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Abstract

We consider the equations of linear homogeneous anisotropic elasticity admitting the pos-
sibility that the material is internally constrained, and formulate a simple necessary and
sufficient condition for the fundamental boundary value problems to be well-posed. For
materials fulfilling the condition, we establish continuous dependence of the displacement
and stress on the elastic moduli and ellipticity of the elasticity system. As an application
we determine the orthotropic materials for which the fundamental problems are well-posed
in terms of their Young’s moduli, shear moduli, and Poisson ratios. Finally, we derive a
reformulation of the elasticity system that is valid for both constrained and unconstrained
materials and involves only one scalar unknown in addition to the displacements. For
a two-dimensional constrained material a further reduction to a single scalar equation is
outlined.

March 1986



1. Introduction

The equations of anisotropic elasticity are

A
≈
σ =

≈
ε(
∼
u) in Ω, (1.1)

d
∼
iv
≈
σ =

∼
f in Ω, (1.2)

where
≈
σ = (σkl) is a 3×3 symmetric tensor of unknown stresses,

∼
u is a 3-vector of unknown

displacements, and
∼
f is a given 3 vector of forces, all defined on a smoothly bounded

domain Ω ⊂ IR3. The infinitesmal strain tensor
≈
ε(
∼
u) is defined as the symmetric part of

the gradient tensor (∂ui/∂xj) and the vector-valued divergence d
∼
iv
≈
σ is defined by applying

the scalar-valued divergence operator to the rows of
≈
σ. The fourth order tensor A, known

as the compliance tensor, is a self-adjoint linear operator on the six-dimensional space
≈
IR of

symmetric 3× 3 tensors, and characterizes the particular material. The compliance tensor
may be determined by specifying 21 independent coefficients or elastic moduli.

We shall consider in this paper the fundamental displacement and traction boundary
conditions:

∼
u =

∼
g1 on Γ1,

≈
σ
∼
n =

∼
g2 on Γ2.

(1.3)

Here Γ1 and Γ2 are disjoint open subsets of ∂Ω with Γ1 ∪ Γ2 = ∂Ω. For now we assume
that Γ1 and Γ2 are nonempty. The case of unmixed boundary conditions is considered in
Section 5.

It is often assumed that the compliance tensor is positive definite. In this case,
≈
σ

can be eliminated and it can easily be shown that the resulting boundary value problem
is well-posed. For many important materials, however, the compliance tensor is positive
semidefinite but singular, or nearly so. If the compliance tensor is singular, admitting a
nonzero tensor

≈
σ0 in its nullspace, then the displacement fields which satisfy the constitu-

tive equation (1.1) are not arbitrary, but automatically satisfy the linear relation

≈
ε(
∼
u) :

≈
σ0 = 0.

This relation is called the material constraint and the material is said to be (internally)
constrained. We term any nonzero tensor in the nullspace of the compliance tensor a
constraint tensor. For example, an incompressible material is one for which the 3 × 3
identity matrix is a constraint tensor and the corresponding constraint is div

∼
u = 0. A

material which is inextensible in the direction
∼
s has constraint tensor

∼
s
∼
st and so satisfies

the constraint
∼
s · g

∼
rad (

∼
s ·
∼
u) = 0.

The boundary value problem (1.1)-(1.3) for a constrained material may or may not
be well-posed. For an incompressible material, for example, well-posedness has long been
known in the isotropic case and has been recently established in general [6]. For inextensible
materials, in contrast, the boundary value problem is over-determined.

1



In this paper we assume only that the compliance tensor is semidefinite, and formulate
a simple algebraic property of the compliance tensor which characterizes those materials
for which the fundamental boundary value problem is well-posed. Moreover, for those
materials we establish a priori bounds for the displacement and stress fields which are
uniform with respect to the elastic moduli and establish continuous dependence of the
solution on the moduli.

As an application of our analysis we consider the class of orthotropic materials. A
material in this class is determined by nine independent physical constants and can be
constrained in a variety of ways. We determine when the fundamental boundary value
problems are well set in terms of these constants, and establish continuity of the solutions
with respect to them.

The question of continuous dependence on the elastic moduli near an elastic constraint
is of great importance. Without such continuous dependence results, the use of constrained
models, which represent an idealization of nearly constrained materials, would be unjusti-
fied. Nonetheless this question remains largely unresolved. Our results apparently provide
the first proof of convergence of unconstrained materials to a constrained material outside
of the simplest case, that of an isotropic incompressible material. The isotropic case was
examined by BRAMBLE and PAYNE [4], who proved continuous dependence results for the
pure displacement and traction problems and, in particular, showed that as the Poisson
ratio tends to 1/2 the displacement and each of its derivatives converge at interior points to
the corresponding quantity for the incompressible problem. Results of the same sort have
since been derived by MIKHLIN [17], KOBEL’KOV [13], LAZAREV [14], and ROSTAMIAN [19].
For nonlinear elastic materials asymptotic expansions have been devised which suggest the
convergence of an almost constrained material to a constrained one, but of course these do
not provide proofs of convergence. See SPENCER [21] for the constraint of incompressibility
of an elastic solid and ANTMAN [2] for that of inextensibility of an elastica.

ROSTAMIAN [19] has derived abstract conditions on the compliance tensor of an aniso-
tropic linearly elastic material which insure continuous dependence of the solution on the
elastic moduli. His conditions, which are sufficient but not neccessary, are much more
complex than the simple algebraic conditions that we give. He applied his theory only to
the known case of isotropic elasticity, regaining the results of BRAMBLE and PAYNE [4] and
also showing convergence of the stresses.

PIPKIN outlines the general theory of constraints in linear elasticity in [18]. He clas-
sifies constraints by their dimension, which he defines as the rank of the corresponding
constraint tensor. For our purpose the crucial distinction is between constraint tensors of
deficient rank and those of full rank. We term the corresponding constraints singular and
nonsingular respectively. Our essential hypothesis on the material is that it admits only
nonsingular constraints, that is, that no nonzero singular tensor

≈
σ0 satisfies A

≈
σ0 = 0.

Let us comment on the physical significance of singular and nonsingular constraints.
A material is constrained if and only if a smooth body composed of the material can be
subject to a homogeneous state of stress without deforming. The constant stress tensor
is then a constraint tensor. The constraint is singular if and only if the traction vanishes
at some point on the boundary, since the normal at such a point is a nullvector of the
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constraint tensor. For example, an incompressible material supports a uniform pressure
without deformation. In this state the traction never vanishes. Contrarily, an inextensible
material under uniform tension does not deform, but the traction vanishes in any direction
normal to the axis of tension.

To state uniform estimates we associate a quantitative measure with this hypothesis.
Let C denote the space of positive semidefinite self-adjoint linear transformations of

≈
IR

into itself, and for A ∈ C let 0 ≤ λ1(A) ≤ λ2(A) ≤ · · · ≤ λ6(A) denote its eigenvalues
and

≈
σ1(A),

≈
σ2(A), · · · ,

≈
σ6(A) ∈

≈
IR a corresponding orthonormal basis of eigenvectors. The

quantity that we use to measure the closeness of the material to having a singular constraint
is denoted by χ(A) and defined by

χ(A) = max[λ1(A), λ2(A)/|
≈
σ1(A)−1|2]. (1.4)

In the next section we show that the definition of χ is independent of the choice of eigen-
basis, and that χ : C → [0,∞) is continuous and vanishes if and only if the material admits
a singular constraint. We may now state our principal result.

Theorem 1.1: Suppose that the compliance tensor A is positive semidefinite and admits
no singular constraints. Then for any data (

∼
f,
∼
g1, ∼g2) ∈

∼
L2(Ω)×

∼
H1/2(Γ1)×

∼
L2(Γ2), there

exists a unique solution (
≈
σ,
∼
u) ∈

≈
L2(Ω) ×

∼
H1(Ω) to the mixed boundary value problem

(1.1)–(1.3). Moreover, the a priori estimate

‖
≈
σ‖0 + ‖

∼
u‖1 ≤ C(‖

∼
f‖−1,D + |

∼
g1|1/2,Γ1

+ |
∼
g2|−1/2,Γ2

) (1.5)

holds with C a constant depending only on Ω, an upper bound for the compliances, and
a lower bound for χ(A); and the solution (

≈
σ,
∼
u) depends continuously on the compliance

tensor A and the data
∼
f ,
∼
g1, and

∼
g2.

An outline of the paper is as follows. Section 2 contains additional notation used in the
paper along with the statement of a theorem due to BREZZI [5] dealing with abstract saddle
point problems. This theorem will play a major role in our subsequent analysis. The proof
of Theorem 1.1 is given in Section 3. As an application of the theorem we consider the case
of orthotropic materials in Section 4. In the next section we extend the results to the cases
of pure traction and pure displacement boundary conditions. We then show in Section 6
that the hypothesis of nonsingularity of constraints is in some sense necessary. In Section
7 we prove ellipticity of the elastic system uniformly with respect to the elastic moduli and
in Section 8 we use the ideas previously developed to derive two alternate formulations
of the elasticity equations which may be more convenient for some computational and
analytic purposes. In the first of these formulations the stress

≈
σ is eliminated and a new

scalar variable p is introduced. In the case of an isotropic incompressible material these
equations are equivalent to the stationary Stokes equations. The second formulation is
a further simplification possible in the two-dimensional constrained case and results in a
single fourth order equation, analogous to reduction of the Stokes system to the biharmonic
problem via the introduction of a stream function. Finally, in the last section, we remark
on the case of plane elasticity.
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2. Notation and Preliminary Results

We underscore 3 × 3 symmetric tensors by ≈ and 3-vectors by ∼. We endow
≈
IR,

the space of real symmetric 3 × 3 tensors, with the Frobenius norm and use the notation

≈
σ :

≈
τ =

∑3
i,j=1 σijτij for the associated inner product. The space

∼
IR of three vectors carries

the usual Euclidean norm and dot product. For vector-valued functions
∼
u = (u1, u2, u3)t,

we write
∼
u ∈

∼
H1(Ω) if ui ∈ H1(Ω) for i = 1, 2, 3, and set ‖

∼
u‖1 = (

∑3
i=1 ‖ui‖21)1/2. For

3× 3 symmetric tensors
≈
σ = (σij), we write

≈
σ ∈

≈
L2(Ω) if σij ∈ L2(Ω) for i, j = 1, 2, 3 and

set ‖
≈
σ‖0 = (

∑3
i,j=1 ‖σij‖20)1/2.

We shall require some spaces of functions defined on a smoothly bounded open subset
Γ′ of Γ. By

∼
H1/2(Γ′) we denote the usual Sobolev space [16, Ch.1,Sec.7]. The subspace

consisting of functions whose extension to Γ by zero lies in
∼
H1/2(Γ) is denoted by

∼
H

1/2
00 (Γ′).

The norm is taken as the graph norm of the extension by zero, which induces a finer
topology than the

∼
H1/2(Γ′) norm. By

∼
H−1/2(Γ′) we mean the normed dual of

∼
H

1/2
00 (Γ′).

The norms in
∼
H1/2(Γ′) and

∼
H−1/2(Γ′) are denoted by | · |1/2,Γ′ and | · |−1/2,Γ′ respectively,

with the subscript being dropped in case Γ′ = Γ.

We further define

∼
H1

0 (Ω) = {
∼
v ∈

∼
H1(Ω) :

∼
v|Γ = 0},

and

∼
H1
D(Ω) = {

∼
v ∈

∼
H1(Ω) :

∼
v|Γ1

= 0},

and denote by ‖
∼
f‖−1,0 and ‖

∼
f‖−1,D the norms in the dual spaces of

∼
H1

0 (Ω) and
∼
H1
D(Ω),

respectively.

Many of the results in this paper will be derived using a theorem of F. BREZZI [5]
dealing with saddle point problems of the following type:

Find (σ, u) ∈W × V such that:

a(σ, τ) + b(τ, u) = 〈g, τ〉 for all τ ∈W, (2.1)

b(σ, v) = 〈f, v〉 for all v ∈ V, (2.2)

where W and V are real Hilbert spaces, a(·, ·) and b(·, ·) are continuous bilinear forms on
W ×W and W ×V respectively, and g and f are given functions in W ∗ and V ∗ (the duals
of W and V respectively).

Let Z = {τ ∈ W : b(τ, v) = 0 for all v ∈ V }. One version of BREZZI’s theorem is the
following:

Theorem 2.1: Suppose there is a constant γ > 0 such that

a(τ, τ) ≥ γ ‖τ‖2W for all τ ∈ Z

and

inf
0 6=v∈V

sup
0 6=τ∈W

b(τ, v)
‖τ‖W ‖v‖V

≥ γ.
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Then for all (f, g) ∈ V ∗ ×W ∗, there is a unique solution (σ, u) ∈ W × V of (2.1), (2.2).
Moreover,

‖σ‖W + ‖u‖V ≤ C(‖g‖W∗ + ‖f‖V ∗),

where C depends only on γ and bounds for the bilinear forms a and b.

We will be applying BREZZI’s theorem in the case

a(
≈
σ,
≈
τ) =

∫
Ω

A
≈
σ :

≈
τ d
∼
x, b(

≈
τ,
∼
v) = −

∫
Ω
≈
ε(
∼
v) :

≈
τ d
∼
x. (2.3)

Finally we establish some properties of the function χ(A) defined in (1.4). For any A
with λ1(A) 6= λ2(A),

≈
σ1(A) is uniquely determined (up to sign), so the definition of χ(A)

is independent of the choice of eigenbasis and, moreover, χ is certainly continuous in A.
On the other hand, if λ1(A) = λ2(A), then χ(A) = λ1(A), since regardless of the choice
of basis

|
≈
σ1(A)−1| ∈ [1,∞]. (2.4)

Moreover, in view of (2.4),

0 ≤ λ1(A) ≤ χ(A) ≤ λ2(A) <∞,

from which it follows that χ is again continuous in A. Thus in any case χ maps C contin-
uously into [0,∞).

We next show that if λ2(A) = 0, then A admits a singular constraint. This is certainly
so if

≈
σ1(A) is singular. If

≈
σ1(A) is nonsingular and λ2(A) = 0, then

≈
σµ =

≈
σ2(A)+µ

≈
σ1(A)

is a (nonzero) constraint tensor for all real µ and its determinant is a polynomial in µ of
degree exactly 3. When µ is a real root of this polynomial,

≈
σµ is a singular constraint

tensor.

Now if A does not admit a singular constraint then |
≈
σ1(A)−1| < ∞ and as we have

just seen λ2 > 0, so χ(A) > 0. If, on the other hand, A admits a singular constraint tensor

≈
σ1(A), then λ1(A) = 0 and |

≈
σ1(A)−1| = +∞, so χ(A) = 0. Thus χ(A) vanishes if and

only if A admits a singular constraint.

5



3. Proof of Theorem 1.1

The crux of the argument is contained in the following lemma.

Lemma 3.1: Let A be a semidefinite compliance tensor which does not admit a sin-
gular constraint. Let

≈
G ∈

≈
L2(Ω)∗,

∼
F ∈

∼
H1
D(Ω)∗. Then there exist unique functions

≈
ρ ∈

≈
L2(Ω) and

∼
z ∈

∼
H1
D(Ω) such that

a(
≈
ρ,
≈
τ) + b(

≈
τ,
∼
z) = 〈

≈
G,
≈
τ〉 for all

≈
τ ∈

≈
L2(Ω),

b(
≈
ρ,
∼
v) = 〈

∼
F,
∼
v〉 for all

∼
v ∈

∼
H1
D(Ω).

Moreover
‖
≈
ρ‖0 + ‖

∼
z‖1 ≤ C(‖

≈
G‖0 + ‖

∼
F‖−1,D)

where C depends only on Ω, an upper bound for |A|, and a lower bound for χ(A).

The bilinear forms here are defined in (2.3). Before turning to the proof of this lemma, we
deduce from it the proof of the theorem.

As is usual, we impose the Dirichlet boundary condition by setting
∼
u1 =

∼
E(
∼
g1) with

∼
E :

∼
H1/2(Γ1)→

∼
H1(Ω) a continuous extension operator, and seek a pair (

≈
σ,
∼
u2) such that

A
≈
σ −

≈
ε(
∼
u2) =

≈
ε(
∼
u1),

d
∼
iv
≈
σ =

∼
f, (3.1)

∼
u2 = 0 on Γ1,

≈
σ
∼
n =

∼
g2 on Γ2.

We then take
∼
u =

∼
u1 +

∼
u2, so that the problem (1.1)–(1.3) is satisfied. In terms of the

bilinear forms (2.3), a weak form of (3.1) is:

Find
≈
σ ∈

≈
L2(Ω),

∼
u2 ∈

∼
H1
D(Ω) such that

a(
≈
σ,
≈
τ) + b(

≈
τ,
∼
u2) = −b(

≈
τ,
∼
u1) for all

≈
τ ∈

≈
L2(Ω), (3.2)

b(
≈
σ,
∼
v) =

∫
Ω
∼
f ·
∼
v d

∼
x−

∫
Γ2

∼
g2 · ∼v ds for all

∼
v ∈

∼
H1
D(Ω). (3.3)

By Lemma 3.1 this problem admits a unique solution and the estimate

‖
≈
σ‖0 + ‖

∼
u2‖1 ≤ C(‖

≈
ε(
∼
u1)‖0 + ‖

∼
f‖−1,D + |

∼
g2|−1/2,Γ2

)

holds with C a constant depending only on Ω, an upper bound for |A|, and a lower bound
for χ(A). Existence and uniqueness for the original problem and the a priori estimate
(1.5) follow readily. The continuous dependence result follows by a standard argument
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which we sketch. Letting (
≈̄
σ,
∼̄
u) denote the solution to the elliptic system with compliance

tensor Ā and data
∼
f̄ ,
∼̄
g1, ∼̄g2, and writing

∼̄
u =

∼̄
u1 +

∼̄
u2 as above, the pair (

≈̄
σ,
∼̄
u2) solves

a(
≈̄
σ,
≈
τ) + b(

≈
τ,
∼̄
u2) = −b(

≈
τ,
∼̄
u1) +

∫
Ω

(A− Ā)
≈̄
σ :

≈
τ d
∼
x for all

≈
τ ∈

≈
L2(Ω), (3.4)

b(
≈̄
σ,
∼
v) =

∫
Ω
∼
f ·
∼
v d
∼
x−

∫
Γ2
∼
g2 · ∼v ds for all

∼
v ∈

∼
H1
D(Ω). (3.5)

We wish to show that if |A− Ā|+‖
∼
f −

∼
f̄‖−1,D + |

∼
g1− ∼̄g1|1/2,Γ1

+ |
∼
g2− ∼̄g2|−1/2,Γ2

→ 0, then
‖
≈
σ−

≈̄
σ‖0 +‖

∼
u−

∼̄
u‖1 → 0. First ‖

∼
u1−

∼̄
u1‖1 → 0 by the continuity of the extension operator

∼
E . Subtracting (3.2), (3.3) from (3.4), (3.5), noting that |A| → |Ā| and χ(A) → χ(Ā),
and applying Lemma 3.1, we deduce that also ‖

≈
σ −

≈̄
σ‖0 + ‖

∼
u2 −

∼̄
u2‖1 → 0.

It remains to prove Lemma 3.1. We apply BREZZI’s theorem (Theorem 2.1) to reduce
Lemma 3.1 to the verification of the following two lemmas.

Lemma 3.2: There exists a constant γ > 0 depending only on Ω and a lower bound for
χ(A) such that ∫

Ω

A
≈
τ :

≈
τ d
∼
x ≥ γ ‖

≈
τ‖20 for all

≈
τ ∈

≈
Z,

where

≈
Z = {

≈
τ ∈

≈
L2(Ω) :

∫
Ω
≈
τ :

≈
ε(
∼
v) d

∼
x = 0 for all

∼
v ∈

∼
H1
D(Ω)}.

Lemma 3.3: There exists a constant γ > 0 depending only on Ω such that

inf
0 6=
∼
v∈
∼
H1
D

(Ω)

sup
0 6=
≈
τ∈
≈
L2(Ω)

∫
Ω ≈
ε(
∼
v) :

≈
τ d
∼
x

‖
∼
v‖1 ‖≈τ‖0

≥ γ.

The proof of Lemma 3.3 is immediate: given
∼
v, we take

≈
τ =

≈
ε(
∼
v) and apply Korn’s

inequality. To prove Lemma 3.2 we decompose an arbitrary element
≈
τ of

≈
Z as

≈
τ =

≈
τT +

≈
τD

with
≈
τT = (

≈
τ :

≈
σ1)

≈
σ1. Then clearly∫

Ω

A
≈
τ :

≈
τ d
∼
x ≥ max(λ1‖≈τ‖

2
0, λ2‖≈τD‖

2
0). (3.6)

Now there exists
∼
p ∈

∼
H1
D(Ω) such that

div
∼
p =

≈
τ :

≈
σ1 and ‖

∼
p‖1 ≤ C1‖≈τ :

≈
σ1‖0,

where C1 depends only on Ω. Let
∼
q =

≈
σ−1

1 ∼
p. Then

‖
∼
q‖1 ≤ C1|≈σ

−1
1 |‖≈τ :

≈
σ1‖0
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and

≈
σ1 : g

≈
rad

∼
q = div

∼
p =

≈
τ :

≈
σ1.

Consequently

‖
≈
τ :

≈
σ1‖20 =

∫
Ω

(
≈
σ1 : g

≈
rad

∼
q)(
≈
τ :

≈
σ1) d

∼
x

=
∫

Ω

g
≈
rad

∼
q :
≈
τT d∼x =

∫
Ω

g
≈
rad

∼
q : (

≈
τ −

≈
τD) d

∼
x

=
∫

Ω
≈
ε(
∼
q) : (

≈
τ −

≈
τD) d

∼
x = −

∫
Ω
≈
ε(
∼
q) :

≈
τD d∼x,

since
∼
q ∈

∼
H1
D(Ω) and

≈
τ ∈

≈
Z. Thus

‖
≈
τ :

≈
σ1‖20 ≤ ‖∼q‖1‖≈τD‖0 ≤ C1|≈σ

−1
1 |‖≈τ :

≈
σ1‖0‖≈τD‖0

and it follows easily that

‖
≈
τD‖20 ≥

C2

|
≈
σ−1

1 |2
‖
≈
τ‖20 (3.7)

where C2 depends only on Ω. The lemma is an immediate consequence of (3.6) and (3.7).

4. Orthotropic Materials

An elastic material which admits three orthogonal planes of symmetry is termed or-
thotropic. Included in this case are hexagonal and cubic crystalline structures [15, page
31]. Orthotropic materials are also used to model woods, plywood and other composites
[15, pages 58-60], and some biological substances, such as the basilar membrane of the
inner ear [11]. Constrained orthotropic materials, in particular incompressible ones, are
studied frequently in the engineering literature [8],[20]. To state the constitutive equation
for an orthotropic material concisely it is convenient to introduce the notations

d
∼
iag

≈
σ = (σ11, σ22, σ33)t and o

∼
ffd

≈
σ = (σ23, σ13, σ12)t

for the diagonal and offdiagonal of a symmetric 3 × 3 tensor. The constitutive equation
may then be written

B d
∼
iag

≈
σ = d

∼
iag

≈
ε(
∼
u),

G o
∼
ffd

≈
σ = o

∼
ffd

≈
ε(
∼
u),

where

B =

 1/E1 −ν12/E2 −ν13/E3

−ν21/E1 1/E2 −ν23/E3

−ν31/E1 −ν32/E2 1/E3


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and

G =

 1/G1 0 0
0 1/G2 0
0 0 1/G3

 .

Here the Ei are the Young’s moduli of the material, the Gi are the shear moduli, and the
νij are the Poisson ratios. The relations

νijEi = νjiEj , 1 ≤ i < j ≤ 3,

are satisfied, so an orthotropic material is defined by nine independent constants and the
matrix B is symmetric.

The Young’s modulus Ei is the ratio of tension to extension when the body is in a
state of pure tension in the ith coordinate direction. The shear modulus Gi is the ratio of
shear stress to shear strain when the body is in a state of pure shear orthogonal to the ith
coordinate direction. The Poisson ratio νij is the ratio of compression in the ith direction
to extension in the jth direction for a material in a state of pure tension in the jth direction.

The condition that the compliance tensor be positive semidefinite implies that Ei > 0
and Gi > 0. It is a priori possible that one of these quantities is infinite, but in that case
it is easy to see that the material admits a singular constraint. Henceforth we assume that
the Young’s moduli and shear moduli are positive finite real numbers. It is rare, though
apparently possible, for some of the Poisson ratios to be negative [9].

Noting that sign(νjk) = sign(νkj), we introduce the symmetrized Poisson ratios

νi = sign(νjk)
√
νjkνkj

where {j, k} = {1, 2, 3} \ {i}. Setting

D =

E
−1/2
1 0 0
0 E

−1/2
2 0

0 0 E
−1/2
3


and

M =

 1 −ν3 −ν2

−ν3 1 −ν1

−ν2 −ν1 1


we have B = DMD. Thus the compliance tensor is positive semidefinite if and only if M
is. Since the diagonal elements of M are positive, this holds if and only if the principle
minors and the determinant of M are nonnegative, i.e., if and only if

1− ν2
i ≥ 0, i = 1, 2, 3, (4.1)

and
1− ν2

1 − ν2
2 − ν2

3 − 2ν1ν2ν3 ≥ 0. (4.2)

9



Figure 4.1: The solid P of admissible Poisson ratios.

The region P ⊂
∼
IR described by these inequalities is a compact convex set which

may be described as a solid curvilinear tetrahedron. Its vertices are the points (−1, 1, 1)t,
(1,−1, 1)t, (1, 1,−1)t, and (−1,−1,−1)t, which are the only singular points of ∂P . The
six line segments connecting these points form the 1-skeleton of a 3-simplex. This skeleton,
which we denote by K, is entirely contained in ∂P and decomposes it into four curvilinear
triangles in

∼
IR with straight edges. These triangles are joined along their edges in a manner

yielding a surface which is smooth except at the vertices. (See Figure 4.1.) To verify these
assertions we note that for

|ν1| ≤ 1, |ν2| ≤ 1 (4.3)

(4.2) may be solved for ν3 to give

−ν1ν2 −
√

(1− ν2
1)(1− ν2

2) ≤ ν3 ≤ −ν1ν2 +
√

(1− ν2
1)(1− ν2

2). (4.4)

Moreover (4.3) and (4.4) together imply that |ν3| ≤ 1. Thus the systems (4.1-4.2) and
(4.3-4.4) are equivalent. It is then easy to give parametric representations of the four
curvilinear triangles forming ∂P . They are

ν3 = −ν1ν2 +
√

(1− ν2
1)(1− ν2

2), ν1 ≥ −1, ν2 ≥ −1, ν1 + ν2 ≤ 0,

ν3 = −ν1ν2 +
√

(1− ν2
1)(1− ν2

2), ν1 ≤ 1, ν2 ≤ 1, ν1 + ν2 ≥ 0,

ν3 = −ν1ν2 −
√

(1− ν2
1)(1− ν2

2), ν1 ≤ 1, ν2 ≥ −1, ν1 − ν2 ≥ 0,

ν3 = −ν1ν2 −
√

(1− ν2
1)(1− ν2

2), ν1 ≥ −1, ν2 ≤ 1, ν1 − ν2 ≤ 0.

One easily checks that a point
∼
ν = (ν1, ν2, ν3)t ∈ P lies on ∂P if and only if detM =

1 − ν2
1 − ν2

2 − ν2
3 − 2ν1ν2ν3 = 0. Consequently if the vector of Poisson ratios of an

orthotropic material lies in the interior of P , the material is unconstrained, while if it
lies on the boundary the material is constrained. We now show that is

∼
ν ∈ ∂P \K then

the constraint is nonsingular, but if
∼
ν ∈ K the material admits a singular constraint. First

10



suppose that
∼
ν ∈ K. Without loss of generality we may suppose that

∼
ν lies on the line

segment joining (−1, 1, 1)t and (1,−1, 1)t. Then ν3 = 1 and ν2 = −ν1 so

M =

 1 −1 ν1

−1 1 −ν1

ν1 −ν1 1

 .

In view of the form of the compliance tensor, we conclude thatE
1/2
1 0 0
0 E

1/2
2 0

0 0 0


is a constraint tensor, which is manifestly singular.

Next suppose that
∼
ν ∈ ∂P \K. We show that any nontrivial nullvector of M must

then have all nonvanishing components. Indeed if
∼
z denotes such a nullvector and z3, for

example, were to vanish, then (z1, z2)t would be a nontrivial nullvector of the matrix(
1 −ν3

−ν3 1

)
,

and consequently ν3 = ±1. From (4.2) it then follows that ν1 ± ν2 = 0, whence
∼
ν ∈ K,

a contradiction. Again recalling the form of the compliance tensor for an orthotropic
material, we deduce that when

∼
ν ∈ ∂P \K the only constraint tensors are diagonal tensors

with nonzero diagonal elements, which are nonsingular.

We are now in a position to invoke Theorem 1.1, with the following conclusion.

Theorem 4.1: Let the elastic moduli of an orthotropic material satisfy

(E1, E2, E3, G1, G2, G3, ν1, ν2, ν3) ∈ (0,∞)6 × (P \K).

Then the boundary value problem (1.1)–(1.3) is well-posed (in the sense of Theorem 1.1),
the solution depending continuously on the load, boundary data, and elastic moduli. The
a priori estimate (1.5) holds with constant C uniform for elastic moduli in any compact
subset of (0,∞)6 × (P \K).

We first presented this result in [3] under the additional assumption that the Poisson
ratios are nonnegative.
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5. Pure Traction and Pure Displacement Boundary Conditions

In this section we briefly indicate the changes necessary to analyze the elasticity
system (1.1), (1.2) when the mixed boundary conditions (1.3) are replaced by either the
displacement boundary condition

∼
u =

∼
g on Γ = ∂Ω, (5.1)

or the traction boundary condition

≈
σ
∼
n =

∼
g on Γ. (5.2)

The latter case is entirely straightforward and we dispose of it immediately. A necessary
and sufficient condition for the existence of a solution is the compatibility condition∫

Γ
∼
g ·
∼
v ds =

∫
Ω
∼
f ·
∼
v d
∼
x for all

∼
v ∈ R

∼
M, (5.3)

where
R
∼
M = {

∼
v ∈

∼
L2(Ω) :

∼
v =

∼
c+

≈
Q
∼
x,
∼
c ∈

∼
IR,

≈
Q ∈ IR3×3,

≈
Q = −

≈
Qt}

is the space of rigid motions. When (5.3) holds, the solution is determined up to the
addition of a rigid motion, and uniqueness may be obtained by requiring that

∼
u belong to

∼
H1
⊥(Ω), the orthogonal complement of R

∼
M in

∼
H1(Ω). The analogue of Theorem 1.1 for the

traction problem thus applies to data (
∼
f,
∼
g) ∈

∼
L2(Ω) ×

∼
L2(Γ) satisfying (5.3) and asserts

existence and uniqueness of a solution in
≈
L2(Ω)×

∼
H1
⊥(Ω).

To prove the theorem, we consider a weak formulation of the traction problem which
seeks

≈
σ ∈

≈
L2(Ω),

∼
u ∈

∼
H1
⊥(Ω) such that

a(
≈
σ,
≈
τ) + b(

≈
τ,
∼
u) = 0 for all

≈
τ ∈

≈
L2(Ω),

b(
≈
σ,
∼
v) =

∫
Ω
∼
f ·
∼
v d
∼
x−

∫
Γ
∼
g ·
∼
v ds for all

∼
v ∈

∼
H1
⊥(Ω).

Note that the latter equation actually holds for all
∼
v ∈

∼
H1(Ω) when the compatibility

condition (5.3) is satisfied, so this weak formulation is justified. Proceeding as in Section
3, we may apply BREZZI’s theorem to the analysis of this formulation to obtain the theorem.

The case of displacement boundary conditions is considerably more complicated, due
to the existence of a compatibility condition only for constrained materials, the condition
depending, moreover, on the compliance tensor. From (1.1), (5.1) and the fact that the
material is homogeneous (specifically that

≈
σ1 =

≈
σ1(A) is independent of

∼
x ∈ Ω), we see

that
λ1

∫
Ω
≈
σ :

≈
σ1 d∼x =

∫
Ω
≈
σ : A

≈
σ1 d∼x

=
∫

Ω

A
≈
σ :

≈
σ1 d∼x =

∫
Ω
≈
ε(
∼
u) :

≈
σ1 d∼x (5.4)
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= −
∫

Ω
∼
u · d

∼
iv
≈
σ1 d∼x+

∫
Γ
∼
u ·
≈
σ1∼
nds =

∫
Γ
∼
g ·
≈
σ1∼
nds.

When A is singular, λ1 = 0, implying the necessary condition∫
Γ
∼
g ·
≈
σ1(A)

∼
nds = 0. (5.5)

When (5.5) does hold, uniqueness fails in that (0,
≈
σ1(A)) satisfies the homogeneous system.

Uniqueness is restored by adding the side condition∫
Ω
≈
σ :

≈
σ1(A) d

∼
x = 0. (5.6)

Note that for λ1 6= 0, (5.6) follows from (5.5) by (5.4).

We remark that for the constraint of incompressibility,
≈
σ1 is the identity tensor. In

this case the compatibility condition (5.5) reduces to∫
Γ
∼
g ·
∼
nds = 0

and the side condition (5.6) to ∫
Ω

tr (
≈
σ) d

∼
x = 0.

We now establish existence, uniqueness, and an a priori estimate for the displacement
boundary value problem (assuming that the compliance tensor does not admit any singular
constraints). For a weak formulation of the problem, we define the space

≈
WA = {

≈
σ ∈

≈
L2(Ω) :

∫
Ω
≈
σ :

≈
σ1(A) d

∼
x = 0}.

The proof of the following lemma, which differs only slightly from that of Lemma 3.1, will
be discussed at the end of the section.

Lemma 5.1: Let
≈
G ∈

≈
W ∗A, ∼F ∈ ∼H

1
0 (Ω)∗. Then there is a unique pair (

≈
ρ,
∼
z) ∈

≈
WA×∼H

1
0 (Ω)

such that
a(
≈
ρ,
≈
τ) + b(

≈
τ,
∼
z) = 〈

≈
G,
≈
τ〉 for all

≈
τ ∈

≈
WA, (5.7)

b(
≈
ρ,
∼
v) = 〈

∼
F,
∼
v〉 for all

∼
v ∈

∼
H1

0 (Ω).

Moreover,
‖
≈
ρ‖0 + ‖

∼
z‖1 ≤ C(‖

≈
G‖
≈
W∗

A
+ ‖

∼
F‖−1,0),

where C depends only on Ω, an upper bound for |A|, and a lower bound for χ(A).

Note that if
〈
≈
G,
≈
σ1(A)〉 = 0, (5.8)
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which will be the case for a Dirichlet problem with compatible data, then the solution of
(5.7) satisfies the first equation also for

≈
τ =

≈
σ1(A) and hence for all

≈
τ ∈

≈
L2(Ω), not just

≈
τ ∈

≈
WA. Therefore (5.7) is a valid weak formulation of the Dirichlet problem.

Now suppose that the displacement boundary data
∼
g satisfies (5.5). Then the solution

to the boundary value problem (1.1), (1.2), (5.1) may be written as (
≈
σ,
∼
u1 +

∼
u2), where

∼
u1 =

∼
E(
∼
g) with

∼
E :

∼
H1/2(Γ) →

∼
H1(Ω) a bounded extension operator, and the pair (

≈
σ,
∼
u2)

satisfies (5.7) with 〈
∼
F,
∼
v〉 =

∫
Ω ∼
f ·

∼
v d
∼
x, 〈

≈
G,
≈
τ〉 = −b(

≈
τ,
∼
u1). The compatibility condition

(5.5) insures (5.8), and so Lemma 5.1 implies first, that the displacement problem admits
a unique solution (

≈
σ,
∼
u), and second, that

‖
≈
σ‖0 + ‖

∼
u‖1 ≤ C(‖

∼
f‖−1,0 + |

∼
g|1/2) (5.9)

with C depending only on Ω, |A|, and χ(A).

If the displacement boundary data violates (5.5), then both these conclusions are
false. Existence and uniqueness do not hold for a constrained material. Even for an
unconstrained material the a priori estimate (5.9) does not hold uniformly. More precisely,∫

Ω ≈
σ :

≈
σ1(A) d

∼
x cannot be bounded independently of the material constants. However we

can derive a uniform a priori bound on
∼
u and on the orthogonal projection

≈̂
σ of

≈
σ on

the complement of the one-dimensional space spanned by
≈
σ1 =

≈
σ1(A). To this end we

decompose the solution as
(
≈
σ,
∼
u) = (

≈̌
σ,
∼̌
u) + (

≈̂
σ,
∼̂
u),

where

≈̌
σ = θ

≈
σ1/λ1, ∼̌

u = θ
≈
σ1∼
x, θ =

∫
Γ
∼
g ·
≈
σ1∼
nds/measure(Ω).

Then
≈̂
σ is indeed the projection of

≈
σ orthogonal to

≈
σ1, as follows from (5.4), and the pair

(
≈̂
σ,
∼̂
u) solves the boundary value problem

A
≈̂
σ =

≈
ε(
∼̂
u) in Ω,

d
∼
iv
≈̂
σ =

∼
f in Ω,

∼̂
u =

∼
g − θ

≈
σ1∼
x on ∂Ω.

The boundary data for this problem is compatible since∫
Γ
≈
σ1∼
x ·
≈
σ1∼
nds =

∫
Ω
≈
ε(
≈
σ1∼
x) :

≈
σ1 d∼x

=
∫

Ω

|
≈
σ1|2 d∼x = measure(Ω).

Thus Lemma 5.1 implies

‖
≈̂
σ‖0 + ‖

∼̂
u‖1 ≤ C(‖

∼
f‖−1,0 + |

∼
g − θ

≈
σ1∼
x|1/2) ≤ C(‖

∼
f‖−1,0 + |

∼
g|1/2).
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Clearly also ‖
∼̌
u‖1 ≤ C|∼g|1/2, so

‖
≈̂
σ‖0 + ‖

∼
u‖1 ≤ C(‖

∼
f‖−1,0 + |

∼
g|1/2),

which gives the desired a priori bound.

Finally we consider the continuous dependence of the solution on the elastic moduli.
Thus we fix a value Ā of the compliance tensor and data

∼
f̄ and

∼̄
g, and denote by (

≈̄
σ,
∼̄
u)

the corresponding solution. One might hope to show that if (A,
∼
f,
∼
g) is sufficiently close

to (Ā,
∼
f̄ ,
∼̄
g), then the solution (

≈
σ,
∼
u) determined by (A,

∼
f,
∼
g) is arbitrarily near (

≈̄
σ,
∼̄
u), i.e.,

that
lim

(A,
∼
f,
∼
g)→(Ā,

∼
f̄ ,
∼
ḡ)

(
≈
σ,
∼
u) = (

≈̄
σ,
∼̄
u) in

≈
L2(Ω)×

∼
H1(Ω). (5.10)

Of course we assume that neither compliance tensor Ā nor A admits a singular constraint.
Moreover we may assume that the limiting material is constrained, i.e., that Ā is singular,
since otherwise the result is obvious. Now for Ā singular we must suppose that∫

Γ
∼̄
g ·
≈̄
σ1∼
nds = 0, (5.11)

(where
≈̄
σ1 =

≈
σ1(Ā)) in order that the solution (

≈̄
σ,
∼̄
u) exist and (5.10) make sense. This

condition is not, however, sufficient to make sense of (5.10), since even if (5.11) holds there
may exist singular tensors A arbitrarily near Ā for which

∼
g is not compatible and hence

for which (
≈
σ,
∼
u) is undefined. We may circumvent this difficulty in two ways. First, we

may consider the special case
∼
g = 0. In this case there is no problem of incompatibility

and (5.10) follows from (5.9) by a straightforward argument. Second, to derive a result
valid for nonzero

∼̄
g satisfying (5.11), we consider the singular compliance tensor Ā as the

limit of positive definite tensors A, i.e., we restrict A in (5.10) to be nonsingular. Even
with this restriction, however, it is not hard to see that (5.10) is not valid, as

≈
σ may have a

component in the direction of
≈
σ1(A) which becomes unbounded as A tends to Ā. However

we shall show that
lim(‖

≈
σ −

≈̄
σ‖
≈
L2(Ω)/

≈
σ1(A) + ‖

∼
u−

∼̄
u‖1) = 0 (5.12)

with the quotient seminorm in (5.12) defined by

‖
≈
ρ‖
≈
L2(Ω)/

≈
σ1(A) = inf

c∈IR
‖
≈
ρ+ c

≈
σ1(A)‖

≈
L2(Ω),

and the limit taken as (A,
∼
f,
∼
g) tends to (Ā,

∼
f̄ ,
∼̄
g) with A nonsingular. (This seminorm

depends on A, but for all A exceeds the quotient seminorm on
≈
L2(Ω) induced by the

six-dimensional subspace of constant tensors.)

To prove (5.12) we note that

a(
≈
σ −

≈̄
σ,
≈
τ) + b(

≈
τ,
∼
u−

∼̄
u) =

∫
Ω

(Ā−A)
≈̄
σ :

≈
τ d
∼
x for all

≈
τ ∈

≈
WA,
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b(
≈
σ −

≈̄
σ,
∼
v) =

∫
Ω

(
∼
f −

∼
f̄) ·

∼
v d
∼
x for all

∼
v ∈

∼
H1

0 (Ω).

Now let
≈
ρ denote the projection of

≈
σ−

≈̄
σ on the orthogonal complement of

≈
σ1(A) in

≈
L2(Ω),

and let
∼
z =

∼
u−

∼̄
u−

∼
E(
∼
g −

∼̄
g). Then (

≈
ρ,
∼
z) ∈

≈
WA × ∼H

1
0 (Ω) and

a(
≈
ρ,
≈
τ) + b(

≈
τ,
∼
z) =

∫
Ω

(Ā−A)
≈̄
σ :

≈
τ d
∼
x− b(

≈
τ,
∼
E(
∼
g −

∼̄
g)) for all

≈
τ ∈

≈
WA,

b(
≈
ρ,
∼
v) =

∫
Ω

(
∼
f −

∼
f̄) ·

∼
v d
∼
x for all

∼
v ∈

∼
H1

0 (Ω).

By Lemma 5.1

‖
≈
ρ‖0 + ‖

∼
z‖1 ≤ C(|Ā−A|‖

≈̄
σ‖0 + ‖

∼
E(
∼
g −

∼̄
g)‖1 + ‖

∼
f −

∼
f̄‖−1,0)

≤ C(|Ā−A|+ |
∼
g −

∼̄
g|1/2,Γ + ‖

∼
f −

∼
f̄‖−1,0).

Further,
‖
∼
u−

∼̄
u‖1 ≤ ‖∼z‖1 + C|

∼
g −

∼̄
g|1/2,Γ

and
‖
≈
σ −

≈̄
σ‖
≈
L2(Ω)/

≈
σ1(A) = ‖

≈
ρ‖0,

and so (5.12) is established.

We close this section with a brief discussion of the proof of Lemma 5.1. It follows
the proof of Lemma 3.1 very closely and differs significantly in only one point. In the
statement of Lemma 3.2, which was used in the proof of Lemma 3.1, we must of course
replace the space

∼
H1
D(Ω) with

∼
H1

0 (Ω). We must also replace the space
≈
L2(Ω) with {

≈
τ ∈

≈
L2(Ω) :

∫
Ω ≈
τ :

≈
σ1 d∼x = 0}. Only when

≈
τ lies in this space does the differential equation

div
∼
p =

≈
τ :

≈
σ1

have a solution in
∼
H1

0 (Ω), which enables the proof of Lemma 3.2 to be carried out as
before. The additional hypothesis that

≈
τ be orthogonal to

≈
σ1 causes no problem, since in

the application to the proof of Lemma 5.1 this hypothesis follows from the membership of

≈
ρ in

≈
WA.
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6. Necessity of the Nonsingularity Condition

In this section, we show that if the compliance tensor does admit a singular constraint,
then the elasticity problem is very ill-posed for a large class of boundary value problems.
Indeed, for these problems, no solution exists unless the displacement boundary data sat-
isfies an infinite number of linearly independent constraints. Further, the homogeneous
problem admits an infinite dimensional space of solutions.

If the compliance tensor admits a singular constraint, then there exists 0 6=
≈
σ1 ∈

≈
IR, 0 6=

∼
m ∈

∼
IR such that A

≈
σ1 = 0,

≈
σ1∼
m = 0. We suppose that there exists a nonempty

interval I such that the cross-section Γ(q) = {
∼
x ∈ Γ|

∼
x ·
∼
m = q} is contained in Γ1 for all

q ∈ I. This hypothesis excludes the pure traction problem, but permits the displacement
problem and a wide variety of mixed boundary value problems as well. First we note that
the problem (1.1)–(1.3) does not admit a solution unless the Dirichlet data

∼
g1 satisfies the

linear constraint ∫ ⋃
q∈J

Γ(q) ∼
g1 · ≈σ1∼

nds = 0

for all subintervals J of I. This follows from the equation
≈
ε(
∼
u) :

≈
σ1 = 0 (itself a consequence

of (1.1)), by integrating over {
∼
x ∈ Ω|

∼
x ·

∼
m ∈ J}. Also, associated to any J , there is a

solution to the homogeneous boundary value problem given by
∼
u ≡ 0 and

≈
σ(
∼
x) =

≈
σ1 if

∼
x ·

∼
m ∈ J,

≈
σ(
∼
x) = 0 otherwise. (Although

≈
σ is discontinuous, it is easy to check that

d
∼
iv
≈
σ = 0 in the sense of distributions, since

≈
σ
∼
m = 0.)

7. Ellipticity

The system (1.1),(1.2) of anisotropic elasticity is elliptic in the sense of AGMON,
DOUGLIS, and NIRENBERG [1] when the compliance tensor is positive definite. In this
section we show that ellipticity of the system holds for precisely those materials admitting
no nonsingular constraints, and, more importantly, that the ellipticity is uniform with re-
spect to the compliances in the sense that the symbolic determinant whose nonvanishing
defines ellipticity may be bounded above and below by positive constants depending only
on an upper bound for the compliances and a lower bound for χ(A). This implies (among
other things) uniform interior regularity estimates on the solution of the equations [7].

For the verification of ellipticity we define, for any 3-vector
∼
θ, the operator E(

∼
θ) :

∼
IR→

≈
IR by

E(
∼
θ)
∼
v =

1
2

(
∼
θ
∼
vt +

∼
v
∼
θt),

∼
v ∈

∼
IR.

The adjoint operator E(
∼
θ)t :

≈
IR→

∼
IR is given by

E(
∼
θ)t
≈
τ =

≈
τ
∼
θ,

≈
τ ∈

≈
IR.

Then E(
∼
∇)
∼
u =

≈
ε(
∼
u) and E(

∼
∇)t

≈
σ = d

∼
iv
≈
σ, so we may write the system (1.1), (1.2) as

L(
∼
∇)(

≈
σ,
∼
u) = (0,

∼
f)
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where
L(
∼
θ)(
≈
τ,
∼
v) = (A

≈
τ − E(

∼
θ)
∼
v,E(

∼
θ)t
≈
τ) for all

≈
τ ∈

≈
IR,

∼
v,
∼
θ ∈

∼
IR.

To speak of ellipticity we must identify the principal part of the differential operator L(
∼
∇).

This is done in [1] and [7] by the assignment of weights si and tj to the ith equation and
jth unknown respectively. Without introducing an arbitrary numbering of the equations
and unknowns, we associate weight 0 with the six scalar stress unknowns and the six scalar
equations given by (1.1), and weight 1 with the three scalar displacement unknowns and the
three equations given by (1.2). It is then easily seen that L(

∼
∇) coincides with its principal

part. Therefore the system of anisotropic elasticity is elliptic if and only if det[L(
∼
θ)] is

nonzero for all nonzero
∼
θ. (L is a linear operator on the nine-dimensional space

≈
IR ×

∼
IR,

so we may speak of its determinant.) Now if the material admits a singular constraint,
then we have

≈
σ1 6= 0,

∼
s 6= 0 with A

≈
σ1 = 0,

≈
σ1∼
s = 0. It follows that L(

∼
s)(
≈
σ1, 0) = 0 so

det[L(
∼
s)] = 0, and the elasticity system is not elliptic. The following theorem establishes

the uniform ellipticity of the system if the material admits no singular constraints.

Theorem 7.1: Suppose that the material admits no singular constraints. Then there
exists a positive constant β depending only on an upper bound for A and a lower bound
for χ(A) such that

β|
∼
θ|2 ≤ det[L(

∼
θ)] ≤ β−1|

∼
θ|2 for all

∼
θ ∈

∼
IR. (7.1)

Proof: Since det[L(
∼
θ)] is a homogeneous polynomial of degree 2 in

∼
θ, (7.1) is equivalent

to the condition

β ≤ det[L(
∼
θ)] ≤ β−1 for all unit vectors

∼
θ ∈

∼
IR.

The asserted upper bound is obvious, and we discuss only the lower bound. We shall show
that L(

∼
θ) is invertible and bound the spectral norm ‖L(

∼
θ)−1‖ by a constant C depending

only on |A| and χ(A). This will imply that the eigenvalues of L(
∼
θ) are all bounded below

by 1/C, so that det[L(
∼
θ)] ≥ 1/C9 as desired.

To prove the invertibility of L(
∼
θ) and establish the uniform bound on L(

∼
θ)−1, we

apply BREZZI’s theorem (Theorem 2.1) to the finite dimensional problem:

Given (
≈
G,
∼
F ) ∈

≈
IR×

∼
IR, find (

≈
σ,
∼
u) ∈

≈
IR×

∼
IR such that

A
≈
σ :

≈
τ −

∼
u ·
≈
τ
∼
θ =

≈
G :

≈
τ for all

≈
τ ∈

≈
IR

and

≈
σ
∼
θ ·
∼
v =

∼
F ·

∼
v for all

∼
v ∈

∼
IR.

It is easily checked that (
≈
σ,
∼
u) solves this problem if and only if

L(
∼
θ)(
≈
σ,
∼
u) = (

≈
G,
∼
F ).

Thus we must prove that this problem has a unique solution (
≈
σ,
∼
u) and that

|
≈
σ|+ |

∼
u| ≤ C(|

≈
G|+ |

∼
F |).
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By BREZZI’s theorem, it suffices to show that there exists γ > 0 such that

A
≈
τ :

≈
τ ≥ γ |

≈
τ |2 for all

≈
τ ∈

≈
IR satisfying

≈
τ
∼
θ = 0, (7.2)

and

inf
0 6=
∼
v∈
∼
IR

sup
0 6=
≈
τ∈
≈
IR

≈
τ
∼
θ ·
∼
v

|
≈
τ | |

∼
v|
≥ γ. (7.3)

The proof of (7.3) is direct. If
≈
τ =

√
3U tR(U

∼
v)U , where U is an orthogonal matrix

chosen so that
√

3U
∼
θ = (1, 1, 1)t and R(

∼
z) is a diagonal matrix with d

∼
iagR(

∼
z) =

∼
z, then

|
≈
τ | ≤ C|

∼
v| and

≈
τ
∼
θ =

∼
v.

To prove (7.2) we decompose
≈
τ ∈

≈
IR as

≈
τD+

≈
τT with

≈
τT = (

≈
τ :

≈
σ1)

≈
σ1. Then (cf. (3.6))

A
≈
τ :

≈
τ ≥ max(λ1|≈τ |

2, λ2|≈τD|
2). (7.4)

Now

≈
τT∼θ · ≈σ

−1
1 ∼
θ = (

≈
τ :

≈
σ1)

≈
σ1∼
θ ·
≈
σ−1

1 ∼
θ =

≈
τ :

≈
σ1

and by hypothesis,

≈
τD∼θ = (

≈
τ −

≈
τT )

∼
θ = −

≈
τT∼θ.

Therefore,

|
≈
τT | = |≈τ :

≈
σ1| = |≈τD∼θ · ≈σ

−1
1 ∼
θ| ≤ |

≈
σ−1

1 | |≈τD|. (7.5)

Combining (7.4) and (7.5) with the identity |
≈
τ |2 = |

≈
τT |2 + |

≈
τD|2 gives (7.2).
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8. The Displacement - Pressure Formulation of Anisotropic Elasticity

The system (1.1), (1.2) of three-dimensional elasticity involves nine independent scalar
unknowns. This is often considered too many for computational purposes, and other for-
mulations are preferred. When the compliance tensor is invertible, the simplest possibility
is to solve (1.1) for

≈
σ and substitute in (1.2) to obtain the displacement equations of

elasticity, which involve only the three displacements as unknowns. However, when the
compliance tensor is singular this procedure is not possible, and when it is nearly singular it
is often not advisable. For isotropic materials, incompressible or not, another formulation
is widely used. This formulation involves only the displacement and one stress quantity (a
pressure) as unknowns, and in the incompressible limit reduces to the Stokes equations.
Here we introduce an analogous formulation valid for any anisotropic material, constrained
or not, as long as the nullspace of the compliance tensor has dimension less than two (in
particular if the material admits no singular constraints).

In the case of orthotropic elasticity, KEY [12] and TAYLOR, PFISTER, and HERRMANN

[22] have derived related formulations, extending work of HERRMANN [10] for isotropic
elasticity. DEBOGNIE [6] used a similar formulation to study incompressible anisotropic
materials.

Our derivation is based on the decomposition of
≈
IR into the one-dimensional subspace

spanned by
≈
σ1 =

≈
σ1(A) and its orthogonal complement

≈
Y = {

≈
τ ∈

≈
IR :

≈
τ :

≈
σ1 = 0}.

Clearly, A maps
≈
Y into itself and, since λ2 > 0, the restriction A|

≈
Y is positive definite.

Define A+ :
≈
IR→

≈
IR by

A+
≈
τ = (A|

≈
Y )−1

≈
τ for all

≈
τ ∈

≈
Y,

A+
≈
σ1 = 0.

Again decomposing

≈
σ = p

≈
σ1 +

≈
σD, (8.1)

with p =
≈
σ :

≈
σ1 and

≈
σD ∈ ≈Y , we deduce from (1.1) that

≈
ε(
∼
u) = A

≈
σ = λ1p ≈σ1 + A

≈
σD. (8.2)

Applying A+ to this equation we get

A+
≈
ε(
∼
u) =

≈
σD

so (8.1) becomes

≈
σ = A+

≈
ε(
∼
u) + p

≈
σ1.

Inserting into (1.2) and noting that d
∼
iv (p

≈
σ1) =

≈
σ1g

∼
rad p yields

d
∼
iv A+

≈
ε(
∼
u) +

≈
σ1g

∼
rad p =

∼
f. (8.3)
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Next, taking the inner product of (8.2) with
≈
σ1 and noting that

≈
ε(
∼
u) :

≈
σ1 = div (

≈
σ1∼
u) we

get

div (
≈
σ1∼
u)− λ1p = 0. (8.4)

Equations (8.3) and (8.4) give the desired formulation.

For a two-dimensional constrained anisotropic material it is possible to reduce the
elastic system further, to a fourth order elliptic equation for a single scalar unknown. In
the incompressible isotropic case this is the biharmonic equation. Define

r
∼
otφ =

(
∂φ/∂x2

−∂φ/∂x1

)
, curl

∼
ψ = −∂ψ1/∂x2 + ∂ψ2/∂x1,

(where now
∼
ψ = (ψ1, ψ2)t is a 2 vector). Multiply the analogue of (8.3) for two-dimensional

elasticity by
≈
σ−1

1 and take the curl to get

curl [
≈
σ−1

1 d
∼
iv A+

≈
ε(
∼
u)] = curl

≈
σ−1

1 ∼
f. (8.5)

Now in the two-dimensional constrained case div (
≈
σ1∼
u) = 0 (cf. (8.4)), so

∼
u =

≈
σ−1

1 r
∼
otφ for

some scalar function φ. Substituting in (8.5) gives the self-adjoint fourth order differential
equation

curl [
≈
σ−1

1 d
∼
iv A+

≈
ε(
≈
σ−1

1 r
∼
otφ)] = curl

≈
σ−1

1 ∼
f.

Using the identity

≈
σ1 :

≈
ε(
≈
σ−1

1 r
∼
otφ) = div r

∼
otφ = 0,

it is easy to check that this defines a coercive variational problem on H2
0 (Ω).
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9. Plane Elasticity

The results of the previous sections adapt to elasticity in IR2 with one difference. By
the method of proof of Section 3, it can be shown that if 0 is not a double eigenvalue
of the compliance tensor (now a semidefinite operator on the space of 2 × 2 symmetric
matrices) and if there is no nonzero singular nulltensor, then the fundamental boundary
value problems are well-posed and the constants in the a priori estimates depend on

χ(A) = max[λ1(A), λ2(A)/|
≈
σ1(A)−1|2]

as before. However, in the two-dimensional case it is possible for the compliance tensor
to admit zero as a double eigenvalue without admitting a singular constraint. (This was
ruled out in the three-dimensional case in Section 2.) That is, we may have χ(A) = 0 even
though the material does not admit a singular constraint. We regard this as a pathological
case. An example (which is essentially canonical) is given by the compliance tensor

A
≈
τ = tr(

≈
τ)
≈
δ.

It is easily verified that the homogeneous Dirichlet problem

A
≈
τ =

≈
ε(
∼
u) in Ω, (9.1)

d
∼
iv
≈
τ = 0 in Ω, (9.2)

∼
u = 0 on Γ = ∂Ω,

(Ω ⊂ IR2) admits an infinite dimensional solution space, namely

∼
u = 0,

≈
τ =

(
∂2φ/∂y2 −∂2φ/∂x∂y
−∂2φ/∂x∂y ∂2φ/∂x2

)
,

where φ is any harmonic function on Ω. It is interesting to note that the differential equa-
tions (9.1),(9.2) form an elliptic system in the sense of AGMON, DOUGLIS, and NIRENBERG,
even though the Dirichlet problem is not Fredholm. In fact, the result of Section 7 that
the system of elasticity is elliptic if and only if the compliance tensor admits no singular
constraint holds also in two dimensions, although the proof must be modified.
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