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WELL-POSEDNESS OF THE FREE-SURFACE INCOMPRESSIBLE
EULER EQUATIONS WITH OR WITHOUT SURFACE TENSION

DANIEL COUTAND AND STEVE SHKOLLER

1. INTRODUCTION

1.1. The problem statement and background. For ¢ > 0 and for arbitrary
initial data, we prove local existence and uniqueness of solutions in Sobolev spaces
to the free boundary incompressible Euler equations in vacuum:

1.1a) Ou+Vyu+Vp=0 in @,
1.1b) divu =0 in @,
1.1c) p=cH on 0Q,
1.1d) (0 + Vu)log € T(0Q),

1.1e) u = up on Qi=o,
1.1f) Qi=0 = (1,

where Q = Uy, {t} x Q(t), Q(t) CR"™, n =2 or 3, 0Q = Uycserpit} x 0Q(t),
Vuu = u/0u'/dx?, and where Einstein’s summation convention is employed. The
vector field u is the Eulerian or spatial velocity field defined on the time-dependent
domain §2(t), p denotes the pressure function, H is twice the mean curvature of the
boundary of the fluid 99Q(t), and o is the surface tension. Equation ([Tal) is the
conservation of momentum, (L1D) is the conservation of mass, (LId) is the well-
known Laplace-Young boundary condition for the pressure function, (LId) states
that the free boundary moves with the velocity of the fluid, (I.1d) specifies the
initial velocity, and ((LIf) fixes the initial domain €.

Almost all prior well-posedness results were focused on irrotational fluids (po-
tential flow), wherein the additional constraint curlu = 0 is imposed; with the
irrotationality constraint, the Euler equations (([LI]) reduce to the well-known water-
waves equations, wherein the motion of the interface is decoupled from the rest of
the fluid and is governed by singular boundary integrals that arise from the use
of complex variables and the equivalence of incompressibility and irrotationality
with the Cauchy-Riemann equations. For 2D fluids (and hence 1D interfaces), the
earliest local existence results were obtained by Nalimov [14], Yosihara [22], and
Craig [5] for initial data near equilibrium. Beale, Hou, and Lowengrub [4] proved
that the linearization of the 2D water-wave problem is well-posed if a Taylor sign
condition is added to the problem formulation, thus preventing Rayleigh-Taylor
instabilities. Using the Taylor sign condition, Wu [20] proved local existence for
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830 D. COUTAND AND S. SHKOLLER

the 2D water-wave problem for arbitrary (sufficiently smooth) initial data. Later
Ambrose [2] and Ambrose and Masmoudi [3] proved local well-posedness of the 2D
water-wave problem with surface tension on the boundary replacing the Taylor sign
condition.

In 3D, Wu [2I] used Clifford analysis to prove local existence of the full water-
wave problem with infinite depth, showing that the Taylor sign condition is always
satisfied in the irrotational case by virtue of the maximum principle holding for the
potential flow. Lannes [I1] provided a proof for the finite depth case with varying
bottom by implementing a Nash-Moser iteration. The first well-posedness result for
the full Euler equations with zero surface tension, o = 0, is due to Lindblad [13]
with the additional “physical condition” that

(1.2) Vp-n <0 on 0Q,

where n denotes the exterior unit normal to 99(t). The condition ([2)) is equiva-
lent to the Taylor sign condition and provided Christodoulou and Lindblad [6] with
enough boundary regularity to establish a priori estimates for smooth solutions
to (L)) together with (IZ) and ¢ = 0. (Ebin [10] provided a counterexample to
well-posedness when (L2)) is not satisfied.) Nevertheless, local existence did not
follow in [6], as finding approximations of the Euler equations for which existence
and uniqueness is known and which retain the transport-type structure of the Eu-
ler equations is highly nontrivial, and this geometric transport-type structure is
crucial for the a priori estimates. In [12], Lindblad proved well-posedness of the
linearized Euler equations, but the estimates were not sufficient for well-posedness
of the nonlinear problem. The estimates were improved in [I3], wherein Lindblad
implemented a Nash-Moser iteration to deal with the manifest loss of regularity in
his linearized model and thus established the well-posedness result in the case that
(T2) holds and o = 0.

Local existence for the case of positive surface tension, ¢ > 0, remained open.
Although the Laplace-Young condition (IId) provides improved regularity for the
boundary, the required nonlinear estimates are more difficult to close due to the
complexity of the mean curvature operator and the need to study time-differentiated
problems which do not arise in the o = 0 case. It appears that the use of the time-
differentiated problem in Lindblad’s paper [13] is due to the use of certain tangential
projection operators, but this is not necessary. We note that our energy function is
different from that in [I3] and provides better control of the Lagrangian coordinate.

After completing this work, we were informed of the paper of Schweizer [16]
who studies the Euler equations for ¢ > 0 in the case that the free-surface is
a graph over the two-torus. In that paper, he obtains a priori estimates under
a smallness assumption for the initial surface; well-posedness follows under the
additional assumption that there is no vorticity on the boundary. We also learned
of the paper by Shatah and Zeng [15] who establish a priori estimates for both the
o =0 and o > 0 cases without any restrictions on the initial data.

1.2. Main results. We prove two main theorems concerning the well-posedness of
(CID. The first theorem, for the case of positive surface tension o > 0, is new; for
our second theorem, corresponding to the zero surface tension case, we present a
new proof that does not require a Nash-Moser procedure and has optimal regularity.

Theorem 1.1 (Well-posedness with surface tension). Suppose that ¢ > 0, T
is of class H®®, and uy € H*3(Q). Then, there evists T > 0 and a solution
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WELL-POSEDNESS OF THE FREE-SURFACE EULER EQUATIONS 831

(u(t).p(t).02(t)) of TI) with w € L=(0,T; H*(Q(t))), p € L>(0,T; H* (1)),
and O (t) € H>S. The solution is unique if ug € H>>(Q)) and 0Q € HSS.

Theorem 1.2 (Well-posedness with Taylor sign condition). Suppose o = 0, I is
of class H3, and ug € H3() and condition ([L2)) holds att = 0. Then, there exists
T > 0 and a unique solution (u(t),p(t),2(t)) of (L) with u € L>=(0,T; H3((t))),
p € L>(0,T; H>>(Qt))), and 0Q(t) € H3.
1.3. Lagrangian representation of the Euler equations. The Eulerian prob-
lem (CTI), set on the moving domain €(¢), is converted to a PDE on the fixed domain
2, by the use of Lagrangian variables. Let n(-,t) : @ — Q(¢) be the solution of
On(x,t) = u(n(z,t),t), n(x,0)=1d

and set

v(w,t) =uln(@,0),1), q(@.t):=pnz,1),t), and a(z,t) = [Vy(z,0)]7".
The variables v, ¢ and a are functions of the fixed domain 2 and denote the material

velocity, pressure, and inverse Jacobian, respectively. Thus, on the fixed domain,
(TI) transforms to

t

(1.3a) n:Id+/v in 2 x (0,77,
0

(1.3b) Ov+aVqg=0 in Q x (0,77,

(1.3¢) Tr(aVv) =0 in Q x (0,77,

(1.3d) qa’N/|a"N| = -0 A,(n) onT x (0,T],

(1.3¢) (n,v) = (Id, up) on Q x {t =0},

where IV denotes the unit normal to I and A, is the surface Laplacian with respect
to the induced metric g on I', written in local coordinates as
(1.4)

Ay =9 0alv/99%%05], 9% = [9apl™ s Gop =N s, and \/g = \/detg.

Theorem 1.3 (o > 0). Suppose that o > 0, S is of class H>®, and uy € H*>(Q)
with divug = 0. Then, there exists T > 0 and a solution (v,q) of [L3) with v €
L>(0,T; H*5(2)), g € L>=(0,T; H*(2)), and T'(t) € H>®. The solution satisfies

3 2
sup (|8Q(t)|§.5 + Z 10F ()13 5-1.5% + Z |an(t)|z211.5k> < My

t€(0,T] k=0 k=0

where My denotes a polynomial function of ||U||s.s and |jug|lss. The solution is
unique for ug € H>>(Q) and I € HS5.

Remark 1. Our theorem is stated for a fluid in vacuum, but the analogous theorem
holds for a vortex sheet, i.e., for the motion of the interface separating two invis-
cid immiscible incompressible fluids; the boundary condition (IZId) is replaced by
[p]l+ = oH, where [p]+ denotes the jump in pressure across the interface.

For the zero surface tension case, we have

Theorem 1.4 (o = 0 and condition (L2))). Suppose that o = 0, T is of class H?,
up € H3(Q), and condition [L2) holds at t = 0. Then, there exists T > 0 and a
unique solution (v,q) of ([L3) withv € L>(0,T; H3(Q)), ¢ € L>(0,T; H3(Q2)), and
['(t) € H3.
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Because of the regularity of the solutions, Theorems [[.3] and [[.4] imply Theorems
[L1l and 2] respectively.

Remark 2. Note that in 3D, we require less regularity on the initial data than [I3].

Remark 3. Since the vorticity satisfies the equation 0; curl u+ £, curlu = 0, where
£,, denotes the Lie derivative in the direction u, it follows that if curl ug = 0, then
curlu(t) = 0. Thus our result also covers the simplified case of irrotational flow. In
particular, Theorem [[.3] shows that the 3D irrotational water-wave problem with
surface tension is well-posed. In the zero surface tension case, our result improves
the regularity of the data required by Wu [21].

1.4. General methodology and outline of the paper.

1.4.1. Artificial viscosity and the smoothed r-problem. Our methodology begins
with the introduction of a smoothed or approzimate problem ([@II), wherein two
basic ideas are implemented: first, we smooth the transport velocity using a new
tool which we call horizontal convolution by layers; second, we introduce an artificial
viscosity term in the Laplace-Young boundary condition (¢ > 0) which simultane-
ously preserves the transport-type structure of the Euler equations, provides a PDE
for which we can prove the existence of unique smooth solutions, and for which there
exist a priori estimates which are independent of the artificial viscosity parameter .
With the addition of the artificial viscosity term, the dispersive boundary condition
is converted into a parabolic-type boundary condition, and thus finding solutions of
the smoothed problem becomes an easier matter. On the other hand, the a priori
estimates for the k problem are more difficult than the formal estimates for the
Euler equations.

The horizontal convolution is defined in Section Pl The domain € is partitioned
into coordinate charts, each the image of the unit cube in R?. A double convolution
is performed in the horizontal direction only (this is equivalent to the tangential
direction in coordinate patches near the boundary). While there is no smoothing in
the vertical direction, our horizontal convolution commutes with the trace operator
and avoids the need to introduce an extension operator, the latter destroying the
natural transport structure. The development of the horizontal convolution by
layers is absolutely crucial in proving the regularity of the weak solutions that we
discuss below. Furthermore, it is precisely this tool which enables us to prove
Theorem without the use of Nash-Moser iteration. To reiterate, this horizontal
smoothing operator preserves the essential transport-type structure of the Euler
equations.

1.4.2. Weak solutions in a variational framework and a fixed point, o > 0. The
solution to the smoothed k-problem () is obtained via a topological fixed-point
procedure, founded upon the analysis of the linear problem (£2). To solve the lin-
ear problem, we introduce a few new ideas. First, we penalize the pressure function;
in particular, with € > 0 the penalization parameter, we introduce the penalized
pressure function g. = 1Tr(a Vw). Second, we find a new class of [H 2 (Q)]/-weak
solutions of the penalized and linearized smoothed k-problem in a variational formu-
lation. The penalization allows us to perform difference quotient analysis in order
to prove regularity of our weak solutions; without penalization, difference quotients
of weak solutions do not satisfy the “divergence-free” constraint and as such cannot
be used as test functions. Furthermore, the penalization of the pressure function
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avoids the need to analyze the highest-order time derivative of the pressure, which
would otherwise be highly problematic. In the setting of the penalized problem,
we crucially rely on the horizontal convolution by layers to establish regularity of
our weak penalized solution. Third, we introduce the Lagrange multiplier lemmas,
which associate a pressure function to the weak solution of a variational problem
for which the test functions satisfy the incompressibility constraint. These lem-
mas allow us to pass to the limit as the penalization parameter tends to zero, and
thus, together with the Tychonoff fixed-point theorem, establish solutions to the
smoothed problem (Tl). At this stage, however, the time interval of existence and
the bounds for the solution depend on the parameter .

1.4.3. Solutions of the k-problem for o = 0 wvia transport. For the ¢ = 0 problem,
we use horizontal convolution to smooth the transport velocity as well as the moving
domain. Existence and uniqueness of this smoothed  problem (I7.]) is found using
simple transport-type arguments that rely on the pressure gaining regularity just
as in the fixed-domain case. Once again, the time interval of existence and the
bounds for the solution a priori depend on k.

1.4.4. A priori estimates and k-asymptotics. We develop a priori estimates which
show that the energy function E,(t) in Definition [[0.] associated to our smoothed
problem (41]) is bounded by a constant depending only on the initial data and not
on k. The estimates rely on the Hodge decomposition elliptic estimate (&.1I).

In Section [I0, we obtain estimates for the divergence and curl of 7, v and their
space and time derivatives. The main novelty lies in the curl estimate for n. The
remaining portion of the energy is obtained by studying boundary regularity via
energy estimates.

These nonlinear boundary estimates for the surface tension case ¢ > 0 are more
complicated than the ones for the o = 0 case with the Taylor sign condition (I2)
since it is necessary to analyze the time-differentiated Euler equations, which is not
essential in the o = 0 case (unless optimal regularity is sought).

We note that the use of the smoothing operator in Definition 2.1}, where a double
convolution is employed, is necessary in order to find exact (or perfect) derivatives
for the highest-order error terms. The idea is that one of the convolution operators
is moved onto a function which is a priori not smoothed, and commutation-type
lemmas are developed for this purpose.

We obtain the a priori estimate

sup F.(t) < Mo+ TP( sup E.(t)),
te[0,T] te[0,T]
where My depends only on the data and P is a polynomial. The addition of the
artificial viscosity term allows us to prove that E,(t) is continuous; thus, following
the development in [§], there exists a sufficiently small time 7', which is independent
of k, such that sup,c(o 1y E.(t) < M, for My > M.
We then find k-independent nonlinear estimates for the ¢ = 0 case for the energy

function (20.1)).

Outline. Sections 2HIG are devoted to the case of positive surface tension o > 0.
Sections [[6H2T] concern the problem with zero surface tension o = 0 together with
the Taylor sign condition (L2) imposed.
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1.5. Notation. Throughout the paper, we shall use the Einstein convention with
respect to repeated indices or exponents. We specify here our notation for certain
vector and matrix operations.
We write the Euclidean inner-product between two vectors z and y as = -y,
so that -y = z* y°. _
The transpose of a matrix A will be denoted by A, i.e., (A7)} = A,
We write the product of a matrix A and a vector bas A b, i.e., (Ab)" = ALb/.
The product of two matrices A and S will be denoted by A-S, i.e., (AS); =
Al Sk,
k=3
The trace of the product of two matrices A and S will be denoted by A : S,
i.e., (A:8), = A} Sk.
For Q, a domain of class H® (s > 2), there exists a well-defined extension operator
that we shall make use of later.

Lemma 1.1. There exists E(QY), a linear and continuous operator from H" () into
H™(R3) (0 <7 <s), such that for anyv € H"(Q) (0 <r <s), BE(Q)(v) =v in Q.

We will use the notation H*(2) to denote either H*(2;R) (for a pressure func-
tion, for instance) or H®({;R3) (for a velocity vector field) and we denote the
standard norm of H*(Q2) (s > 0) by || - ||s. The H*(Q?) inner-product will be de-
noted (-, -)s.

We shall use the following notation for derivatives: 9; or (-); denotes the partial
time derivative, 0 denotes the tangential derivative on I' (or in a small enough
neighborhood of T'), and V denotes the three-dimensional gradient.

Letting (x!, 22) denote a local coordinate system on T', for a = 1,2, we let either
o OF (+),a denote 5%. We define

0% = g§P05, |05 = 0410° -+ 00, Ouy - - - D,

for integers k > 0, where gy = gi—¢ is the (induced) metric on I'. In particular,
10°¢| = |p|, [0'¢]? = |06]*> = 0%¢p0,¢ and ¢ will mean any kth tangential
derivative of ¢.

The area element on I" in local coordinates is dSy = \/g_odxl A dz? and the pull-
back of the area element dS on I'(t) = n(T') is given by n*(dS) = \/gdSy. Let
{U;} K| denote an open covering of T, and let {¢;}X | denote the partition of unity
subordinate to this cover. The L?(I") norm is

16l = 9]l oy = ( / ¢2d50>2 ,

and the H*(T') norm for integers k > 1 is

E K ' 2
18k =[]l v (ry = <ZZ |&8’¢|%> :

i=1 I=1
Similarly, for the Hilbert space inner-products, we use

6, %lo = [6, Y] = /Faswdso,

k K
6,01k = 6, V] ar(ry = (6,90 + Y Y _[60'¢, L0itlo

1=1 =1
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Fractional-order spaces are defined via interpolation using the trace spaces of Lions
(see, for example, [I]).

The dual of a Banach space X is denoted by X’, and the corresponding norm
in X’ will be denoted || - ||x-. For L € H*(Q)" and v € H*(2), the duality pairing
between L and v is denoted by (L, v)s.

Throughout the paper, we shall use C to denote a generic constant, which may
possibly depend on the coefficient o or on the initial geometry given by Q (such
as a Sobolev constant or an elliptic constant), and we use P(-) to denote a generic
polynomial function of (). For the sake of notational convenience, we will often
write u(t) for u(t,-).

2. CONVOLUTION BY HORIZONTAL LAYERS
AND THE SMOOTHED TRANSPORT VELOCITY

Let Q C R™ denote an open subset of class HS, and let {U;}X; denote an open
covering of I' := 99, such that for each i € {1,2,..., K},
6; : (0,1)* x (=1,1) — U; is an H® diffeomorphism ,
UiNQ=0;((0,1)3) and U;NT = 6;((0,1)* x {0}),
97;(1‘1, 332,.’133) = ($1,$2,’(ﬂ¢(1‘1, 332) + 1‘3) and detVO; =1 in (0, 1)3 .
Next, for L > K, let {Ui}iL:KJr1 denote a family of open sets contained in {2 such
that {U;}£, is an open cover of Q. Let {a;}£, denote the partition of unity
subordinate to this covering.
Thus, each coordinate patch is locally represented by the unit cube (0,1)® and

for the first K patches (near the boundary), the tangential (or horizontal) direction
is represented by (0,1)% x {0}.

Definition 2.1 (Horizontal convolution). Let 0 < p € D((0,1)?) denote an even
Friederich mollifier, normalized so that / p = 1, with corresponding dilated

(0,1)2
function

pi(x) = 6%/) <%) , 0>0.

5

For w € H'((0,1)%) such that supp(w) C [6,1 — 6]* x (0, 1), set

p1xpw(Tp,ws) = / p1(xr — yu)w(yn, x3)dyn , yu = (y1,92) -
R2

We then have the tangential integration by parts formula
p1*h Wi (TH, T3) = / pisa (@r —yr)w(yn, x3)dyn , a=1,2,
R2
while

pi(xa —yr)w.s (Yn, v3)dyn -
2

PL *h W,3 (33H,$3) = /

R
It should be clear that x; smooths w in the horizontal directions, but not in the
vertical direction. Fubini’s theorem ensures that

(2.1) o1 *n w5 0,12 < Csllwlls,(0,1)2 for any s >0,

and we shall often make implicit use of this inequality.
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Remark 4. The horizontal convolution x,w does not smooth w in the vertical
direction; however, it does commute with the trace operator, so that

(p% *h w) ‘(0,1)2x{0} =3 Wl

which is essential for our methodology. Also, note that x, smooths without the
introduction of an extension operator, required by standard convolution operators
on bounded domains; the extension to the full space would indeed be problematic
for the transport structure of the divergence and curl of solutions to the Fuler-type
PDEs that we introduce.

Definition 2.2 (Smoothing the velocity field). For v € L*(2) and any & € (0, %)
with
K
Ko = mi? dist (supp(ai 06;), [(0,1)* x {0}]° N aJo, 1]3) ,
=
set
K L
ve =3V [ lpr o (Vaw) 0 6] 067 + 3 onw
=1 i=K+1

It follows from (21]) that there exists a constant C' > 0 which is independent of
 such that for any v € H*(Q) for s > 0,

(2.2) [vells < Cllvlls and |vgls—1/2 < Clofs—1/2-

The smoothed particle displacement field is given by

t
(2.3) ne = I1d + / Uy -
0

For each = € Uy, let & = 0; ' (). The difference of the velocity field and its smoothed
counterpart along the boundary I" then takes the form

(2.4)
ve(z) — v(z)

K
-3 /] 0, G B GO 5+ 2) ~ G @) a2

where (;(z) = v/a;(0;(Z)). Combining (LTal), (Z3)), and (24,
(2.5)
Tln(ﬂﬁ) - Tl(x

)
K
- ; / /B(O,rc)2 Ci(@)p1 (9)p (2) [(Gm) (0:(F — (5 + 2))) — (Gn) (0:(2))] dZ d -

For any u € H"5(T') and for y € B(z, x), where B(z, ) denotes the disk of radius
K centered at x, the mean value theorem shows that
lu(y) — w(@)| < Clr Y La(B o) |0Ul Lo (B2 k) r = radial coordinate,

so that in particular, with p =4 and ¢ = 3,

lu(y) — u(z)| < CVElOulLs < CVElul1s
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the last inequality following from the Sobolev embedding theorem. Hence, for
U e H'5(I),
(2.6) Us(2) = U(@)|p= < CVE|U]15.-
Note that the constant C' depends on max;ec 1. k3 0ils5.5-
Letting ¢; = \/a; and R = (0,1)?, we also have that for any ¢ € L*(T),

/vub Z/Pl *n p1*n Gu(x) Gio( Z/Pl *n Giv(x) pr*p Gio(x)

(2.7) -/ S s 0 (G0 8] 00 o+ (G 0] 0671
=1

Finally, we need the following

Lemma 2.1 (Commutation-type lemma). Let g € L*(T) satisfy dist(supp(g),OR)
< ko and let f € H*(T") for s > 1. Then independently of k € (0, ko), there exists
a constant C > 0 such that

pranlfgl = Foywng| < CHIflosnn

We also have
o2 =0 119 = o150 gHOW < Cllfllsr 2,000 N9llo. oy
whenever g € L2(Q), f € H*(Q) and
g < min(dist(supp fg,{1} x [0,1]%), dist(supp fg,{0} x [0,1]%)).

Proof. Let A = p1 *p [fg] — fpr *xn g. Then

|A(z)] =

K

/ pr(z —y)[f(y) — f(z)]g(y)dy
B(z,k)

<Colflesrn [ pre-wlalldy,

B(z,k)
so that

[Blo.r < CHlflusrn |ps #lol | < Crlflarinlglo.

The inequality on [0, 1] follows the identical argument with an additional inte-
gration over the vertical coordinate. The hypothesis on the support of fg makes
the integral well-defined. O

Remark 5. Higher-order commutation-type lemmas will be developed for the case
of zero surface tension in Section 211

3. CLOSED CONVEX SET USED FOR THE FIXED POINT FOR o > 0

In order to construct solutions for our approximate model (£1]), we use a topo-
logical fixed-point argument which necessitates the use of high-regularity Sobolev
spaces. In particular, we shall assume that the initial velocity ug is in H3-5(Q)
and that € is of class C'°°; after establishing our result for the smoothed initial do-
main and velocity, we will show that both © and uy can be taken with the optimal
regularity stated in Theorem
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838 D. COUTAND AND S. SHKOLLER

For T > 0, we define the following closed convex set of the Hilbert space
L2(0,T; H35(Q)):

Cr = {v € L*(0,T; H3>(Q))| su%) lvll13.5 < 2|Juoll13.5 + 1}
It is clear that C'r is nonempty, since it contains the constant (in time) function
ug, and is a convex, bounded and closed subset of the separable Hilbert space
L2(0,T; H35(Q)).

Let v € Cr be given, and define n by ([3al), the Bochner integral being taken
in the separable Hilbert space H3-%((2).

Henceforth, we assume that 7' > 0 is given such that independently of the choice
of v € Cr, we have the injectivity of n(¢) on Q, the existence of a normal vector to
n(Q,t) at any point of n(I',t), and the invertibility of V(t) for any point of Q and
for any ¢ € [0,T]. Such a condition can be achieved by selecting T" small enough so

that

(3.1) [V —1d|[ Lo 0,1;m135(2)) < €0

for ¢g > 0 taken sufficiently small. Condition (BII) holds if T'||Vugl| gz < €. Thus,
(3.2) a= [V~

is well-defined.

Then choosing T' > 0 even smaller, if necessary, there exists kg > 0 such that for
any & € (0, %), we have the injectivity of 7, (t) on Q for any ¢ € [0, TT; furthermore,
Vi, satisfies the condition (B with 7, replacing 7. We let n.(n.(z)) denote the
exterior unit normal to 7,(Q2) at n,(z) with « € T.

Our notational convention will be as follows: if we choose v € C, then 7 is the
flow map coming from ([3al), and a is the associated pull-back, @ = [V#]~!. Thus,
a bar over the velocity field will imply a bar over the Lagrangian variable and the
associated pull-back.

For a given v, our notation is as follows:

t
nn(t) = Id+/ v, and nn(o) =1d,
0
ax = Cof Ve, Jo=det V., Guas = Oalk - 00k -

We take T' (which a priori depends on k) even smaller if necessary to ensure that

for t € 0,77,
-1 _
(3.3a) 9(t)  <2yg0
-1
(3.3b) 9:(t)  <2yg0 ",
1 3
. < T <2,
(3.3¢) 2_J(t)_2
Lemma 3.1. Forv € Cp and for any s > 0, we have independently of the choice

of v e Cr that

sup |vgs < Cr.s P(|luol13.5) -
[0,T]

Proof. By the standard properties of the convolution a.e. in [0, T:

C c
(3.4) [vkls < [ﬁ + 1|v)13 < [ﬁ + 1][2([uo[l13.5 + 1],
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where we have used the definition of C'r for the second inequality. O

~ Recall that {6;}/X, is our open cover of I'. Given o € Cr, we define the matrix
bl, = [V(x06;)] ! and assume that T' > 0 is sufficiently small so that independently
of ¥ € Cr, we have the following determinant-type condition for b :

Sblgz z’a 01)

i=1

(3.5)

N =

Such a condition is indeed possible since at time ¢ = 0 we have (b,)3 Zf NCAHEES
L4 ,T +¢03 .

4. THE SMOOTHED K-PROBLEM AND ITS LINEAR FIXED POINT FORMULATION

Unlike the case of zero surface tension, for ¢ > 0 there does not appear to be
a simple sequence of approximate problems for the Euler equations (LI} which
can be solved only with simple transport-type arguments. For the surface tension
case, the problem is crucially variational in nature, and the addition of an artificial
viscosity term on the boundary I' seems unavoidable in order to be able to construct
a sequence of approximate or smoothed solutions.

As we shall make precise below, our construction of the approximating sequence
of problems is based on smoothing the transport velocity by use of the horizontal
convolution by layers (see Definition [Z2]), and hence smoothing the Lagrangian
flow map and associated pull-back. Simultaneously, we introduce a new type of
parabolic-type artificial viscosity boundary operator on I' (of the same order in
space as the surface tension operator). Note that unlike the case of interface motion
in the fluid-structure interaction problem that we studied in [§], there is not a
unique choice of the artificial viscosity term; in particular, other choices of artificial
viscosity are possible for the asymptotic limit as the artificial viscosity is taken to
Z€ro.

We can now define our sequence of smoothed x-problems. For our artificial
viscosity parameter s € (0, %), let (v, ¢) be the solution of

t
(4.1a) n:Id—i—/ v in Qx (0,77,
0
(4.1 o+ J 1 a.Vg=0 in Q x (0,77,
(4. Tr(a, Vo) =0 in Q x (0,77,

Ag(n) - (M) e (ni) — KAV - e ()]s (M) = qni(ne) — on I' x (0,77,
(4.1e) (n,v) = (Id,up) on Qx{t = 0},

where ng(n.) = \Egi;i;%l and Ag = \/g_,fl@a[\/g_ogg"gﬁg}. Note that on I', /g, =

‘a£N| and that (gn)aﬁ = Nksa " NksB-

In order to obtain solutions to the sequence of approximate k-problems (@I),
we study a linear problem whose fixed point will provide the desired solutions. If
we denote by ¥ an arbitrary element of Cr and if 7, a,, and .J, are the associated
smoothed Lagrangian variables given by Definition 2.2 then we define w to be the
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solution of

(4.2a) oww + J ta, Vg=0 in Q x (0,77,
(4.2b) Tr(a, Vw) =0 in Q x (0,7],
(4.2¢)

-0 \g [Ag(ﬁ) ﬁn(ﬁn)] ﬁﬁ(ﬁﬁ) - HAO[U) : ﬁﬁ(ﬁn)] ﬁn(ﬁ,@) = qﬁﬁ(ﬁn) on I' x (O,T] s

(4.2d) (n,w) = (Id,up) on Qx{t =0},

Q

=

_ o __ 1
where Jos = .0 7,8 and Ag = /G Oaly/g095" Og]-

For a solution w to (@2, a fixed point of the map ¥ — w provides a solution of
our smoothed problem @I).

In the following sections, we assume that v € Cr is given and & is in (0, %).
Until Section [[0] wherein we study the asymptotic behavior of the problem (4.1])

as k — 0, the parameter & is fixed.

5. HODGE DECOMPOSITION ELLIPTIC ESTIMATES

Our estimates are based on the following standard elliptic estimate:

Proposition 5.1. For an H" domain 2, r > 3, ifv € L?(Q) with curlv € HS~1(Q),
divo € H*"1(Q), and v- N|p € H*=3(T) for 1 < s <r, then there exists a constant
C > 0 depending only on 2 such that

lells < € (ollo + | cwrlvlls—y + || divolls—y + o N,y ) ,
lells < € (llello + lleurl v,y + || divolloy + o~ Tal,y ) |
where T, o = 1,2, are the tangent vectors to T'.

The first estimate with V- N is standard (see, for example, [19]), while the second
with V - T, follows from the fact that T, - N = 0.

6. WEAK SOLUTIONS FOR THE PENALIZED PROBLEM AND THEIR REGULARITY

The aim of this section is to establish the existence of the solution w. to the
penalized version (of the divergence-free condition) of the linearized and smoothed
k-problem ([{2). In particular, we study the weak form of this problem with the
pressure function ¢, approximated by the penalized pressure

1
¢ =—-Tr(a,Vw) for0<e<<l1.
€

In this section, as well as in Sections 8 and @ we let

(6.1) N(uo,z,y) = P(|luoll13.5, 2, y)

denote a generic polynomial function of ||ugl|13.5, =, and y, where x and y will
typically denote norms of various quantities.
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6.1. Step 1. Galerkin sequence. By introducing a basis (¢;){2; of H'(Q) and
L?(Q) and taking the approximation at rank [ > 2 under the form wy(t,r) =
!

Z yi(t) er(x) , satisfying on [0, 7] the system of ordinary differential equations
k=1

(i) (jﬁ Wi, ¢)0 + H[wl : ﬁN(ﬁH)v o - ﬁm(ﬁn)]l - U[Ls?ﬁ : ﬁﬁ(ﬁn)v ox ﬁﬁ(ﬁn)]o
— ((dﬁ)fql, #',5 )0 =0, Vo € span(ey, ...,e;)
(i) wi(0) = (ug);, in Q

_ 1 o
where Ly = YLA;, ¢ = —Z(Ezn)fu)l’,j, and (ug); denotes the L?(2) projection of

g
V90
ug on span(ey, ..., e;), we see that the Cauchy-Lipschitz theorem gives us the local
well-posedness for w; on some [0, Tynqz]. The use of the test function w; in this
system of ODEs (which is allowed as it belongs to span(es, ..., e;)) gives us in turn

the energy law for any t € (0, Tinax),

1 -1 t ~ - ~ ~ t
17RO + 5 [ e nam) o nmoh +e [ lal?
0 0

f%/o ((J)ewr, wy)o = %H(uo)lH?)Jrg/o (Lt - Fine (), w1 - 7o (7 )]s

which, with the control of i provided by the definition of C'r gives the bound
1 t t
62l +0x [ e nmf +e [l < CN ).

6.2. Step 2. Weak solution w, of the penalized problem. We then infer from
(62) that w is defined on [0, T] and that there is a subsequence (still denoted with
the subscript ) satisfying

(6.3a) w; — we in L*(0,T;L3(Q)),

(6.3b) g — g in L*(0,T; L*(2)),

where

(6.4) G =~ (@

We can also rewrite (63) as

(6.5a) w; — we in L*(0,T; L*(Q)),

(6.5b) div(wy 0 77 1) () = div(we 0 7)) in L*(0, T3 L*(2)) ,
which with the bound (6.2]) and the definition of the normal 71,, provides
(6.6) Wy - A () = We - (M) in L2(0,T; HY(T)).

It follows from standard arguments and the ODE defining w; that w., €
L2(0,T; H?(Q)'), we € CO([0,T); H?(Q)") with w.(0) = ug, and that for ¢
L2(0,T; H(Q)),

T T
| Gevenddy 5 [ 00 130,006 nu )y

T o T
(6.7) —/0 <qe,(an)£¢z,j>%=o/o [Lg7 - 11 (M), &+ Me ()]0 -
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Since by definition a, = CofV1j,, this implies that in €,

(68) Wey + vPe('F]r;) = 0,

where p. o 7], = qc in Q. Since Vp.(7,) € L*(0,T; H=1()), this equality is true in
L2(0,T; H-1(Q)) as well.

6.3. Step 3. w, is bounded in L?(0,7; H'(Q)) independently of ¢. Denoting
ue = w, o 7,1, by integrating (6.8) in time from 0 to ¢, we obtain the important

formula

(6.9)  curluc(fin) = curlug + /0 Bl u) () in 20, H-1(Q)

with

Bty tie) == (U2 Uegyi —Ujg3 Uezyi 5 Upgy3 et yi —Uigs1 Uesi s Upgyl Uezyi —Tigy2 Ut i )-

Remark 6. Note well that our approximated and penalized k-problem preserves the
structure of the original Euler equations as can be seen by (6.8). As a result, (6.9)
contains only first-order derivatives of the velocity.

Our next task is to prove that w, is in L2(0,7; H*(Q)). For suppose that this
were the case; then, (69) together with bounds on the divergence of w, and w, - N
on I' provide bounds for w, in L?(0,T; H'(Q2)) (by the Hodge elliptic estimate (5.1))
which are independent of ¢ > 0.

We proceed by showing that appropriately convolved velocity fields are bounded
independently of the parameter of convolution in L2(0,7; H*(€)). This is the first
instance that our horizontal convolution by layers is crucially required.

6.3.1. For any subdomain w CC Q, w. € L*(0,T; H'(w)). We analyze the third
component of (G3]), the other components being treated similarly. This leads us to
the following equality in L2(0,7T; H=1(Q)):

jn_l[(dﬁ)éwevgl‘ —(dn){we?]
t
= — curlu + / T2 =0 @e)iwed (@n)! + 0 (@ejwe? (@)l
0

Our goal is to prove that w. € H'(2). To proceed, we let o, denote a standard
sequence of Friederich’s mollifier in R® with support B(0,1/p), and we establish
that o, * w, is bounded in H!(w) for any w CC Q. For this purpose, we choose
¥ € D(Q) and find that

(6.10)  J M (@)d(vwe),) — (@)1 (Ywe),f]

=— curlug + jgl(&,@)gw,j wet — j,;l(é,g)]ﬁb,j w€2
t . . .
+ / T2 0 @) (dwe) d (@) + 0 (@) (o). ? (@)
t
- / T2 0 (@)t we @) + 0, (@) we(an)!)
0

In order to proceed, we shall need to identify curl-type structures (in Lagrangian

variables) for o, * w,; this requires the following: for — < dist(suppy, Q2¢) and
p
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f € C(Q), we have the equality in H~()
L)) = fo x (W) = [ (@) (o= 0) () = F@)bu(w)dy
~ [ o=t ey,

showing that o, * [f(we),;] — f op * [(Ywe),; ] € L*(2), with

(6.11)

[[op* [f(¥we)j ] = f op* [(Ywe) ]l < Clllos llogs + o lore ]IV F 1l o () lwello-
We thus infer from (GI0) and (GTIT]) that the vorticity structure satisfies

j 1[(an)20P (que) (aﬂ)lo—p (wws)ag} / jlzz[ *@73‘ (aﬁ)égp * (wwe)all (dﬁ)é
0

(6.12) +0,5 (@x)]op * (Ywe),7 (@x)}] + R,

with [|R1||z2(0,7;22(0)) < N(uo), where N(up) is defined in (@.I]). Next, we infer
from ([GH) and (GIT)) that the divergence structure satisfies

(6.13) (a)]op * (Ywe) s = Ra,
with || Rallz2(0,7;22(0)) < N(ug). Since we also have 1w, = 0 on I', so that with

1)), we have a.e. in (0,7)
lop * (Ywe) @)1 < [|R1(B)llo + [|R2(H)]lo + N(uo)/0 llop * (Ywe)llr

and thus

T
(6.14) / lop * (w)l? < N(uo).

Since this inequality does not depend on p, this implies that yw. € L?(0,T; H*(Q)),
and therefore w, € L2(0,T; H(w)), with an estimate depending a priori on w CC
Q.

6.3.2. The horizontal convolved-by-layers velocity fields are in L*(0,T; H*(£2)). Fix
le{l,..,K}, and set

W(l) = weob and B, = [V(7 0 6)] "

Hence, in (0,1)? x (%, 1) for p > 1, the Lagrangian “divergence-free” constraint is
given by

(6.15) B (W (1),i = —(OL) e,y W) — aueqe(6r)

where the crucial observation is that the right-hand side of equation (GI3]) is in
L0, 75 L*([0, 1)%)).

Now for p” < dist(suppay, d(0,1) x (0,1)%) and f smooth in [0, 1]3, we have by
LemmaZlthat for 8 = 1,2, ppxn[f (W (1)),5]—f pm*n[(csW (1)),5] € L*((0,1)?),

1
with the estimate a.e. in (=, 1):
p

|pm *h [f(alW(l))v,B} - f pm*h[(alW(D)aﬂ”O’(O,l)2x{y}
< ColV Lo (o,2x {51 W Dlo,0,1)2x {y}-
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This leads to
||pm *h [f(Ole(l)),ﬁ] = f pm*n [(O‘lW(l))vﬁ}Ho,(oJ)s
(6.16) < G IV Il 0,05 W (D) llo, 0,13 -

Now, for the case of the vertical derivative, we will need to express W(l),3 in terms
of W(l),1, W(l),2, curls, o, W(I) and divg,_o., W(I), where

divz, 00, W (1) = (BL)IW (1)},

curly, o, W(I) = (b)5W (1),7 —(bL)sW (1).7
curl? oo, W(I) = (b)5W (1),; —(bL)1W (1).7
curly o, W(I) = (b)i W (1),7 —(bL)5W (1), -

Notice that the first three lines above can be written as the following vector field:

3
1007 (l)> = ZMfW(l)vlv

where the M} are smooth matrix fields depending on . From condition ([3.5),
since

(divy, o9, W(1),curll _, W(I),curl?

Mk 091

3
det MF = (0})3 Y _[(B)I° =

i=1
we see that M¥ is invertible on [0, T'] (regardless of the choice of & € Cr). Therefore,

N =

2
(6.17) W(1),3= div,op, W(I) V" + M* curly oo, W(I) + > AFW (D).,

where M* and the Af are smooth matrix fields depending on b, and V* is a vector
field depending on b'.. From (6.I0), we have that

3 t
curly o9, W (1) = curlug(6)) + / NEW (1)
. 0

where the N are smooth matrix fields depending on ... By using (6.17) and the
fact that divy_op, W(I) € L*(0,T; L*(2)) from (G.5), we obtain after time differen-
tiating that
2
[curls, o0, W ()]s — N5 M" curly, op, W (1) = > PEW(1),5, +N5 V" divg, op, W(1)

where Pj, 3 = 1,2, are smooth matrix fields depending on bl.. Therefore,

t
(6.18)  curly, o0 W(I) = A curlug(6)) + A /0 (BEW (1) 5, + divg, o5 W(D))

where A® and Bjj, # = 1,2, are smooth matrix fields depending on bl. With (6.16)
and ([6.I8), we infer in a similar way as for ([6.13)) that on (0,1)% x (1—1)7 1) we have

2 t
(6.19) curly, op, prm n [dW (1)) = A% / Bfpum *1 [aq 0 ,W (1)],5 +Rs,
170
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with [|R3||z20,7522((0,1)2)) < N(ug). Therefore, with (G.I7) and (G.I8), we have

that
(6.20)
2 t 2
oa (B W (1)] 3= M"A" / BElay(0)W ()]s + Y AS[on(00)W (1)), +Ra,
p=170 B=1

with ||Ral|22(0,7:12((0,1)2)) < N(uo). Thus, for any test function ¢ € H((0,1)3),

/‘ ()W (1) - ¢
(0,1)2x

:/’ mmmwmﬂm+/ a(B)W (D) - o3
(0.1)?x(1.0)

(0,1)2x(3,0)
Now, since for 8 = 1,2, we have
[ W Olae== [ ()W) e,
(0,1)2x(£,0) (0,1)2x(%,0)

using (6.20), we infer that

ar(0)W(l) - 80’ < C (WD llo,0,1)s + I Rallo,0,103) 1€ll1,00,1)3

| (0,1)2x &

implying (independently of p > 1) the following trace estimate for W (l) (not just
its normal component):

T
(6.21) /O i (0r) W(l)‘3%7(0,1)2><

Similarly as (619), we also have the divergence relation

1
P

2 t
(6:22)  divy.o0, pm xn W ()] = C5 3 / D5 ppm 1 o1 0 O, (1)],5+Rs,
p=1"0

where || Rs|z2(0,7;22((0,1)3)) < N(uo) and C* and Dj, B = 1,2, are smooth matrix
fields in terms of b... ;From (6.19) and (6.22)), we then infer, just as in (G.I14), that

T
| lons W 0le 00

T
< N(uo) +/ |om *1 [aW ()] 0 (7 0 6) 7" - e ;agz ,
O P

where Qf = 6;((0,1)? x (%, 1)). Thus,

T T
1o xn [ea ()W (DI 0.1y 2.1y < N (o) + |om *h [O‘l(el)w(l)]ﬁ’(OJ)Qxl'
0 7( ) ) (p7 ) 0 2 P
Now, from the properties of the convolution,
1
— |pm *n [ar (6)W (D)] |%,(0,1)2X% < Clpm *n [ (0)W (1)] ‘—%,(0,1)2><% )

which, with (621]), leads us (independently of p > 1) to

1

T
5 | o st [ @OW IR 11y < Vo)
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1

for any 0 < — < dist(suppay(6;),9(0,1)% x (0,1)). Since this estimate holds for
m

any p > 1, we then infer that

1

(6.23) —

T
/0 1m 59 [ @)W D2 015 < N(uo),

1
for any 0 < p” < dist(suppay (6;),9(0,1)2 x (0,1)). Therefore, p,, xp, [ar(0)W (1)] €

H'((0,1)3) (which was not a priori known since our convolution smooths only in
the horizontal directions), with a bound depending a priori on m.

6.3.3. Control of the horizontal convolved-by-layers velocity fields independently of

m. From ([@I9) and (€22]), we infer that

T
/0 om %1 [ W (D)] © (7 0 61) "

|2
1,7 ()

T
< N(u0)+/ |om 1 [ea (@)W (D] 0 (71 0 01) ™" - el 5 ()
0

and thus,

(6.24) / 1m0 [a O)W D2 0115

T
< NG+ [ o [ @OW O] 7 003 010y
Next, we have for any z € (0,1)? x {0}:

pm xn [ (0)W ()] - 1 (1 0 00) (@) = pum *n [aa ()W (1) - 1 (1 0 00)](2) + f(2),
with

@)= [ omlon — ym)as@)W (0,2

(7 (7 © 01) (21, 3) — T (7 © 1) (Y1, 3) | dy -
Therefore, with ([G:24)), we obtain
(6.25)

T
/0 1w 5 [a W (D]IZ, 0.1
T 2
< N(UO) + |f‘%,(0,1)2><{0} + /0 |Pm *h [al(al)W(l) : ’ﬁ‘ﬁ(ﬁi{ o 91)”%,(0,1)2><{0}
T
< N(uo) + [f11,0,1)2 x {0} +/o |w(0)W (1) - 7 (75 © 9l)|2%,(0,1)2x{0}

T
1.,(0,1)2x{0} +/0 loqwe - 7y ()|

< N(uo) + [f]1,0,1)2 x {0}

where we have used the trace control (G.6]) for the last inequality in (628). We now
turn our attention to |f|1 (g1)2xf0y- We first have that

< N(up) + |f

[N

T

c. _ c
(6:26)  [Iflloo,n2 = — N7 (Te) | 3 ()l om 1 (@)W Dlllo, 0,178 < —N(uo),
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where we have used the definition of Cr to bound |7 (7x)| 3 (). Next, we have
for 6 = 1,2 that

£ @) = [ oo o = ym)on @)W @) )
. [ﬁn(ﬁn o (91)($H,$3> - ﬁﬁ(ﬁﬁ o 9l>(yH7x3>]dyH

+ / pm(r — yu)(O)W (1) (yu, x3)dy - 1k (7s © 01),5 (),
]RZ
showing that

(6.27)
C 3 ,
155 0,012 < 7w (@)l (@) > Hpmos | *n 1 (6)IW (D) llo,0,1)2

i=1

3
+ 170 () [ r3(9) Y om %n ca(00) W (1))

0,(0,1)3
=1
3 .
< Cllnn (@) lzs@) D (03 im| 50 a6 W (1) llo,0.1ys
i=1
3 .
17 ()l 132 D 1om %5 ca(0)[W (1) [l0,0.1)2
=1
3 .
< C> (oo Yl *n cr(0)W (1) []l0, 0,12
=1
3 .
+C " lpm *n 01 (0) W (1) [[o,0,1)2
=1

< Cllaa(@)W (Do, (0,12 < N(uo)-

Next, for the vertical derivative,

fia(z) = /11@2 pm(xE — yu) [ ()W (D)3 (Y, 23) - [0 (7 © 9!)]2”’%))07%1

YH T3

* /]Rz pm(@r — yu) [ (0)W (D] (ya, ©3) - [ (M © 01,3 ](IH’M))dyH :

(ym,z3

where []Ezgg)) = [|(zm,x3) — [](ym, z3). Notice that for a smooth matrix field A
3

in (0,1)® and for 8= 1,2,

Gla) = [ st = yi) Al 20) s COW (D () - e o 001332

YH ,T3)
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satisfies
G(z) =

N m/]R (s )m (11 — yir) Alyn, 23)[0a (O)W (D) (yrr, w5) - [ (s © O] 22 dy
B /]Rz pm(xr —ym) A, (Yn, ©3) [ ()W (D)](ya, 23) - [k (7 © 91)]8?5;))@}1

= [ pen = ) Al fon QW O ) - e o 0051557

YH,T3)

showing, just as for (6.27), that |G| 0,12 < N(ug). Therefore, with ([6.20), we
see that the first integral term appearing in the expression of f,3 is bounded in a
similar way, implying that

(6.28) £, llo,0,1)8 < N(uo).
Consequently, with (620]), (627), (628), we obtain that
(6.29) I1f111,c0,18 < N(uo)-

Therefore, ([6.25) implies that

T
(6.30) / 1m 55 [ @)W D2 015 < N(uto)-

6.3.4. Control of w. in L*(0,T;H (). Since (630) holds independently of m
sufficiently large, this implies that

T
/0 lan (@)W (D)2 0,15 < N (o).

Since we proved in subsection [£.3.1] that w, is bounded in L?(0, T; H'(w)) indepen-
dently of € for each domain w CC €, this provides us with the estimate

T
(6.31) / |2 < N(uo),

independently of € > 0.

Remark 7. In the two-dimensional case, a simpler proof of Step 3 is possible,
founded upon a scalar potential function for the velocity field. For conciseness, we
consider a simply connected domain, the nonsimply connected case being treated
similarly by local charts. Once again, we let uc = w, o7, 1. From (6.50) and (6.6),
let we € L%(0,T; H'(2)) such that
div(w (7, 1)) () = div(we (7, 1) () in L*(0,T; L*(%2)),
WE - Ty (M) = we - (M) in L2(0,T; HY(T)) .
We infer the existence of ¢ € L?(0,T; H}(7.(Q))) such that u. = we(7;1) +
(—¢%2,1%%1). Now, from (6.I0), we see that in L2(0,T; H-1(Q)), we have for
e = oy,
t
(6.32) @@ = Fi - [ A,
where f¢ is bounded in L2(0,T;L?(f2)). It is readily seen that ¢¢ is the unique

solution of this equation in L?(0,T’; Hg(£2)). We now establish that this uniqueness
provides extra regularity for 1)¢. By defining the mapping © from L2(0,T; H?(Q)N

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



WELL-POSEDNESS OF THE FREE-SURFACE EULER EQUATIONS 849

HL(9Q)) into itself by associating to any £ in this space the solution ©¢ (for almost
all t € [0,T) of
t
(@) (@0 )= 1o = [ A5
we see that for ¢; small enough (depending on Sobolev constants and on
|| Loe (0,713 (2))) © is contractive from L*(0,t1; H*(Q2) N Hg(Q)) into itself, which
provides a fixed point for © in this space. It is thus a solution of (6.32) on [0,#;].
By uniqueness of such a solution, we have that ¥¢ € L?(0,¢;; H?(Q2)) and thus that
we € L2(0,t1; HY(2)). By defining a mapping similar to ©, but this time starting
t

from ty € [El,tﬂ such that w.(t2) € H'(Q) instead of uy (which ensures that the
new f, is still in L%(0, t2; L2(£2))), we obtain the same conclusion on [ta, ta+;], lead-

ing us to w. € L?(0, gtl; H'(Q)). By induction, we then find w. € L?(0,T; H'(f)).

Remark 8. Whereas Hodge decompositions with vector potentials ¢ are possible in
higher dimension, it turns out that a Dirichlet condition ¥ = 0 for the associated
elliptic problem is not possible. This in turn is problematic for any uniqueness
argument in L2(0,T; H*(£2)) for ¢, since it does not seem possible to find a bound-
ary condition that would be naturally associated to the second-order operators
appearing on both sides of the three-dimensional analogous of ([6.32]).

7. PRESSURE AS A LAGRANGE MULTIPLIER

We will need two Lagrange multiplier lemmas for our pressure function in our
analysis as the penalization parameter ¢ — 0. We begin with a lemma that is
necessary for a new Hodge-type decomposition of the velocity field.

Lemma 7.1. For all |l € H%(Q), t € [0,T], there exists a constant C > 0 and
o(l) € H?(Q) such that (@) (t)¢',; =1 in Q and

(7.1) le(I5 < CllU.
Proof. Let ¢(1) be the solution of

(7.22) (@) (@) 60k )y = L in O,
(7.2b) Pp()=0onT.

We then see that ¢*(l) = (a,)(l),; satisfies the statement of the lemma. The

i
inequality (7.IJ) is a simple consequence of the properties of [ and of the condition
v € Crp. O

We can now follow [18]. For p € H2 (), define the linear functional on H 2 (£2)
by (p, (ax)! (t)¢",; )1, where ¢ € H3(Q). By the Riesz representation theorem,
there is a bounded linear operator Q(t) : (H= ()’ — H?2(£) such that

3 _ j i
Vo e H2(Q), (p, (an)] ()¢ )1 = (Q()p, ¥)z.
Letting ¢ = Q(t)p shows that

(73) IQ()pl < Cliell, 3.,

for some constant C' > 0. Using Lemma [.T] we see that

vie HA(Q), (o, 1)) = QM. 6(0);,

1
2
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and thus

(7.4) 191,13 g < IR,

which shows that R(Q(t)) is closed in H32 (). Let
Vo(t) = {v € L*(Q) | (@x)] ()v'; (¢) = 0}.

Since V;(t) N H2(Q) = R(Q(t))*, it follows that

(7.5) HE () = RQ1) @ 3 g Vo(t) N HE(9).

We can now introduce our first Lagrange multiplier.

Lemma 7.2. Let £(t) € H2 () be such that £(t)p = 0 for any ¢ € V5(t)NH?2 ().
Then there exists a unique q(t) € Hz (), which is termed the pressure function,
satisfying

Vo€ H2(Q), £(t)(¢) = (q(t), (@n)i¢’;) ;.
Moreover, there is a C' > 0 (which does not depend on t € [0,T] and on the choice
of v € Cr) such that

1913 0 < € NEON 3

Proof. By the decomposition ([Z3)), for ¢ € H%(Q,R3), we let ¢ = v1 + vg, where
vy € Vi(t) N H3(Q) and vy € R(Q(t)). From our assumption, it follows that

2(0)(0) = £(0)(2) = (W0, 02) 43 ) = B(0:9) 13

for a unique ¥ (t) € R(Q(1)).
From the definition of Q(t) we then get the existence of a unique ¢(t) € Hz(Q)’
such that

3 _ i q
Vo€ H> (Q)a E(t)(sﬁ) = <Q(t)v (%)390 )j >%
The estimate stated in the lemma is then a simple consequence of (4. O

We also need the case where the pressure function is in Hz (€2). We start, as
above, with a simple elliptic result:

Lemma 7.3. For alll € H%(Q)’, t € [0,T], there exists a constant C > 0 and
o(l) € H2(Q) such that (a.)! (t)¢',; =1 in Q and

2 2
(7.6) I6MIF < CIE y

Proof. Let () be the solution of (T2)). Since # is linear and continuous from
H'(Q) into H'(Q2) and from L2?(Q) into H?(Q), by interpolation, we have that
¢ is linear and continuous from H2 () into H?(Q). We then see that ¢'(l) =

(ax)lw(l),; satisfies the statement of the lemma. O
For p € Hz(Q), we define the linear functional on X () by ((a,)(t)¢’,; D)1

where ¢ € X(t) = {¢ € Hz(Q)| (@), € H2(Q)'}. By the Riesz representation

theorem, there is a bounded linear operator Q(t) : H(Q) — X (t) such that

Vo € X(1), (@i (t)e',p) 3 = (QM)p, ©)x):
Letting ¢ = Q(¢)p shows that

(7.7) 1Q)pllx) < CHPHH%(Q)

1
2
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for some constant C' > 0. Using Lemma [.3] we see that

vie H(Q), (I, p)y = Q) 6(1))x (),
and thus

(7.8) 19,13,y < CIRWPIx.

which shows that R(Q(t)) is closed in X(t). Since Vy(t) N X (t) = R(Q(t))*, it
follows that
(7.9) X(t) = R(Q(t)) ®x(p) Vo(t) N X (2).

Our second Lagrange multiplier lemma can now be stated.

Lemma 7.4. Let £(t) € X(t)’ be such that £(t)p =0 for any ¢ € Vy(t) N Hz(Q).
Then there exists a unique q(t) € H%(Q), which is termed the pressure function,
satisfying _

Vo € X(t), L£(t)(v) = ((@n)i¢",;,a(t) s
Moreover, there is a C > 0 (which does not depend on t € [0,T] and on the choice
of v € Cr) such that

la(t)l,p3 ) < € 10 xcey-

Proof. By the decomposition (T9), for ¢ € X (t), we let ¢ = vy + v, where v; €
Vi(t) N H2 () and vy € R(Q(t)). From our assumption, it follows that

£(t)(p) = L£(t)(v2) = (¥(t),v2) x (1) = (Y (1), @) x (1)

for a unique ¥(t) € R(Q(t)).
From the definition of Q(t) we then get the existence of a unique ¢(t) € Hz ()
such that .
Vo e X(t), L(t)(p) = ((an)i®", a(t))y-

The estimate stated in the lemma is then a simple consequence of (T.8]). O

8. EXISTENCE OF A SOLUTION TO THE LINEARIZED SMOOTHED k-PROBLEM ([.2])

In this section, we prove the existence of a solution w to the linear problem (£.2)),
constructed as the limit € — 0.

The analysis requires establishing the regularity of the weak solution. Note that
the extra regularity on ug is needed in order to ensure the regularity property for
w, ¢, and their time derivatives as stated in the next theorem, without having to
consider the variational limits of the time-differentiated penalized problems.

Theorem 8.1. Suppose that ug € H'35(Q) and Q is of class C>°. Then, there
exists a unique weak solution w to the linear problem ([@2), which is moreover in
L?(0,T; H'3-5(Q)). Furthermore,

dlw € L*(0,T; H¥573(Q)) N L>(0,T; H*57%(Q)), i=1,2,3,4,
dlqg e L2(0,T; H>73(Q)) N L>=(0, T; H573(Q)), i=0,1,2,3.

Proof. Step 1. The limit as ¢ — 0.

Let € = L; we first pass to the weak limit as m — oo. The inequality (62)

provides the following bound, independent of e:

T
Loy o o
| 0@ 1+ o)+ el e < N
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which provides a subsequence {w__} such that
my

(8.1a) wai —w in L*(0,T;L*Q)),
my

(8.1b) (%)fw% g (@)jw'y in L2(0,T;LA(9Q)

(8.1¢) w1 () = w-ng(fs) in L2(0,T; HY(T)) .

my

The justification for w - 7, (7)) being the third weak limit in (8] comes from the
identity (ax)lw.’,; = div(we o7, ')(7],) and the fact that 7, is the normal to 7, ().
Moreover, since ([.2) also shows that [|(ax)?w’ ,; ||£2(0,m;22(0)) — 0 as m — oo,

we then have H(&H)gwi,j llL20,1502(0)) = 0, i.e.,

(8.2) (ax)]w',; =0 in L2(0,T; L*(Q)).
Now, let us denote u = w o 7, !, so that thanks to (82) and ([6.9) we have
(8.3a) divu =0 in 7,(92) ,
¢
(8.3b) curl u(7,;) = curlug —l—/ B(Vii,, Vu) in H1(Q).
0

By proceeding as in Step 3 of Section [@ the trace regularity (u - 7i,;)(7,) €
L?(0,T; HY(T)) and the system (83) then yield

[[w] N (uo),

L2(0,T;H 3 () <
where N(ug) is defined in (G1)).

Step 2. The equation for w and the pressure.

Now, for any y € L2(0,T; H?(Q)) and | = (ax)ly’,;, we see that for a solution
© almost everywhere on (0,7 of the elliptic problem

(aﬁ)g [jle(an)f@ak]aj =lin €,
p=0o0nT,

if we let ! = J-1(a.)¥p,x and set v = y — e, we have that e and v are both in

L2(0,T; H?(Q)), with
T T
/ [llells + llvll] SC/ Iyll3
0 0

(aﬁ)g”i j =0

Since (a,)lw',; = 0 in L*(0,T; L*(Q)), we infer that (a,)lwi,;= —[(ax)!]sw’,; €
L2(0,T; H=(Q)) and that

<jn wtae)% = ([(dﬁ)g]twiaj a‘F’)O'

But v also satisfies the variational equation

/OT““ Wery 0)g + ﬁ/OT[we e (7), 0 M ()1

T
. / L7 A (), v e ()]
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leading to
T

T T
eli_r% A (Jx wetay>% :/0 ([(dn)g]th7j7¢)0+JA [Lﬁﬁ'ﬁn(ﬁn)vv'ﬁn(ﬁn)b

T
—/1/ [ - T (1), 0 - e (7)1
0

We then see that as ¢ — 0,

(8.4) / lwedl? s < Nup).

H2(Q) —

By standard arguments, we infer that we, — w; in L2(0,T; H? (©)"). This ensures
that w € C°([0,T]; L?(Q2)), and the condition w.(0) = ug provides w(0) = ug.
Furthermore, we also have for any ¢ € L2(0,T; H2(f2)) such that (d,{)gﬂ,j =01in
(0, T) x € the variational equation

T T o T . o
/0“” wt,¢>g+n/0 [w-nﬁ(n,g),gb-nﬁ(m)h—a/o Ly 7 (i) & 7o ()] -

Next, since w; € L*(0, T H3 (Q)), the Lagrange multiplier Lemma [Z.2] shows that
there exists ¢ € L2(0,T; Hz (Q)') such that for any ¢ € L2(0,T; H2 (2)),

/OT““ i “/OT“” (1), 6 ()]s

T o T
(8.5) - / (@ (@)id )1 =0 / Lo (), 6 - ()]0 -

Now, if we have another solution @ € L2(0,T; H?(2)) such that @w(0) = uo and
Wy € LQ(O,T;H%(Q)’)7 we then see, by using w — @ as a test function in the
difference between (B and its counterpart with @, that we get w—w@ = 0, ensuring
uniqueness to the weak solution of ([2)).

Step 3. Regularity of w. We can now study the regularity of w via difference
quotient techniques. We will denote R = {z € R®| 23 > 0}, So = B(0,1) N {z €
R3| 23 = 0} and B4 (0,7) = B(0,7) NR3. . We denote by § a C* diffeomorphism
from B(0,1) into a neighborhood V of a point zo € I such that 6(B(0,1) NR3) =

1
V N Q, with det VA = 1. We consider the smooth cut-off function t(x) = e!*1*~2
if x € B(0, %) and ¥(z) = 0 elsewhere, and with the use of the test function
[D_p[Dp(wo 0)]] o0~ € L2(0,T; H2(R)) in &), with h = |hleq(a = 1,2), we
obtain

Nl

I+ Kkl + I3 = 0/0 (L 7 (71), [D - [0 Dy (w 0 8)]] 0 67 - 71, (7)]o

with

[

9

|

T
I :/O (J we, [D_p[pDp(wo B)]] 0 67 1):
L— / (0w - 7 (7)), AP w0 Dn (w 0 0)]] 0 0~ - 7 (7)o,

T . .
I3 = — /0 (4, (@)} [D-n[Dp(wo )51 0071 1.
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For I, we simply have
(8.6)

I =|\V¢wo a(t)\|%2(3+(0,1)) — V4 ug o 9||2L2(B+(0,1))
T
+ [ ADAI0)) w00, 6D (w o 0)
0

ol

T
>/ wo 8|22, (0,17 — N(uo) —/O lwell 3 ), 1Pn 1T (@)D (w 0 )] 5

>[1v/% w0 08|25, 0.17) — CsN (o) f6/ IV Di(wo )3

where we have used ([84) for the last inequality and where the choice of § > 0 will
be made precise later.
For I, we have, if we define in B4 (0,1), W = wo 6 and N* = 7,,(7,:)(6),

I = / /S S 1y N®) o [D_n [ DAW] - N,

O

/ /SO C“BD W - N%].o [DyW - N*], 5

" / [ i "f[W-Nﬂ,a}%[DhW~N“J,a1thW~N%

(8.7) / /S (S - N+ R GDAI - DN

where Go3 = 0, 0,3 and ap = det G.

In this section, we will denote by || - ||s,0 and | - |s,pe the standard norms of
H?(©) and H*(00).

For the first term appearing in the right-hand side of the second inequality, we

have
9oap K K Goaps K K
=L [DyW - N®|,, [ DyW - N¥| 3 = =—Z=o[Dy W - N¥|,, [DpW - N7|,
\/%[h lia [¥Dp .8 \/%T/J[h Jsa [Dn ls
9oas K K,(/}7B
+ Y[DpW - N*|,o Dh\W - N ,
\/%\/_[ " bo D Vo
. %7 .
and thus, since v, v/2p and ﬁ are chosen smooth, we infer that
9oap r
[ 2 imw N opw Nz 0 [ DN,
0 0

The other terms in ([B7) are easily estimated leading to the estimate

T
(8.8) L>C / INBDRW - N*|2.g. — N(up).
0

Concerning I3, we have

T .
I3 = _A (g, (bn)g[D—h[th(W)]z’j 0071]>%’
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with b, = [V(7, 0 8)]~". Now since (b, )/ W?,; =0, we obtain
(be)ID_p DyW',j == D_ D (be)IW*,; =Dy [(bs)I](- = B)D_pW*
— D_p[(be)] (- + W) DR,
and thus
r i th}
[Is| < C ; gl 73 (L IO DRW 5114 B, 01) + || VEDRW i |11 By o)
+ ||\/1ZDhW||g,B+(0,1)]

T
(8.9 < CoN(w) +5 [ VDWW g oo
0
where § > 0 is arbitrary. Now, let © be a smooth domain included in B4 (0,1) and
containing B (0, ). The inequalities (86), (BJ) and (8J) yield
T T
(8.10) / EDAW - Ny < C N(uo) + 5/ IVEDWIE 6
0 0

We now define in B4 (0,1)

divi, o9 W = div(W 0 0! o5 1) (7 0 0) = div(u) (7, 0 0),

curly, oo W = curl(u)(7, 0 6).
Thus, (B3] translates in B4 (0,1) to

diVﬁK’og W = 0

[curl; o9 W](t) = [curl ug] 0 0 + /0 B(Vi,,, Vu)(7, 0 6)

t
= [curlug] 0 @ —|—/ B(Vii, VW (7l 0 0) "1V (7. 0 0) 1) (7, 0 6),
0

and thus
(8.11a)

v co(VEDUIV) = =D Wy (-4 1) + 552 (D,
(8.11b)
ety eo (VEDIVI(E) = ROW) + / B(Vie(: 0 0), VVEDAWI[V (7 0 0)] ),
with

| IROVI o < N o).

With the trace estimate (8I0) and the control of W in L2(0,T; H2(©)), we can
then infer as we did in Step 3 of Section [0l that

T T
| IVEDIWI o < € V() +Cu8 [ IVIDAWIR 6.
0 0

and thus with a choice of § small enough,

T
[ VDI o < 6 N(uo),
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yielding
T
/ |\/JDhW‘%a@ < C,i N(uo).
0

Since this estimate is independent of h, we get the trace estimate

T
/0 WVaWE o < Cu N(uo),

and thus with this trace estimate and the div and curl system (8I]), still with
arguments similar to those in Step 2 of Section [6],

T
/0 VW3 o < Ci N(ug).

By patching together all the estimates obtained on each chart defining €2, we thus
deduce that

T
(8.12) / lwl2 < Cr N(ug).
0 2

Now, for the pressure, we see that for any y € X2 (t) = {¢ € Hz (Q)| (ax)¥(t)¢' r €
H? (©)'}, for ¢ a solution of the elliptic problem

(@) (@) E ']y = (@) (6’ in (H2)'(),
p=0onT,

we have by interpolation that ¢ € H?(Q). If we once again let e = (a,)¥p,; and
set v := 1y — e, we have that e € H2(Q), v € V(t) = {¢ € H2(Q)| (ax)*(t)¢',r = 0},
with [lefls + [lv]ly < C’Hy||X%(t). Now, by proceeding in the same fashion as in

Step 2 above, we see that thanks to our decomposition and the regularity (812,
wy € L2(0,T; X2 (t)') with

T
2
/0 ||U)t||X%(t)/ < N(ug).
By the Lagrange multiplier Lemma [7.4], we then infer
T
(5.13) | alf < N,

Next, by using D_p, Dy[tpD_j, Dpw] as a test function in ([8X]), we infer, similarly to
how we obtained ([812), that the estimates (8I2]) and [BI3) imply that

T
(5.1) |l < Nwo).

We now explain the additional estimates employed for this higher-order differencing.
We need the fact that independently of any horizontal vector h, there exists a
constant C' > 0 such that for Suppy + h C ©, we have that

Vf € H3(0), |V¢Duflyo <C |Ifls .0,
(8.15) Vi€ H (), INVUDufl ;3 o) <C If]130-
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The first inequality easily follows by interpolation. For the second one, if f € L?(0),
we notice that for any ¢ € H'(0), since the difference quotients are in a horizontal
direction,

[ Vius o= [ Vatpas+ [ Doaisel -
<Clfloeléle,
which shows that there exists C' > 0 such that
Vf e L*(O), |[V¢Duflm@©y <C |floe-
By interpolating with the obvious inequality (for some C' > 0)
vf e H'(O), IV ¢Drflloo < C | flre
we then get (BIH).

Now, the pressure solves the elliptic equation
(8.16a) Ap = — ()", v’ in 7,(Q),
(8.16b) p=—[0Ag7 - 1 (7) (i) + £AG (W - 7 (7)) 7 (7)) (7 )

Using the same change of variables that provides the pressure estimate (I84]) and
using the elliptic estimates for coefficients with Sobolev class regularity as in [9],
we find that

t t
[ al} < Mo suptands, [ ).
0 [0,t] 0 2
where the right-hand side is defined in (6I). Therefore with (814,

t
/ lall3 < N (uo,sup [l@x ).
0 2 [0,¢]

Higher-order regularity results follow successively by appropriate higher-order
difference quotients, leading to, for n > 1,

t t
(8.17) [ wlzy + [ al? s < ONCuo,sup o)
0 2 0 2 [0,¢]
Now, since w; = f(d”)gq,j in Q, we then infer that for n > 2,
t
(.18) / luwel2_y < N(uo,sup [t |sa),
0 ,t

and thus in [0, ],

lw(t)[l1s.5 < |luoll1s.5 + Vi N(Uo,?uﬁ W |17)-
0,t

By Lemma [B1] (for the smoothing operation given in Definition on Cr), we
have that

(8.19) [w(t)[13.5 < [luollz.5 + vVt No(uo, CY),

where we use C? to denote a fixed (nongeneric) constant which depends on .

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



858 D. COUTAND AND S. SHKOLLER
9. EXISTENCE OF A FIXED-POINT SOLUTION OF THE SMOOTHED K-PROBLEM
WITH SURFACE TENSION

Let A: (w € By) — w, with w a solution of (£2). By the relation (819), we see
that if we take T, € (0,7") such that

V THNO(UO,CS) S 1;
then
(9.1) A(CTN) C CTK.

We now prove that A is weakly lower semi-continuous in C'r_. To this end, let
(w™)22, be a weakly convergent sequence (in L?(0,T,; H'3-5(Q2))) toward a weak
limit w. Necessarily, w € Cr,.

By the usual compactness theorems, we have the successive strong convergent
sequences

7" — 7 in L*(0,Ty; H?5(Q)),

the following bounds:

T
/ w205 < CN (uo),
0

sup [[wnll13.5 < 2uoll13.5 + 1.

)

We thus have the existence of a weakly convergent subsequence (w?(™) in the space
L2(0,T,; H3*(Q)), to a limit [ € Cr,. By compactness, from our bound on w?,

w™ — 1 in L*(0,T,; H*®(Q)).

From the strong convergence of (77"*)", we then infer from the relations (a}!),; w","
=0 in Q that
(9.2) (@x),51,5="0 in Q.

Moreover, we see that
p7™ = pin L2(0, T H'5(2)),
with p the solution of
Ap = —(t,)"; U, in 7 (Q),
p=—[08g7 7 (7le) + K80 (w - 7 (7)) (7).

From the relations (83]) for each n, we see from the previous weak and strong
convergence that

| oy v [ 1m0 numh
0 0
T o T
(9.3) - [ @@ty = o [ g ). o et
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which together with ([@2]) and the fact that I € Cr, implies that [ = A(w). By
uniqueness of the limit, we then infer that

w™ — w in L(0,T,; H3*(Q)).

By the Tychonoff fixed-point theorem, we then conclude the existence of a
fixed point w = w in the closed convex set C'r, of the separable Banach space
L?(0,T,; H'3-5(€2)). This fixed point satisfies the smoothed system (1), if we de-

note n = Id + / wand u = won* L. Tt is also readily seen that w, ¢ and their

0
time derivatives have the regularity stated in Theorem [B] O

10. ESTIMATES FOR THE DIVERGENCE AND CURL

Definition 10.1 (Energy function for the smoothed x-problem). We set

3 3 t
E2P(t) =Y 110fn@)13 5 + llvee 05 + IVEn(®) 125 + Z/O 10F v ()13 5
k=0

k=0

and

4 4 t
EP () =Y 100135k + lvsee )15 + [1Vrn () 155 + Z/O 10Fv ()35 -
k=0

k=0

We use F,(t) to denote the energy function when the dimension is clear.

We use these energy functions to construct solutions for the Euler equations.
The increase in the derivative count from the 2D case to the 3D case is necessitated
by the Sobolev embedding theorem. We will show that solutions of the sk-problem
(41) have bounded energy E.(t) for t € [0,T] when T is taken sufficiently small
and that the bound is, in fact, independent of x; as such, we will prove that the
limit as k — 0 of the sequence of solutions to the k-problem converges to a solution
of the Euler equations.

Our estimates begin with the following

Lemma 10.1 (Divergence and curl estimates). Let n := dim(Q) = 2 or 3. Let
L, = curl and Ly = div, and let ng := n(0) and

My := P(|Juol2.54n, T la+n, vVEl|woll1.5430, VEIT[143n)

denote a polynomial function of its arguments. Then for j = 1,2,

n+1 T
sup IVELEE 500+ D ( sup [|L;0Fn(t) |13 5 nr +/ Iﬁbjafv|§.5+nk>
telo, k=0 0

te[0,T]
< My+CTP( sup E.(t)).
te[0,T]
Proof. In Eulerian variables, equation ([IH) is written as u + u’,; (u.)! + p,i = 0,
where the transport velocity is the horizontally smoothed vector u,. Taking the
curl of this equation and using the formula (curlu)? = qjkuk,j with €;5, denoting
the permutation symbol, we see that gijk[atuk,j —|—uk,jl ufﬂ +uF ufﬁ,j] = 0. Thus,
defining the bilinear form B*(Vu, Vu,) = €;;,u”,; (u,)',;, we can write the vorticity
equation as 2 curlu = B(Vu, Vu,). (When the transport velocity is divergence-
free, then B is the familiar vortex-stretching term.) Composing this equation with
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Nx, switching to Lagrangian variables via the chain rule, and integrating this from

0 to t, we have
(10.1)

t
Eijk:'Uk’T Aﬁg = curlug + / B, (1)dr, BZH = Eiij,:2’le7T aﬁf(vﬁ)l’m aﬁgn,
0
where A, = J_'a,. This is the time-integrated Lagrangian form of the vortic-
ity equation. We will need to space-differentiate this equation once more for the
estimate on curln. Hence,
t
(10.2) sijvak,T A = Vcurl ub + aikjvk,,« VA + / VB, (T)dr.
0
We begin with the estimates for the case that n = 2; we set E,(t) = E2P(¢)

and proceed with the estimate for curly. Using that Vo* ., A= 0 (V¥ .. Agj) —
vk, 8tAH§, we see that

¢

aijkat(vnk’r Aﬁg) =V curl ué +5ijkvnk,r atAﬁg +€ikjyk7r VAN; —I—/ VB,, (T)dr.
0

Integrating once again in time from 0 to ¢ yields

t t ot
ek V", Al =tV curluf + ek / (V. AL + o*, VAL + / / VB,,,
0 0 Jo

where

VB, = ¢€ijk [J,;Q(Vvk,r Vel A0 Vel )] Q"
(10.3) +J,:2vk,r Vilom (Vada,%” + aﬁfVaN;-’L) +(VJ?) oF vt aﬁfaﬁyb}
and

_ 71
van;‘n - JH (anf«an;ﬁ - GNTGN;)VﬁKT,S )
_ 71
(10.4) 8ta,{;-” =J, (a,{ia,{}" — a,@:,”a,.@j)vﬁr,s ,
VJ, = angvnnrvs .

Since |Jvklls < CJ|v||s (and similarly for 7,), we will write (I03) and ({04 in
the following way:

VB, ~ J;2a2VuV2u + J3ad (Vv)?* Vi,
Va, ~ J 'a2V?n,
Ora, ~ J a2V,
VJ. ~a.V?n,

where note that we are not distinguishing between 7, and 7 or between v, and v in
the highest-order terms. The point is that the precise structure of these equations
is not important for our estimates; we need only to be careful with the derivative
count appearing in these expressions. The power on each expression is merely to
indicate the number of times such a term appears.

Next, with the fundamental theorem of calculus,

t
R TAYL L Ay = Veurln' + Eijkvnkar/ O A,
0
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so that
(10.5)

¢ ¢
V(curln’ — tcurlu) = Eijk {Vnk,,«/ Opay; + / (Vi Oray’; + ok, Va,j)
0 0

t et
+/ / VB,, .
0 Jo

F:=P(J ' a., Vv) and Fy := P(F,V?n,V?v)

denote polynomial functions of their arguments. We then express (I0LH]) as

Let

t t t pt’
Vcurl p’ ~ tV curl uf) +V277/ F+/ FV2n+/ / F (V?n+ V%),
0 0 o Jo
and taking two more spatial derivatives yields

t t t
V3curlni~tv3cur1u6+v4n/ F+V37)/ F1+V277/ F
0 0 0
t et t
+<// +/) [F1 (V3 + VP0) + F Vy]
o Jo 0
t ot
+// [Fy Vv + F VYl .
o Jo

Since fot fg/ FViy =— f(f fot/ F, Vi + f(f FViy,
(10.6)

t t
V3 curln’ ~ tV?3 curl uf) + V477/ F+(VPn+V?n) / F
0 0

+</Ot/0t,+/0t> [F1 (VP + VP0) + (F + ) Vi // V.

We use interpolation to compute ||V3curlnl|lgs = || curln||s.5. We begin with the

highest-order term:

t t t
’/(F+Ft)v477 /n /77
0 0 0

t t
] [l + s 19+ Flus)| [ 9

o s telo,1 0

t
<C s [F+Filus | [
te[0,T) o s
Since ||F + Fill1.5 < C||F||z> ||ve]l2.5, by the interpolation Theorem 7.17 in [I],
<C sup [|F| [|lvell25

t
| X
0.5 t€[0,T] 0 4.5

<CT sup ||F[| [[vell25 [1nlla5-
t€[0,T7]

< sup [|[F+ Fi

<C sup [|[F+F, 5
0 t€[o0,T]

4 t€[0,T]

3

4

t
/ (F + F,) Vp
0

< sup ||F + Fi||p~
1 t€[0,T)

L4

t
0
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862 D. COUTAND AND S. SHKOLLER

The other terms have similar estimates in the H%?(2)-norm, so that
(10.7)  sup |lcurlplfs < Tluollis +¢ Sup II/ s +T sup [vell2.5 [17]l3.5 -
te[0,T] €[0,¢] €0,7)
By differentiating (I0.6]) once more in space, the same interpolation estimates

show that

T
sup vk curly||f 5 <T||quH55+T/ o35 +T sup |lvello.s][v/nll3 5 -
t€[0,T] te[0,T]

Next, we rewrite (I0.1]) as

t t
(10.8) curlv = curlug + aijkvk,,«/ OpAg; + / B,, .
0 0

Using the fact that H®(Q) is a multiplicative algebra for s > 1, it follows from

(I0.3) and ([I0.4) that sup;ejo 7y || curlv(t)2.5 < ||uollas + CT P(supseio 7y Ex(t))-
Differentiating the above expression for curl v yields

curlvt - Ezgkv ’ ataﬁj + BaN + Ezgkatv 77‘/ 8t nj ’

so with the fundamental theorem of calculus and our generic polynomial function
F

t t
(109) Curlvt ~ P(VUO) + V'Ut/ F +/ Ft, Ft ~ FV’ut .
0 0

Again using the properties of the multiplicative algebra, we see that

sup chrlvt(t)H%ﬁ < P(J|luollas) + CT P( sup E,(t)).
te[0,T] t€[0,T

From the time differentiation of (09I,

t
curl Vit ~ V’UtF + V’Utt/ F
0

¢ ¢
(1010) ~ VUt(O)P(VUO) + Vvtt/ F +/ [FVUtt + FVvtht] .
0 0
We must estimate the H%(Q)-norm of the three terms on the right- hand side of
(I0I0)) by using interpolation. Let L denote the linear form given by L(w fo Fw.
Then

t
L)l < Coll [ wllo:  Co=sup [P~
0 [0,]
Letting Fy := P(J!, a., Vv, V21, V2v), it is easy to check that
t
L)l <Gl [ wlh, C=sup A~
0 (0,t]

By the interpolation Theorem 7.17 in [,

¢ ¢
||/ FVullos < Cov/Ch ||/ vt ll1s
0 0
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so that by Jensen’s inequality and Sobolev embedding,
t
\|/ FVoull3s < CT P( sup E,(t)).
0 te[0,T]

All of the other time-dependent terms in ([0.I0) have the same bound by the
same interpolation procedure. For the time ¢t = 0 term, interpolation provides the
estimate

1P (Vo) Ve (0)]lo.s < CP([[uollas)llve(0)[1.5 < CP([luollas)[q(0)]|2.5 < Mo.
The initial pressure ¢(0) solves the Dirichlet problem
Aq(O) = io = (UQ)i7j (Uo),@)jﬂ‘ iIl Q,
Y i aB, i i
q(0) = by := \/\/g;iﬂojgoﬁno a8 NE 4+ kAg(ug - Ng) on T

Since [|g(0)[|l2.5 < C([liollo.s + [bol2) < Mo, we see that sup,ec(o 1 || curlvg ()] 5 <
Mo + CT P(supycpo,r) Ex(t))-

Differentiating (I0.10) with respect to time, we see that curl vy ~ Vo fot F+
F Vv + F Vo, Vg so that by the fundamental theorem of calculus

FVvtt + FV’Ut VUt = F(O)[V’l}tt (0) + V’Ut (0) V’Ut(O)]

t
+ / [F V'Uttt + FV’Ut V'Utt + FVvt V’Ut Vvt] 5
0

so that
(10.11)

T
/ V7 curl vy |25
0

T T t 2
< / IVAF(0)[Vu1t (0) + T (0) Ver (0)]||2., / Hﬁvum / F
0 0 0 0.5
T t 2
+ / / [F \/EVUM + F V’l)t \/EVvtt + F Vvt V’l)t \/EVvt]
0 0 0.5

We repeat the interpolation estimates between L?(Q2) and H'(Q) just as for the
estimates for curl vy; for example,
¢
/0 Vv

t
/ F\/Evvttt
0

so that by Jensen’s inequality and Sobolev embedding,

<V/Co/Cy

0.5

)
1.5

t
H / Fy/aVou|2s < Ct sup Ex |[VrvmlZs
0 [0,t]

Thus, integrating from 0 to T gives the estimate

T t T
/ H / F\RVu2s < CT P( sup El(t)) / IVRveel 2
0 0 0

t€[0,T]

< CTP(sup Et)).
te[0,T]
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864 D. COUTAND AND S. SHKOLLER

The other time dependent terms in (I0II]) have the same bound by the same
argument. The time ¢ = 0 terms require analysis of the elliptic problem for ¢;(0):

Ag(0) ~ iy = V[P(Vug) Vg(0)] + F V(0) in ©,
q:(0) ~ b1 1= Q(9n0)*uo + Q (o) duod*no
+ kAo (v¢(0) - Ni) + kAo (ug - Q(Ono,,)Oug,) on I'.

By interpolation estimates (as above),

T
/O VR (0)[V0r(0) + Vor(0) Vor (0)] |5 5 < KT [P(Vuo) 7. 032 (0)[F 5,

and since time differentiation of the Euler equations shows that
v:(0) = —Vug Vg(0) — Vg (0),
interpolation provides the estimate
Vil (0) 15 < VEl Va0 Va(0)llo.s + vk Vuo V2q(0)]lo.5 + V&4 (0)]|2.5

< My + VElirllo.s + v&[b1]2

< My + Vb2,
where we have used the elliptic estimate ||¢(0)|2.5 < My (from above) for both the
second and third inequalities. (The remaining estimate for |b|y places the regu-
larity constraints on the polynomial function My in the hypothesis of the lemma.)
Because H?(T') is a multiplicative algebra, the bound for v/k|b1|2 is controlled by
the highest-order terms /k|v:(0)]4 and v/k|ug.ls < /KC||ugll5.5- Now,

Ve[ (0)]a < VEllg(0)]ls.5 < VElliollss + vElbols ,

and |lig]|s.5 is bounded by P(|luo|l4.5) while the highest-order terms in +/k|bgls
require bounds on /k||no||7.5 and /| ug|l7.5. With our definition of My, we see
that
KT || P(Vuo) [ ve (0)][3 5 < Mo

and hence fOT vk curlv||g 5 < Mo + CT P(supye(o 7 Ex(t))

The proof that fOT vk curlvg||? 5 < Mo + CT P(supyc(o 71 Ex(t)) is essentially
identical. .

The divergence estimates begin with the fundamental equation a,?v’,; = 0. By

taking one derivative of this equation and integrating by parts in time, we find that
t t o .
leV’ﬂ = V?]i,j / &gAHg + / (5‘tA,{§V77’,j 7VAHg’l)z,j ) .
0 0

Computing the H?(Q)-norm of this equation yields the estimate

sup || divn(t)||25 < Mo+ CT P( sup E,(t)).
te[0,T] te[0,T]
The divergence estimates for v, vy, vy, \/KVyt, and y/kvyy follow the same argument
as the corresponding curl estimates.
In the case that n = 3, the estimates are found in the same way, with one minor
change. Set E,.(t) = E2P(t). The estimates for curlyn, which rely on Sobolev
embedding, require greater regularity on v;. The estimate (I0.7]) becomes

t
sup || curl |35 < TluolZs +1t sup II/ V|35 +T sup lvellsllnll3s .
te[0,T] t’'€[0,t] 0 te[0,T]
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and similarly,

T
sup_|[v/k curly]|3 5 STllx/EuoH?.ﬁT/ [vll3s +T sup lvells[lvAnlZs-
t€[0,T7] 0 t€[0,T7]

O

11. SOME GEOMETRIC IDENTITIES

We will usually omit writing dSy in our surface integrals, and for convenience we
set o = 1. Let H§- denote the projection operator onto the direction normal to 7(T'),
defined as 1T} = 62 — g*Fn’ 6;m'5, where g is the induced metric on 7(T") defined in
(T4). The mean curvature vector motivates us to introduce the projection operator
II. In particular, we have the important formula

(11.1)
—VgHnon=/gA(n)
=9 [97(07 = 80" s 0 1P e +(9°7 " = g 9N 5 1 ]
= V99" T e
where the last equality follows since (g*?g*” — g*g"P)nt 1/, 7 ua = 0. For a

vector field F on I, ITF = [n - F]n, ie., [I=n&n.
We let

(11.2) Q0n) = f1(0n)/ f2(V9)

denote a generic rational function where f; and fo are smooth functions. We record

for later use that that n = @;—%l = % and that |[a’ N| = \/detg on T, as

m1 X 2 [ = igin’ 10" 2 st 0% 2
= (5j’f5k5 - 5j55k’f)77k71 njas 77Ta1 775,2 = |7771 |2|7772 |2 - [7’71 1,2 ]2 = detga

where ¢;;, denotes the permutation symbol of (1,2,3). We will use the symbol @
to denote any smooth (tensor) function that can be represented as (I1.2)).

Remark 9. The L*°-norm of the numerator of ) is bounded by a polynomial of
the energy function, while the L*°-norm of the denominator of () is uniformly
controlled by (8:3a). Thus, the generic constant C' which appears in the following
inequalities may depend on a polynomial of det go. In particular, ||Q(9n)|pe <
C(det go) || P(9n)|| Lo -

For a vector field Fon T, F- N =F-n+ F - (N —n) and

t t
IN — nlpe < / Inel e = / QO] < Ct P(E()),
0 0

the last inequality following from B3al). If [IIF|, < My+ CP(E.(t)), then |F- N|;
satisfies the same bound.
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12. K-INDEPENDENT ESTIMATES FOR THE SMOOTHED PROBLEM
AND EXISTENCE OF SOLUTIONS IN 2D

All of the variables in the smoothed k-problem (&I]) implicitly depend on the
parameter . In this section, where we study the asymptotic behavior of the solu-
tions to (@) as k — 0, we will make this dependence explicit by placing a ~ over
each of the variables. We set E, (t) = E2P(t).

Remark 10. The only difference between the 2D and 3D cases arises from the
embedding of 9; € L*>(Q). In 2D, &, € H?5(Q) is sufficient, while in 3D, we need
o € H3(Q).

The pressure function ¢ can be formulated to solve either a Dirichlet problem
with boundary condition (IZ3]) or a Neumann problem found by taking the inner-
product of the Euler equations with aZ N. We use the latter.

Lemma 12.1 (Pressure estimates). With (9,q) a solution of the k-problem (L1
(12.1) G113 + Nl ®)1I5.5 + 3 ()T < C P(Ex(?)).

Proof. Denoting a, by A, we define the divergence-form elliptic operator L4 and
corresponding Neumann boundary operator B4 as

La=0;(J7tAIALD), Ba=J tAlAIN;0,.

For k = 0,1,2, we analyze the Neumann problems

(12.2) Lo(0fq) = fr in @ B,(0fq)=gr on T
with
fO = 8“4? f}ivj ) go = —Ut - \/ GrTix,

fl = _LAt(‘j) - 3t2A3 f}ivj _815"45 5273' ) g1 = BAt((j) - 'Dt'( gnﬁn)t — Uy gnﬁm
f2 *QLAt(qt) - LAtt((j) - 8?*4? ’Diaj y 92 = QBAt(qt) + BAtt((j) — Vgt * \/ GrTlrs

— 207 Al 0},; —0, Al By — 204 - (/G )t — Bt - (VG )it -

For s > 1, elliptic estimates provide the inequality

(12.3) 10£a(0) s < Cs[P(nllas) fills—2 + lgrls—3/2 + llllo]

where || - || -1 denotes the norm on [H'(Q)]’. We remark that the usual H* elliptic
estimates require that coefficients have the regularity 0°71(ALAY) € L>(Q); how-
ever °1(ALAY) € L%(Q) is sufficient. See see [J] or the quasilinear estimates in
[19].

As we cannot guarantee that solutions G to the x-problem ([@Jl) have zero average,
we use ||G|lo < CJ|||; and the H! elliptic estimate for the Dirichlet problem L 4(q) =
fo in Q with —¢ = Agf - e + £KA(0 - 72,) on I'. Thus,

3l < Cll follo + 257 - 7o + £AG(D - 71x)]0.5) < C P(Ey(t)).

From ([[0.4), it is clear that || fo||? 5 + |go]3 < CP(E(t)); thus, from the elliptic

estimate,
(12.4) ldll3s < CP(Bx(2)).
Next, we must show that ||f1]|2 5+ [g11? < C P(E,(t)). But

fi~ P75 A V) ([VE)? + V3§)
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@35 < CP(E.(t)). Using this, we find, in the same fashion, that ||fallo <
C P(E(t)). The normal trace theorem, read in Lagrangian variables, states that
if ﬁttt S LZ(Q) with HA‘zﬁztt,] ||0 S L2(Q)7 then 6ttt . \/g_,{’flﬁ S H_0‘5(F) with the
estimate |’5ttt . \/g_n’ljln‘%oﬁ S CP(EH(t)) Since || T‘I'(A Vf}ttt)H% = H TI'(?)At V’ljtt +
3A4 Viy + Ay V) ||3 < C P(E.(t)) and using the above estimates for ¢ and g, we
find that |ga|—0.5 < C P(E(t)), thus completing the proof. O

so that with (I2Z4), ||f1|25 < C P(E,(t)), with the same bound for |g; |3, so that

Our smoothed k-problem (@I uses the boundary condition (@Ie) which we
write as

Y
Vi

where (we remind the reader) x > 0 is the artificial viscosity,

(12.5) G, = H - T e — 6D (0 - T ) e

——1 -
Ao =Gx  0a(v/5095705),

7 is the unit normal along the boundary 7(¢)(T") and 7, is the unit normal along
the smoothed k-boundary 7, (¢)(T).

We begin with an energy estimate for the third time-differentiated problem.
Although we are doing the estimates for the 2D domain {2, we keep the notation
of the 3D problem as well as terms that only arise in 3D when differentiating the
mean curvature vector. Thus, when we turn to the 3D problem in Section [I4] the
modifications will be trivial.

Lemma 12.2 (Energy estimates for the third time-differentiated x-problem). For
My taken as in Lemma [0l and 6 > 0, solutions of the k-problem [&I)) satisfy

(12.6)

T
sup [[|Bgee[§ + |Dee - 72]7] +/ |VEOPD - i3
+€[0,T) 0

< My+TP(sup E.(t))+6 sup E.(t)
te[0,T] te[0,T]

+ CtESEépT][P(H@t”%.E;) + P(H5H35) + P(||77||4215)] + CP(H\/EthtH%?(O,T;HM(Q))) .

Proof. Letting A = @, and testing 93 (J,.9}) + 97 (A¥G, ) = 0 with 93%* shows that

T4 - . T .
(12.7 |5 [edae - [ [ otk ot
0 Q . 0 Q
— [ [ @i o dss.

Step 1. Boundary integral term. We rewrite the modified boundary condi-

tion (I2.0) as

NG [Fe e e s Fe = e - N
(12.8) (111%—\/—9_’i {Hn—!—Hn-(nﬁ—n)n+Hn-nK(nH—n)} — kAQ(D - o) T -
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We first consider the boundary integral on the right-hand side of (I2Z7) with only
the first term on the right-hand side of (I2.8)):

(12.9)
T ~ . .
— / / P (/gHR' 0 n)dR5 dSy
/ /fgozﬁnzaQ ~j 83 7 / /\/ ~Uv ~ aﬂ_gaugp ] ~7 8211] ,'7}683 7

/ /Q (0n,00) 8,51)] ;" +/ /Q (07, 00) 8} ",

=1+ I1T+1IT+1V.

The first term I on the right-hand side of (I29]) is given by
1 , . .
I=—5 / VaITEoz,) g™ (3,07 0%,) ] / / Q% (00, 00)02", 0F v,
r
where we use the notation f]I' = f(T) — f(0). Since Héf){t,g = (H;@gt),g —IT%, o,
and IIY ;3 = Q% (97)ii' 1,5 with Q(0j) defined by [IL2), for § > 0,
L =16 9270 \HaB (TTE 925
-5 [ Vi, )a et
Ll ~ 12 0B sy Al s |
< =5 ey + 0101 + (1 + Cs) | Q5 (9N) 70 it
where the constant Cs depends inversely on §. Since for any ¢ € [0, 7
N2
(@200 7 as #,) | () < CPELW).
it follows that

1
I<—= sup |Moy|?+ Mo(8) + 6 sup E.(t) +CTP( sup E(t)).
t€[0,T] t€[0,T) te[0,T]

The second term I requires some care (in the way in which the terms are
grouped together). Letting

025, - 020,
Al = 7271 ¢t ', ¢t , A?
Mo 0701 720702

s s s ,2
s _ [ 110701 01-0702
(12.10) A= { 2 0701 V2070 |’
we find that
(12.11)

1

II_/ /det 2 (9; det A" — det A% — det A%)
T

/ / (det g~ 5 ¢ det A1 —det g~ 2(det.A2—|—det.A3 /detg 2detA1}

0
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For oo = 1,2, let Vo, = 7,0 - 870; thus Vo5 = Al 5 + 71,05 0f; so that
det Al 5 = det(Va,p —7'ap f),ft)
= det Vo5 — det(7,a Utt) + Pj; (62 )Uttvtt + P (8277)17&5%@ .
With A = Cof(0V), det OV = APV, 5. It follows that

/detg—% det OV = —/(detg—%),ﬂAﬁav,a,
T r

as AP® 5= 0 since A is the cofactor matrix. Hence,

(12.12) /detg’%detAl :/ P;;(0%7)%%, 0], + P (82ﬁ)ﬁ§t6{t,a ,
T T
so that
. T
II</ /Q (01, 00) 821)’ 821)] + /[H-j(@Qﬁ)ﬁitﬁtt (82 )vttvtt,a}
I 0

By the fundamental theorem of calculus and Young’s inequality, for § > 0,

[ Ps@niiita)r)
/F P2(0%7)5,)(0) Ty (T / / (P2 (0%7)], dt oo (T)

1
2

<Mo<6>+6||@n<T>|%5+T( [ s (@i |2dx> (T 5

te[0,T]
Since [Pf}(9*7)0y], € L>(0, T; L*(T)), we conclude that

IT < My(6)+ 6 sup E.(t)+CTP( sup Ey(t)).
te[0,T] te[0,T]

A temporal integration by parts in the third and fourth terms on the right-hand
side of (I2Z9) yields

T
1+ 1v = - [ [[165(00.00)5,0+Q2 00 00), s
0 r
T

+ / Q2 (071, 00)0 5 +Q5 (07, 00)|irer |

0
which has the same bound as term I7; it follows that

(12.13)

//a (VgHR o) -0

= —— sup |3+ Mo(8) +0 sup E.(t)+CTP( sup E(t)).
2 t€[0,7] te[0,7] tel0,7]

Remark 11. The determinant structure which appears in (I2I1)) is crucial in order
to obtain the desired estimate. In particular, the term det.A; is linear in the
highest-order derivative 9?v rather than quadratic (as it a priori appears).
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There are three remaining boundary integral terms appearing on the right-hand
side of (I2.7) arising from (I2.8)); the terms involving x are

(12.14)
T b -
fn/ ([0 (D 7n), BP0 - ] | +3[0F(D - Tin), DD - Deie]
0
+3[04(0 - 1iw), 070 - 07 ] | + [0+ T, OP0 - D] ) -

The first term in (I2.14) provides both the energy contribution fOT |VEOPD - 7|2 as
well as error terms. We start the analysis with the most difficult error term,

T
(12.15) Ii/ [+ 00} T, O - D30)]0,
0

whose highest-order contribution has an integrand (modulo L* terms) of the form
82\/@)}& \/Ea’[)ttt

With 7, = (017 X 027k)/+/g = Q(07x), Q given by [ILZ), the highest-order
term in 9937, is Q(07),)920%¥,, so that with Ry denoting a lower-order remainder
term, and using ([B3H]), we have that

T
—/@/ [0 - 0027, O - O3D)]0
0
T
< C sup |P(f),aﬁﬁ)|m/ |VEOZD - fug |1 |[VEOP Dk ]2 + Ry
0

t€[0,T]

< C sup |P(0,00) |1 |VEID - fun|p2(0. 10 () |[VEO; V| L2 (0,712 (1)) + Ra

te[0,T]
2
< Cs | sup |P(0,90x)| Lo IVEOse || L2 (0,7552-5 )
t€[0,T)

+ 0|Vt - |72 0 7o oy + R

< Mo+ CTP( sup Ey(t)) + |[Vivsull 12070250y +0 sup_ Ex(t),
te[0,T] te[0,T

where Ry also satisfies R1 < O'T P(supyeo, 7] £i(t)) + 0 supsepo, 77 £x(t). The sec-
ond term in (I2I4) has a highest-order contribution with the same type of inte-
grand, and its analysis (and bound) is identical. The third and fourth terms in
([I214)) are effectively lower order by one derivative with respect to the worst case
analyzed above.

Next, we estimate fOT [ O HR - iy, (70, — 1)} 050, Since i, = Q(il) and since
|7 — 1| < sup,, |0Q(Onk )] |Onk —In|, then our assumed bounds (B3) together with
[26) imply that

(12.16) |t = 1| Lo < CVR[P(O7, %)) L fil25 < Ok P(Ex(t)).
Similarly,

(12.17) |07, — 0| o < C /K |P (07, 0%7)| o< |7i]3.5 -

Also by (28), for k =1,2,3,

(12.18) |0F i — O Loe < CV/E|P(O7], %) | oo |0 Tla5
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and
(12.19) 1070 — 070]0 < C V5 [Tue 15 -

Taking three time derivatives of formula (ILI]), we see that the highest-order term
in 03 (v/gHR) is Q(07)0?Vy. Thus, the highest-order term in the integral

T
| [eamnya @ - o
0 r

is estimated using an integration by parts in space. The highest derivative count
occurs when the tangential derivative is moved onto the vy term giving us

T T
/ / Q3(07)0T, s, (AL, — A7)0y, < C / PO | o [ty [ — il e 1031
0 I 0
T
< C/ |P(01,00) Lo 1|25 |01 |V EDwt 1
0

T
< CsT P( sup En(t))+5/ IVEDl7
t€[0,7) 0

where (I2I7)) is used for the second inequality. If, instead, integration by parts
places the tangential derivative on 7,, — 72, then (I2.I7]) provides the same estimate
for this term. The other terms are clearly lower-order.

Thanks to (TZI8]),
T
/ / Ou(/GHR®) 07 (R, — ")} 035"
0 T

T
< C/ |P (071, 077) | Lo 10?00 |0t ]2.5 [ VDt |o
0

<CsTP(sup Ei(t))+0 sup E.(t).
te[0,T) te[0,T]

We next consider the integral
T
[ [ Vamio -y ot
o Jr
T ~
(12:20) = [ [ Vaftn 0t ()5
o Jr

T
+/ / \/EHﬁ-ﬁ,i 02 (e — 1) - Dpge + Ro
o Jr
=I+1I+R,y,
where Ry is a lower-order term. For term I, we use the estimate |7, — 7|
C k|fi|3.5. One \/k goes with 937,, and the other \/k goes with @;. Thus, |I|
CT P(supyepo,r) Ex(t)) + dsupiepo 1) Ei(t).

To study I, we set f = \/GHR -7, and consider the term fOT Jp £ Nutee - Ogee. We
expand v into its normal and tangential components: set 7, = 1,, so that

<
<

0 =0v"T4+v" 0, where v 7 = (U-74) Tq and v" =70 - 7.
Then

f)ttt = ’UZ—ttT + 3’[};7} + 3’1};7'“ + ’UTTttt + ’U;&tﬁ + SUZ’Flt + 3’1}?’”&” + v"ﬁttt .
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The most difficult term to estimate comes from the term vj,7, which gives the

integral fOT Jo f e - TR

First, notice that n4y - 7 is equal to —n - T4, plus lower order terms that have
at most two time derivatives on either 7 or 7, and 7t - Ty = 7 - Og¥y for 8 =1 or
2. Next, the k problem states that o}, = (A¥q, )i, where we recall that

A=a,.
We have the formula
ii'5 A¥OGu = T%0sGy (no sum on B)  for B=1,2,
where
J'=ita A}, J?P=1is A2

(In the case that x = 0, 7% = J = 1.) Using this, we see that the highest-order
term in our integral is given by

T
(12.21) /O /ij (71 - Ot ) Dpiae -

Second, write ¢ as

_ V3 o o o

G = — | —=[Ag(70) - 1+ Ag () - (e — R)] + £AO(D - 71w) |

We begin by substituting the first term on the right-hand side of (I2.22]) into (I2.21]);
the highest-order contribution comes from 9302 A5 () = Q(97, 07 ) G* 71 - 04,y s-
Integrating by parts with respect to 0,, the highest-order term in our integral is
given by

(12.22)

T
/ / QO i) £ (- Foos ) G (7 - et ) -
0 I

Letting G}’ 1= Q(0,0n,) [ nin; = Q(017, 07, )9%n, integration by parts in time

yields
(12.23)
f/ /&GZ” ’Dgwﬁ 6;,#5+/8tngV @g,yg ”Dz,ﬂﬁ
0 N r 0

< CTP( sup Eu(t))+ Mo+ C sup |Gi|re ||f)t||§.5

te[0,T] te[0,T]
< Mo+ CTP( sup Eu(t)) +C sup [P(5:ll35) + P(I|5]35) + P(I7ll35)] -
te[0,T) t€[0,T]

For the second term on the RHS of (IZ.22)), the highest-order term gives the integral
T
| [ £0@000) (0 5u.3) 3 Wt~ 1)
o Jr
T
<CTP(sw E0)+5 [ [VunlRs,
0

te[0,T7]

where we used |1, — 1|~ < C k|7]5.5 again.
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For the third term on the RHS of (IZ22]), the highest-order term gives the
integral
T ~
. /O /F £ Q07 9iin) (7 - 3oue) (7 - )

< Mo+ CTP( S[Up . E.(t) + VEOutl 12 (0.1 1125(52) -
tefo

We have thus estimated the integral fo [ O} Hi iy, (72, — 1)} 039, The remaining
integral fOT [ O3 Hfi - (i, — 1) 72, } O30 has the same bound.
Step 2. The pressure term. We next consider the pressure term in (I27):

T
—/ /3?(Af(j)3fﬁi,k: / /83 L [0P A G+ 307 AY G + 30, AT G+ AF O}
0 Ja

(12.24) = I+II+1I1+1V.

We record the following identities:

(12.25a) oAk = JL(AsAF — Ak AT,

(12.25b) A} = 1; (ASAF — AFAS)OL s +PF(J T, A, Vi)
(12.25¢) FAF = J M (ALAY — AR AT +PF(J Y, A, V)00 -

With (IZ25d) and f5F := J_1 (A A¥ — Ak A$)G, term [ is written as

T
I:/ /[f5k83 lvk 8152@1:;5 +at3,l~)zak at,ﬁiai ij(j;13A7V1~)K)]
0
= I,+ 1.

We fix a chart 6; in a neighborhood of the boundary I' and let § = /oy, where once
again, we remind the reader that {a; }~_; denotes the partition of unity associated to
the charts {#}Z_ ,. With Z, denoting the restriction L,|u,, where U;NQ = 6,((0,1)3),
and letting p := pL and 6 := 0;, we have that

7, - / / IO 0)€p 2 ps 7 0) + OV s E V)i
0,1 3
al +Za27

where G(£,V¢) is a bilinear function which arises when the gradient acts on ¢
rather than 4. The term Z,; is the difficult term which requires forming an exact
derivative, and this, in turn, requires commuting the convolution with f5¥. We let

V(0) = pxn £0(0)
so that using the symmetry property (Z71), we see that

T
Toy = / / pn [FREO0T 1 (0)) PV . (0)
0o J(0,1)3

T
= [ i@y e

+(p*n [FEFEO}0 ] — £2Fpn [€070° 1)) Vi s |
:Ia1i+Ia1ii'
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Since f2F is symmetric with respect to i and r and k and s, we see that
To=3 [ [ o0 5V v o)
0,1)3
1 ,
= / oSOV OV (0)+ 5 [ £
(0,1)3 2 Jio,1)2
(3 T T
RV 1, (0)FVT 5 (0)], -
We sum over our patch index | = 1,..., L. The spacetime integral is bounded by

CTP(supiepo, 1) Ex(t)). For the space integral at time ¢ = T', we employ the funda-
mental theorem of calculus:

T
/ SRV Vi o (T) = /Q Vi (T)Vis (T)£25(0) + /Q Vi (T)Vi o (T) / oy fsk

T
< Vet (D) ol + 11Vae (1) 13 H/O |fell o

4/3 2/3 | ~
< oD e (D1 1ol +CTP( up_ EL(t))
<|0,

1) .
< 5||vtt(T)Hi5+0(5)llvtt(T)H%qu||§’+CTP( sup E(t))
t€[0,T]

<90 sup E.(t)+ Mo(d) + CTP( sup E,.(t)),
te[0,T] te[0,T]

where Young’s inequality has been used. For Z,;;, the commutation Lemma 2T
shows that

T
1 ~ ~
Toris <Ot [ 1l IRt ]
0
T T
<o [ IRl +Cs [ 1B ol
0 0

Summing over [ = 1, ..., L, we integrate by parts in time and write the term Z,4 as
T

T
Zao :_/o /QfV17ttG(§7V§)(fﬁtt)t+ /QfVﬁttG(&Vf)fﬁtt .

This is estimated in the same way as the term Z,;,. The term I}, is handled in the
identical fashion with the same bound. Thus, we have shown that

I <4 sup E.(t)+ Mo(6) + CTP( sup EL(t)).
te[0,T] t€[0,7]

Using ([2:250) for term 17, integration by parts in time gives the identical bound
as for term I. For term II1, a different approach is employed; we use (IZ25al) and
integration by parts in space rather than time, and let F2F := 3J-1(AsAF — Ak A?%)
to find that

T T
= / / B[]0 Foguel s + / / 5y FSE Ny e
0 Q 0 IN

The Cauchy-Schwarz inequality together with the pressure estimate (IZ1]) give
the bound CTP(sup,cpo, 7] Ex(t)) for the first term on the right-hand side. The
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boundary integral term requires integration by parts in time:

T
/ /Uttt Nthtvms* /tht Nthtvms:| */0 szt[FﬁikaQttﬁZ;s]t

= I1I, +IIT,.
First, note that
G FF N = 31 A8 [(GAF NG ) — 23:0,AF Ny — GO} AF Ny |
(12.26) —3J, A5 [(GAEN) w — 2G:0,AENy, — GOFAEN,]
Next, substitute the boundary condition (I2.8]), written as
(12.27) —GAF N, = /GAG(7) 85 + () — 7y)ivs + 70 (T )i — 703)]
+ 5(V/9095 " [B - s ) o T

into (IZ26). The two bracketed terms in (I2.26) are essentially the same, so it
suffices to analyze just the first term. We begin by considering the term /gA;(7")

in (I227).

Then I11, can be written as

(12.28)

IIl, = 3/ {82 \/_gaﬁn 8 )ra Upys A 72qt5‘tA N;v7,s —qO0; AkN iUy }ﬁ;t]

/\/gaﬁn’,ﬁ tt msAs”tt)
— 20 0 AF NG B, — Tt qd2 AFNGET 0, 1D

<& sup Eg(t) + Mo(6) + CTP( sup Ex(t)),
te[0,T] t€[0,T]

T

0

the last inequality following from the fundamental theorem of calculus and the same
argument we have used above.
In order to estimate I}, because we do not have a trace estimate for 93 A, we

let Q(97y) := v/3i (N ) and compute

_ o~ 2 _ napB~i ~j
atQ’!‘ - rivnaa ) 8 QT" - Qrzjv;wa U;ﬁﬁ +Qr7,atv,»gvoé )

(1229) 8SQT = Q?gzvfﬁa UR’B vﬁ’] +3Qr7,j KRIQ atvrmﬂ +QO¢ a1&2 ,llma .
Since @(ﬁn)rqtt = (@(ﬁR)T(j)tt — 2@@,. (jt — atZQ7 (j, lt fOHOWS that
(12.30)

I, = —3/ / J! Utt V0 (o) r @)t 0h s Af + 07 (Qr@) et (T s AT )¢
_/Dtt(Qerﬁfma 17/1’8 Az Qt + Q?Igﬂéaa ﬁfwﬂ ’[]275 Af(j + Q?latﬁ,ijﬂl 172,5 Afd)t:| .
Using the pressure estimates and by definition of our energy function, for ¢ € (0,7),

Ge(t) € H(T),  Qu(1),8:Qr(t) € L=(T), 8;Q.(t) € L*(T),
o0, (t) € H'S(T), 0yu(t) € LA(T).
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Thus, all of the terms, except the first, on right-hand side of (I230]) can be easily
bounded by CT P(sup,¢(o 71 Ex(t)). Integrating by parts in space, the first term in
(I230) has the following estimate:

(12.31)
T .
3 / / VanGoPTIE 5 (350 1A
0 T

+ V3 (G4 g% — g g"PYiE o By T8 (U0 T AT o

+[P3P (0, 00,5 + P (97, 00)| (57,005 7 A SCTP( sup Ey(t)) .
t€[0,T]

The remaining three terms in the boundary condition (IZ27]) are now considered.
The additional integrals which arise in the (I2:30]) are given by

—3/OT/F8,§”{\/Elflﬁ-(ﬁn—ﬁ)ﬁr—k\/Eﬁﬁ-ﬁﬁ((ﬁn)r—ﬁr)

+Ry gnA(j(ﬁ . ﬁﬁ)ﬁﬂ} ﬁras &fﬁzt
= J1+Js+ J3.

Term .J3 with the artificial viscosity provides the integral fOT (03 (07 ), P(V), VD)
029];. The highest-order terms in this integral are estimated as

T
K /0 {[Pgﬁ(aﬁm Vi, Vo) 00’y , 0707, )0 + [P (O, Vi), B, VD) 0756y af&;’a]o}
T
<C Vi [PV VD)1 001 (VRO Tl + |Vi0} T2}
0

T T
<) / | P(Vi, Vo)l 10253 + 3 / (VR + |Vmd2,[2)
0 0

< CO)TP(sup Ei(t))+0 sup Ei(t).
te[0,T] te[0,T]

The lower-order terms in J3 also have the same bound. As to terms .J; and Js, the
estimates for the terms with (\/§H7). are obtained exactly as in (IZ31). For the
terms that contain 74, we use the formula (I2:29]) for the third time derivative of
the unit normal; it immediately follows that terms J; and .J5 are also bounded by
5suPte[07T] Ei(t) + CTP(SuPte[mT] (1))

Now we need only consider the additional terms in (IZ28]) from the remaining
three terms in the boundary condition {I227)). The only novelty is in the highest-
order integral coming from integration by parts in space in the x term:

/Paﬂ Uttﬂa T)vitn@’ (T)
where Pgﬁ(t) and 8tPgﬂ(t) are both in L*>°(T") for each ¢t € [0,7]. Using the
fundamental theorem of calculus and the fact that /kvy, € L2(0,T; H'5(Q))

together with Jensen’s inequality shows that this term is bounded by My(d) +
6SUPte[0,T] Eq(t) + OTP(SuPte[O,T] (1))
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To study term IV, we use ([I2Z.25)) together with the incompressibility condition
(0,5 A¥) e = 0 to find that

T
IV — — / / (300, Oe AF + 0 O3 ARGy + 36 02 AXGpye] =2 IV, + IV} .
0 Q

For IV, we integrate by parts in time:
T ' 4 T
IV, = / / (041 OF AY)1Gee — / 304 6§A§‘dﬁ}
o Ja Q 0

Since 93 A is bounded in H5(Q), the spacetime integral is easily bounded by
CTP(supycpo,r) Ex(t)); meanwhile, the remaining space integral satisfies

IVyy < 3/9[772% (0)97 A} (0)]gs(T) + /Q /()T[ﬂtiak 07 Af]e dt qu(T) + My
< 8llque(T)§ + Mo(9) + Ttes[%%] 1Tk 02 AT )ello lgee (T lo
<0 sup Ei(t)+ Mo(d) + CTP( sup E,.(t)).
t€[0,T] te[0,T]
With F3F .= J-1(ASAF — AR A3), TV, is written as
(12.32

1V,

)
T . . . .
—/ /(38§5T;s FSFo o 407005 FEF0 1 )Gaee + 0k Pf(J,;17 A, V)00, i Gt
0Ja
=: IVal +IVa2 +IVa3 .

Term IV,5 is estimated in the same way as term IV;. For term I'V,,, we integrate
by parts in space to find that

T T
Vg = — / / OFVLFFD" 1, Guue Ns + / / OFOT (FEF0" 1, Geae ) s := IVao; + TV
0 I 0 Q

The first integral IV,s,; is handled identically to term IIIj, to give the bound
CTP(supiepo, 1) Ex(t)). We write the second integral as

T
Wi = / / P25 g Gurers +ORT (T 1 Yoo e
0 Q

integrate by parts in time, and obtain

T
Vg = — / / (OZ5 FE55 1 Yo +025 (FE55 1 )1vs ]
0 Q
T

b [ OBTFEA s s +OBTFEE s )
Q 0

Since 937, is bounded in L?(Q) and (F Vo), is bounded in L*(2), the spacetime
integral is bounded by CT'P(sup;c(o 1 Fx(t)). Next, we analyze the highest-order
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term in the remaining temporal boundary integral in I'V,,:

/ [(OFTLFSF0" 1 ) eess |(T)
Q

T
- / (D2 (0)F=E (0) s (0))iseos (T) + / / (P FE 3 )vdess (T)
Q QJ0
< M) + Al (T 4T s [GETLEEET el o)l
telo,

< My(6)+0 sup E.(t) + CTP( sup EL(t)).
t€[0,T] t€[0,7]

The remaining term is analyzed in the same fashion.
Step 3. The inertia term. Finally, the inertia term in (I27) satisfies

’ 30 F ~iyn~i L5 g 1. 2
0; (J01)0ize = 511 IR Deee (D)5 — 51922 (0) 5
o Ja
T ~ ~ . . ~ . .
+ / / (2500 Tl + 302 T4,y + 0} T
0 Ja
Sinf;e o J, = Trace(ax Vﬂﬁ),Nafjﬁ = Trace(a, VO:0,) + P(jn_l,diﬂﬁ), and

02 J,, = Trace(a, VO29,) + P(J 1, ay, Vi, ) VO, then using condition (3.3d), we
see that

sup [[veellg < (|90 (0)[[§ + CT P( sup Ex(t)).
t€[0,T) te[0,7]
From ([Z.2) evaluated at t = 0, we see that ||#;(0)||2 < My, so the lemma is
proved. O

Lemma 12.3 (Energy estimates for the second time-differentiated x-problem). For
My taken as in Lemma [I0T] and 6 > 0, solutions of the k-problem [&I)) satisfy

(12.33)

T
sup |82@t-mg+/ |VEO? Dyt - T2
0

t€[0,T]

< My + TP( sup En(t)) +d sup E,{(t) + CP(H\/E@tH%?(O,T;H?’-s(Q))) .
te[0,T te[0,T
Proof. We let 99? act on (AID) and test with (299 where (2 = a;, and «; is an
element of our partition of unity. This localizes the analysis to a neighborhood of the
boundary I' where the tangential derivative is well defined. In this neighborhood,
we use a normal coordinate system spanned by (0179, 9219, N).

We follow the proof of Lemma and replace 97 with 992. There are only
two differences between the analysis of the second and third time-differentiated
problems. The first difference can be found in the analogue of term IT7 in (I29),
which now reads fOT fr P(07},00) 0ty 0%y After integration by parts in space, this
term is bounded by C'T' P(sup,¢(o,71 Ex(t)); however, this term requires a bound on
|U4]1, which requires us to study the third time-differentiated problem. (Compare
this with the third time-differentiated problem wherein integration by parts in time
forms an exact derivative which closes the estimate.)

The second difference is significant. Because the energy function places

Dyee € L°(0,T; L2(Q)) and 9y € L>(0,T; H5(Q)),
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there is a one-half derivative improvement that accounts for (I2.33)) being better

than (T2.0)).

In particular, the analogue of term IT in (T2Z20) is fOT Jr NG R A
Oy, and since [002 (i, — 7))o < C |P(9n)|p |U¢|2, then this integral is easily seen
to be bounded by C'T P(supc(o ) Ex(t)). (This is in sharp contrast to the difficult
analysis required at the level of the third time-differentiated problem which follows

equation (I2:20).)
All of the other estimates follow identically the proof of Lemma with 9}
being replaced by 992. (]

Lemma 12.4 (Energy estimates for the time-differentiated k-problem). For My
taken as in Lemma [0l and § > 0, solutions of the k-problem (@) satisfy

T
sup |a3ﬁ~ﬁ|3+/ |\/KO3T - |2
t€[0,T) 0

(12.34)

S MO + TP( sup E,i(t>) + ) sup En(t) + CP(”\/E’D”%Q(O’T;HLS(Q))) .
t€[0,T) t€[0,T

Proof. After replacing 907 with 929, the proof is the same as the proof of Lemma
123 O

Lemma 12.5 (Energy estimates for the s-problem). For My taken as in Lemma
0T and § > 0, solutions of the k-problem ([@I) satisfy

(12.35)

T
sup |54ﬁ-ﬁ\g+/ |\/E8417~7~L,.€\g < My+TP(sup Ei(t)+0 sup E.(t).
te[0,T] 0 t€[0,T] te[0,T]

Proof. Let 9% act on ([ID) and test with 935. All of the terms are estimated as
in Lemma[T2.3] except the analogue of (IZ.15]) which reads, after replacing 9 with
03, as
T
Ii/ [0 0, T - O10)]o -
0
Since the energy function places v/kij € L% (0,T; H%-5(Q2)), we see that this integral
is bounded by ¢ sup,¢(o ) Ex(t) + CT P(supsepo 1 Ex(t))- O

To the above energy estimates, we add one elliptic estimate arising from the
modified boundary condition (I2.8)). We will make use of the following identity:

(12.36) [vgA¢(n")]y = VI T sy +3/9(9" 9% = g 9" I0' 507 o0 10 sy s -

Lemma 12.6 (Elliptic estimate for /k7). Let My be given as in Lemma IOl
Then for 6 > 0,

(12.37) sup |VEJZ(t) < Mo(6) +0 sup E.(t) + CT P( sup E.(t)).
te[0,T) te[0,T) te[0,T]

Proof. Letting Q?i = Q?’B z(877) denote a smooth function of 97, from (I2.30) we
see that

PINVaAG (1)) = [VIF T 15y +4/3(345%° — 55T 571 0 0% yur Jraa
+ [aQ?ma2ﬁj7ﬁ7 +82Q?ﬂlaﬁj7ﬁ7 +83Q?Blﬁj75W ]704 .
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The estimate ([Z37) is obtained by letting 829, act on the modified boundary
condition (IZX) and then testing this with (2§7°T1}9%7,5, where (? = q.

For convenience we drop the subscript ¢ from §2; and T';. (Recall that «; de-
notes the partition of unity introduced in Section 2.) For the surface tension term,
integration by parts with respect to d, yields

T
/ [83(\/§Hﬁ‘ o ﬁ)v’y ) C2§57H837~]’6 ]0
0

T
1
< [ [-16va* b3 + 1l Inla1dsno]
0

where F := P((,dn, 0v,0n) is a polynomial of its arguments. To get this estimate
we have used the fact that

Vg g =g it s 1w 1 ey IO 50 = 0,
since 7j%,5 I} = 0. (This ensures that the error term is linear in |I19°7|o rather than
quadratic.)

We next analyze the artificial viscosity term. The testing procedure gives us the
integral

T
- / R0%0, Mo - o), C257 TP 15 o.
0

The positive term comes from 5‘387 acting on v. This gives, after integration
by parts in space, the highest-order integrand (9%%,a~ -7 ) g7 g5 (s - 117,35 ),
where II = n ® n. We can write this term as

5(835’117 'ﬁﬁ)gwggﬂ(ﬁn : 83777&5 ) + H(agf)aav 'ﬁn)gvéggﬁ(ﬁﬁ -(IT - H,{)f)Bﬁ,g(; )s
where II,, = n, ® 71,,. The first term is an exact derivative in time, and yields

s d o » e
§E|85n T)? — KOO OPH Rl Oyl .
The space integral of the second term is estimated by

C'|F | |Vkvls |Veils [T, — TI| Lo
and
I, — |~ < C K|35

From ([Z1)

~ ——1 = o~
KaBAO(U : nn) = _63( V 9k \@Ag(’?) : nm) + 63(1-
Thus,
C Vr|KD]s < KIF| Lo (|8]3 + [V&D]4) + (k2 + £2)| F| ool + | F| = [R5 + /|3 ,
so that

T
/ / K(agquv 'ﬁn)gfyéggﬁ(ﬁn (11— Hn)agﬁaﬁé )
0 N

T
<C [ [VRIFL=(ala + [VRola + [ila + lil) [Vils + |Flu=|Vl]
0

Having finished the estimates for the terms leading to the positive energy contribu-
tion, we next consider the most difficult of the error terms. This occurs when 8387

acts on 7, producing the integral fOT K[C2 D - O*i, T - 0410
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To analyze this term, we let ¥ = ©70,7),; + Unfy; we remind the reader that
for v = 1,2, 0,7, spans the tangent space of 7, (t)(I") at 7.(z,t), so that 9,7, is
orthogonal to 7. It follows that vY0,7 - 0°f,. is equal to —v7R, - (’95(’9777,.C plus
lower order terms v7 R} (7)), which have at most only five tangential derivatives of
7. Note also that since 7, - 7, = 1, i, - 0°fic is a sum of lower order terms which
have at most only five tangential derivatives of 7.

Thus,

T T
/ K[C2D - DO, T - D)0 :/ K[C? 0Ty, - 090471 + 0VRY (1), T - 070
0 0
where the remainder term satisfies

T T
/ KERY(@) , o - OPlo| < C / (Pl [[VRol [v/Rils + VL.
0 0

We must form an exact derivative from the remaining highest order term

T
(12.38) /0 KC2 T - 050y s - D00

and this will require commuting the horizontal convolution operator, so that the 7
on the right side of the L?(I") inner-product also has a convolution operator, and is
hence converted to an i, - 0*p1 %, 7 term. With this accomplished, we will be able
to pull-out the d, operator and form an exact derivative, which can be bounded by
our energy function.

Noting that on I" the horizontal convolution %, restricts to the usual convolution
* on R?, we have that

=Y v (1 [p1 * (Va0 0)]] 00
=1

For notational convenience, we set p = p1 /.., ¢ = \/ag, and R = [0, 1?2 = 9;1(F0U¢).
It follows that (I2:38]) can be expressed as

T K
(12.39) /O KZ/R(mﬁ,ﬂ)oai-aya5 [C(0:)p * p * (Ci7) 0 0;] (R - D7) o 6;.
=1

With g, := 8°p x ((0;)7(0;), we see that
(12.40)
Rity, - ,0° [C(6:)p % p * (C7j 0 65)]
= K - (8,0°C(6:))p % p * (CT1(6:)) + KT - p o+ Dy G + KR5(71)

where the remainder R5(77) has at most five tangential derivatives on 7. Substitu-
tion of (I2:40) into (I2:39) yields three terms, corresponding to the three terms on
the right-hand side of (I2Z:40). For the first term, we see that

T K
K SCO)T T - pxpx (CH(0;) (7 - O°1(6;

T
<c / /A8l 5 7(6:)] = | /Rl .
0
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The second term on the right-hand side of (IZ40) gives the integral

T K
/0 K;/R(ﬁﬁ P 0yGk) (e - Gic) + R (1),

where the remainder R¢(7) is lower order containing terms which have at most four
tangential derivatives on 77 and five on ((6;).
We fix ¢ € {1, ..., K}, drop the explicit composition with 6;, set

Aﬁmgx = ﬁﬁ : p*gﬁ - p * (fﬁ’H : gl‘ﬁ) )
Ni, cosi = Tug - p x CO° — px (R, - CO°)
and analyze the following integral:
/R{Cﬁﬁ s Pk gﬁ} {’FLN . 6577}
= [ Ap# G i O+ [ B G0
= [ o i 0% 5 G = [ G-} B, coms

+ / Do {7 - GO} + R (i)
R

where the remainder R7(7j) comes from commuting 9° with the cut-off function
¢ and has the same bound as R4(77). The first term on the right-hand side is a
perfect derivative, and for the remaining terms we use Lemma [2.]] together with
the estimate #|gx|o.r < C||75.5 to find that

. /R (Gl - p# i} {iin - i1} < CF| = VA2,
Thus, summing over ¢ € {1,..., K},
T T
5 / (- i, i - OFio < C / |F| e (WATs + [v/rdla + [v/rils) [Vrils
0 0

where |\/kT|g := max;cq1,. ky [vVKbile-
It is easy to see that

T T
/ 100, (/52 (7) - (i — A)ii), CC5PTTI0%,5] < C / \F| e |/

0

with the same bound for [} [028,, (/G (7)) -t (7w — 1), (1§ TIO%7,5 . With (B3),
we infer that

T
wﬁa%-m%(ws%w/ a2
0

T
e / |Flze (WRTs + [VAola + [VRills) [VAls
0

Adding to this inequality the curl estimate (I0.1) for v/~7 and the divergence esti-
mate (which has the same bound as the curl estimate), and using Young’s inequality
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T ~ ~ T ~ T ~
to get i |Fluw [VRbls [VAils <3 Ji VRO +Co fi |l [V/RTE, we see that

sup |Vrilz < Mo+ CT su%] (||Ut||§5 + [lvll35 + ||77||i.5)

te[0,T] te[o
T
+CT sup ([P (VADR +Wwild) +3 [ IViolE,
te[0,T] 0
from which the lemma follows. O

12.1. Removing the additional regularity assumptions on the initial data.
At this stage, we explain how we can remove the extra regularity assumptions on
the initial data, up and €, so that the constant My depends on |Jugll4.5 and |T'|5.5
rather than /k|luglli0.5 and /k|T|7 as stated in Lemma M0.I] The modification
requires the following regularization of the initial data: set uo = p_1 * Eq, (u(0)),
where €, is obtained by smoothing €2 via convolution with [ i.e., we use p 1 x 6;
as our family of charts. We make use of the fact that

P(||Vkuoll10.5) < CPllugllas), P(]VkL|10) < CP(|T]55),

which follows by integration by parts of six tangential derivatives onto the mollifier
P 1; this results in the constant C' > 0 being independent of .

12.2. The limit as k — 0.

Proposition 12.1. With My = P(||uol|as,|Tl5.5) @ polynomial of its arguments
and for My > My,

(12.41) sup E,(t) < Mo,
te[0,T]

where T depends on the data, but not on k.

Proof. Summing the inequalities (IZ.0]), (IZ33), (1234), (IZ34)), and (IZ37), and
using Lemma [I0.1] and Proposition B.], we find that

sup E.(t) < Mo+ CTP(sup E.(t)+3d sup E.(t),
t€[0,T) t€[0,T) t€[0,T)

where the polynomial P and the constant My do not depend on x. Choose § < 1.
Then, from the continuity of the left-hand side in T, we may choose T sufficiently
small and independent of k, to ensure that (IZZ4I)) holds. (See [8] for a detailed
account of such polynomial inequalities.) O

Proposition 2] provides the weak convergence as k — 0 of subsequences of
(v,q) toward a limit which we denote by (v,q) in the same space. We then set
n = Id+f(;t v, and u = von~!. It is obvious that ©,, arising from the double
horizontal convolution by layers of @, satisfies 9, — v in L?(0,T; H3*(Q)), and
therefore 7 — n in L2(0,T; H*(Q)). It follows that divu = 0 in n(2) in the limit
as k — 0 in (I3d). Thus, the limit (v,q) is a solution to the problem (LJ), and
satisfies Ey(t) < My. We then take T even small, if necessary, to ensure that (33)
holds, which follows from the fundamental theorem of calculus.
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13. A POSTERIORI ELLIPTIC ESTIMATES

Solutions of the Euler equations gain regularity with respect to the E(t) from
elliptic estimates of the boundary condition (L3d), which we write as \/gHn(n) =

\Vgqn.
Replacing 0, with 0; in (I2.36]), we have the identities

(13.1) 9 (vgHn o) = —[VGg Lo 13 +1/G(g" 8 — 6 g™’ s 0
and
(13.2)
97 (VgHn on)’
= —[vag* v} 5 +/a(9"" 9" — 9° """ s 1w vl A Q5 5]

where Qéaﬁ = Q(0n) is a rational function of dn.

Lemma 13.1. Taking My as in Proposition T2, and letting My denote a poly-
nomial function of My, for T taken sufficiently small,

S [T ()55 + [[o()[l4.5 + [[ve (@) ls] < Mo

)

Proof. We begin with the estimate for v;. Following the proof Lemma [ITZ.6] we
let 9,02 act on the boundary condition (L3d) and test with —(2g?°TI% vF 5, where
(% = a4, an element of our partition of unity. Using ([3.2]), we see that

B /r 0,07 [/gHn(n)] - (P9 v, = /F(\/Eqn)tt [CP9" 005 ]y

Using (24T, letting C' d