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Abstract

Background: In recent years, there has been a huge increase in the amount of publicly-available and proprietary

information pertinent to drug discovery. However, there is a distinct lack of data mining tools available to harness

this information, and in particular for knowledge discovery across multiple information sources. At Indiana

University we have an ongoing project with Eli Lilly to develop web-service based tools for integrative mining of

chemical and biological information. In this paper, we report on the first of these tools, called WENDI (Web Engine

for Non-obvious Drug Information) that attempts to find non-obvious relationships between a query compound

and scholarly publications, biological properties, genes and diseases using multiple information sources.

Results: We have created an aggregate web service that takes a query compound as input, calls multiple web

services for computation and database search, and returns an XML file that aggregates this information. We have

also developed a client application that provides an easy-to-use interface to this web service. Both the service and

client are publicly available.

Conclusions: Initial testing indicates this tool is useful in identifying potential biological applications of compounds

that are not obvious, and in identifying corroborating and conflicting information from multiple sources. We

encourage feedback on the tool to help us refine it further. We are now developing further tools based on this

model.

Background
In common with most scientific disciplines, there has in

the last few years been a huge increase in the amount of

publicly-available and proprietary information pertinent

to drug discovery, owing to a variety of factors including

improvements in experimental technologies (High

Throughput Screening, Microarray Assays, etc),

improvements in computer technologies (particularly

the Web), funded “grand challenge” projects (such as

the Human Genome Project), an imperative to find

more treatments for more diseases in an aging popula-

tion, and various cultural shifts. This has been dubbed

data overload [1] Significant effort has therefore been

put into the development of computational methods for

exploiting this information for drug discovery, particu-

larly through the fields of Bioinformatics and Chemin-

formatics. Of particular note are the provision of

large-scale chemical and biological databases, such as

PubChem [2], ChemSpider [3], the PDB [4], and KEGG

[5], which house information about massive numbers of

compounds, proteins, sequences, assays and pathways;

the development of predictive models for biological

activity and other biological endpoints; data mining of

chemical and biological data points; the availability of

journal articles in electronic form, and associated index-

ing (such as in PubMed) and text mining of their con-

tent. Further, we are seeing an unprecedented amount

of linking of information resources, for instance with

Bio2RDF [6], Linking Open Drug Data [7] and manual

linking of database entries.
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One of the next great challenges is how we can use all

of this information together in an intelligent way, in an

integrative fashion [8]. We can think of all these infor-

mation resources as pieces of a jigsaw, which in their

own right give us useful insights, but to get the full pic-

ture requires the pieces to be put together in the right

fashion. We thus not only need to aggregate the infor-

mation, but we also need to be able to data mine it in

an integrative fashion. There are a number of technolo-

gies that are becoming available that assist with this: in

particular, web services and Cyberinfrastructure [9]

allow straightforward, standardized interfaces to a vari-

ety of data sources and Semantic Web languages such

as XML, OWL and RDF permit the aggregation of data,

and representation of meaning and relationships in the

data respectively.

At Indiana University, we are tackling this problem

from several angles. We recently developed a Cyberin-

frastructure for cheminformatics, called ChemBioGrid,

which has made a multitude of databases and computa-

tional tools freely available for the first time to the aca-

demic community in a web service framework [10]. Of

particular import, we have been able to successfully

index chemical structures in the abstracts of large num-

bers of scholarly publications through a collaboration

with the Murray Rust group at Cambridge. The infra-

structure has spurred the development of several impor-

tant client applications, including PubChemSR [11], and

the application of Web 2.0 style “mashups” using user-

scripts for a variety of life-science applications [12]. We

are continuing to support and further develop this

infrastructure.

With this infrastructure in place, we have investigated

a variety of strategies for integrating the chemical and

biological data from different sources in the infrastruc-

ture, in particular of (i) the application of data mining

techniques to chemical structure, biological activity and

gene expression data in an integrated fashion [13], (ii)

the development of a generalizable four layer model

(storage, interface, aggregation and smart client) for

integrative data mining and knowledge discovery [14],

and (iii) aggregation of web services into automatically

generated and ranked workflows [15]. We are now

investigating methods for applying these techniques on

a larger scale, particularly to be able to extract knowl-

edge from large volumes of chemical and biological data

that would not be found by searching single sources,

and to be able to use multiple independent sources to

corroborate or contradict hypotheses. To do this, we are

employing two key technologies: aggregate web services

which call multiple “atomic” web services and aggregate

the results, and Semantic Web languages for the repre-

sentation of integrated data.

In this paper we describe one of the first products of

this work, a tool called WENDI (Web Engine for Non-

obvious Drug Information) that is designed to tackle a

specific question: given a chemical compound of inter-

est, how can we probe the potential biological properties

of the compound using predictive models, databases,

and the scholarly literature? In particular, how can we

find non-obvious relationships between the compound

and assays, genes, and diseases, that cross over different

types of data source? We present WENDI as a tool for

aggregating information related to a compound to allow

these kinds of relationships to be identified.

Of course, the power of this kind of integration comes

from identifying truly non-obvious but yet real relation-

ships between these entities. Our aim in this work is to

allow a rapid differentation between known relationships

(i.e. those which a scientist with a reasonable under-

standing of the literature in a field could be expected to

already know), and unknown relationships (those which

could not be found in literature closely associated with

a field, or not part of the ‘art’ of the field). There is

clearly some fuzziness in this, and this makes evaluation

of a tool like WENDI for non-obviousness difficult.

However, we do present it as a useful tool based on

qualitative feedback from existing users, and we are cur-

rently devising ways of a more quantitative evaluation

(as described in the concluding section).

Implementation
1. Overall architecture

We have since extended the ChemBioGrid infrastructure

to be the primary data source for WENDI. Additionally,

for WENDI we have introduced the idea of aggregate web

services that call multiple individual, or atomic, web ser-

vices and aggregate the results from these services in

XML. For example, the main web service used by

WENDI takes as input a SMILES string representing a

compound of interest, and outputs an XML file of infor-

mation about the compound aggregated by calling multi-

ple web services. This XML file can then be parsed by an

intelligent client to extract information pertinent to com-

pound properties. The overall architecture uses a four

layer approach which we described previously [14] that

includes storage, interface, aggregation and smart inter-

face layers (see Figure 1). The storage and interface layers

are implemented using the Web Service Infrastructure,

and our initial work developing aggregate web services

and smart clients comprises the work described here.

Web services either follow the Simple Object Access

Protocol (SOAP) standard [16] or REpresentational

State Transfer (RESTful) approach [17], the latter of

which are often better integrated with Hypertext Trans-

fer Protocol (HTTP) than SOAP-based services. Whilst
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we have both kinds of web service in operation, we pri-

marily use REST service. For example, we have created

a 3D similarity searching Web Service is based on our

local PubChem 3D database which stores 3D structures

[18] and 12 distance moments [19] for all the com-

pounds in the PubChem database. This service is called

by the WENDI web service.

Our SOAP-based services are deployed in a in Tomcat

5.5 application container, which allows us to maintain

these services easily and provides a high level of integra-

tion with our development environments, and with the

service developed by Java 1.6.0. Our Web service layer is

handled by the AXIS libraries 1.6 [20], which accept a

SOAP message, decode it to extract the relevant func-

tion arguments, call the appropriate Web service classes,

and finally encode the return value into a SOAP docu-

ment for return to the client. Our Web service is pub-

lished as WSDL [21] which is an XML-based standard

for describing Web services and their parameters.

Increasingly, we are converting our services to REST for

even easier maintenance and access. A list of some of

our atomic web services can be found on the web [22]

2. Database Services

Our infrastructure contains a large number of com-

pound-related databases, including mirrors of existing

databases (such as PubChem), databases derived from

these (such as 3D structures of PubChem compounds),

and completely new databases (particularly those derived

from the literature). Our databases are housed on a

Linux server running the PostgreSQL database system,

with gNova CHORD [23] installed to allow chemical

structure searching and 2D similarity searching through

the generation of fingerprints. Mirrored databases are

updated monthly. By housing the databases in a homo-

genous environment, it is easy to perform searches that

cross multiple databases using single SQL queries, and

to routinely expose the databases with web service inter-

faces. The following databases are used in the WENDI

system:

PubChem Compound

A mirror of the PubChem Compound database, contain-

ing compound ID’s (CIDs), InChI, SMILES, compound

properties, and 166-key MACCS-style fingerprints [24]

generated by the gNova CHORD system.

PubChem Bioassay

A mirror of the PubChem Bioassay database containing

AIDs (assay ID’s), CIDs of compounds tested, and bio-

assay outcomes and scores

PubChem BioDesc

Descriptions of all PubChem bioassays

Pub3D

A similarity-searchable database of minimized 3D struc-

tures for PubChem compounds

Figure 1 Overall architecture of storage, interface, aggregation and interaction layers employed in WENDI. Each layer can be accessed

directly, or by higher layers.
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Drugbank

A mirror of the DrugBank dataset [25] containing CID’s

(mapping to PubChem), DBID’s (Drugbank ID’s), drug

names, SMILES, usage descriptions, and 166-key finger-

prints. The database contains nearly 4800 drug entries

including >1,350 FDA-approved small molecule drugs,

123 FDA-approved biotech (protein/peptide) drugs,

71 nutraceuticals and >3,243 experimental drugs.

MRTD

An implementation of the Maximum Recommended

Therapeutic Dose (MRTD) set [26] including name,

SMILES, and 166-key fingerprints. The database con-

tains 1,220 current prescription drugs available in

SMILES format from the FDA Web site.

Medline Chemically-aware Publications Database

PubMed IDs of papers indexed in Medline[27], with

SMILES of chemical structures (from the title and

abstract) extracted using the Oscar3 program [28]

Phenopred

a matrix of predictions of gene-disease relationships

based on known relationships mined from the literature

and machine learning predictions [29].

Comparative Toxicogenomics Database (CTD)

cross-species chemical-gene/target interactions and che-

mical-disease relationships derived from experimental

sets and the literature [30].

HuGEpedia

an encyclopedia of human genetic variation in health

and disease [31].

ChEMBL

a database of bioactive drug-like small molecules, con-

taining 2-D structures, calculated properties (e.g. logP,

Molecular Weight, Lipinski Parameters, etc.) and

abstracted bioactivities (e.g. binding constants, pharma-

cology and ADMET data) [32].

2D Tanimoto similarity searching of these datasets is

made available by the gNova CHORD tanimoto function

applied to the 2D public 166 keys, an implementation of

the popular MACCS keys. Without indexing, it runs

very effectively for a single query or on a small dataset,

but the speed reduces significantly for large datasets.

We have 56,911,891 compounds in our PubChem Com-

pound table as the time of writing. To speed up the

searching, we implemented a method described by Swa-

midass & Baldi to reduce the subset of molecules that

need to be searched in similarity calculations [33]. The

method uses simple bounds on similarity that can be

applied when a similarity threshold is used (given two

fingerprints A and B, and a threshold t, we can calculate

a maximum similarity between the fingerprints as min

(a,b)/(a+b-min (a/b)), where a and b are the number of

bits set in A and B respectively).

In addition to 2D similarity searching, 3D similarity

searching is provided on Pub3D database using

12-dimensional molecular shape descriptors [20] calcu-

lated for our Pub3D database of 3D minimized struc-

tures of PubChem compounds. Similarity to a query is

calculated using Euclidean Distance. We use Post-

greSQL to store all these 12D vectors for all com-

pounds, with the CUBE type [34] extension.

3. Prediction services

We have made available a variety of predictions through

our web service framework, particularly:

• Tumor cell line predictions. We created 40 Ran-

dom Forest models for prediction of human tumor

cell line inhibition, trained using data from the NCI

Developmental Therapeutics Program Human

Tumor Cell Lines [13]. These predictions output a

probability of activity for a compound (0-1).

• Toxicity prediction. We implemented a special

modified Web service implementation of ToxTree

[35] for prediction of toxic effects

• Gene-disease relationships. We have implemen-

ted a table of predictions of gene-disease relation-

ships extracted from the PhenoPred tool developed

at Indiana University [29]. Also we employed the

CTD and HuGEpedia data to expore gene-disease

relationships,

4. Aggregate web service and client

We have created a main WENDI aggregate web service,

and a web-based client that employs the web service.

The web service takes a query SMILES string as input

(through a SOAP or REST interface), and calls a variety

of web services and database searches using the query.

Results are returned as an aggregate XML file with sec-

tions delineated according to the atomic web service

that was called. Additional XML tags are added by the

web service, in particular, Gene Ontology terms in the

PubChem Bioassay descriptions, Drug descriptions

(from Drugbank) and paper titles and abstracts, are

extracted and tagged with Gene Ontology ID’s

(GOID’s). These permit associations to be made

between genes and assays, drugs and papers.

The client permits the user to input a SMILES

string, or to draw a structure in using the JME editor

[36], and then uses JSP (Java Server Pages) to submit

the query request to the web service and display and

parse the XML results, and JavaScript to handle the

XML file as the response return back from the server

side. The layer between request submitted by the client

and response returned back from the server is effected

using AJAX (shorthand for Asynchronous JavaScript +

XML) technology. With Ajax, web applications can

retrieve data from the server asynchronously without
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interfering with the display and behavior of an existing

page.

The primary way that the databases are employed in

WENDI is through similarity searching: finding com-

pounds in the databases that are similar to the query,

which have some known property: for example, we

retrieve compounds that are similar (>0.85 Tanimoto)

to a query molecule that are active in a given bioas-

say, are known drugs, or are referenced in a journal

article. Based on the similar property principle [37]

we can assume that these molecules are likely to have

similar properties to the query compound, thus be of

interest in understanding the potential properties of

the query.

The WENDI interface is organized into six major

sections:

Predictive models results presents the predicted prob-

ability of activity of the compound in 40 Human Tumor

Cell line assays, organized by panel type (renal, non-

small cell lung, breast, colon, etc) and color coded

according to probability of activity (red for > = 0.7, yel-

low for > = 0.6 and <0.7, and grey for <0.6). Confusion

metrics are also presented to allow the validity of these

models to be assessed. Also presented are the results of

a ToxTree analysis, particularly the classification

according to Cramer rules [38] and a breakdown of pre-

sence or absence of known toxic fragments.

Activities of similar compounds presents a list of simi-

lar compounds (Tanimoto similarity values given) in

PubChem that have been tested in bioassays, and shown

to be either active. A link to the bioassay along with the

bioassay name is given, and an additional column uses

the extraction of Gene Ontology terms from the bioas-

say description along with the PhenoPred predictions of

gene-disease relationships to list possible related dis-

eases. The DrugBank and MRTD sets are also similarity

searched with the results presented in a similar fashion;

in the case of DrugBank, drug usage descriptions are

given along with predictions of diseases extracted in a

similar way to the PubChem section

Similar compounds from chemogenomics data presents

a list of similar compounds (Tanimoto similarity values

given) from CTD, ChEMBL data that include the rela-

tionships with compounds and genes/diseases.

Similar compounds from Systems data presents a list

of similar compounds (Tanimoto similarity values given)

from KEGG data that include the relationships with

compounds and Pathways/Enzymes.

Similar compounds in the literature lists journal arti-

cles in Medline where the title or abstract contains

Figure 2 Screenshot of the results returned from WENDI for Doxorubicin.
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compounds with a Tanimoto similarity >0.85 to the

query. Links are given to the Journal articles

Inactivities of similar compounds presents the same

informations as Activities of similar compounds sections,

except for all of the similar PubChem compounds found

that have been tested in bioassays and shown to be

inactive.

Finally, a link is given to the raw XML file, and PDF

file for download.

Results
On submission of a query, WENDI generally returns

results within a minute. We have tested WENDI with a

variety of query compounds with known biological

activities, one of them is described below. It can be sim-

ply tested by the reader by visiting the WENDI site. As

an example, a screenshot of the first results returned for

Doxorubicin are shown in Figure 2.

Doxorubicin is an anthracyclin antibiotic that is used

primarily as a nonspecific tumor inhibitor (including

cancers of the bladder, breast, stomach, lung, ovaries,

thyroid, along with soft tissue sarcoma and multiple

myeloma). The mechanism of action is not fully under-

stood, although it is thought to be a DNA intercalator.

WENDI identifies several corroborating pieces of evi-

dence for the biological actions of Doxorubicin. In parti-

cular, it (i) predicts that the compound has a high

probability of activity in all but one of the tumor cell

line screens (red) and a medium probability in HCT-15

(colon cancer); (ii) predicts that the compounds has

toxic effects by our Toxicity prediction service, corrobo-

rated by descriptions from DrugBank; (iii) identifies spe-

cific tumor-related bioassays in which compounds

similar to Doxorubicin (and identical to it) were found

to be active (in particular, many similar compounds

were found to be active in NCI Tumor Cell Line

screens, corroborating the predictions of activity); (iv)

identifies a wide variety of assays in which compounds

similar to Doxorubicin are inactive; (v) identifies several

similar drugs to Doxorubicin (Epirubcin, Daunorubicin,

Idarubicin) along with descriptions corroborating the

nonspecific anti-tumor activity; (vi) identifies numerous

publications linking Doxorubicin and related com-

pounds to a variety of tumor activities (Figure 3)

A chemical compounds recently submitted to Pub-

Chem, but not collected in our database yet, were also

used as queries for WENDI. The results and some inter-

pretations are given in the Table 1 and more results of

Figure 3 Screenshot of the insights from the literature returned from WENDI for Doxorubicin.

Zhu et al. Journal of Cheminformatics 2010, 2:6

http://www.jcheminf.com/content/2/1/6

Page 6 of 9



other compounds tested by WENDI are shown in

Table 2.

Conclusion
In this paper, we present a integrative data mining tool

for drug discovery using aggregate web services.

WENDI aims to build a full picture of potential biologi-

cal activities of a chemical compound through the

aggregation of data from web services that represent

diverse multiple sources (including predictive models,

databases and journal articles). WENDI allows the iden-

tification of corroborating or conflicting information: for

instance, a compound might be predicted active in a

breast cancer cell line, and similar compounds might

show active in a PubChem BioAssay related to breast

cancer, or be co-located in a paper abstract with a

breast cancer related gene. We are now deveoping a

next generation of tools based on WENDI and our

recent Chem2Bio2RDF system [39] for exploring

inferred relationships between compounds and diseases,

genes, pathways using Semantic Web technologies

including ontologies and RDF. We are also devising

ways of quantitatively evaluating the extent to which

WENDI truly identifies ‘non-obvious’ kinds of relation-

ship, including using a corpus of literature in the field

as the baseline for the ‘obvious’ relationships, as well as

courting specific case studies from users for qualitative

analysis.

Availability and requirements
Project name: WENDI (Web Engine for Non-obvious

Drug Information)

Table 1 Query compounds and related biological activities retrieved from WENDI

Query CID 44246308 44246315 44247545

Reported
activities

weak activity against Sortase-A (SrtA), an
antimicrobial target

tested and shown negative for activity
against DNA polymerase alpha and beta

None

Tumor Cell Line
Predictive models

50-60% probability of activity in breast,
renal, prostate, HS, ovarian, leukemia,

melanoma, non-small cell lung; otherwise
<50% probability

50-60% probability of activity in renal,
leukemia, non-small cell lung, colon,

melanoma; otherwise <50% probability

<50% probability for all tumor cell lines

Bioassay activities
& gene

relationships of
similar

compounds

highly similar molecules found to be
antagonists of GPCR GPR7 (associated
with feeding behavior, obesity and

inflammatory pain); CYP2C9 (metabolizes
NSAIDS and sulfonylureas); inhibition of
Non small-cell lung cancer (NCI HOP-18)

and supression of colon tumors;
inhibition of HIV-1 RNase H

similar molecules are shown active in
CYP3A4 confirmation assay (important in
drug metabolism); CYP2C9 (metabolizes

NSAIDS and sulfonlyureas); BAP1
inhibition (tumor suppressor involved in
breast cancer BRCA1); probes of Alpha-
Synuclein 5’UTR (related to Parkinsons

disease); FPR (GPCR involved in
chemotaxis); antibacterial activity

(Mycobacterium tuberculosis and VIM-2
metallo-beta-lactamase)

similar compounds show activity in
CYP2C19 (metabolism of antiepeleptics
and protein-pump inhibitors); agonist of
M1 muscarinic receptor (associated with
Alzheimer’s and antipsychotics); Estrogen

receptor alpha coactivator binding
inhibitors (breast cancer association);

Bioassay inactives
of similar

compounds

many highly similar compounds
(including one with a nominal 1.0
similarity) show inactive in RNase H

screen (AID-372)

similar molecules inactive for HIV
inhibition; inhibition of breast tumors

(BRCT:pBACH1 of BRCA1); hERG inhibition;
HIV-1 RNase H inhibition; 14-3-3 protein
interaction modulators; antibacterial
(Mycobacterium tuberculosis); FKBP12

immunosupressant;

similar compounds inactive for Cdc25B
catalytic domain protein tyrosine

phosphatase; beta-glucocerebrosidase
inhibitors (linked with Gaucher disease);
14-3-3- protein interaction modulation;
hERG blockers of proarrythmic agents

CTD gene
relationships of

similar
compounds

similar compounds show link with use of
anti-inflammatory drugs (NSAIDS) in

carcinomas; CYP2C9;

similar compounds linked with Gilbert
disease; adenoma; use of anti-
inflammatory drugs (NSAIDS) in

carinomas; coronary arterial protection;
colorectal neoplasms (tumors)

None

Activities of
similar marketed

drugs

None None None

Insights from
similar

compounds in
journal articles
(MEDLINE)

None Intricatin, a similar isofavonoid, is shown
to be antimutagenic; Claussequinone has

anti-inflammatory activity

None

Interpretation Some evidence for anti-inflammatory
activity (particularly related to tumors)
and CYP2C9 inhibition; mixed evidence
on generalized anti-tumor activity and

inhibition of HIV-1 RNase H44

Generalized, nonspecific activity, although
may be worth investigating for anti-tumor

activity particularly colon cancer.

None
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• Project home page: https: https://cheminfov.infor-

matics.indiana.edu:8443/WENDI_PUBLIC/WENDI.jsp

• Operating system(s): Platform independent

• Programming language: Java

• Other requirements: Java browser-embedded plugin

• License: None. Any restrictions to use by non-

academics: None
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