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Abstract. In this paper, we shall study the system of transmission of the Schrödinger

equation with Dirichlet control and colocated observation. Using the multiplier method,

we show that the system is well-posed with input and ouput space U = L2(Γ) and state

space X = H−1(Ω). The regularity of the system is also established, and the feedthrough

operator is found to be zero. Finally, the exact controllability of the open-loop system is

obtained by proving the observability inequality of the dual system.

1. Introduction. In [19], Salamon introduced the class of well-posed linear systems.

The aim was to provide a unifying abstract framework to formulate and solve control

problems for systems described by functional and partial differential equations. Roughly

speaking, a well-posed linear system is a linear time invariant system such that on any

finite time interval, the operator from the initial state and the input function to the final

state and the output function is bounded. This means that every well-posed system has a

well-defined transfer function G(s). An important subclass of well-posed linear systems is

formed by the regular systems. A regular system ([22]) is a well-posed system satisfying

the extra requirement that lim
s∈R,s→+∞

G(s) = D exists.

There is now a rich literature on the abstract theory for regular well-posed linear

systems and from a practical point of view, the construction of specific examples of

distributed parameter systems which belong to this class is of considerable importance.

In recent years, a limited number of PDEs with boundary control and observation are

proved to be well-posed and regular (see [2], [4], [7], [5], [6], [8], [9], [1], [10], [3]).

Received March 14, 2012.
2000 Mathematics Subject Classification. Primary 35J10, 93C20, 93C25, 93D15, 93B05, 93B07.
E-mail address: allag ismahane@hotmail.com

E-mail address: rebiai@hotmail.com

c©2013 Brown University
Reverts to public domain 28 years from publication

93

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf

http://www.ams.org/qam/
http://www.ams.org/jourcgi/jour-getitem?pii=S0033-569X-2013-01351-0


94 I. ALLAG AND S. E. REBIAI

In this paper, we shall study the system of transmission of the Schrödinger equation

with Dirichlet control and colocated observation. Using the multiplier method, we show

that the system is well-posed with input and ouput space U = L2(Γ) and state space

X = H−1(Ω). The regularity of the system is also established and the feedthrough

operator is found to be zero. Finally, the exact controllability of the open-loop system is

obtained by proving the observability inequality of the dual system.

2. System description and main results. Let Ω be an open bounded domain of

R
n (n ≥ 2) with smooth boundary Γ, and let Ω1 be a bounded domain contained inside

Ω; Ω1 ⊂ Ω with smooth boundary Γ1, Ω2 is the domain Ω\Ω1 and ν is the unit normal

of Γ or Γ1 pointing toward the exterior of Ω2.

Let a time T > 0 and two distinct constants a1, a2 > 0 be given.

In this paper, we shall be concerned with the following system of transmission of the

Schrödinger equation with Dirichlet control and colocated observation.

y′(x, t) = idiv(a(x)∇y(x, t)), (x, t) ∈ Ω× (0, T ), (2.1)

y(x, 0) = y0(x), x ∈ Ω, (2.2)

y2(x, t) = u(x, t), (x, t) ∈ Γ× (0, T ), (2.3)

y1(x, t) = y2(x, t), (x, t) ∈ Γ1 × (0, T ), (2.4)

a1
∂y1(x, t)

∂ν
= a2

∂y2(x, t)

∂ν
, (x, t) ∈ Γ1 × (0, T ), (2.5)

z(x, t) = i
∂

∂ν
(A−1y2(x, t)), (x, t) ∈ Γ× (0, T ), (2.6)

where

y′(x, t) = ∂y(x,t)
∂t ,

a(x) =

{
a1, x ∈ Ω1

a2, x ∈ Ω2
,

y(x, t) =

{
y1(x, t), (x, t) ∈ Ω1 × (0, T )

y2(x, t), (x, t) ∈ Ω2 × (0, T )
,

A : H−1(Ω) → H−1(Ω) is a positive selfadjoint operator defined by

Af = −Δf, D(A) = H1
0 (Ω),

u(., .) is the input function, and

z(., .) is the output function.

Equation (2.1), known as the position-dependent-mass (effective mass) Schrödinger

equation, has important applications in the field of material science and condensed mat-

ter physics such as semiconductors, quantum dots, He clusters, quantum liquids, and

semiconductor heterostructure (see [16] and [20] and the references therein).

When a1 = a2, Guo and Shao [4] have shown that the system (2.1)–(2.6) is well-posed

with input and output space U = L2(Γ) and state space X = H−1(Ω) and regular with

zero as the feedthrough operator. One of the aims of this paper is to investigate the

well-posedness and the regularity of the system (2.1)–(2.6) in the case where a1 �= a2.

Indeed, we shall prove the following
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THE TRANSMISSION SCHRÖDINGER EQUATION 95

Theorem 2.1. The equations (2.1)–(2.6) determine a well-posed linear system with input

and ouput space U = L2(Γ) and state space X = H−1(Ω).

Theorem 2.2. The system (2.1)–(2.6) is regular with zero feedthrough operator. This

means that if the initial state y(., 0) = 0 and u(., t) = u(t) ∈ U is a step input, then the

corresponding output satisfies

lim
σ→0

∫
Γ

∣∣∣∣ 1σ
∫ σ

0

z(x, t)dt

∣∣∣∣ dΓ = 0. (2.7)

The second aim is to study the exact controllability problem for the open-loop system

(2.1)–(2.5). Exact controllability of the Schrödinger equation with smooth coefficients in

the elliptic principal part and subject to boundary control was treated in [11], [17] and

[21]. To state our exact controllability result, we need the following assumptions:

(A1) Γ = Γ0 ∪ Γ1; Γ0 is possibly empty while Γ1 is nonempty and relatively open.

(A2) a2 < a1.

(A3) There exists a real vector field h(.) ∈ (C1(Ω))n such that

(A3a)

Re(

∫
Ω

H(x)v(x).v(x)dx) ≥ ρ

∫
Ω

‖v(x)‖2 dx

for all v(.) ∈ (L2(Ω))n for some ρ > 0, where

H(x) =

(
∂hi(x)

∂xj

)
, i = 1, ..., n and j = 1, ..., n.

(A3b)

h(x).ν(x) ≤ 0, x ∈ Γ1.

(A3c)

h(x).ν(x) ≤ 0, x ∈ Γ0.

Theorem 2.3. Let T > 0 be arbitrary. Assume hypotheses (A1) and (A2). Then for

any initial data y0 ∈ H−1(Ω), there exists a control u ∈ L2(0, T ;L2(Γ)) with u = 0 on

Γ0 such that the corresponding solution of the system (2.1)–(2.5) satisfies y(x, T ) = 0.

As a consequence of Theorem 2.1, Theorem 2.3 and Proposition 3.1 of [13], we have

the following uniform stabilization result for the system (2.1)–(2.5) on the space H−1(Ω).

Corollary 2.4. Let the hypotheses of Theorem 2.3 hold true. Then there exist positive

constants M,ω such that the solution of (2.1)–(2.5) with u = −αz (α > 0) satisfies

‖y(t)‖X ≤ Me−ωt
∥∥y0∥∥

X
.

3. Abstract formulation. We define the space

H2(Ω,Γ1) = {y ∈ H1
0 (Ω) : yi = y|Ωi

∈ H2(Ωi); i = 1, 2;

a1
∂y1
∂ν

= a2
∂y2
∂ν

on Γ1}

with the norm

‖y‖2H2(Ω,Γ1)
= ‖y1‖2H2(Ω1)

+ ‖y2‖2H2(Ω2)
.

It can be shown that H2(Ω,Γ1) is dense in H1
0 (Ω).
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96 I. ALLAG AND S. E. REBIAI

Let A1 :H1
0 (Ω) → H−1(Ω) be the extension of −div(a(x)∇.) to H1

0 (Ω). This means

that A1f = −div(a(x)∇f) whenever f ∈ H2(Ω,Γ1) and that A−1
1 g = −(div(a(x)∇))−1g

for any g ∈ L2(Ω).

Let A−1 : H−1(Ω) → (D(A))′ be the extension of A1 to H−1(Ω). Notice that (D(A))′

is the dual of D(A) with respect to the pivot space H−1(Ω).

Define the Dirichlet map γ by

γu = v

if and only if

div(a(x)∇v) = 0 in Ω,

v = u on Γ,

v1 = v2 on Γ1,

a1
∂v1
∂υ

= a2
∂v2
∂υ

on Γ1.

Then γ ∈ L(L2(Γ), L2(Ω)) ([12]).

Using the operators introduced above, we can rewrite (2.1), (2.3)–(2.5) on (D(A))′ as

y′(t) = −iA−1y(t) +Bu(t)

where B ∈ L(U, (D(A))′) is given by

Bu = iA−1γu.

We have, via Green’s second theorem,

γ∗Aψ = −∂ψ

∂ν
, ψ ∈ D(A).

Hence the adjoint C of B is given by

Cψ = i
∂

∂ν
(A−1ψ).

Now, we can reformulate the system (2.1)–(2.6) into an abstract form in the state space

H−1(Ω) as follows:

y′(t) = −iA1y(t) +Bu(t), (3.1)

y(0) = y0 , (3.2)

z(t) = Cu(t). (3.3)

4. Proof of Theorem 2.1. The fact that the operator −iA1 generates a C0-group of

unitary operators S(t) on X is a consequence of Stone’s Theorem (see [18]). In order to

establish the admissibility of B and C for the group S(t), we need the following identity,

which is a particular case of the identity (7.16) in the appendix.

Lemma 4.1. Let m(.) be a real vector field on Ω of class C1 such that

m = ν on Γ and m = 0 in Ω0,

where Ω0 is an open domain in R
n that satisfies

Ω1 ⊂ Ω0 ⊂ Ω0 ⊂ Ω.
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Let {ξ0i , fi} ∈ H1(Ωi)× L1(0, T, L2(Ωi)), i = 1, 2, such that

ξ01 = ξ02 on Γ1,

ξ02 = 0 on Γ.

Then for every weak solution of

ξ′(x, t) = idiv(a(x)∇ξ(x, t)) + f(x, t), (x, t) ∈ Ω× (0, T ), (4.1)

ξ(x, 0) = ξ0(x), x ∈ Ω, (4.2)

ξ2(x, t) = 0, (x, t) ∈ Γ× (0, T ), (4.3)

ξ1(x, t) = ξ2(x, t), (x, t) ∈ Γ1 × (0, T ), (4.4)

a1
∂ξ1(x, t)

∂ν
= a2

∂ξ2(x, t)

∂ν
, (x, t) ∈ Γ1 × (0, T ), (4.5)

the following identity holds true:

a2

∫ T

0

∫
Γ

∣∣∣∣∂ξ∂ν
∣∣∣∣
2

dΓdt = Im(

∫
Ω2

ξm.∇ξdΩ)T0 + a2Re

∫ T

0

∫
Ω2

ξ∇ξ.∇(divm)dΩdt

− 2a2Re

∫ T

0

∫
Ω2

∇ξ.m∇ξdΩdt+ Re

∫ T

0

∫
Ω2

fξdivmdΩdt− 2Im

∫ T

0

∫
Ω2

fm.∇ξdΩdt.

(4.6)

Remark 4.2. Liu and Williams [8] made use of the vector field m to establish a

boundary regularity result for the problem of transmission of the plate equation.

4.1. Admissibility of B and C for the group S(t). Since the system (3.1)–(3.3) is

colocated, the admissibility of B for the group S(t) is equivalent to the admissibility of

C for the group S(t). But the latter means that
∫ T

0

∫
Γ

|CS(t)ψ|2 dΓdt ≤ k ‖ψ‖2X (4.7)

for all ψ ∈ D(A) and for some T > 0.

Here and throughout the rest of the paper, k is a positive constant that takes different

values at different occurrences.

An equivalent partial differential equation characterization of the estimate (4.7) is

given by ∫ T

0

∫
Γ

∣∣∣∣∂ϕ∂ν
∣∣∣∣
2

dΓdt ≤ k ‖ϕ0‖2H1
0 (Ω) , (4.8)

where ϕ0 = A−1ψ and ϕ is the solution of

ϕ′(x, t) = idiv(a(x)∇ϕ(x, t)), (x, t) ∈ Ω× (0, T ), (4.9)

ϕ(x, 0) = ϕ0(x), x ∈ Ω, (4.10)

ϕ2(x, t) = 0, (x, t) ∈ Γ× (0, T ), (4.11)

ϕ1(x, t) = ϕ2(x, t), (x, t) ∈ Γ1 × (0, T ), (4.12)

a1
∂ϕ1(x, t)

∂ν
= a2

∂ϕ2(x, t)

∂ν
, (x, t) ∈ Γ1 × (0, T ). (4.13)
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98 I. ALLAG AND S. E. REBIAI

Specialization of the identity (4.6) to the ϕ-problem (4.9)–(4.13) yields

∫ T

0

∫
Γ

∣∣∣∣∂ϕ∂ν
∣∣∣∣
2

dΓdt = Im(

∫
Ω2

ϕm.∇ϕdΩ)T0 + a2Re

∫ T

0

∫
Ω2

ϕ∇ϕ.∇(divm)dΩdt

− 2a2Re

∫ T

0

∫
Ω2

∇ϕ.M∇ϕdΩdt. (4.14)

Using Schwarz and Poincaré inequalities, we obtain from (4.14)

∫ T

0

∫
Γ

∣∣∣∣∂ϕ∂ν
∣∣∣∣
2

dΓdt ≤ k

∫ T

0

∫
Ω

|∇ϕ|2 dΩdt+ k

∫
Ω

|∇ϕ(x, 0)|2 dΩ+ k

∫
Ω

|∇ϕ(x, T )|2 dΩ.

But ∫
Ω

|∇ϕ(x, t)|2 dΩ =

∫
Ω

∣∣∇ϕ0
∣∣2 dΩ.

Thus ∫ T

0

∫
Γ

∣∣∣∣∂ϕ∂ν
∣∣∣∣
2

dΓdt ≤ k
∥∥ϕ0

∥∥2
H1

0 (Ω)
.

4.2. Boundedness of the input-output map. It suffices to show that the solution of

(2.1)–(2.5) with y(x, 0) = 0 satisfies

∫ T

0

∫
Γ

∣∣∣∣∂A
−1y(x, t)

∂ν

∣∣∣∣
2

dΓdt ≤ k

∫ T

0

∫
Γ

|u(x, t)|2 dΓdt (4.15)

for all u ∈ L2(0, T ;U).

From the admissibility of B, we have y ∈ C(0, T ;H−1(Ω)) for every y0 ∈ H−1(Ω).

Let us introduce a new variable by setting

w(t) = A−1y(t) ∈ C(0, T ;H1
0 (Ω)).

Thus by (3.1), we obtain the abstract equation

w′(t) = −iA1y(t) + iγu(t)

whose corresponding partial differential problem is

w′(x, t) = idiv(a(x)∇w(x, t)) + iγu(x, t), (x, t) ∈ Ω× (0, T ), (4.16)

w(x, 0) = 0, x ∈ Ω, (4.17)

w2(x, t) = 0, (x, t) ∈ Γ× (0, T ), (4.18)

w1(x, t) = w2(x, t), (x, t) ∈ Γ1 × (0, T ), (4.19)

a1
∂w1(x, t)

∂ν
= a2

∂w2(x, t)

∂ν
, (x, t) ∈ Γ1 × (0, T ). (4.20)

The estimate (4.15) becomes

∫ T

0

∫
Γ

∣∣∣∣∂w(x, t)∂ν

∣∣∣∣
2

dΓdt ≤ k

∫ T

0

∫
Γ

|u(x, t)|2 dΓdt. (4.21)
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As for (4.8), the estimate can also be deduced from the identity (4.6). Indeed, setting

f = iγu in (4.6) and using the fact that γ ∈ L(L2(Γ), L2(Ω)), we obtain

∫ T

0

∫
Γ

∣∣∣∣∂w(x, t)∂ν

∣∣∣∣
2

dΓdt ≤ k

∫ T

0

∫
Ω

|∇w|2 dΩdt+ k

∫
Ω

|∇w(x, T )|2 dΩ+ k

∫ T

0

∫
Γ

|u|2 dΓdt

≤ k(‖w‖2C(0,T ;H1
0 (Ω)) + ‖u‖2L2(0,T ;L2(Γ))).

This together with the admissibility of B for the C0-group S(t) yields (4.21).

5. Proof of Theorem 2.2. Since the system (2.1)–(2.6) is well-posed, its transfer

function G(s) is bounded on some right half-plane (see [23]). To continue, we need the

following results.

The assertion of Theorem 2 holds true if for any u ∈ C∞
0 (Γ) the solution y of

sy(x)− idiv(a(x)∇y(x)) = 0, x ∈ Ω, (5.1)

y2(x) = u(x), x ∈ Γ, (5.2)

y1(x) = y2(x), x ∈ Γ1, (5.3)

a1
∂y1(x)

∂ν
= a2

∂y2(x)

∂ν
, x ∈ Γ1, (5.4)

satisfies

lim
s∈R,s→+∞

∫
Γ

∣∣∣∣1s
∂y

∂ν

∣∣∣∣
2

dΓ = 0. (5.5)

Proof. We know from [23] that in the frequency domain, (2.7) is equivalent to

lim
s∈R,s→+∞

G(s)u = 0 (5.6)

in the strong topology of U for any u ∈ U. Due to the boundedness of G(s) and the

density of L2(Γ) in C∞
0 (Γ), it suffices to establish (5.6) for all u ∈ C∞

0 (Γ). Now for

u ∈ C∞
0 (Γ) and s > 0, let

y = (sI + iA1)
−1Bu.

Then y satisfies (5.1)–(5.4) and

(G(s)y)(x) = i
∂(A−1y)

∂υ
(x), x ∈ Γ.

It follows from Lemma 7.1 in the appendix that there exists a function v ∈ H2(Ω,Γ1)

satisfying the following boundary value problem:

div(a(x)∇v(x)) = 0, x ∈ Ω,

v2(x) = u(x), x ∈ Γ,

v1(x) = v2(x), x ∈ Γ1,

a1
∂v1(x)

∂ν
= a2

∂v2(x)

∂ν
, x ∈ Γ1.
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100 I. ALLAG AND S. E. REBIAI

Consequently, (5.1)–(5.4) can be written as

sy(x)− idiv(a(x)∇(y(x)− v(x))) = 0, x ∈ Ω,

y2(x)− v2(x)) = 0, x ∈ Γ,

y1(x)− v1(x) = y2(x)− v2(x), x ∈ Γ1,

a1
∂(y1(x)− v1(x))

∂ν
= a2

∂(y2(x)− v2(x))

∂ν
, x ∈ Γ1.

Hence

(G(s)y)(x) =
a2
s

∂y(x)

∂ν
− a2

s

∂v(x)

∂ν
.

This gives (5.5). �

Lemma 5.1. Let m be the vector field introduced in Section 4.1. Let u ∈ C∞
0 (Γ). Then

the solution of (5.1) satisfies

a2

∫
Γ

∣∣∣∣∂y2∂ν

∣∣∣∣
2

dΓ = − s

a2
Im

∫
Ω

ym.∇y + 2Re

∫
Ω2

∇y2.M∇y2dΩ

−
∫
Ω2

|∇y2|2 div mdΩ+

∫
Γ

|∇σy2|2 dΓ. (5.7)

Proof. We multiply both sides of (5.1) by m.∇y and integrate over Ω. Using Green’s

first theorem, we find

s

∫
Γ

|y|2 m.νdΓ− s

∫
Ω

ym.∇ydΩ− s

∫
Ω

|y|2 divmdΩ + ia1

∫
Γ1

∂y1
∂ν

m.∇y1dΓ

+ ia1

∫
Ω1

∇y1.∇(m.∇y1)dΩ− ia2

∫
Γ1

∂y2
∂ν

m.∇y2dΓ− ia2

∫
Γ

∂y2
∂ν

m.∇y2dΓ

+ ia2

∫
Ω2

∇y2.∇(m.∇y2)dΩ = 0. (5.8)

Recalling the assumptions made on the vector field m, we simplify (5.8) to

s

∫
Γ

|y|2 m.νdΓ− s

∫
Ω

ym.∇ydΩ− s

∫
Ω

|y|2 divmdΩ− ia2

∫
Γ

∣∣∣∣∂y2∂ν

∣∣∣∣
2

dΓ

+ ia2

∫
Ω2

∇y2.∇(m.∇y2)dΩ = 0

from which we obtain

a2

∫
Γ

∣∣∣∣∂y2∂ν

∣∣∣∣
2

dΓ = −sIm

∫
Ω

ym.∇ydΩ + a2Re

∫
Ω2

∇y2.∇(m.∇y2)dΩ. (5.9)

On the other hand, we have

Re

∫
Ω2

∇y2.∇(m.∇y2)dΩ = Re

∫
Ω2

∇y2.M∇y2dΩ+
1

2

∫
Γ

|∇y2|2 dΓ−
1

2

∫
Ω2

|∇y2|2 divmdΩ

(5.10)

where

M =

(
∂mi

∂xj

)
i=1,n;j=1,n

.
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Using the fact that

|∇y2|2 = |∇σy2|2 +
∣∣∣∣∂y2∂ν

∣∣∣∣
2

on Γ,

(5.10) becomes

Re

∫
Ω2

∇y2.∇(m.∇y2)dΩ = Re

∫
Ω2

∇y2.M∇y2dΩ− 1

2

∫
Ω2

|∇y2|2 divmdΩ

+
1

2

∫
Γ

|∇yσ|2 dΓ +
1

2

∫
Γ

∣∣∣∣∂y2∂ν

∣∣∣∣
2

dΓ. (5.11)

Insertion of (5.11) into (5.9) yields (5.7). �

Lemma 5.2. Let y be a solution of (5.1)–(5.4). Then

s

∫
Ω

|y|2 dΩ + i

∫
Ω

a(x) |∇y|2 dΩ = ia2

∫
Γ

∂y2
∂ν

y2dΓ. (5.12)

Proof. We multiply both sides of (5.1) by y and integrate over Ω. From Green’s first

theorem, we have

s

∫
Ω

|y|2 dΩ− i{a2
∫
Γ

∂y2
∂ν

y2dΓ + a2

∫
Γ1

∂y2
∂ν

y2dΓ− a2

∫
Ω2

|∇y2|2 dΩ

− a1

∫
Γ1

∂y1
∂ν

y1dΓ− a1

∫
Ω2

|∇y2|2 dΩ}. (5.13)

Inserting the boundary condition (5.4) into (5.12), we find that this simplifies to (5.12).

�
5.1. Completion of the proof of Theorem 2.2. We first introduce some constants:

a = min(a1, a2), μ1 = sup
Ω

|m(x)| , μ2 = sup
Ω

‖M(x)‖ , μ3 = sup
Ω

|div v(x)| .

From (5.7), we have the estimate

1

s2

∫
Γ

∣∣∣∣∂y2∂ν

∣∣∣∣
2

dΓ ≤ μ1

2a2s1/2

∫
Ω

|y|2 dΩ+
μ1

2a2s3/2

∫
Ω

|∇y|2 dΩ

+
2μ2 + μ3

s2

∫
Ω2

|∇y2|2 dΩ+
1

s2

∫
Γ

|∇σy2|2 dΓ. (5.14)

On the other hand, (5.12) implies

1

s1/2

∫
Ω

|y|2 dΩ ≤ a2
2s1/2

∫
Γ

|y2|2 dΓ +
a2

2s5/2

∫
Γ

∣∣∣∣∂y2∂ν

∣∣∣∣
2

dΓ, (5.15)

1

s3/2

∫
Ω

|∇y|2 dΩ ≤ a2
2as1/2

∫
Γ

|y2|2 dΓ +
a2

2as5/2

∫
Γ

∣∣∣∣∂y2∂ν

∣∣∣∣
2

dΓ. (5.16)

Substituting (5.15), (5.16) into (5.14), we get

1

s2

∫
Γ

∣∣∣∣∂y2∂ν

∣∣∣∣
2

dΓ ≤ (
μ1

4s1/2
+

μ1

4as1/2
+

a2(2μ2 + μ3)

2as
)

∫
Γ

|y2|2 dΓ

+ (
μ1

4s1/2
+

μ1

4as1/2
+

a2(2μ2 + μ3)

2as
)
1

s2

∫
Γ

∣∣∣∣∂y2∂ν

∣∣∣∣
2

dΓ +
1

s2

∫
Γ

|∇σy2|2 dΓ. (5.17)
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Since

y2 = u on Γ× (0, T )

and

‖y‖2H1(Γ) = ‖y‖2L2(Γ) + ‖|∇σy|‖2L2(Γ) ,

we rewrite (5.17) as follows:

1

s2

∫
Γ

∣∣∣∣∂y2∂ν

∣∣∣∣
2

dΓ ≤ (
μ1

4s1/2
+

μ1

4as1/2
+

a2(2μ2 + μ3)

2as
+

1

s2
) ‖u‖2H1(Γ)

+ (
μ1

4s1/2
+

μ1

4as1/2
+

a2(2μ2 + μ3)

2as
)
1

s2

∫
Γ

∣∣∣∣∂y2∂ν

∣∣∣∣
2

dΓ.

This last estimate shows that

lim
s∈R,s→+∞

∫
Γ

∣∣∣∣1s
∂y

∂ν

∣∣∣∣
2

dΓ = 0.

6. Proof of Theorem 2.3. Let

E(t) =

∫
Ω

a(x) |∇ϕ|2 dΩ

be the energy corresponding to the solution of the system (4.9)–(4.13). Then

E(t) = E(0) for all t > 0.

By classical duality theory, to prove Theorem 2.3 it is enough to establish the associated

observability inequality
∫ T

0

∫
Γ1

∣∣∣∣∂ϕ∂ν
∣∣∣∣
2

dΓdt ≥ k ‖ϕ0‖2H1
0 (Ω) , (6.1)

where ϕ is the solution of the homogeneous system (4.9)–(4.13).

To this end, we apply the identity (7.16) to the ϕ-problem (4.9)–(4.13) to obtain

a2

∫ T

0

∫
Γ

∣∣∣∣∂ϕ2

∂ν

∣∣∣∣
2

h.νdΓdt (6.1)

= 2a1(1−
a1
a2

)

∫ T

0

∫
Γ1

∣∣∣∣∂ϕ1

∂ν

∣∣∣∣
2

h.νdΓdt+ a2

∫ T

0

∫
Γ1

|∇ϕ2|2 h.νdΓdt

− a1

∫ T

0

∫
Γ1

|∇ϕ1|2 h.νdΓdt+ Im

[∫
Ω

ϕh.∇ϕdΩ

]T
0

+ 2Re

∫ T

0

∫
Ω

a(x)∇ϕ.H∇ϕdΩdt

+ Re

∫ T

0

∫
Ω

a(x)ϕ∇ϕ.∇(divh)dΩdt. (6.2)

But

|∇ϕi|2 =

∣∣∣∣∂ϕi

∂ν

∣∣∣∣
2

+ |∇σϕi|2 on Γ1 × (0, T ), i = 1, 2

and

|∇σϕ1|2 = |∇σϕ2|2 on Γ1 × (0, T ).
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Then (A2) and (A3b) imply that

2a1(1−
a1
a2

)

∫ T

0

∫
Γ1

∣∣∣∣∂ϕ1

∂ν

∣∣∣∣
2

h.νdΓdt+ a2

∫ T

0

∫
Γ1

|∇ϕ2|2 h.νdΓdt− a1

∫ T

0

∫
Γ1

|∇ϕ1|2 h.νdΓdt

= a1(1−
a1
a2

)

∫ T

0

∫
Γ1

∣∣∣∣∂ϕ1

∂ν

∣∣∣∣
2

h.νdΓdt− (a1 − a2)

∫ T

0

∫
Γ1

|∇σϕ1|2 h.νdΓdt ≥ 0. (6.3)

From (6.2) and (6.3), we deduce that

2ρT

∫
Ω

a(x)
∣∣∇ϕ0

∣∣2 dΩ ≤ a2

∫ T

0

∫
Γ1

∣∣∣∣∂ϕ2

∂ν

∣∣∣∣
2

h.νdΓdt− Im

[∫
Ω

ϕh.∇ϕdΩ

]T
0

+ Re

∫ T

0

∫
Ω

a(x)ϕ∇ϕ.∇(divh)dΩdt. (6.4)

Application of Schwarz and Poincaré inequalities to the
∫
Ω
-terms on the right-hand side

of (6.4) yields

(2ρT − c1ε

a2
)

∫
Ω

a(x)
∣∣∇ϕ0

∣∣2 dΩ ≤ a2c1

∫ T

0

∫
Γ1

∣∣∣∣∂ϕ2

∂ν

∣∣∣∣
2

dΓdt

+
1

2
((c2cp + c2)T +

2c1cp
a2ε

) ‖ϕ‖2C(0,T ;H1
0 (Ω)) (6.5)

where

c1 = sup
Ω

|h(x)| , c2 = sup
Ω

|∇(divh)| ,

cp is the Poincaré constant:

∫
Ω

|ϕ|2 dΩ ≤ cp

∫
Ω

|∇ϕ|2 dΩ, and

ε is an arbitrary positive small constant.

The sought-after estimate follows now from (6.5) by a compactness/uniqueness argument.

7. Appendix.

Lemma 7.1. Let f be a solution to the following elliptic problem:

div (a(x)∇f(x)) = g(x), x ∈ Ω, (7.1)

f2(x) = u(x), x ∈ Γ, (7.2)

f1(x) = f2(x), x ∈ Γ1, (7.3)

a1
∂f1(x)

∂ν
= a2

∂f2(x)

∂ν
, x ∈ Γ1, (7.4)

for g ∈ L2(Ω) and u ∈ H3/2(Ω). Then there exists a constant k independent of f, g and

u such that

‖f‖H2(Ω,Γ1)
≤ k{‖g‖L2(Ω) + ‖u‖H3/2(Γ)}.

Proof. Let f be a solution to (7.1)–(7.4). Then f can be written as

f(x) =

{
f1(x), x ∈ Ω1

f2(x), x ∈ Ω2
,
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where f2 and f1 are respectively the solutions of

a2Δf2(x) = g(x), x ∈ Ω,

f2(x) = u(x), x ∈ Γ,

and

a1Δf1(x) = g(x), x ∈ Ω1,

f1(x) = f2(x), x ∈ Γ1, (7.5)

a1
∂f1(x)

∂ν
= a2

∂f2(x)

∂ν
, x ∈ Γ1.

From elliptic regularity theory (see [14]), we have

‖f2‖H2(Ω) ≤ k{‖g‖L2(Ω) + ‖u‖H3/2(Γ)}. (7.6)

It follows from the trace theorem that f2|Γ1
∈ H3/2(Γ1) and

‖f2‖H3/2(Γ1)
≤ k ‖f2‖H2(Ω) . (7.7)

(7.5) together with (7.7) implies again via the elliptic regularity that f1 ∈ H2(Ω1) and

‖f1‖H2(Ω1)
≤ k{‖g‖L2(Ω) + ‖f2‖H3/2(Γ1)

}. (7.8)

Combining (7.6), (7.8) and (7.7), we obtain

‖f1‖H2(Ω1)
+ ‖f2‖H2(Ω) ≤ k{‖g‖L2(Ω) + ‖u‖H3/2(Γ)}

from which follows the desired estimate, since

‖f‖2H2(Ω,Γ1)
= ‖f1‖2H2(Ω1)

+ ‖f2‖2H2(Ω) .

�

Lemma 7.2. Let h be a real vector field of class C1 on Ω. Then for every solution of the

problem

ξ′(x, t) = idiv(a(x)∇ξ(x, t)) + g(x, t), (x, t) ∈ Ω× (0, T ), (7.11)

ξ(x, 0) = ξ0(x), x ∈ Ω, (7.12)

ξ2(x, t) = 0, (x, t) ∈ Γ× (0, T ), (7.13)

ξ1(x, t) = ξ2(x, t), (x, t) ∈ Γ1 × (0, T ), (7.14)

a1
∂ξ1(x, t)

∂ν
= a2

∂ξ2(x, t)

∂ν
, (x, t) ∈ Γ1 × (0, T ), (7.15)
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we have

a2

∫ T

0

∫
Γ

∣∣∣∣∂ξ2∂ν

∣∣∣∣
2

h.νdΓdt+ 2a1(
a1
a2

− 1)

∫ T

0

∫
Γ1

∣∣∣∣∂ξ1∂ν

∣∣∣∣
2

h.νdΓdt

− a2

∫ T

0

∫
Γ1

|∇ξ2|2 h.νdΓdt+ a1

∫ T

0

∫
Γ1

|∇ξ1|2 h.νdΓdt

= Im

[∫
Ω

ξh.∇ξdΩ

]T
0

+ 2Re

∫ T

0

∫
Ω

a(x)∇ξ.H∇ξdΩdt

+ Re

∫ T

0

∫
Ω

a(x)ξ∇ξ.∇(divh)dΩdt

+ Im

∫ T

0

∫
Ω

gξdivhdΩdt− 2Im

∫ T

0

∫
Ω

gh.∇ξdΩdt. (7.16)

Proof. The identity (7.16) will be established for strong solutions and the general case

will follow then by a standard density argument. To this end, let {ξ0i , fi} ∈ H2(Ωi) ×
H1(Ωi)× L1(0, T ;H1(Ωi)) such that

ξ01 = ξ02 on Γ1,

g1 = g2 on Γ1 × (0, T ),

ξ02 = 0 on Γ,

g2 = 0 on Γ× (0, T ),

a1
∂ξ01
∂ν

= a2
∂ξ02
∂ν

on Γ1.

We multiply both sides of (7.11) by h.∇ξ and integrate over Ω× (0, T ) to obtain

∫ T

0

∫
Ω

ξ′h.∇ξdΩdt = i

∫ T

0

∫
Ω

div(a(x)∇ξ)h.∇ξdΩdt+

∫ T

0

∫
Ω

gh.∇ξdΩdt. (7.17)

We have

∫ T

0

∫
Ω

ξ′h.∇ξdΩdt =

[∫
Ω

ξh.∇ξdΩ

]T
0

−
∫ T

0

∫
Γ

ξξ
′
hνdΓdt

+

∫ T

0

∫
Ω

(−idiv(a(x)∇ξ) + g)h.∇ξdΩdt+

∫ T

0

∫
Ω

ξξ
′
divhdΩdt.

(7.18)

Substituting (7.18) into (7.17), we get

[∫
Ω

ξh.∇ξdΩ

]T
0

−
∫ T

0

∫
Γ

ξξ
′
hνdΓdt+

∫ T

0

∫
Ω

(−idiv(a(x)∇ξ) + g)h.∇ξdΩdt

+

∫ T

0

∫
Ω

ξξ
′
divhdΩdt = i

∫ T

0

∫
Ω

div(a(x)∇ξ)h.∇ξdΩdt+

∫ T

0

∫
Ω

gh.∇ξdΩdt.
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Hence

2Re

∫ T

0

∫
Ω

div(a(x)∇ξ)h.∇ξdΩdt = Im

[∫
Ω

ξh.∇ξdΩ

]T
0

− Im

∫ T

0

∫
Γ

ξξ
′
hνdΓdt

+ Im

∫ T

0

∫
Ω

ξξ
′
divhdΩdt − 2Im

∫ T

0

∫
Ω

gh.∇ξdΩdt. (7.19)

Using Green’s first theorem along with the identity

2Re

∫
Ω

∇w.∇(h.∇w)dΩ = 2Re

∫
Ω

∇w.H∇wdΩ+

∫
Ω

h.∇(|∇w|2)dΩ,

we rewrite the left-hand side of (7.19) as

2Re

∫ T

0

∫
Ω

div(a(x)∇ξ)h.∇ξdΩdt

= 2a2Re

∫ T

0

∫
Γ1

∂ξ2
∂ν

h.∇ξ2dΓdt+ 2a2Re

∫ T

0

∫
Γ

∂ξ2
∂ν

h.∇ξ2dΓdt

− 2a1Re

∫ T

0

∫
Γ1

∂ξ1
∂ν

h.∇ξ1dΓdt− a2

∫ T

0

∫
Γ

|∇ξ2|2 h.νdΓdt− a2

∫ T

0

∫
Γ1

|∇ξ2|2 h.νdΓdt

+ a1

∫ T

0

∫
Γ1

|∇ξ1|2 h.νdΓdt− 2a2Re

∫ T

0

∫
Ω2

∇ξ2.H∇ξ2dΩdt+ a2

∫ T

0

∫
Ω2

|∇ξ2|2 divhdΩdt

− 2a1Re

∫ T

0

∫
Ω1

∇ξ1.H∇ξ1dΩdt+ a1

∫ T

0

∫
Ω2

|∇ξ1|2 divhdΩdt. (7.20)

Recalling the boundary conditions (7.13)–(7.15), we have

h.∇ξ2 =
∂ξ2
∂ν

h.ν on Γ× (0, T ), (7.21)

h.∇(ξ1 − ξ2) =
∂(ξ1 − ξ2)

∂ν
h.ν

= (1− a1
a2

)
∂ξ1
∂ν

on Γ1 × (0, T ). (7.22)

Inserting (7.21) and (7.22) into (7.20), we find that this simplifies to

2Re

∫ T

0

∫
Ω

div(a(x)∇ξ)h.∇ξdΩdt = −2a1(1−
a1
a2

)

∫ T

0

∫
Γ1

∣∣∣∣∂ξ1∂ν

∣∣∣∣
2

h.νdΓdt

+ a2

∫ T

0

∫
Γ

∣∣∣∣∂ξ2∂ν

∣∣∣∣
2

h.νdΓdt− a2

∫ T

0

∫
Γ1

|∇ξ2|2 h.νdΓdt+ a1

∫ T

0

∫
Γ1

|∇ξ1|2 h.νdΓdt

− 2Re

∫ T

0

∫
Ω

a(x)∇ξ.H∇ξdΩdt+

∫ T

0

∫
Ω

a(x) |∇ξ|2 divhdΩdt. (7.23)

Now, we consider the third integral on the right-hand side of (7.19). Applying Green’s

first theorem and taking into consideration the boundary condition (7.13), we obtain

Im

∫ T

0

∫
Ω

ξξ
′
divhdΩdt = Re

∫ T

0

∫
Ω

a(x) |∇ξ|2 divh+ Re

∫ T

0

∫
Ω

a(x)ξ∇ξ.∇(divh)dΩdt

+ Im

∫ T

0

∫
Ω

gξdivhdΩdt. (7.24)
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Substituting (7.23) and (7.24) into (7.19) and using the boundary condition (7.13), we

obtain (7.16). �
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