luruz | gso < Kllut || g [Jual s,

where the last inequality is strict if s; or s9 or —sq is equal to 0.
o If u € H*(TY) with s > %, then VF' € C* vanishing at the origin,

IE @)l < Cllullme),

where the constant C is non-decreasing and depending only on F.
Recall the definition [}, here we list some properties of the symbol a € " (see [2]):

Proposition A.8. Let m € R and p € R. Then there exists a function C such that for all
symbols a € ¥™ and all t € [0,T],

[Tyl g < CUFlla-1)lull e

Proposition A.9. Let m € R and p € R. Then there exists a function C such that for all
symbols a € ™ and all t € [0,T],

[ull gorm < CULF s ) ([ Tyl e + [l L2)-
A.2. Div-Curl system. From Section 5 of [31], we know that for each div-curl system

curlu=w, divu=gyg in Q;{,
(A4) u-Ny=19 on I,
u-e3=0, [puds =0;(i=1,2) on TT.

with f € H5+%(T2) for s > 2 and satisfying
—(I—c) < f<(1-0p),
have a unique solution.

Proposition A.10. Let o € [2,s] be an integer. Given w,g € H”‘l(Q}'), VS H"_%(Ff)
with the compatiblity condition:
—/ gdxr = Jds,
of Iy

and w satisfies

divw =0 in Q;{, / wsdx' =0,
T+

Then there exists a unique u € H?(Q1) of the div-curl system ([A-J) so that

lall gy < Cleo: 1l govy) (Ilazoscarpy + 9l sy 191y ) ot 4 ]
A.3. Commutator estimate.
Lemma A.11. Ifs> 1+ %l, then we have

(A5) . (9)Tull 2 < Clalls s
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A.4. Sobolev estimates of DN operator.
Proposition A.12. If f € H8+%(T2) for s > 2, then it holds that for any o € [ — %,s — %],

(A.6) INF Wl < Koy gl los.
Moreover, it holds that for any o € [%, s — %] ,
(A7) IV =N ) el < Koo l¢lae,

where Ks+%7f is a constant depending on co and || f||ms.

Proposition A.13. If f € Hs+%(']I‘2) for s > %, then it holds that for any o € [— %, s — %],
(A8) IGF Do < Kyt fllellae,
+ A +\—1
where G = (/\/f) )
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