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ABSTRACT: Water management and flood control are major challenges in the western United 
States. They are heavily influenced by atmospheric river (AR) storms that produce both beneficial 
water supply and hazards; for example, 84% of all flood damages in the West (up to 99% in key 
areas) are associated with ARs. However, AR landfall forecast position errors can exceed 200 km 
at even 1-day lead time and yet many watersheds are <100 km across, which contributes to 
issues such as the 2017 Oroville Dam spillway incident and regularly to large flood forecast errors. 
Combined with the rise of wildfires and deadly post-wildfire debris flows, such as Montecito 
(2018), the need for better AR forecasts is urgent. Atmospheric River Reconnaissance (AR Recon) 
was developed as a research and operations partnership to address these needs. It combines new 
observations, modeling, data assimilation, and forecast verification methods to improve the science 
and predictions of landfalling ARs. ARs over the northeast Pacific are measured using dropsondes 
from up to three aircraft simultaneously. Additionally, airborne radio occultation is being tested, 
and drifting buoys with pressure sensors are deployed. AR targeting and data collection methods 
have been developed, assimilation and forecast impact experiments are ongoing, and better 
understanding of AR dynamics is emerging. AR Recon is led by the Center for Western Weather 
and Water Extremes and NWS/NCEP. The effort’s core partners include the U.S. Navy, U.S. Air 
Force, NCAR, ECMWF, and multiple academic institutions. AR Recon is included in the “National 
Winter Season Operations Plan” to support improved outcomes for emergency preparedness and 
water management in the West.
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A
tmospheric rivers (AR) are long narrow corridors of water vapor transport that serve 

as the primary mechanism to advect moisture into midlatitude continental regions, 

including the U.S. West Coast (Zhu and Newell 1998; Ralph et al. 2004, 2006; Neiman 

et al. 2008). ARs yield beneficial impacts as their associated precipitation comprises a 

majority of western U.S. precipitation, including up to 50% of California’s annual water supply 

(Dettinger 2013), but have also been responsible for nearly all major �ooding events in many 

western watersheds (e.g., Ralph et al. 2006) and 84% of all �ood insurance claims in the West 

over the past 40 years (up to 99% in key areas; Corringham et al. 2019). As a result, consider-

able e�ort has been dedicated to understanding AR physics, dynamics, and predictability in 

recent years, to both maximize the potential bene�ts of these systems through e�ective water 

management and minimize their hazardous impacts (Ralph et al. 2017).

Despite recent advances in understanding the importance of ARs to global moisture fluxes 

and regional water resources, forecasting these features remains a challenge due in part to 

their formation and propagation over the ocean, where in situ and surface-based observa-

tions are extremely limited (Ralph et al. 2013; Cannon et al. 2017). Although advancements 

in satellite data assimilation (English et al. 2013), including all-sky radiances (Zhu et al. 

2016), have greatly improved global model forecast skill, the information assimilated into 

numerical weather prediction (NWP) models remains limited and error prone in regions of 

deep clouds and precipitation collocated with the AR. Furthermore, fundamental questions 

remain regarding the evolution of these systems that necessitate data at scales not adequately 

simulated by models or observed by satellites (e.g., Demirdjian et al. 2020a). Neiman et al. 

(2016) utilized offshore dropsonde observations of an AR during the 2014 CalWater Field 

Campaign (Ralph et al. 2016) to document three-dimensional thermodynamic and kinematic 

characteristics of an AR and its subsequent hydrometeorological impacts across Northern 

California from 7 to 10 February 2014, which included prolonged precipitation and moderate 

flooding. The impacts associated with that event were attributed to mesoscale circulations 

that stalled the synoptic-scale front and AR propagation, and their research contended that 

augmented airborne monitoring of offshore ARs is necessary to improve the understand-

ing of the dynamic and thermodynamic processes in cloud obscured regions, which play a 

dominant role in AR evolution. Multiple studies have also argued that improving estimates 

of the initial atmospheric state in NWP models in AR conditions has the potential to improve 

forecasts of high-impact precipitation events (Doyle et al. 2014; Ralph et al. 2014; Neiman et 

al. 2016; Cordeira et al. 2017; Reynolds et al. 2019; Demirdjian et al. 2020b; for an overview of 

targeted observations, see Majumdar 2016). To this end, Atmospheric River Reconnaissance 

(AR Recon) represents an important research and operations partnership between multiple 

academic institutions, state and federal agencies, and stakeholders to improve forecasting of 

high-impact winter weather in the western United States.

AR Recon supports the improved prediction of landfalling ARs on the U.S. West Coast 

by supplementing conventional data assimilation with targeted dropsonde observations of 
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atmospheric profiles of water vapor, temperature, and winds within ARs. The concept for AR 

Recon was first recommended in a 2013 report to the Western States Water Council that was 

prepared by a broad cross-disciplinary group (Ralph et al. 2014). The 2016, 2018, 2019, and 

2020 AR Recon campaigns took place from late January through mid-March and involved a 

team of scientists from multiple academic institutions, operational forecasting centers, and 

federal agencies. Over each winter season that AR Recon has been executed, the campaign 

has utilized a combination of available aircraft: the National Oceanic and Atmospheric 

Administration (NOAA) Gulfstream IV (G-IV) and two U.S. Air Force (USAF) C-130s, which are 

strategically stationed ahead of events to collectively cover wide swaths of the eastern Pacific 

for broad sampling of AR features (Fig. 1). Ongoing work to quantify the impact of targeted 

observations on forecast skill in the western United States and its potential value to regional 

stakeholders is an essential part of establishing the cost effectiveness and operational poten-

tial of continued observational targeting in ARs (e.g., Hamill et al. 2013; Parsons et al. 2017). 

While the reported impact of targeted observations in the literature to date has been marginal 

(Majumdar et al. 2016), a thorough investigation of the value of targeted AR observations to 

western U.S. forecast challenges has yet to be carried out. Furthermore, recent investigations 

specific to this problem (e.g., Lavers et al. 2018; Wick et al. 2018; Kren et al. 2018; Stone et al. 

2020; Schindler et al. 2020) have demonstrated a consistent positive impact of targeted drop-

sonde observations on operational forecasts that warrants continued research investment.

This manuscript is intended to define the need for AR Recon, detail the execution of the 

campaign in recent seasons, and introduce ongoing work to determine the impact of AR Recon 

on western U.S. forecast skill. The second section provides an overview of unique forecast 

challenges for the U.S. West Coast. The third section describes the basic organization of AR 

Recon and its primary sponsors. The fourth section details AR forecasting and observation 

targeting during the campaign, and the fifth section describes the execution of the campaign 

in recent winter seasons. The sixth section introduces a formal steering committee on AR 

Recon NWP modeling and data assimilation, and briefly highlights studies to determine the 

impact of the campaign on West Coast forecast skill. The final section discusses the ongoing 

transition of AR Recon from a research program to a research and operations partnership as 

Fig. 1. Staging locations of USAF and NOAA Aircraft that participated in AR Recon 2018 (white stars), 

climatological frequency of ARs during January and February (grayscale), and percentage of winter-season 

precipitation contributed by ARs (color fill). Only the USAF aircraft were available in 2019.
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part of the Office of the Federal Coordinator for Meteorology (OFCM) National Winter Season 

Operations Plan (NWSOP) (OFCM 2019).

U.S. West Coast forecast challenge examples

Flood forecasting. The challenge of predicting most floods in the western states results pri-

marily from errors in forecasts of precipitation, which in turn are closely related to errors in 

the prediction of ARs. Although western U.S. forecasting of floods and of the precipitation that 

causes them has improved over time, major gaps remain at 0–4-day lead time that limit decision 

support for water management and hazard mitigation (Sukovich et al. 2014; Lavers et al. 2016). 

Many of these challenges result from errors in the prediction of AR landfall position, intensity, 

orientation, duration (Wick et al. 2013; Lavers et al. 2016; Cordeira et al. 2017; DeFlorio et al. 

2018; Nardi et al. 2018; Martin et al. 2018), and temperature (White et al. 2010; Henn et al. 2020).

A notable example of hydrologic forecast challenges occurred ahead of moderate flooding 

on 15 February 2019 on the Russian River in coastal Northern California. The river crested 

at 35 ft (3 ft above flood stage; 1 ft ≈ 0.305 m; Fig. 2) at Guerneville, CA (the most flood-prone 

location in the western United States; Ralph et al. 2006), though the California Nevada River 

Forecast Center (CNRFC) forecast issued 1.5 days earlier was for 39 ft (7 ft above flood stage), 

and was cause for evacuation 

preparations. The forecasted 

stage 4 days prior to the crest 

was only 25 ft—a forecast range 

of 14 ft within 4 days of the 

event. A subsequent AR on 

26–27 February 2019 impacting 

the saturated watershed gener-

ated the largest flood on the 

Russian River since 2005 (46-ft 

stage height; not shown), but 

the peak was underforecast by 

approximately 14 ft 4 days prior. 

These examples are not only 

current, but also representative. 

In a 2017 AR event impacting 

the Russian River forecast vari-

ability within 0–4-day lead 

time was 13 ft, and in a well-documented AR case in 2014 it was 11 ft (Martin et al. 2018). The 

stage-height forecast range between 0- and 4-day lead time across all eight cases exceeding 

monitor stage (29 ft) at Guerneville from 2011 to 2019 exceeded 10 ft (not shown). These rapid 

changes in flood forecasts are not uncommon throughout the West due to uncertainties in 

precipitation forecasts at short lead times, which are most often associated with challenges in 

predicting AR landfall characteristics (e.g., location, intensity, and duration; Ralph et al. 2019).

AR forecasting challenges. Global NWP skill in predicting AR characteristics has primarily 

been investigated at the synoptic scale, where ARs are a recognizable feature of the extratropi-

cal circulation (Wick et al. 2013; Guan and Waliser 2015; DeFlorio et al. 2018). However, it is 

recognized that mesoscale phenomena associated with AR evolution also create challenges in 

forecasting their impacts at short lead time (Leung and Qian 2009; Neiman et al. 2009; Ralph 

et al. 2013; Cannon et al. 2018; Martin et al. 2018; Cannon et al. 2020a,b; Demirdjian et al. 

2020a,b). Wick et al. (2013) found forecasts of landfalling ARs to frequently err by ±400 km at 

3-day lead time. While typical AR landfall location errors vary according to region and intensity, 

Fig. 2. Time series of CNRFC stage-height forecasts issued at 0.5–4.5-day 

lead time ahead of peak stage height at the Guerneville gauge on the 

Russian River in coastal Northern California on 15 Feb 2019. Flood stage 

for the Russian River is 32 ft (dashed gray line).
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Nardi et al. (2018) also demonstrated that errors for moderate intensity and greater ARs (i.e., 

IVT > 500 kg m–1 s–1) were generally on the order of several hundred kilometers at 1–3-day lead 

across nine operational global models. The large landfall location errors at short lead times 

are partially attributed to the influence of mesoscale frontal wave development in landfalling 

ARs (Ralph et al. 2010; Neiman et al. 2016; Martin et al. 2018). Furthermore, the magnitude of 

these errors are critical when considering that the extent of individual watersheds in the West 

is often on the scale of just 100 km (e.g., the Russian and Feather River watersheds). These 

findings highlight the need for significant improvement in AR forecasts at the short lead times 

for optimal water management and hazard mitigation outcomes in the West.

A notable example of an impactful AR that was poorly forecast at short lead times occurred on 

7–11 February 2017, during the Oroville Dam Spillway Incident in Northern California that led to 

the evacuation of 188,000 people downstream (Schweiger 2018). While the water management 

challenges associated with this event were not strictly attributed to the meteorological extremes 

(Vano et al. 2019), the event’s forecast was notably challenging. At 3-day lead time, errors in 

predicted AR magnitude and duration translated to uncertainty in precipitation forecasts in 

the northern Sierra Nevada. Specifically, the development of a mesoscale frontal wave (Ralph 

et al. 2010; Neiman et al. 2016; Martin et al. 2018) that prolonged IVT conditions and intensified 

upslope moisture transport within the watershed on 7–8 February was not forecast beyond 

1-day lead time. The escalation of landfalling AR conditions along the coast from “moderate” 

at 2-day lead time to “strong” 1 day ahead and “extreme” at observation time [based on evalu-

ating Global Ensemble Forecast System (GEFS) data relative to the AR scale; Ralph et al. 2018; 

Fig. 3] contributed to the underprediction of precipitation accumulation by more than 20% over 

the Feather River watershed and exacerbated challenges in water management and emergency 

response at Oroville. Furthermore, the sustained AR conditions were associated with elevated 

freezing levels that contributed to watershed-wide runoff (White et al. 2019).

A separate event that affected Southern 

California on 22–23 March 2018 demon-

strates the impacts that overprediction 

of AR intensity and duration can have on 

quantitative precipitation forecast skill 

and the challenges that forecast error 

posed to regional emergency management 

(Fig. 4). At a 7-day lead time, a strong AR 

was predicted to broadly impact the state, 

including significant precipitation forecast 

for areas that were recently burned by 

the Thomas Fire in the transverse ranges 

of Southern California during December 

2017. Quantitative precipitation forecasts 

predicted precipitation rates exceeding de-

bris flow thresholds for the region at 1-day 

lead time. Given the forecast and the recent 

Montecito debris flow disaster (Oakley et al. 

2018), over 30,000 residents of the South 

Coast region (including Montecito) were 

evacuated as a precautionary measure. 

However, the largest precipitation impacts 

were ultimately observed over the central 

coast mountains to the north, where pre-

cipitation had been underforecast, while 

Fig. 3. GEFS IVT forecasts for a coastal grid point at 38°N 

during the 7–11 Feb 2017 AR that impacted the Feather River 

watershed. Individual dots identify the maximum (red), mean 

(green), and minimum (blue) values from 21 ensemble members 

on a given model initialization date (starting at 6-day lead 

time). Only the peak value within the forecast period is shown 

for each category. The black dots indicate the forecasted value 

in the deterministic run.
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the Thomas Fire burn area received considerably less 

precipitation than predicted and rain rates below debris 

flow–triggering thresholds. Again, GEFS misrepresented 

the position, orientation, and evolution of landfalling 

AR conditions, even at short lead times. Specifically, the 

observed AR made landfall 200–250 km farther north 

than predicted by NOAA’s deterministic Global Forecast 

System (GFS) initialized 24 h prior and progressed south-

ward across Southern California with weaker vapor 

transport than predicted at sub-1-day lead time (Fig. 5), 

contributing to a 1-day precipitation forecast error of more 

than 100 mm. The northward shift in forecast minus 

observed AR landfall was consistent across all GEFS 

members. For both example cases, offshore observation 

profiles of water vapor, winds, and temperature from 

dropsondes within the AR may have positively impacted 

the simulation of the evolution of the AR, thereby improv-

ing precipitation forecast skill.

These example cases are consistent with Wick et al. 

(2013), which evaluated AR forecast differences across 

five state-of-the-art NWP modeling systems for an event 

that produced more than 15 in. of precipitation in 24 h 

in the Washington Cascades and record reservoir inflow 

at Howard Hanson Dam. While each model clearly pre-

dicted the occurrence of a landfalling AR, even out to 

7 days, relevant characteristics such as the predicted 

position, width, orientation, and moisture content 

varied significantly across the evaluated models and 

lead times. Their results further demonstrated that the 

forecast challenges of that particular case study are 

representative of AR landfall predictability challenges 

over the entire western U.S. coast, in general, and their 

conclusions were influential in first recommending 

the concept for AR Recon to the Western States Water 

Council in 2013 (Ralph et al. 2014).

AR Recon organization

The AR Recon campaign is a multiyear cooperative e�ort 

to develop and test the potential of targeted airborne 

observations to improve forecasts of AR impacts on the 

U.S. West Coast at lead times of less than 5 days. The �rst 

season of AR Recon collected dropsonde observations in 

three ARs in February 2016 using two USAF C-130 aircra� 

(in coordination with the El Niño Rapid Response �eld 

campaign). The continuation of AR Recon included six 

intensive observation periods (IOPs) �own in January to 

February 2018 (including up to three aircra�; two USAF 

C-130s and the NOAA G-IV), six IOPs �own in February 

to March 2019 (using two C-130s), and 17 IOPs in January 

to March 2020 (using two C-130s and the G-IV). AR Recon 

Fig. 4. (a) CNRFC 24-h quantitative precipitation 

forecast for central California valid at 1200 UTC 

22 Mar 2018. (b) Estimated observed precipi-

tation and (c) forecast verification (forecast 

minus observed). The black outline indicates the 

Thomas Fire burn area and a large-scale map is 

shown in the upper right of (a).
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also implemented Global Positioning System airborne 

radio occultation (GPS-ARO) measurements aboard 

the G-IV (Haase et al. 2014) in 2018 and 2020 and de-

ployed dri�ing buoys upgraded to include barometers 

(Centurioni et al. 2017) in 2019 and 2020 to support the 

project’s forecast improvement objectives. Planning and 

execution of each AR Recon season has bene�tted from 

accumulated experience and the continuous develop-

ment and evaluation of tools and methodologies. Table 1 

provides additional details about each year’s campaign.

Key sponsors of AR Recon include the U.S. Army 

Corps of Engineers and the California Department of 

Water Resources, who are working with the Center 

for Western Weather and Water Extremes (CW3E) at 

Scripps Institution of Oceanography and other part-

ners to reach their goal of using improved AR predic-

tion to inform water and infrastructure management 

(e.g., Forecast Informed Reservoir Operations Steering 

Committee 2017). The campaign has thus far been 

conducted with the participation of experts on ARs, 

midlatitude dynamics, airborne reconnaissance, and 

NWP modeling, who have come together from organi-

zations including CW3E, NOAA (National Centers for 

Environmental Prediction (NCEP) and National Weather 

Service Western Region and Aircraft Operations Center), 

U.S. Naval Research Laboratory (NRL), the Air Force 

53rd Weather Reconnaissance Squadron, Plymouth 

State University, the National Center for Atmospheric 

Research (NCAR), the State University of New York at 

Albany, The University of Arizona, and the European 

Centre for Medium-Range Weather Forecasts (ECMWF), 

to participate in daily forecast discussions, flight plan-

ning, and dropsonde target identification for individual 

missions (e.g., Cordeira et al. 2017).

AR Recon observation targeting

AR forecasting. The AR Recon 2016, 2018, 2019, and 

2020 campaigns were conducted between late January 

and mid-March of each winter season, coinciding with 

the climatological peak of AR activity in California (Rutz 

et al. 2014). Daily weather briefings were provided by a 

collaborative team of researchers and forecasters from 

multiple institutions, as demonstrated by the example 

organizational chart for the 2018 season shown in Fig. 6, 

which details key individuals and their responsibilities. 

Weather briefings focused on 1) the current location and 

intensity of ARs (based on IVT and IWV) that were forecast to make landfall on the West Coast 

at either short-term (i.e., 1–3 days) or medium-term (i.e., 3–7 days) lead times; 2) the large-scale 

circulation features associated with AR conditions; 3) the probable locations and intensity of 

landfalling ARs in long-term (i.e., 7–10+ days) forecasts; and 4) the local weather conditions 

Fig. 5. (a) Landfall position of the IVT maximum 

for the AR impacting central and Southern 

California on 21–23 Mar 2018. (b) Time-integrated 

vapor transport (TIVT) analysis for the 96-h 

period beginning at 0000 UTC 20 Mar 2018 and (c) 

1-day lead time TIVT forecast minus TIVT analysis 

for the 96-h period beginning at 0000 UTC 20 

Mar 2018 (color fill) plotted over the analysis 

TIVT (contours).
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for aircraft base locations at the time of takeoff and landing. The analyses and forecasts 

that were used to support daily weather briefings were created from NCEP Global Forecast 

System (GFS) and Global Ensemble Forecast System (GEFS), NRL Coupled Ocean–Atmosphere 

Mesoscale Prediction System (COAMPS), and data from the ECMWF Integrated Forecasting 

System (IFS). Specific AR-related GFS and GEFS tools that were previously developed at CW3E 

were key in identifying and tracking ARs over the northeast Pacific and documenting their 

Table 1. Timeline of AR Recon IOPs, aircraft staging locations, flights, and dropsondes released.

Year No. of IOPs Aircraft Location No. of flights
Total No. of 

sondes

2016 3
USAF C-130 Hickam AFB, Hawaii 3

272
USAF C-130 McChord AFB, California 3

2018 6

USAF C-130 Hickam AFB, Hawaii 5

361USAF C-130 Travis AFB, California 5

NOAA G-IV Paine Field, Washington 3a

2019b 6
USAF C-130 Hickam AFB (Hawaii)c 4

291
USAF C-130 Travis AFB (California)c 5

2020b 17

USAF C-130 Hickam AFB, Hawaii 8

733USAF C-130 West Coast Locations 13

NOAA G-IV Portland, Oregon 13

Annualc 24d

USAF C-130 West Coast (CA, OR, NV) 24d

1,800dUSAF C-130 West Coast (CA, OR, NV) 24d

NOAA G-IV Pacific (Hawaii) 24d

a GPS radio occultation measurements taken aboard the NOAA G-IV.
b Drifting barometer buoys deployed from USAF C-130 (32 in 2019 and 64 in 2020).
c Both C-130 aircraft in IOP1 were staged from San Diego, CA.
d Planned.

Fig. 6. Organization chart detailing participating individuals and their responsibilities during AR Recon 2018.
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characteristics (e.g., structure, intensity, position, and evolution). The forecasting tools that 

were utilized during AR Recon are similar to those used during CalWater2 in 2015, which 

provided procedural guidance (Cordeira et al. 2017). Weather briefings that featured potential 

ARs for aircraft observation were followed by a discussion of optimal observation targets and 

flight-track planning.

Observation target identification. Observation target planning in the 2018, 2019, and 2020 

campaigns relied upon the estimation of forecast sensitivity fields using adjoint models (e.g., 

Errico 1997; Doyle et al. 2012, 2014; Reynolds et al. 2019). Adjoint diagnostics have previously 

identified low- to midlevel moisture as a major source of sensitivity in extratropical cyclone 

intensification (Doyle et al. 2014, 2019), which is consistent with the importance of moist pro-

cesses to the development of severe extratropical cyclones (Wernli et al. 2002), and the positive 

impact of the improved representation of water vapor transport on precipitation forecast skill 

in the western United States (Martin et al. 2018). Here, the NRL COAMPS moist adjoint model 

(Amerault et al. 2008; Doyle et al. 2012) was run to evaluate the sensitivity of precipitation 

forecasts over the West Coast to perturbations in the moisture and wind initial conditions sev-

eral days prior to AR landfall (Reynolds et al. 2019).

Adjoint models allow for a mathematically rigor-

ous calculation of forecast sensitivity of a response 

function to changes in initial state (Errico 1997). The 

gradient fields of the response function (accumu-

lated precipitation in this case) with respect to input 

perturbations (e.g., moisture and winds) produced 

by the adjoint model have a direct interpretation as 

fields of “sensitivity,” where the largest values have 

the most impact on the forecast. For example, the im-

pact of a 1 g kg–1 perturbation of water vapor mixing 

ratio at 850 hPa in the most sensitive region, typically 

along the subsaturated edges of the AR (Reynolds 

et al. 2019), can be measured as the linear change 

in millimeters of precipitation over the West Coast 

region of interest per unit of perturbation. Doyle 

et al. (2014) found that extratropical cyclogenesis and 

precipitation forecasts for a single event were more 

sensitive to moisture within the associated AR than 

either wind or temperature, and Reynolds et al. (2019) 

corroborated this finding over multiple ARs impact-

ing California during the record wet 2017 water year. 

Given these previous results and daily monitoring of 

the adjoint during three campaign seasons, water 

vapor sensitivity was the primary field used for 

observation targeting in AR Recon flight planning. 

However, sensitivity to midtropospheric potential 

vorticity perturbations was also factored into flight 

track planning given the importance of cyclone de-

velopment on forecast evolution, especially during 

the 2018 and 2020 campaigns when the G-IV was 

available to expand AR targeting.

Figure 7 shows sensitivity of forecasted 12-h pre-

cipitation accumulations over the Pacific Northwest 

Fig. 7. COAMPS forecast sensitivity of 12-h precipita-

tion accumulation over the Pacific Northwest 3 days 

later to (a) 850-hPa water vapor mixing ratio pertur-

bations (g kg–1) and (b) 700-hPa potential vorticity 

perturbations (PVU) at 42-h lead time ahead of IOP 

1 on 27 Jan 2018.
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at a 3-day lead time to 850-hPa water vapor mixing ratio perturbations (Fig. 7a) and 700-hPa 

potential vorticity (PV) perturbations (Fig. 7b) at the 42-h lead time ahead of IOP 1 during 

the 2018 season (27 January 2018). Locations of strong positive (negative) gradients in water 

vapor sensitivity that are found immediately north of the area of enhanced IVT indicate the 

regions of the forecast where initial condition perturbations were expected to have the largest 

positive (negative) impact on forecasted precipitation accumulations (Fig. 7a). In this specific 

case, the 700-hPa PV perturbation field (derived from the adjoint sensitivity) was collocated 

with water vapor sensitivity, indicating that precipitation accumulations over the West Coast 

would be most responsive to changes in AR evolution along the cold front. Subsequently, 

dropsonde observations were targeted to sample across these sensitive regions with the intent 

of providing initial conditions with the greatest potential benefit to precipitation forecast skill 

(Figs. 7a,b). Continuous refinement of the method for applying the adjoint and combining that 

information with knowledge of dynamically significant meteorological features, such as ARs, 

the upper-level jet, and cold-air troughs, has been fundamental to planning each mission’s 

flight tracks during AR Recon.

During the 2019 and 2020 seasons, adjoint sensitivity analysis was supplemented by 

ensemble-based sensitivity analysis of both the ECMWF and GFS models (Torn and Hakim 

2008). Ensemble-based sensitivity analyses emphasize synoptic-scale differences between 

ensemble members that are associated with significant weather features at the initial time 

(Torn and Hakim 2008). Performing observation targeting based on independent sensitivity 

analysis methods increased confidence in the robustness of targeted regions of sensitivity. In 

the majority of cases both the adjoint and ensemble sensitivity analyses highlighted forecast 

sensitivity along the AR core, its edges, and in the warm conveyor belt. Within these cloudy 

and generally data-sparse regions of moisture convergence, subsequent precipitation and 

latent heating are known to influence frontogenesis (Lackmann 2002) and cyclogenesis 

(Davis 1992), which feed back into the evolution of water vapor transport (Lackmann 2002) 

and modify downstream precipitation impacts. Dropsonde data collected in these dynami-

cally active regions is also valuable for evaluating model representation of the fundamental 

processes that govern AR evolution in global models (e.g., Neiman et al. 2016; Demirdjian 

et al. 2020a).

AR Recon implementation

Across all IOPs in the 2018, 2019, and 2020 seasons, reconnaissance considered meteorologi-

cal features that the precipitation forecast sensitivity methods highlighted as the primary 

observation targets. These locations of maximum sensitivity were generally found in the 

subsaturated edges of AR cores (similar to Reynolds et al. 2019). Secondary targets included 

locations of low-level PV sensitivity maxima, which were typically found in the southeast 

quadrant of the cyclone associated with enhanced water vapor transport and convergence 

(e.g., Fig. 7a). Flight tracks for all available aircra� were optimized to sample these features 

broadly. For example, individual aircra� were stationed at Hickam Air Force Base (AFB) in 

Hawaii; Travis AFB in central California; and Tacoma, Washington, during the 2018 season 

(Fig. 1) to facilitate sampling the full AR structure as well as parent circulation features. The 

USAF C-130s stationed in Hawaii and California had a limited range (~5,500 km) relative to 

the NOAA G-IV that was stationed in Washington (~6,500 km). The G-IV’s range, maximum 

altitude (~13,500 m) and more northern location best suited it to sampling dynamical features 

of the attendant cyclone, while the C-130s were tasked with sampling AR transects over the 

eastern Paci�c. A U.S. Air Force Weather O�cer and an Air Force Navigator were stationed 

at CW3E for the duration of the campaign to facilitate coordination between observational 

target goals and aircra� capabilities (Fig. 6). Individual aircra� were �exible in the number 

of dropsondes that they could deploy along-track, according to desired spacing and target 
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size, though the average number per mission per aircra� was 25. Dropsondes were primarily 

released within the GFS data assimilation update cycle centered on 0000 UTC and spanning 

2100–0300 UTC.

AR Recon 2018 consisted of six IOPs, three of which included both C-130s and the G-IV 

(Fig. 8). Unfortunately, strong blocking prevailed off the coast of California for the majority 

of the campaign period and resulted in IOPs with ARs that featured more anticyclonic vapor 

transport than is typically associated with extreme events in California (Fig. 8). The precipi-

tation impacts of the IOP events primarily affected the Pacific Northwest. IOP-1 sampled a 

moderate-strength AR that extended from north of Hawaii (25°N, 160°W) to coastal Oregon 

(45°N, 125°W; Fig. 8a). The USAF C-130s stationed at Hickam AFB in Hawaii and Travis AFB in 

California sampled the tail and head of the AR, respectively. The NOAA G-IV deployed drop-

sondes across the middle segment of the AR, between C-130 tracks across the AR, and also 

sampled the dynamical features associated with the attendant low pressure system, which 

included a PV strip that precipitation forecasts were particularly sensitive to (Fig. 7b). The 

G-IV also performed GPS-ARO measurements during each of its three flights to augment the 

number of atmospheric profiles (Haase et al. 2014). Since the occultation profiles are oblique 

rather than vertical, they complement those available from dropsondes and significantly 

increase the observed area (Chen et al. 2018).

The 2019 campaign consisted of six IOPs as well, though only two C-130s were available for 

missions. Notably, this campaign year consisted of multiple impactful precipitation events for 

California, several of which have been developed as independent case studies (e.g., Cannon 

et al. 2020b). In addition to dropsonde observations over six IOPs, 32 drifting buoys with 

barometers were deployed by two C-130 flights in mid-January to substantially increase the 

number of pressure observations over the data-sparse northeast Pacific. These data have pre-

viously been shown to positively impact the representation of large-scale circulation in NWP 

(Centurioni et al. 2017; Ingleby and Isaksen 2018) and, in concert with targeted dropsondes, 

have the potential to improve AR forecast skill. A total of 15 IOPs were flown between the 

2016, 2018, and 2019 campaigns (Fig. 8).

Seventeen IOPs flown between late-January and mid-March 2020 more than doubled the 

previous program total. An additional 64 drifting buoys with barometers were also deployed 

during the campaign season. Similar to 2018, a blocking high in the eastern Pacific led to 

a paucity of AR landfalls in California during 2020, though a series of impactful Pacific 

Northwest ARs were sampled. A notable change to the sampling strategy in 2020 was to con-

sistently utilize the three aircraft (two C-130s and the G-IV) in a manner that enabled the same 

AR to be sampled on consecutive days prior to landfall (when the synoptic setup was conducive 

to doing so). This change was implemented in an effort to sustain dropsonde information in 

the forecast leading up to AR landfall, which was preliminarily shown to yield larger benefits 

than assimilating dropsondes in any single forecast cycle in previous years due to the e-folding 

time of the data impact (Black et al. 2017). The 32 IOPs flown to date comprise a substantial 

data sample for ongoing studies on the impacts of assimilating targeted observations on AR 

forecast skill, which are briefly introduced in the following section.

Data assimilation impact studies

Researchers at CW3E are currently working in partnership with individuals at NRL, NCEP, 

and ECMWF to perform data denial hindcasts using each center’s global or regional model 

to quantify the added bene�t of AR Recon dropsonde measurements. The collaboration has 

been formalized through the formation of the AR Recon Modeling and Data Assimilation 

Steering Committee (membership is listed in Table 2), which ensures cooperation between 

participating organizations in developing and executing a 5-yr work plan for AR Recon data 

assimilation e�orts.
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The dropsonde observations collected during AR Recon define both the horizontal and 

vertical structure of ARs, enabling model assessment (e.g., Schäfler et al. 2018) and data 

impact studies (e.g., Majumdar 2016). Lavers et al. (2018) performed a detailed analysis of 

ensemble data assimilation in the ECMWF IFS using AR Recon 2018 dropsonde observations 

and concluded that although the structure of ARs is well represented by the forecast model, 

Fig. 8. IVT (color shading), sea level pressure (contours), and dropsonde locations (cyan symbols) 

for each IOP during the 2016, 2018, and 2019 campaigns.
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significant errors exist in the simulation of IVT that originate largely from the winds above 

the planetary boundary layer. Furthermore, errors in the specific humidity at 850 hPa can 

cause large IVT uncertainties. These issues may then result in errors in the location of low-

level water vapor as well as in its condensation and resulting latent heat release, which in 

turn affects atmospheric dynamics and predictability (Lackmann 2002; Schäfler et al. 2018). 

Thus, assimilated dropsonde observations are expected to reduce IVT uncertainties and may 

improve forecasts of subsequent high-impact precipitation events.

Historically, dropsonde observations have been key to hurricane prediction and are fre-

quently employed as part of national weather operations to improve tropical cyclone track 

forecasts (Aberson 2011; Reynolds et al. 2013; Majumdar 2016). Previous studies that have 

investigated the impact of dropsonde assimilation on tropical cyclone forecasts have exhibited 

reductions in track forecast error of up to 20%–40%, depending on the forecasting system (Wu 

et al. 2007). The reduced impact of dropsonde assimilation on tropical cyclone track forecasts 

in the ECMWF IFS reported by Weissmann et al. (2011) is potentially a result of the advanced 

4D-VAR assimilation of satellite data and the improved baseline forecast provided by that 

model, which reduced the potential for large gains from assimilating supplemental observa-

tions (Majumdar et al. 2016). On the other hand, data assimilation systems have continued to 

improve through, for example, the use of flow-dependent covariances and better treatment 

of observation and representation errors which should lead to an increased impact of obser-

vations (Schindler et al. 2020). The dichotomy of recent results underscores the challenge of 

demonstrating that supplemental observations have a significant impact on the forecasts of 

modern operational NWP systems. A number of previous studies have had limited success 

in identifying the impact of targeted observations on forecast skill due to issues including 

observation error, targeting strategy, numerical modeling, assimilation technique and veri-

fication methodology (Buizza et al. 2007; Romine et al. 2016; Majumdar 2016).

The concept of improving forecast accuracy through targeted observations has also been 

applied to winter storms in the Fronts and Atlantic Storm Track Experiment (FASTEX; Joly et al. 

1999) and The Observing System Research and Predictability Experiment (THORPEX: 2017) 

with weaker than anticipated impact. However, dropsonde observations from the NAWDEX 

Table 2. AR Recon modeling and data assimilation steering committee membership.

Name Title Institution Role

F. Martin Ralph
Director, Center for Western 
Weather and Water Extremes

Scripps Institution of 
Oceanography, UC San Diego

AR Recon PI and steering 
committee co-chair

Vijay Tallapragada

Chief, Modeling and Data 
Assimilation Branch, National 
Centers for Environmental 
Prediction

National Oceanic and 
Atmospheric Administration

AR Recon co-PI and steering 
committee co-chair

James Doyle
Senior Scientist, Marine 
Meteorology Division

Naval Research Laboratory
AR Recon adjoint modeling 
lead and steering committee 
member

Aneesh Subramanian Assistant Professor University of Colorado Boulder
AR Recon data assimilation 
lead and steering committee 
member

Luca Delle Monache
Deputy Director, Center for 
Western Weather and Water 
Extremes

Scripps Institution of 
Oceanography, UC San Diego

Data assimilation steering 
committee member

Chris Davis
Associate Director, Mesoscale 
and Microscale Meteorology 
Laboratory

National Center for  
Atmospheric Research

AR Recon observation 
targeting lead and steering 
committee member

Florian Pappenberger Director of Forecasts
European Centre for Medium-
Range Weather Forecasts

Data assimilation steering 
committee member
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campaign improved the operational ECMWF forecast system up to 3% over the course of the 

campaign, with individual short-range forecasts improving up to 30% (Schindler et al. 2020). 

Similarly, Stone et al. (2020) demonstrated that AR Recon dropsondes had a per-observation 

impact 2 times larger than that of the baseline downstream radiosonde network across four 

2018 cases. Thus, continued research that acknowledges and learns from the limitations en-

countered in early studies to develop targeting strategies and data assimilation methodologies 

that are better adapted to supplemental observations are critical to demonstrating the benefit 

of AR Recon. Additionally, the physical processes in AR environments and forecast needs of 

regional stakeholders pose a different set of challenges for predictability and observation tar-

geting than those that exist for tropical cyclones, and as a result it is imperative that targeting 

and assimilation for AR Recon be carried out with sufficient flexibility and independence to 

adapt to the uniqueness of West Coast weather and climate.

During AR Recon 2018, 2019, and 2020, dropsonde data were ingested into the operational 

GFS, NRL, and ECMWF data assimilation systems in real time (Table 3; records of assimilated 

data are incomplete for 2016). The 80–87 assimilated dropsondes from three aircraft in IOP1 

2018, for example, accounted for the majority of in situ sounding profiles over the oceans and 

nearly 10% of all in situ profiles in each model, globally (Fig. 9). In regions with deep clouds 

and precipitation, where all-sky radiance data have comparatively large errors (English et al. 

2013), dropsondes provide unique information on the vertical profile of the atmosphere.

Data denial experiments that systematically withhold particular observations from the 

assimilation system to produce otherwise identical experiments with varying initial states 

are necessary to evaluate the impact of those observations on forecast skill (e.g., Romine 

et al. 2016). These simulations are currently under development at CW3E using the com-

munity gridpoint statistical interpolation analysis system (GSI) and West-WRF, a version 

of the Weather Research and Forecasting (WRF) Model that was configured to optimally 

represent ARs and wintertime meteorology on the West Coast (Martin et al. 2018). In these 

assimilation experiments, dropsonde data are ingested into the WRF forecast model using 

the GSI hybrid four-dimensional ensemble-variational (4D EnVar) method to systemati-

cally evaluate their impact on forecast skill relative to other routinely assimilated data, 

including satellite atmospheric motion vector winds and all-sky radiances (English et al. 

2013). Preliminary results have demonstrated significant improvements in AR landfall 

skill at short-to-moderate lead times that are attributable to improved representation of 

AR conditions in the model’s initial state in specific IOP case studies. Figure 10 shows 

that assimilating dropsonde observations generate large differences in the model’s initial 

conditions and lead to an overall reduction in West-WRF initial condition uncertainty (as 

Fig. 9. Locations of assimilated data at 0000 UTC 27 Jan 2018 from the ECMWF forecasting system. 

Red dots identify the global radiosonde network, green dots identify ship-based soundings, and 

blue dots identify observations from AR Recon aircraft.
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measured by the difference between the West-WRF and GFS analyses). Notably, the un-

derestimation of IVT amplitude in IOP 1 near 40°N, 150°W—a key region of precipitation 

forecast sensitivity to humidity perturbations in the COAMPS adjoint simulation for that 

case (Fig. 7a)—is minimized in the WithDrop simulation (Fig. 10b) relative to the NoDrop 

Table 3. AR Recon IOPs, aircraft, and assimilated dropsonde statistics.

Date AF C-130 AF C-130 NOAA G-IV Dropsondes
Dropsondes assimilated

NCEP ECMWF Navy

2016

0000 UTC 14 Feb × × * 99 69 ** **

0000 UTC 16 Feb × × * 80 42 ** **

0000 UTC 22 Feb × × * 95 46 ** **

2018

0000 UTC 27 Jan × × × 88 87 80 87

0000 UTC 29 Jan × × 49 47 41 47

0000 UTC 1 Feb × × × 90 88 79 88

0000 UTC 3 Feb × × × 89 86 86 86

0000 UTC 26 Feb × 30 0 0 0

0000 UTC 28 Feb × 25 25 25 25

2019

0000 UTC 2 Feb × × 60 58 52 53

0000 UTC 11 Feb × 26 24 24 24

0000 UTC 13 Feb × × 53 47 48 40

0000 UTC 24 Feb × × 52 45 44 45

0000 UTC 26 Feb × × 36 35 35 35

0000 UTC 1 Mar × × 64 47 54 59

2020

0000 UTC 24 Jan × × 37 37 33 37

0000 UTC 29 Jan × × 27 21 23 25

0000 UTC 31 Jan × 24 24 22 24

0000 UTC 4 Feb × × × 70 70 65 70

0000 UTC 5 Feb × 30 30 30 30

0000 UTC 6 Feb × × × 77 59 54 59

0000 UTC 14 Feb × 30 27 28 30

0000 UTC 15 Feb × × × 78 78 73 78

0000 UTC 16 Feb × 30 30 27 30

0000 UTC 21 Feb × 30 29 26 29

0000 UTC 24 Feb × × 55 55 50 55

0000 UTC 2 Mar × × × 77 74 72 74

0000 UTC 7 Mar × 30 30 26 30

0000 UTC 8 Mar × × 55 54 49 54

0000 UTC 9 Mar × × 29 29 26 29

0000 UTC 10 Mar × × 52 39 51 52

0000 UTC 11 Mar × 2 2 2 2

* During 2016 the NOAA G-IV and NASA Global Hawk conducted research flights as part of the NOAA El Niño Rapid Response 
(ENRR) field campaign. The Global Hawk partially sampled ARs in coordination with the AR Recon C-130s. The G-IV sampled 
tropical conditions south of Hawaii based on ENRR’s primary airborne objectives, which focused on tropical convection.

** The number of assimilated drops in the ECMWF and Navy models is not available for the 2016 season.
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simulation (Fig. 10a). Subsequent improve-

ments in AR and precipitation forecast skill 

over the duration of the event are the subject 

of continued research.

Identifying the impact of AR Recon drop-

sonde observations across the growing sample 

of IOPs is ongoing and fundamental to estab-

lishing the long-term benefit of the campaign. 

Accordingly, NCEP is currently performing 

dropsonde data denial experiments using the 

operational GFS system that fully cycle all other 

observations assimilated into the forecast (e.g., 

both conventional observations and satellite 

radiances) for the 2018, 2019, and 2020 seasons. 

Additionally, forecast sensitivity observation 

impact (FSOI) studies have been carried out 

at NRL using the Navy Global Environmental 

Model (NAVGEM) system, which demonstrated 

that AR reconnaissance dropsondes had 

significant beneficial impact, with per obser-

vation impact more than double that of the 

global radiosonde network across four cases 

in 2018 (Stone et al. 2020). The work of Stone 

et al. (2020) also identified model biases and 

potential issues with assumed error variances 

in the data assimilation system that could be 

remedied for the model to further benefit from 

assimilating targeted dropsondes (Stone et al. 

2020). Furthermore, the positive impact of tar-

geted dropsonde observations demonstrated 

by Kren et al. (2018) and Schindler et al. (2020) 

for extratropical cyclone forecasts in other 

campaigns, and their respective efforts to ad-

dress existing limitations in operational data 

assimilation systems, bolster the argument for 

continued investment toward reconnaissance 

flights and advancing NWP capabilities to 

benefit from their data.

Vision of annual implementation

AR Recon and the formation of the Modeling 

and Data Assimilation Steering Committee have 

established a framework to address a need for 

improved West Coast precipitation forecast 

skill. AR Recon 2016, 2018, 2019, and 2020 

demonstrated the successful implementation of 

the program and ongoing research is now illus-

trating its potential for positive impact on NWP. 

Given that NWP is an initial value problem that 

stands to bene�t from improved observation of 

Fig. 10. IVT initial-condition error (color fill) in the West-

WRF experiment (a) without assimilated dropsondes 

(NoDrop) and (b) with assimilated dropsondes (WithDrop) 

valid at 0000 UTC 27 Jan 2018. (c) IVT amplitude differ-

ences (color fill) between WithDrop and NoDrop. The 

purple contours in each panel identify the GFS analysis 

IVT, which is used to calculate the error. The contour 

starts from 250 kg m–1 s–1 with an increment of 250 kg m–1 

s–1. The first guess is initialized at 1800 UTC 26 Jan 2017.
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the atmosphere, in both theory and practice, it is ideal that the sampling campaign continue 

on an annual basis—such an investment in a growing number of missions is fundamental to 

developing a su�ciently large dataset for the robust statistical evaluation of the added bene�t 

of dropsonde observations to precipitation forecast skill (Kren et al. 2018).

Considerable effort is still required to quantify the impact of assimilating targeted drop-

sonde observations of offshore ARs on forecast skill and the potential for enhanced predic-

tion of West Coast extreme weather events through the annual implementation of AR Recon. 

However, recent positive results (e.g., Stone et al. 2020) and the potential societal benefits 

of observing AR properties ahead of landfall warrants a considerable investment of aircraft, 

instrumentation, and research resources at the national level. Given that the aircraft used in 

AR Recon are typically designated for hurricane observations in the summer and fall, and 

are not already assigned to specific missions in the winter, these resources could be devoted 

to supporting West Coast meteorology and forecasting at that time of the year without com-

promising other important objectives. Ideally, the allocation of aircraft time on a year-to-year 

basis will be replaced by a permanent commitment of dedicated resources that is similar to 

national hurricane forecasting operations. A key step in this direction is the inclusion of AR 

Recon into the OFCM’s Winter Season Operations Plan (OFCM 2019), which now specifically 

calls for airborne reconnaissance of atmospheric rivers. It is envisioned that the consistent 

commitment of resources to AR reconnaissance, and continued development of methodologies 

to assimilate collected data, would yield substantial returns for weather forecasting, water 

management, and hazard mitigation in the western United States. Furthermore, addressing 

drought and flooding challenges through improved forecasting and water management will 

be essential to enhancing western U.S. resiliency to climate change impacts in the coming 

decades.

Summary

Precipitation from atmospheric rivers (ARs) is the primary driver of regional water resources 

and weather-related hazards over the U.S. West Coast. Although there is a dearth of AR ob-

servations through the full troposphere ahead of landfall, forecasting of these features can 

be more skillful at long lead times than precipitation alone (Lavers et al. 2016) and can be 

leveraged to increase forecast lead time of high-impact events, though important forecast 

challenges remain at 0–4-day lead times. To provide increasingly skillful forecasts of ARs 

and their associated impacts on the spatial and temporal scales that are relevant to regional 

stakeholders, improved observations ahead of landfall are required, including through 

airborne observation campaigns (Doyle et al. 2014; Ralph et al. 2014; Neiman et al. 2016; 

Cordeira et al. 2017). The Atmospheric River Reconnaissance (AR Recon) campaign that was 

operational during winters 2016, 2018, 2019, and 2020 represents an important research and 

operations partnership between multiple academic institutions, state, federal and inter-

national agencies, and stakeholders toward improving forecast skill in the western United 

States. AR Recon is now transitioning into an operational mode that enhances the deep 

linkage between research and operations and the culture of collaboration that has formed 

the core of AR Recon development.

AR Recon has supported improved prediction of landfalling ARs on the U.S. West Coast 

by supplementing conventional data coverage with dropsonde observations of atmospheric 

profiles within ARs, GPS-ARO observations of oblique atmospheric profiles providing infor-

mation about temperature and moisture, and surface pressure measurements from drifting 

buoys. The 2016, 2018, 2019, and 2020 campaigns consisted of a combination of three aircraft 

that were available to execute IOPs between January and March of each campaign year, re-

spectively. For the 2018–20 campaigns, daily forecast briefings were conducted at Scripps and 

included participation from a range of experts as well as experienced weather officers and 
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navigators from the U.S. Air Force and NOAA. In the event of predicted AR landfall impacts, 

NRL’s COAMPS moist adjoint model was run to evaluate sensitivity of precipitation to initial 

conditions and to identify sensitive regions and targeted observing strategies. In total, 1,657 

dropsondes have been deployed into and around AR conditions during 32 IOPs over four AR 

Recon seasons. The development of methodologies to effectively assimilate these airborne 

observations, and analysis of the impact of the data on those simulations, are ongoing and 

will be completed over the coming years in collaboration with NOAA/NCEP, ECMWF, and 

NRL as part of the AR Recon Modeling and Data Assimilation Steering Committee objectives. 

Table 4 synthesizes AR Recon programmatic milestones achieved since the project’s inception 

in 2016 through the 2020 season.

While improved initial conditions for offshore water vapor, wind, pressure, and temperature 

are expected to positively impact the prediction of AR landfall and quantitative precipitation 

simulation at short-to-medium lead times, and recent studies using these data have demon-

strated positive impacts in operational forecast systems (e.g., Stone et al. 2020), the dropsonde 

observations are also key to better understanding the dynamical processes that define AR 

characteristics, such as their strength, position, length, orientation, and duration, and iden-

tifying and mitigating data assimilation and forecast model deficiencies. Advancements in 

the fundamental science related to ARs, made possible through unique data from airborne 

reconnaissance, will also benefit numerical weather prediction (NWP) data assimilation and 

Table 4. Major milestones in the development of AR Recon.

Milestones 2016 2017 2018 2019 2020

U.S. Army Corps of Engineers begins support of AR Recon through the  
CW3E Forecast Informed Reservoir Operations Program

×

First dedicated AR Recon flights in partnership with NCEP, with  
2 USAF C-130 aircraft: 6 total flights and 272 dropsondes released

×

Assessment of lessons learned in 2016, and planning for 2018 season ×

AR Recon 2016 data help define AR dynamics and kinematics in the  
American Meteorological Society Glossary of Meteorology (Ralph et al. 2018)

×

California Department of Water Resources begins support of AR Recon  
through the CW3E AR Research Program

×

Second AR Recon season, including support from the NOAA G-IV aircraft  
and 2 USAF C-130s: 13 total flights and 361 dropsondes released

×

AR Recon Modeling and Data Assimilation Steering Committee formed ×

Use of NRL COAMPS adjoint model to inform flight targeting × × ×

GPS-Radio Occultation deployment on NOAA G-IV or USAF C-130 × × ×

Interagency workshops at ECMWF, NCEP, CW3E × × ×

Publication using dropsonde observations to document errors in ECMWF  
data assimilation first guess fields in AR conditions (Lavers et al. 2018)

×

Third AR Recon season, with 2 C-130s: 9 total flights and 291 dropsondes ×

Deployment of drifting buoys with partners at Scripps and ECMWF × ×

Data denial runs completed at NRL, ECMWF, NCEP, NCAR, and CW3E, and 
preliminary assessment of AR Recon forecast impacts

× ×

AR Recon called for in OFCM’s National Winter Season Operations Plan ×

Congress appropriates funds in NOAA for AR Recon G-IV and NCEP × ×

Stone et al. (2020) found impact of AR Recon in the NAVGEM forecast model 
was similar to that of entire North American Radiosonde network

×

Congress appropriates funds in Air Force for AR Recon ×

Fourth AR Recon season. Two C-130s and the NOAA G-IV flew 17 IOPs and 
released a total of 733 dropsondes

×

Planned: AR Recon 2021 from 8 January to 31 March, 3 aircraft
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model system development as well as forecasting of these features (e.g., Martin et al. 2018). 

Given that NWP is an initial value problem that benefits from reducing analysis error, and 

the need for better understanding AR dynamics and forecast challenges, AR Recon’s ongoing 

scientific commitments and recent inclusion into the National Winter Season Operations Plan 

(OFCM 2019) are expected to result in substantially improved outcomes for water management 

and emergency preparedness in the West.
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