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WELL-POSED NESS OF THE INITIAL VALUE PROBLEM 
FOR THE KORTEWEG-DE VRIES EQUATION 

CARLOS E. KENIG, GUSTAVO PONCE, AND LUIS VEGA 

1. INTRODUCTION 

This paper is mainly concerned with the initial value problem (IVP) for the 
Korteweg-de Vries (KdV) equation 

{ 8tu + 8;u + u8x u = 0, (1.1 ) 
u(x, 0) = uo(x). 

X,tElR, 

The KdV equation, which was first derived as a model for unidirectional 
propagation of nonlinear dispersive long waves [21], has been considered in 
different contexts, namely in its relation with the inverse scattering method, in 
plasma physics, and in algebraic geometry (see [24], and references therein). 

Our purpose is to study local and global well-posedness of the IVP (1.1) in 
classical Sobolev spaces H\lR). We shall say that the IVP (1.1) is locally (resp. 
globally) well-posed in the function space X if it induces a dynamical system 
on X by generating a continuous local (resp. global) flow. 

It was established in the works of Bona and Smith [3], Bona and Scott [2], 
Saut and Temam [30], and Kato [15] that the IVP (1.1) is locally (resp. globally) 
well-posed in H S with s > 3/2 (resp. s ~ 2 ). 

Roughly speaking, global well-posedness in H S depends on the available local 
theory and on the conservation laws satisfied by solutions of (1.1), namely: 

~l(U) = ! udx, ~2(U) = ! u2 dx , 

~3(U) = ! ((8x U)2 - ~ u3) dx, 

~4(U) = ! ((8;U)2 - ~ U(8x U)2 + :6 u4) dx .... 

The conservation law ~k+2 ( .) provides an a priori estimate of the Hk -

norm (k = 0, 1, ... ) of a solution with data Uo E Hk. Hence, combining 
the local result (s > 3/2), the invariants ~2 - ~4' and some inequalities one 
obtains that the IVP (1.1) is globally well-posed in H S with s ~ 2 . 
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On the other hand, as was remarked in [16], the proofs of the local result in 
H S with s > 3/2 have almost nothing to do with the special structure of the 
KdV equation. Indeed, the same proofs work for the inviscid Burgers equation 

8tu + u8x u = O. 
In [18], we proved that the IVP (1.1) is locally well-posed in H S with 

s > 9/8. However, none of the global results there apply to the KdV equa-
tion. 

The main result in this paper (see Theorems 1.1 and 1.2 below) shows that the 
IVP (1.1) is locally well-posed in H S with s> 3/4, and consequently globally 
well-posed in H S with s ~ 1 . Thus, we answer the questions left open by Saut 
and Temam [30] (Remark 2.1), and by Kato [16] (§3). 

Our method of proof relies heavily on the dispersive character of the KdV 
equation. In fact, it can be applied to the IVP 

{ 8tu - DQ 8x u + uk 8x u = 0, ( 1.2) 
u(x, 0) = uo(X) , 

X,tEJR, 

where D = (_8;)1/2, a ~ 1, and k E Z+. Thus, for the values (a, k) = 
(2, 1), (2, 2), and (1.1) we obtain the KdV equation, the modified KdV equa-
tion, and the Benjamin-Ono equation [1, 25] respectively. 

Before stating precisely our result it is convenient to discuss the main ingre-
dients in the proof. 

We shall begin by considering the associated linear problem 

( 1.3) { 8tV-DQ 8xV=0, x,tE JR, a~l, 
v(x, 0) = vo(x) , 

whose solution is given by the unitary group {UQ (t)} ~oo in H S (JR) , where 
UQ(t) = eitDQ8x (i.e., v(x, t) = UQ(t)vo(x)). 

Our first tool is the global smoothing effect of Strichartz type [33] present in 
solutions of (1.3). More precisely, it will be shown (see §2) that 

(1.4) (i: IID(Q-1)/4UQ(t)voll~ dt) 1/4 ~ cllvolb. 

Next, we have the local smoothing effect first established by Kato [16] (§6) 
in solutions of the KdV equation. He proved that smooth solutions of the IVP 
(1.1) satisfy 

(1.5) i: i: 18x u(x, t)1 2dtdx ~ c = c (R; T; Il uoIl 2)· 

The estimate (1.5) was used in [16] to show existence of a weak solution of 
the IVP (1.1) with data Uo E L2(JR) (see also Kruzhkov and Framinskii [22]). 

The corresponding local smoothing effect in the group {UQ (t)} ~oo is given 
by the following identity: 

(1.6) i: IDQ/2 UQ(t)vO(x)1 2 dt = cQllvoll; 
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WELL-POSED NESS OF THE INITIAL VALUE PROBLEM 325 

for any x E JR. Notice that (1.6) is an L 00 -estimate in the space variable, 
which is stronger than the one described in (l.5). 

In [8], Constantin and Saut showed that the version of the local smoothing 
effect described in (l.5) is a common property of linear dispersive equations, 
where, roughly speaking, the gain of derivatives is equal to (m - 1)/2, with 
m denoting the order. Simultaneously, Sjolin [31] and Vega [36] established a 
similar result for powers of the Laplacian in their study of the following problem 
proposed by Carleson [5]: if Uo E H S (JRn ) , for which s does 

In [19], we proved that the stronger version of this local smoothing effect given 
in (l.6) (i.e., in the LOO(JR; dx : L 2(dt))-norm) holds for anyone-dimensional 
linear dispersive model, and that this result is sharp. 

Although, for the sake of completeness, the proofs of (1.4) and (l.6) will be 
sketched in §2, we refer to [19] for detailed proofs, extensions of these estimates 
to general dispersive equations, related results, and further references. 

To complement the inequality in (1.6) we shall need some estimates related 
to the pointwise behavior of VO:(t)vo' These are again intimately connected 
to the problem raised by Carleson. From the results of Vega [37] (see also 
Dahlberg and Kenig [9], Kenig and Ruiz [20], and Sjolin [31]) we have the 
following bounds for the associated maximal function sup [_ T, T] I vo: (t) . I : 

and 

( l.8) 

where p> 3/4 , s > (a + 1)/4, and II . Il s ,2 = 11(1 - /).//2 . lb. 
In [13], Ginibre and Tsutsumi proved that solutions u = u(x, t) of the IVP 

( 1.1) satisfy 

( l.9) 
J+I ) 1/2 

sup! i(x, t) dx :::; C(T; Iluoll l 2)' 
[-T, T] J ' 

It is interesting to remark that the proof of inequality (l. 9) follows the same 
argument used by Kato in [16] to establish the local smoothing effect (1. 5). 
Notice that the estimate (l.8) is stronger than (l. 7) and that this estimate (l. 7) 
when a = 2 is stronger than (1.9). 
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The final ingredient, which suggests the sharpness of our result for the IVP 
(1.1) , is energy estimates. Using the commutator estimates deduced by Kato 
and Ponce in [17] (see Lemma 2.10) one easily finds that solutions of the IVP 
( 1.1) satisfy 

(1.10) [_S~~T] Ilu(t)lIs ,2 :::; cs lluolls ,2 exp (i: 118x u(r) 1100 dr) 

for any s ~ O. 
From (1.4) it follows that the exponential term in (1.10) when evaluated 

in U2(t)vo (i.e., the solution of the associated linear problem for the KdV 
equation, 0: = 2 in (1.3)) is bounded whenever Vo E H 3/ 4 CR..). Also in this 
case (0: = 2) the value 3/4 appears in the estimate (1.7), which is known to 
be sharp (i.e. (1.7), (1.8) do not hold if s < (0: + 1)/4, see [36]). 

We will now give the precise statement of our results. 

Theorem 1.1. (i) Let s > 3/4. Forany Uo E HS(JR.) there exists a unique solution 
u(t) of the IVP (1.1) satisfying 

(1.11) u E C([-T, T]: H S ) 

and 

( 1.12) 4( 00 8x UEL [-T, T]:L ). 

Moreover, 

(1.13) u E Lq([-T, T]: L:+(JP/2) 

for any (0, P) E [0, 1] x [0, 1/2] with (q, p) = (6/0(P + 1),2/(1 - 0)), 

(1.14) I T 2 
sup IDS 8x u(x ,t)1 dt < 00, 

x -T 

and 

(1.15) ! sup ID'u(x,t)1 2 dx<00 
[-T, T] 

with r < s - 3/4, and where T has a lower bound depending only on II Uo lis, 2 . 

(ii) For any T' < T there exists a neighborhood V of Uo in H S such that 
the map Uo -+ u(t) from V into the class defined by (1.11)- (1.15) with T' 
instead of T is continuous. 

(iii) If Uo E H S' with s' > s, then (i)-(ii) hold with s replaced by s' but 
with the same T. 

(iv) For IluolIs , 2 sufficiently small 

( 1.16) 

where a - denotes a fixed constant smaller than a. 
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Theorem 1.2. If s ~ 1 the results in Theorem 1.1 are true with T arbitrarily 
large. 

Theorem 1.3. Let 0: E [1, 2) and k = 1 . 
(i) For any Uo E H S (JR.) with s ~ (9 - 30:)/4 IVP (1.2) has a unique solution 

u(t) satisfying (1.11)- (1.12). Moreover, 

(1.17) u E Lq([-T, T]: L:+(JP/2) 

for any (e, P) E [0,1] x [0, (0:-1)/2] with 

( 1.18) 

and 

( 1.19) 

(q, p) = (2(a + l)/e(p + 1), 2/(1 - e)), 

2 • Hal2 
U E L ([-T, T]. Hioc (JR.)), 

00 

I: sup sup lu(x, t)1 2 < 00, 
[j ,j+l) [-T, T) j=-oo 

where T has a lower bound depending only on Iluolls 2' 

(ii) For any T' < T there exists a neighborhood V 'of Uo in H S such that the 
map Uo --> u( t) from V into the class defined by (1.11), (1.17)- (1.19) with 
T' instead of T is continuous. 

(iii) If Uo E H S ' with s' > s, then (i)-(ii) hold with s replaced by s' but 
with the same T. 

Theorem 1.4. If s ~ a/2 ~ 9/10 the results in Theorem 1.3 are true with T 
arbitrarily large. 

Some remarks are in order. 
(a) Theorem 1.2 follows by combining Theorem 1.1 and the third conserva-

tion law <1>3 ( .). Similarly, Theorem 1.4 can be deduced from Theorem 1.3 by 
using the conservation law 

rp(u) = ! ((Da/2u)2 - CkUk+2) dx 

for solutions of the IVP (1.2). Hence, their proof will be omitted. 
(b) It will be clear from our proofs below that the results in Theorems 1.1 

and 1.3 extend to any power k ~ 2 in (1.2) (the same applies to Theorems 1.2 
and 1.4 with a possible restriction on the size of the data). However, in this case 
(a E (1, 2] and k ~ 2 in (1.2)) better results can be obtained. In particular, 
for the modified KdV equation, i.e., (a, k) = (2, 2), it can be shown that the 
IVP (1.2) is locally well-posed in H S with s ~ 1/4. The proof in this case 
is different than those provided below for the case k = 1. Therefore, it will 
be given somewhere else. Also we shall not consider here the IVP (1.2) with 
a> 2. 

(c) Local well-posedness of the IVP (1.2) in H S was known for s > 3/2 (see 
Saut [29]). Since (9 - 3a)/4 ~ 3/2 for a ~ 1, we obtain an improvement of 
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this result. Notice that the number (9 - 3a)/4 is equal to two minus (a - 1)/4 
(i.e., the gain of derivatives in the global smoothing (1.4)) minus a/2 (i.e., the 
gain of derivatives in the local smoothing (1.6)). We may also remark that in 
the limit a = 1 with k = 1 global well-posedness has been established in H S 

with s = 3/2 (see [27]). 
(d) We have stated Theorem 1.1 in a form that emphasizes that the regularity 

of the solution u(·) of the nonlinear problem is exactly that of the associated 
linear problem U2(t)uO' Notice that in this case the form of the local smoothing 
effect (1.14) is stronger than all previously known forms (see (1.18) and the 
results in [11, 12, 15, 18]). 

(e) Theorem 1.1 (1.14), Theorem 1.3 (1.17), and the Sobolev embedding 
theorem show that although uo may be only Holder continuous the solution 
u(t) is C' a.e. in t. 

(f) The estimate (1.16) for the lower bound of the life span of small solutions 
of (1.1) is similar to that deduced in [30, Proposition 2.1] for the case s > 3/2. 

(g) Finally, it should be mentioned that with the ingredients discussed in this 
introduction a proof of Theorem 1.1 based on the contraction principle (with 
respect to the norms in (1.11 )-( 1.15)) can be easily obtained. For this, one only 
needs the integral equation 

2 (t 2 
u(t) = U (t)uo 10 U (t - r)uoxu(r) dr, 

the estimates (1.4), (1.6), and (1.7), and the commutator estimates in Lemma 
2.10. In particular, it does not use the energy estimate (1.10). The so-called 
loss of derivatives obtained from estimates involving the integral equation is 
overcome by combining the estimates (1.6) and (1.7) as in (4.14)-(4.16) below. 
However, this approach does not seem to work when a < 2. Thus we prefer to 
present a method which applies to any a E [1, 2] . 

This paper is organized as follows. In §2, we prove all the linear estimates 
discussed in this introduction. In §3, we explain the common part in the method 
of proof of Theorems 1.1 and 1.3. Sections 4 and 5 are concerned with the proof 
of Theorems 1.1 and 1. 3 respectively. 

Notation. 
- The norm in L P (JR), 1 :5 p :5 00 , will be denoted by II . lip. 

f = (1_/1)s/2 and DS = (_/1)S/2 denote the Bessel and Riesz potential 
of order -s respectively. 
a is the Hilbert transform, i.e., ;;j = i sgn(e)J. In particular, Ox 0 a 
=D. 
L: = J-s L P , whose norm will be denoted by II . IIs,p = II f . lip. When 
p = 2 we will write HS instead of L;. H oo = ns>o H S . 
Hi~c(JR) : for s > 0, f E L~c(JR) such that for every rp E C;"(JR) , 
rpf E HS(JR). 
S(JR) denotes the Schwartz class. 
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- [A; B] == AB - BA, where A, B are operators. Thus, [f; I]g = 
f (f g) - If g in which I is regarded as a multiplication operator. 

- X: IR ~ IR denotes a nondecreasing COO -function such that x' = 1 on 
[0, 1] andsuppx'~(-1,2). For any j E Z, Xj(·)=X(· -j). 

- If a is any real number, a+ (a-) denotes any number bigger (smaller) 
than a. 

2. LINEAR ESTIMATES 

In the first part of this section we shall deduce the estimates (1.4), (1. 6)-
(1.8) described in the introduction. The second part is concerned with some 
commutator estimates needed in the proofs of Theorems 1.1 and 1.3. 

The solution of the linear IVP 

{ {)tV - DCX{)xv = 0, 
(2.1 ) 

v(x, 0) = vo(x), 
t,xEIR,o:;:::l, 

is given by the unitary group {Ucx(t)}~oo' i.e., v(·, t) = Ucx(t)vo = S; * vo' 
where for t > 0 

and 
KCX(x) = c i: ei(~I~la+x~) de;. 

We begin by proving the sharp version (1.6) of the local smoothing effect in 
solutions of (2.1). 

2 Lemma 2.1. Let Vo E L (IR). Then 

(2.2) i: 1 D cx/2 Ucx (t)vO(x)1 2 dt = ccxllvolI~ 

lor any x E IR. 
Proof. Performing the change of variable 11 = e;1e;l cx , using Plancherel's Theo-
rem in the t-variable, and then returning to the original variable e; = ¢(11), it 
follows that 

II D cx/2 UCX(t)vi dt = I II eit~I~IQ /x~,e;,cx/2Vo(e;)de;12 dt 

= I II eitlJeix<!>(IJ)I¢(I1)lcx/2vo(¢(I1))¢' (l1)d I1 12 dt 

= c I leix<!>(IJ)I¢(I1)lcx/2vo(¢(I1))¢' (11)1 2 dl1 

= Ccx I Ivo(e;)1 2 de;. 0 

Next we shall sketch the proof of the global smoothing effect (1.4). This is 
based on the following estimates for the time behavior of the derivatives of 
order Y E [0, (0:-1)/2] of the kernel S;(.). 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



330 C. E. KENIG, GUSTAVO PONCE, AND LUIS VEGA 

Lemma 2.2. If 'Y E [0, (a - 1) /2], and 

D'YS~(x) = c ! ei(t':leJQ+X':)I~I'Y d~ 

then 
(2.3) liD)' S~ ( . ) 1100 :::; cltr(Jl+l)/(a+I). 

Corollary 2.3. For any (0, P) E [0, 1] x [0, (a - 1)/2] 
op I I-O(p+l)/(a+l)11 II (2.4) liD St * VOIl2/(I-O) :::; C t Vo 2/(1+0)' 

For the proofs of (2.3) and (2.4) we refer to [18, Proposition 2.3; 28, Corollary 
2.3). 
Theorem 2.4. For any (0, P) E [0, 1] x [0, (a - 1)/2] 

(2.5) 

and 
(2.6) 

( rOO ) l/q 1-00 IIDoP/2 U<>(t)vo II! dt :::; cllvolb 

(i: II! DOPU<>(t - r)f(·, r) drl[ dt) l/q :::; c (i: Ilf(' , t)II!: dt) l/q' , 

where (q, p) = (2(a+ 1)/O(P + 1), 2/(1- 0)) and ~ +;, = ~ + t = 1. 
Proof. We shall follow the method used in [10, 23, 26, 35]. 

By duality it is easy to see that (2.5) is equivalent to 

(2.7) II! DOP/2 U<>(t)f(· , t) dtll2 :::; c (! Ilf(' , t)II!: dt) l/q' 

On the other hand, following P. Tomas' argument in [35] we find that 

! (! D OP/2 U<>(t)f( . , t) dt . ! D OP/2 U<>( r)g( • , r) dr) dx 

= !! f(x, t) (! DOPU<>(t-r)g(., r)dr) dxdt. 

Hence, (2.5), (2.6), and (2.7) are equivalent. 
To prove (2.6), as in [10, 23, 26] one uses Minkowski's integral inequality, 

the decay in time estimate (2.4), and fractional integration to obtain that the 
left-hand side of (2.6) is bounded by 

II! IIDoP U<>(t - r)g( . , r)lIp drllq 

:::; c II! It - rl-O(P+l)/(<>+I)lIg(· , r)lIp' drllq 

(! ')l/q' 
:::; c Ilg( . , t)II!, dt , 

where ~ = 1 - t = ~ - (1- O~++I1)), i.e., q = 2(a+ 1)/O(P + 1). 0 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



WELL-POSEDNESS OF THE INITIAL VALUE PROBLEM 331 

To establish the estimates (1. 7) and (1.8) we need the following version of 
the classical Van der Corput lemma. 

Lemma 2.5. Let 'II E C~(lR) and ¢ E C 2(JR) satisfy that ¢''(I;) > A > 0 on 
the support of'll. Then 

If eil/>(,) '11(1;) dl;l ~ lOr 1/2 {Ii 'II Ii 00 + Ii 'II' Ii I}' 

Proof. See [32, pp. 309-311]. 0 

As a consequence of this lemma we have the following result. 

Proposition 2.6. Let 'II be a COO function supported in the interval [2k- 1 , 2k+l] 
where k is a natural number. For a ~ 1 the function H;(.), defined as 

satisfies 

Ii: ei(t,I,la+x,) '11(1;) dl;l ~ cH;(x) 

for It I ~ 2, where c does not depend on t or k. 

Proof. To simplify the exposition we assume t E [0, 2]. Define n = {I; E 
supp 'IIllatll;lO + xl ~ Ix1/2} and choose rp in COO supported in g such that 
rp == 1 when latll;lO + xl ~ Ix1/3. 

If I; E g then Ixl'" atll;lO ~ c20k . In this case the phase function ¢x(l;) = 
tl;ll;lo + xl; satisfies 

Thus, from Lemma 2.5 we find that 

If eil/>x(~)(rp'll)(I;) dl;l ~ c2k/ 2Ixl- I/ 2• 

If I; E supp(l - rp), then I¢~(I;)I = latll;lo + xl ~ Ix1/3. Hence, using 
integration by parts it follows that for Ixl ~ 1 

Combining these estimates one obtains the desired result. 0 
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Theorem 2.7. For any S> (0: + 1)/4 with 0: 2:: 1 

(2.8) C~OO 1~~J::;~~)+IIUa(t)Vo(X)12) 1/2 :::; cllvolls,2' 
Proof. Let {!fIk}~:O be a smooth partition of unity of jR+ such that 

k-I k+1 sUPP!flk ~ [2 , 2 ] for k = 1 , 2, ... , 

and SUPP!flo ~ [-1, 1]. Define (U:(t)vo)!\(~) = eit,;I,;I" !fIk(I~l)vo(~)' Notice 
that since It I :::; 1 the support of (U:(t)vo)"(~) is contained in {~/I~I :::; 2k+I }. 
Thus it suffices to show that 

Using a duality argument, it suffices to prove that 
(2.9) 

II [II U:(t)g( . , t) dtl12 :::; c2(a+l)k/4 ( I: ([II jJ+I Ig(x, t)1 dx dt) 2) , 
J 

and by P. Tomas' argument [35] one easily sees (as in the proof of Theorem 
2.4) that (2.9) is a consequence of the following estimate: 

(2.10) 

( 
00 1/1 12)1/2 I: sup sup U;(t - r)g(·, r) dr 

J=-oo Itl::;1 J::;x<J+I -I 
( 

00 (/1 /J+I )2) 1/2 :::; C2(a+l)k/2 J~OO -I J Ig(x, t)1 dx dt . 

To establish (2.10) we use Proposition 2.6 to find that 

I ([II U:(t - r)g(·, r) dr) (x) I 

< f H;(y) [II Ig(x - y, r)1 drdy 

:::; I~oo H;(l/I) /1+1 [II Ig(x - y, r)1 dr dy. 
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Hence, the left-hand side of (2.10) is bounded by 

( 00 ( 00 /1+1 (I )2) 1/2 
j~oo j~~~r;+I/~oo H;(!ll) 1 l_llg(x-y,r)ldrdy 

~ (f: (f: H;(!ll) !/~j+211Ig(Z' r)ldrdZ)2)1/2 
j=-oo 1=-00 /-)-1-1 

~ Itoo H;(lfI) ctoo (!~~::2 [II Ig(z, r)1 drdz rY/2 
00 ( 00 (jj+1 t )2) 1/2 

~ 4 2: H;(Il1) ,2: , 1-1 Ig(x, t)1 dtdx 
1=-00 }=-oo} 

( 00 ({ljj+1 )2)1/2 ~ c2 (a+l)k/2 ,2: 1- ' Ig(x, t)ldxdt , 
}=-oo I) 

which agrees with the right hand side of (2.10). 0 

As consequences of Theorem 2.7 we obtain the estimates (1.7) and (1.8) 
described in the introduction. 

Corollary 2.S. For any S > (0: + 1)/4 and any p > 3/4 

(2.11) c~oo I~~~ j:$',~~r;+IIUa(t)Vo(X)12) 1/2 ~ c(l + T)Pll voll s,2· 

Proof. Denote t' = Tt with It I ~ 1. An easy calculation shows that 

Ua(t')vo(x) = Ua(t)v I (TI/~+a)) , 

where VI (C;) = T-I/(I+a)vo(T-I/(I+a)c;) . Therefore, we see that 
00 
'" I a(, 2 ~ ~up sup U t )vo(x)1 

j=-oo It I:$',T j:$',x<j+1 
00 

= 2: sup 
j=-oo Itl~1 

sup IUa(t)v I (x)1 2 
j:$',x. T1/(o+l)<j+1 

00 
~ cTI/(a+l) 2: sup sup IUa(t)v I (x)1 2. 

k=-oo Itl:$',1 k:$',x<k+1 

From (2.8) the above expression is bounded by 

T I /(a+I)llv l lls ,2 ~ r/(I+a) II volls ,2. 

Now take r> 1/4 such that r(l + 0:) = so> I!a. If S < So we have obtained 
the result. If So ~ s we have proved that (2.11) is majorized by T'livollso,2 ~ 
T'livolls,2. 0 
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Corollary 2.9. For any S> (0: + 1)/4 and any p> 3/4 

(100 ) 1/2 
sup lu<l(t)vi dx ~ c(l + T)P IIvolls,2' 

-00 [-T,T] 
(2.12) 

Proof. As was mentioned in the introduction, (2.12) follows directly from 
(2.11). 0 

The last corollary is due to Vega [37]. The following version of (2.12) was 
essentially proved by Kenig and Ruiz in [20] for 0: ~ 1 : 

( 100 4 ) 1/4 1/4 
sup IU<l(t)vol dx ~ cliD vo112' 

-00 [-1,1] 

To complete this section we shall state the commutator estimates needed in 
the coming sections. 

Thus we have the estimates established by Kato and Ponce [17] as applica-
tions of the Coifman and Meyer results in [7]. 

Lemma 2.10. Let s > 0 and 1 < P < 00. If f, g E S(JRn ), then 

(2.13) IIf(fg) - f f gllp ~ c{IIV fIPI "glls- 1 ,P2 + Ilflls,p)gllp) 
and 

(2.14) 

with P2 , P3 E (1, 00) such that 1 = .1. + .1. = .1. + .1.. 
P PI P2 P3 P4 

It is clear that (2.13)-(2.14) are true whenever the corresponding right-hand 
side is finite. 

Proof. The proof of this lemma is essentially contained in the one given in [17, 
Appendix] for the case PI = P4 = 00. One just needs to combine the argument 
used in [17] with the version of the R. R. Coifman and Y. Meyer result found 
in [7, pp. 22]. 0 

3. THE NONLINEAR PROBLEM 

This section is concerned with general properties of solutions of the nonlinear 
IVP 

(3.1 ) { 0tU - D<l0xu + uOxu = 0, 
u(x, 0) = uo(x) , 

X,tEJR, 

with 0: E [1, 2]. The properties collected here all appear in the previous 
literature. 

We begin by stating the following local existence theorem proved in [14, 30]. 
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Theorem 3.1. (i) For any Uo E H\R) with s > 3/2 there exists a unique 
solution u(·) to (3.1) in the class 

C([-T, T]: F(R)) 
with T = T(lluoll s 2) > 0. 

(ii) For any T" < T there exists a neighborhood V of Uo in HS(R) such 
that the map Uo ~ u(t) from V into C([ -T' , T'] : HS(R)) is continuous. 

(iii) If Uo E HS' (R) with s' > s, then the time of existence T can be taken 
to depend only on //UO// s,2' 

Next, for Uo E L2(R) and e > 0, we consider the IVP 

(3.2) { OtU-DCi.OxU+UOxU=eo, x,tE R,aE [1,2], 
u(x, 0) = rpe * Uo = uo' 

where rp E S(R) with frp(x)dx = 1, f xkrp(x)dx = 0, k = 1,2, ... , and 
rpe(x) = e-'rp(x/e). 

From Theorem 3.1 and its proof, it follows that for general Uo E L2(R) the 
IVP (3.2) has a unique solution ut (.) such that 

ue E ([-Te' Te] : Hoo(R)) 

with Te ~ ° as e ~ ° . 
Our first goal will be to obtain an a priori estimate for the life-span interval 

[-T, T] of the solution ut (.) of (3.2) with T independent of e whenever 
Uo E HS(R) with s> 3/4 if a = 2, and s ~ (9 - 3a)/4 if a E [1,2). 

To achieve this goal we need the following two lemmas. The first one is 
concerned with energy estimates for solutions of the IVP (3.1). The second is 
a simple continuation principle for solutions of the IVP (3.1). 

Lemma 3.2. Let u E C([-T, T]: H OO ) be a solution of the IVP (3.1). Then 
for any s > ° 
(3.3) sup //u(t)//s 2::; cs//Uo// s 2exp ( rT //OxU(T)//oodT). 

[-T,T)' , J-T 

Proof. Applying the operator f to the equation in (3.1) leads to the identity 
S Ci. S S S ° 0tJ u - D 0xJ u + uoxJ u + [J ; u]oxu = . 

. Using integration by parts and the estimate (2.14) we find that 

:t //U(t)//;,2 = f oxU(JSU)2 - 2 f [f; u]oxufu ::; c//oxu// oo //u(t)//;,2' 

Thus Gronwall's inequality yields (3.3). 0 

Lemma 3.3. If u E C([O, T] : H OO ) is a solution of the IVP (3.1), andfor some 
T, > T 

(3.4) 
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then the solution u(·) can be extended to a solution of the same class in the time 
interval [0, T I ] . 

Proof. By inserting (3.4) in (3.3) it follows that 

(3.5) sup Ilu(t)lls 2 $ cslluolls 2 exp(M) 
~,n' , 

for any s > O. Since the right-hand side of (3.5) is independent of t E [0, Td, 
by reapplying Theorem 3.1 one obtains the desired result. 0 

The goal discussed at the end of Theorem 3.1 reduces to establishing the 
estimate (3.4) for solutions of the IVP (3.2) with a constant M independent 
of e. This will be proved in two slightly different manners, for the cases Q = 2 
(Theorem 1.1) and Q E [1,2) (Theorem 1.3). 

4. PROOF OF THEOREM 1.1 

Combining the estimates (1.4), (1.6), and (1.7) for the group {UO!(t)} ~oo' 
proved in §2, with the results in the previous section we obtain the key step in 
the proof of this theorem. 

Lemma 4.1. For any Uo E HSC~) with s> 3/4 there exists T> 0 such that if 
u = uB E C([-T, T] : HOO(~)) is a solution of the IVP (3.2) with Q = 2 and 
e E (0, 1), then 

(4.1) sup Ilu(t)lls 2 $ K, 
[-T,T] , 

(4.2) 

(4.3) 

and 

( )
1/2 f sup If u(x, t)1 2 dx $ K 

[-T,T] 
( 4.4) 

for any (l, r) E [0, S - 3/4] x [0, s - 3/4), and where K 
lIuolls,2' In fact, for Iluolls,2 sufficiently small 

(4.5) 

depends only on 

Furthermore, if Uo E HS' (~) with s' > s, then (4.1)- (4.4) hold with s' instead 
of s (and K' = K'(lIuolls, ,2) instead of K) in the same interval [-T, T]. 
Proof. To simplify the exposition we restrict ourselves to the case t ~ 0, and 
introduce the following notation: 

(4.6) y(T, s) = sup Ilu(t)lls 2' 
[O,T] , 
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(4.7) ( 
T ) 1/4 

J.(T) = 10 118xu(t)II~ dt , 

(4.8) 

and 

(4.9) v(T) = (/ sup lu(x, t)1 2 dX) 1/2. 
[a, T] 

Thus, using Holder's inequality, the energy estimate (3.3) can be written as 

(4.10) 3/4 y(T, s) :S csllualls 2 exp (T J.(T)). 

Next, from the integral equation 

( 4.11 ) 2 t 2 u(t) = U (t)ua - la U (t - r)(u8xu(r)) dr, 

we find that 

(4.12) 8xu(t) = DI/4 U2(t) D 3/4 aUa - lot DI/4 U2(t - r) D 3/4a(u8xu)(r) dr, 

where a denotes the Hilbert transform. 
Hence, using (2.5) with (0:, (], fi) = (2, 1, 1/2) in (4.12) it follows that 

rT 3/4 (4.13) J.(T) :S cllualb/4,2 + c la liD (u8xu)(r)112 dr. 

Similarly, using (2.2) and (2.12) in (4.11) we find that 

(4.14) a(T, s) :S cllualls 2 + c rT IIDs(u8xu)(r)112 dr , la 
and 

1/4+ { rT 3/4+ } (4.15) v(T) :S c(1 + T) Ilualls,2 + la IIJ (u8xu)(r)112 dr . 

Thus, we should estimate the integral terms in (4.13)-(4.15). First, using Mih-
lin's theorem we observe that 

Ilf(u8xu)11 2 = IIuDs8xu + u(f - D S )8xu + [f; u]8xull 

:S IluDs 8xull2 + Il uIL:,oIIulls,2 + II[f; u]8xu I1 2· 

Then, by combining (2.13), (2.14), the Cauchy-Schwarz and Holder inequal-
ities, the Sobolev embedding theorem, and (4.10), it is not hard to obtain the 
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following string of inequalities: 
( 4.16) 

faT IIf(uoxu)(t) 112 dt 

::::; c {T(lluDSoxUI1 2 + II[f; u]oxul12 + Ilullooliulis 2)(t)dt 10 ' 
::::; cT I /2 (faT f IuDS oxUl2 dx dt) 1/2 

+ c faT (iloxull oo + lIulloo)llulls,2(t) dt 

::::; cT I /2 (f faT IuDS oxUl2 dt dX) 1/2 + cT3/4 (faT Iloxu(t)lI~ dt) 1/4 

X sup lIu(t)lls 2 + cT sup Ilu(t)113/4 2 sup Ilu(t)lIs 2 
[0 , T) , [0, T) , [0 , T) , 

::::; cT I / 2 (f sup lu(x, t)12 dX) 1/2 (SUp rT IDS 0xu(x, t)12 dt) 1/2 
~,n x 10 

+CT3/4A(T)lluolls,2 exp (T3/4A(T)) 

+ cTlluoI13/4,21Iuolls,2 exp (2T3/4A(T)) 

::::; cT I /21/(T)a(T, s) + CT3/4I1uolls,2A(T) exp(T3/4A(T)) 

+ cTlluoI13/4,2 Il uolls,2 exp(2T3/4A(T)). 

Inserting (4.16) in (4.13)-(4.15) we see that 

max {A(T); a(T, s); (1 + T)-1/4+ v(T) } 

(4.17) ::::; cll uoll s ,2 + cT I /21/(T)a(T, s) 

+ cT3/41Iuolls,2 exp(2T3/4A(T))(A(T) + T I / 4I1 uoI13/4,2)' 

Notice that y(. , s), A( . ), a (. , s) ,and 1/( .) are continuous nondecreasing 
functions and that the terms in the right-hand side of (4.17) depend linearly 
on the norms involving derivatives of order s. Hence, defining To by the 
expression 

( 4.18) 

from (4.17) we can conclude that 
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Furthermore, at T = To one of the following inequalities must hold: 
3/4 1/2::; cTo lIuolls,2' 
1/2 1/2+ 1/2::; cTo (1 + To) Iluolls,2' 

1/2::; TolluoIl3/4,2' 
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Therefore, there exists a constant MI > 0 depending only on Iluolls,2 such that 
T= To >MI • 

Moreover, for lIuolls,2 sufficiently small T = To ::; cslluolI;,~- . 
Combining (4.19), (4.16) with (2.2), (2.12) one easily obtains (4.2), (4.4). 

Finally, the above remark (i.e., the right-hand side of (4.17) depends linearly 
on the highest derivatives) completes the proof of the lemma. 0 

Lemma 4.2. For any Uo E HS(JR) with s> 3/4 there exist constants T* , K > 0 
such that for any e E (0, 1) the IVP (3.2) with 0: = 2 has a unique solution 
uB(.) in the class C([O, T*] : HOO(JR)) satisfying the estimates (4.1)- (4.5) of 
the previous lemma with T* instead of T . 

Moreover, 

(4.20) (loT' II Ds+OP /2 uB(t)II! dt) I/q ::; K 

for any (0, ft) E [0, 1] x [0, 1/2] with (q, p) = (6/0(ft + 1),2/(1 - 0)). 
Proof. Theorem 3.1 guarantees that for any e > 0 the IVP (3.2) has a unique 
solution in the class C([O, TB]: HOO(JR)). 

If Te < T* == T (with T given by Lemma 4.1) combining (4.7), (4.19) with 
Lemma 3.3 one finds that 

(4.21) sup IluB(t)lIsl 2 ::; cslllu~lIsl 2 
[O,T,1 ' , 

for any s' 2:: 0 . 
Since the right-hand side of (4.21) does not depend on TB (as far as Te < 

T*), we can apply Theorem 3.1 to extend the solution in the same class to the 
whole interval [0, T*]. 

The proof of (4.20) follows by using (2.5) in the integral equation (4.11) and 
then (4.16) and (4.19). 0 

Proof of Theorem 1.1. From Lemmas 4.1 and 4.2 it follows that for any e E 
(0, 1) the corresponding solution uB ( .) of the IVP (3.2) with 0: = 2 satisfies 

ue E C([O, T]: Hoo(JR)), 

( 4.22) sup lIuB(t)lls 2::; K, 
[O,Tl ' 
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and 

(4.23) 

with T and K depending only Iluolls,2' 
Defining lO(t) = lOe,e' (t) = (uel - ue)(t) for e > e' > 0, we have that lO(t) 

satisfies the equation 

(4.24) 
Thus, a standard argument shows that 

d e e' 
dt IllO(t)lb ~ c(IIoxu 1100 + Iloxu 1100)(t)lllO(t)lb· 

Hence, 

(4.25) 

as e tends to zero. 
The above inequality proves the existence and uniqueness of a strong solu-

tion u(·) of the IVP (1.1). To obtain the persistence property, we use the 
argument given by Bona and Smith in [3] to show that the ue(.) 's converge in 
LOO([O, T]: H S ) as e tends to zero. 

We shall need the following estimates: 
e -I (4.26) sup IIu (t)IIs+1 2 ~ ce , 

10,T] , 

and 

(4.27) (loT IIDS+IJP/2+lue(t)II!dt) l/q ~ ce-l 

for any I> 0, with (0, p) E [0, 1]x[0, 1/2], (q, p) = (6/0(a+l), 2/(1+0)), 
and where the constant c depends only on II Uo lis, 2 and I . 

The estimate (4.26) follows from (3.3) and (4.23). The proof of (4.27) can be 
obtained by inserting (4.26) in the proof of Lemma 4.2 (where all the estimates 
depend linearly on the highest derivatives). 

Now using the commutator estimates (2.13) and (2.14) in the equation (4.24) 
we find that 

(4.28) 
d e' e 
dt IIlO(t)IIs,2 ~ c(lloxu 1100 + IIoxu 11 00 ) (t)IIlO(t)lls,2 

+ III (t)lls,2 IloxlO(t)IIoo + Iloxue(t)lls,r1 IllO(t)ll r2 

with f- + f- = !. Since s> 3/4, combining the estimates (4.22), (4.23), and 
I 2 

(4.25)-( 4.27) with the Sobolev embedding theorem and the three line theorem 
(see [1]) it follows that: 

( 4.29) loT I loT Ilue (t)IIs 2 IloxlO(t)lloo dt ~ c IloxlO(t) 1100 dt = 0(1), 
0' 0 
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and 

foT IloxUB(t)lls,rl Ilw(t)ll r2 dt = 0(1) 

as e tends to zero, for rl sufficiently large. 
Thus after applying Gronwall's inequality in (4.28) we obtain that 

(4.30) sup II(l - uB)(t)lls 2 = 0(1) as e -+ O. 
[O,T] , 
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This proves that the IVP (1.1) has a unique solution u E C([O, T] : H S (~)) 

whenever Uo E HS(~) with s > 3/4 (i.e., existence, persistence, and unique-
ness). 

As it is well known (see [3, 19, 27]), the approach of using uB ( • )-solutions 
has the advantage that it provides continuous dependence almost automatically. 
Therefore, to complete the proof of Theorem 1.1, we shall restrict ourselves 
to showing that the uB(. )-solutions converge to u in the norms described in 
(1.13)-( 1.15). 

For this purpose we use that the w( .) solution of (4.24) satisfies the following 
integral equation: 

I I 2 rT 2 I 

w(t) = (uB - uB )(t) = U (t)wo - 10 U (t - r) (uB 0xW + woxuB) (r) dr. 

Using the notation 

A(V, T, l) = (foTII/oxV(t)II~dt)I/4, 

o'(v, T, I) = s~p (foT Idoxv(x, t)1 2 dt) 1/2, 

v(v, T, l) = (/ sup I/u(x, t)1 2 dX) 1/2, 
[O,T] 

the estimates (4.20), (4.22), (4.23), (4.29), and (4.30), and arguing as in the 
proof of Lemma 4.1 it is not hard to see that 

max {A(W, T, r); o'(w, T, s); (1 + T)1/4+ v (W, T, r')} 
~ 0(1) + CTI/2(v(UB , T, O)o'(w, T, s) + v( w, T, O)O'(uB , T, s) ) 

for any (r, r') E [0, s - 3/4] x [0, s - 3/4). 
From (4.18) and (4.19) it follows that 

max { A (w, T, r) ; 0'( w, T, s); (1 + T) -1/4 V (w, T, r') } = 0 ( 1 ) 

as e tends to zero, which combined with (2.5) finishes the proof. 0 

Remark. Notice that the above proof also establishes the uniqueness and reg-
ularity of strong solutions (i.e., solutions that are limits of classical ones in 
C([O, T]: H oo )). 
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5. PROOF OF THEOREM 1.3 

The proof of this theorem has some differences from the proof provided 
in the previous section for Theorem 1.1. In this case a E [1,2), thus the 
gain of derivatives al2 in the local smoothing effect (2.2) is smaller than one. 
Hence, the integral equation cannot be used (as in the previous case a = 2 ) to 
establish this effect. To obtain it one has to rely on the differential equation, 
which yields a slightly weaker version of this result. Consequently, we have to 
use the stronger estimate (1.8) for the associated maximal function instead of 
the simpler one in (1. 7) to balance this loss of information (see (5.10». 

As in the previous case the main idea in the proof is to obtain an a priori 
estimate of the L 00([0, T] : HS)-norm of the solutions uB(.) of the IVP (3.2) 
with the bound M and the time T independent of e. 

We begin by proving the following version of the local smoothing effect. 

Lemma 5.1. Let u = uB E C([O, T] : H oo ) be a solution of the IVP (3.2) with 
a E [1, 2) . Then 

(loT! IDSOoxu(x, t)12X~(X)dxdt) 1/2 

(5.1) ~ clluolls,2 . (1 + T + loT Iloxu(t) 1100 dt + TIIuo11/,2) 

X exp (c loT Iloxu(t)lloo dt) 

where So = s + al2 - 1, I > 1/2 , X denotes a nondecreasing smooth function 
such that x' is supported in (-1,2) with x' = 1 on [0,1] and Xj(') = 
X ( . - j), and the constant c is independent of e . 

To establish (5.1) we need, in addition to Lemma 2.10, some commutator 
estimates. First we have the Calderon commutator theorem. 

Theorem 5.2. Let g : lR -t lR be a COO function with g' E L 00 . Then the 
operator [0"; g]ox maps L2(JR) into L2(JR) with 

(5.2) 

Proof. [4], see also [6, Theorem 35]. 0 

Next we state an estimate, due to Ginibre and Velo [11], concerning the local 
smoothing effect (1.5) in solutions of the IVP (1.2) with Uo E L2 and Uo E Ha • 

Lemma 5.3. Let h E Coo(JR) with h' having compact support. Then for a E 
[1, 2) 

(5.3) 2! f(Daoxf)h = (1 + a) ! (DaI2 f)2 h' + 2! fRa(h)f, 

where IIRa(h)flb ~ cJ.z)ah'111 IIf11 2• 

Proof. See [11, Proposition 2.1 and Remark (14)]. 0 
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Proof of Lemma 5.1. From the equation in (3.2) one has that 

(5.4) 

where A == D SO-Cl./2f)x . Multiplying (5.4) by -AuXj(x) , integrating in the space 
variable, and using (5.3) after integration by parts we find that 

d! 2 ! S 2 ! - dt (Au) Xj + (1 + a) (D of)x u) Xj + Au . RCI.(X)Au 

(5.5) + 2 ! (oxUXj + UX;) (AU)2 

- 2 ! [A; u]8xu Au Xj = O. 

The estimates (2.13), (2.14), and (5.2) lead to the following inequalities 

(5.6) /I [A; U]oxu/l2 ~ /lO'[Ds; U]oxu /l2 + II [0', u]8xDsu llz 
::; c (/lu/l oo + /loxu/l oo ) /lulls 2' , 

Hence, integrating the identity (5.5) in the time interval [0, T] we obtain 

foT ! IDsOoxu(x, t)12x;(x) dx dt 

::; c sup /lu(t)II~ 2 (1 + T + fT IIoxu(t) 1100 dt + T sup IIu(t)/I, 2) 
[0 , T]' J 0 [0 , T] , 

for any I > 1/2, which combined with the energy estimate (3.3) yields the 
result. 0 

Proof of Theorem 1.3. To simplify the exposition we introduce the following 
notation: 

#(T) ~ (too I~~~ j<~~~)u(x, Ill') '/', 
A(T) = (foT /loxu(t)/I~ dt) 1/4, 

y(T) = sup /lu(t)II s 2' 
[O,T] , 

Thus, using Holder's inequality, the energy estimate (3.3) can be written as 

(5.7) 3/4 y(T) ::; cs/I Uo /ls,2 exp(cT A(T)). 

Now from the integral equation 

u(t) = UCl.(t)uo - foT UCl.(t - r)uf)xu(r) dr 
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and the linear estimates (2.5) (with (0, P) = (1, (a - 1)/2)), and (2.11) one 
easily sees that 

(5.8) A(T) ::; ell n<5-a)/4uoI12 + e loT II D(5-a)/4(u8xu)(t)11 2 dt 

and 

(5.9) It(T) ::; e (1 + T)P {II Uo Iiso ,2 + e loT II(u8xu)(t) Ilso' 2 dt } 

for any p>3/4 andso =s+a/2-1>(a+1)/4. 
Since a < 2, and S ~ (9 - 3a)/4, we can assume that So ~ (5 - a)/4. To 

bound the integral terms in the right-hand sides of (5.8) and (5.9) we use (2.13), 
(2.14), and (5.7) to obtain the following string of inequalities: 

loT II(u8xu)(t) Ilso' 2 dt ::; eTI/2 {loT ! I f O(u8xu)(x , t) 12 dx dt f/2 

::; cTI/2 { (loT ! I uDs0 8xu 12 dx dt y/2 

+ (loT (II u II~ + 118xu II~) II u 1I;0,2(t) dt) 1/2} 

1/2 (L loT! s 2 I ) 1/2 3/4 ::;eT luD08xul XJ·dxdt +cT sup Ilu(t)lis 2 
. 0 [0, T] 0' 

J 

+ ( rT 118xu(t) 114 dt) 1/4 + cT sup II u(t) lis 2 sup II u(t) III 2 J 0 00 [0, T] 0 ' [0 , T] , 

I 2{ 2}1/2 ::; cT / L sup sup I u(x , t) I 
j [0, T] j9<j+1 

X {s~p loT ! IDs08xUI2X;dXdtf/2 

3/4 3/4 +cT Iluollso,2A(T)exp(eT A(T)) 
3/4 + cT II Uo Il so ,2 II Uo 11 / ,2 exp(eT A.(T)) 

::; eTI/21t(T)11 Uo Ils,2 exp(cT3/4 A.(T))(1 + T + T 3/4A.(T) + Til Uo 11 / ,2) 

3/4 3/4 1/411 II ) +cT lIuollso,2exp(eT A.(T))(A.(T)+T Uo 1,2 

= ell Uo lis 2 exp(cT3/4 A.(T))(T i / 2 It(T) + 1) 

x (1 + T + T 3/4 A.(T) + Til Uo 11 / ,2) 
== E(T), 

where So = s + a/2 - 1 < s and I > 1/2. 
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Therefore, combining (5.8)-(5.10) we have that 

max {Jc(T); (1 + T)-P ,u(T)} :s:; ell Uo Ils,2 + E(T). 

Now we define To by the expression 

max {eTg/4 Jc(To); eT~/2 ,u(To)} = 1/2. 

Hence, for T:S:; To 

max {Jc(T); (1 + T)-P ,u(T)} :s:; elluolls,2 (1 + T + TIl Uo 11/,2)' 

Moreover, at least one of the following inequalities holds: 

! :s:; eTg/4 Il uolls,2 (1 + T + Til Uo 11/,2) 

or 

! :s:; e (1 + T)P Iluolls,2 (1 + T + T Iluoll/ ,2)' 
Thus, we conclude that there exists T = To ;::: M = M(lluolls,2) > 0 such 

that Jc(T) , ,u(T) , and y(T), and consequently the term in the left-hand side of 
(5.1), can be bounded by a constant K with K and T dependent but only on 
Il uolls,2 . 

At this point the rest of the proof follows the argument used in the previous 
section (see also [19, 27]). Therefore it will be omitted. 
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