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Western and non-western gut microbiomes reveal new roles of

Prevotella in carbohydrate metabolism and mouth–gut axis
Vishnu Prasoodanan P. K.1, Ashok K. Sharma1,2, Shruti Mahajan1, Darshan B. Dhakan1,3, Abhijit Maji1,4, Joy Scaria 4 and

Vineet K. Sharma 1✉

The abundance and diversity of host-associated Prevotella species have a profound impact on human health. To investigate the

composition, diversity, and functional roles of Prevotella in the human gut, a population-wide analysis was carried out on 586

healthy samples from western and non-western populations including the largest Indian cohort comprising of 200 samples, and

189 Inflammatory Bowel Disease samples from western populations. A higher abundance and diversity of Prevotella copri species

enriched in complex plant polysaccharides metabolizing enzymes, particularly pullulanase containing polysaccharide-utilization-loci

(PUL), were found in Indian and non-western populations. A higher diversity of oral inflammations-associated Prevotella species and

an enrichment of virulence factors and antibiotic resistance genes in the gut microbiome of western populations speculates an

existence of a mouth-gut axis. The study revealed the landscape of Prevotella composition in the human gut microbiome and its

impact on health in western and non-western populations.
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INTRODUCTION

Prevotella is a highly diverse genus that exhibits compositional
variations in both inter-individual and inter-population compar-
isons of human gut microbiome1. The analysis from multiple
western populations found Prevotella dominating the enterotype-
2 among the three enterotypes identified by Arumugam et al.,
whereas Bacteroides and Ruminococcus dominated the other two
enterotypes1. The meta-analysis of Indian samples also reaffirmed
the association of Prevotella with enterotype-21,2. The Prevotella
species in rumen and hindgut are known to possess extensive
repertoires of polysaccharide utilization loci (PULs) and
carbohydrate-active enzymes for the metabolism of various plant
polysaccharides3. Thus, it displays a positive association with diets
rich in plant-derived fibers and carbohydrates and a negative
association with fatty and amino acid-rich diets, and is also shown
to decrease on the consumption of animal-based diet in
vegetarian subjects4–7. These observations highlight the signifi-
cance of the Prevotella genus as a key player in the human gut
microbiome.
Prevotella copri is the most well-studied and abundant intestinal

species in the Prevotella genus. One of the key reasons for its
abundance in the human gut is the preferential metabolism of
xylan, a plant polysaccharide found in plant-based diets, by this
species8. The prevalence of carbohydrate metabolism genes in P.
copri also confirmed its association with vegan dietary habits9.
Recent investigations revealed the high prevalence of P. copri in
the gut microbiomes of selected non-western populations10,11

including the local people of Betsimisaraka and Tsimihety ethnic
origins from Madagascar cohort12, Matses and Tunapuco com-
munities of Peru and hunter-gatherers of Tanzania13,14, and BaAka
rainforest hunter-gatherers of Central African Republic15. A recent
metagenomic study from India comprising of 110 individuals and
other 16S rDNA amplicon-based studies also revealed a strong

association between P. copri and plant-based diet in Indian
population2,16–18. In contrast, the gut microbiome of western
populations such as US, Spain, and migrant individuals to the US
that consume a typical westernized diet was mainly enriched in
Bacteroides, Ruminococcus and showed a very low abundance of
Prevotella19,20. The Italian vegan and vegetarian samples consum-
ing a diet rich in plant-based components showed a higher
abundance of P. copri compared to the other western popula-
tions9,21, though they still clustered with the western populations9.
Thus, the observed lower and higher abundance of Prevotella in
western and non-western populations, respectively, may further
emphasize the crucial role of diet in selecting and shaping the
abundance of Prevotella in the human gut.
The human oral cavity also hosts an enormous diversity of

Prevotella spp., which is prevalent in almost 85% of western and
100% of non-western populations with an average abundance of
7.4% and 11.5%, respectively22. Interestingly, the oral Prevotella
spp. were also found in the stool microbiome and the oral and gut
strains were mostly similar within a host suggesting an oral–gut
route/axis23. Though most of the Prevotella species colonizing
different human mucosal sites such as oral and gut tissues have
been considered as commensals, some species show pathobiontic
properties and have been found to be involved in opportunistic
infections24. The initial human microbiome studies found an
association between the higher abundance of several oral-
associated Prevotella species such as P. intermedia and P.
nigrescens with localized and systemic diseases including period-
ontitis, bacterial vaginosis, rheumatoid arthritis, metabolic dis-
orders, and Inflammatory bowel disease25–29. Recently, the
involvement of “mouth–gut axis” in the pathogenesis of gastro-
intestinal diseases such as IBD and colorectal cancer have
emerged22,23,30,31. The ingested oral bacteria translocate to the
lower digestive tract and induce gut inflammation that likely
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disrupts colonization resistance mediated by the commensal gut
microbiota making it possible for oral pathobionts to ectopically
colonize the gut which supports the mouth–gut axis hypothesis.
By contrast, the recent metagenome-based studies testify that P.
copri is a gut commensal and is not associated with inflammation
in the human gut11.
Due to the abundance and important role of P. copri in the human

gut, extensive genetic and population genomics studies have been
carried out that suggested a classification of this species in four
different clades11,32. Unlike P. copri, a similar depth of knowledge on
the abundance and role of other gut commensal and pathobiont
Prevotella species in human health is largely missing in different
populations. Further, the gut microbiome of the Indian population,
which is known to be the most enriched for Prevotella spp., has not
been included in any previous Prevotella-focused study2,17,18. Thus, in
this study, a comprehensive analysis of the composition, diversity,
and functional role of Prevotella species in the gut microbiome was
carried out in Prevotella-rich non-western populations (Madagascar,
Tanzania, and Peru)10,12–14,33 including the largest gut metagenome
of the Indian population that primarily consume plant-based diets,
and western populations (US, Spain, Netherlands, and Italy)9,19,34 that
primarily consume the animal-based diets. Classification of popula-
tions as “western” or “non-western” was made on the basis of
traditional lifestyle, diet, and geographic and sociodemographic
definitions10,35. To examine the association of Prevotella with
inflammatory bowel disease (IBD)25,36, including ulcerative colitis
and Crohn’s disease, the results were further compared with IBD
cohorts from the US, Netherlands, and Spain19,34. This study provided
new insights into the role of diversity, composition, and function of
Prevotella in the gut microbiome and their impact on human health.

RESULTS

Abundance of Prevotella in western and non-western
populations

The gut microbiome samples from populations that have a higher
abundance of the Prevotella genus in their gut including the
largest available cohort of 200 healthy samples from different
locations and age groups in India, and samples of the healthy
individuals from Madagascar (n= 112)10,12, Tanzania (n= 67)14,33,
and Peru (n= 36)13 were analyzed in this study. By contrast,
samples from populations containing a much lower abundance of
Prevotella in the gut microbiome of healthy individuals including
Italy (n= 101)9, USA (n= 34)34, Netherlands (n= 22)34 and Spain
(n= 14)19, were selected for the comparative analysis. To examine
the association of Prevotella with gut inflammation, we also
analyzed samples from patients with IBD from the USA (n= 121)34,
the Netherlands (n= 43)34, and Spain (n= 25)19 (Supplementary
Note 1). Human gut microbiome composition and abundance of
Prevotella genus in each population were examined by taxonomic
assignment of high-quality sequenced reads (see “Methods”
section).

Prevotella is the most abundant genus in the distinct Indian
gut microbiome

To investigate the human gut microbiome composition of all
populations based on taxonomic assignment of high-quality
reads, Principal Coordinates Analysis (PCoA) using Bray–Curtis
distances generated from relative abundances of bacterial species
was performed. The analysis showed clear distinctions among
western and non-western populations (Bray–Curtis, PCoA, PERMA-
NOVA, R2= 0.27, p= 0.001) (Fig. 1a). Samples from Italy and Spain
showed a large overlap with the samples from the US and
Netherlands among the western populations; although, a small
overlap with Indian and non-western populations was also
noticed. A separate and significantly distinct clustering of Indian
samples was observed based on Principal coordinate-2.

Significantly higher inter-sample variation was also observed in
the Indian population when compared to all other populations
(Kruskal–Wallis test, p-value = 0.01) (Fig. 1a, b).
The relative abundances of the top 15 genera in each

population based on the taxonomic annotation of reads revealed
Prevotella as the most abundant genus in all non-western
populations, whereas the western populations were mainly
enriched in Bacteroides (Fig. 1c and Supplementary Fig. 1a,
Supplementary Data 1). Furthermore, the taxonomic classification
of contigs (>1000 bp) showed a higher (17–30%) relative
abundance of the Prevotella genus in non-western populations
(India, Peru, Tanzania, and Madagascar) than in western popula-
tions (US, Netherlands, Italy, Spain) (Supplementary Fig. 1b).

New insights from Prevotella landscape in western and non-
western populations

One of the limitations of the publicly available genome databases
is the lack of information on the recently cultured and
reconstructed genomes/MAGs (from metagenomes) of Prevotella,
and do not represent the comprehensive genetic diversity of the
Prevotella genus/species. Since the estimated diversity of human-
associated Prevotella spp. is much higher than the available
catalog of Prevotella isolates, we constructed a Prevotella genome
database consisting of 2204 genomes including 547 reference
genomes of Prevotella species retrieved from NCBI, 1612
reconstructed Prevotella genomes/bins10, 15 Prevotella isolates
from a previous study11, five Asian Prevotella isolates from an
unpublished study, and 25 reconstructed Prevotella bins in this
study (see “Methods” section and Supplementary Fig. 2, Supple-
mentary Data 2–4). The abundance of each Prevotella genome in
human gut samples was calculated by alignment of reads against
this Prevotella genome database (Supplementary Note 2, Supple-
mentary Figs. 3, 4a, and Supplementary Data 5).
Principal coordinates analysis performed using inter-sample

Bray–Curtis distance based on the abundance of genomes/bins
from Prevotella genus (from the Prevotella genome database) in
each population showed that the first principal coordinate
separates the western population from the non-western popula-
tion. A similar analysis of the Indian population, likewise, found
that the first principal coordinate significantly separated the
Indian population from other non-western populations. The Indian
samples also showed the highest inter-sample variation among
the non-western populations, whereas little inter-sample variation
was observed in western populations compared to non-western
populations. (Fig. 2 and Supplementary Fig. 4b). Further analysis
also confirmed that the higher inter-sample variation in the Indian
cohort was not due to the larger number of samples (Supple-
mentary Note 3).
To examine the association of dietary habits (vegetarian and

non-vegetarian) with the composition of the gut microbiome in
the Indian population, the principal coordinates analysis based on
Prevotella Genome Database (PGD) and 1021 P. copri genomes
indicated that diet significantly explains the variation in samples
based on the relative abundance of Prevotella genus and P. copri
species (Supplementary Fig. 5a, b). Further, the six different
geographical regions represented in the Indian population also
showed significantly higher inter-sample variations between them
based on PCo-1 and PCo-2 (PERMANOVA, R2= 0.07, p-value =
0.001) (Supplementary Fig. 6). Similarly, in the Italian cohort with
distinct dietary habits (vegans, vegetarians, and omnivores), the
analysis of relative abundance of genomes/bins in PGD and P copri
genomes revealed that diet significantly affect the variation in
samples in the case of P. copri composition (PERMANOVA, R2=
0.04442, p-value = 0.002) (Supplementary Fig. 5c, d). The
correlation analysis between Prevotella genomes in each popula-
tion showed the highest co-occurrence of Prevotella genomes in
non-western populations and in the Italian population. By
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contrast, a negligible number of significant positive correlations
were observed in the US and the Netherlands populations, and no
significant correlation was observed in the Spain population

(Supplementary Data 6).

Higher abundance and genome-relatedness of P. copri in
Indian and non-western populations

We clustered the 2204 Prevotella genomes based on a distance
cut-off of 0.00 (100% ANI) that resulted in 2204 clusters indicating

that no two genomes/bins are 100% identical. Clustering based on
the distance cut-off of 0.05 (95% ANI; species-level clustering)
resulted in 228 clusters (Supplementary Note 4, Supplementary

Figs. 7–10, and Supplementary Data 7). 102 Prevotella genomes/
bins with ‘indval’ score >0.60 (p-value < 0.01) were differentially
abundant in western and non-western populations and were

considered for further analysis. Of the 102 Prevotella genomes/
bins, 26 were differentially abundant in non-western populations
including 18 bins reconstructed from metagenomic data sets, and
the remaining eight genomes/bins included four Prevotella

isolates (out of five from Asia), and four NCBI reference genomes
including P. copri (NCBI Accession: GCA 002224675.1) (Supple-
mentary Fig. 11 and Supplementary Note 4). By contrast, 76

Prevotella genomes/bins that were found differentially abundant
in western populations were also known in the NCBI database and

Fig. 1 Prevotella is the most abundant genus in the distinct Indian gut microbiome. a Principal coordinates analysis considering inter-
sample Bray–Curtis distance based on species abundance table (obtained from classification of reads using Kaiju). Total number of samples in
each data set is given in the left bottom. b Box-plot showing inter-sample variation based on the abundance of different bacterial species in
each sample (using pairwise Bray–Curtis distance) in each population. c Relative abundance of top 15 genera in each healthy population.
Relative abundance was calculated after classifying reads at the genus level using Kaiju. Prevotella genus is highlighted in a lighter shade of
green color. The whiskers, bound of the box, and the line in the middle of the box represent the min-to-max values, 25th–75th percentiles,
and median, respectively. Kruskal–Wallis test was used to test the distributions of box plots. ns refers to “not significant”, and ** indicates p-
value < 0.01.
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included P. marseillensis, P. lascolaii, P. ihumii, and various strains of
P. intermedia.
Most of the differentially abundant Prevotella genomes found in

western populations belonged to unclassified Prevotella genomes
in the NCBI microbial genome assembly database (Supplementary
Fig. 12). The intergenome distances between the 102 differentially
abundant genomes identified from the above analysis indicated
that 25 of the 26 differentially abundant Prevotella genomes in
non-western population were from species closely related to P.
copri or were subspecies of P. copri as they were found on the
same branch (Fig. 3a). Further, 29 differentially abundant Prevotella
genomes were found in the Indian population compared to all
other populations using labdsv (indval score >0.50, p-value =
0.01), of which 23 were identified as P. copri by taxonomic
assignment using BAT (Supplementary Note 5). The average
intergenome distance between differentially abundant genomes
in western and non-western populations are 0.26 and 0.08,
respectively (the genome pairs having MASH distance = 1
omitted). Taken together, these findings indicate that the
differentially abundant Prevotella genomes in non-western popu-
lations are related to each other, whereas those in western
populations are more diverse (Fig. 3b and Supplementary Data 8).

Clade composition of P. copri strains in Indian and other non-
western populations

Principal coordinates analysis based on the abundance of P. copri
genomes/bins indicated higher inter-sample variation in the
Indian population than in other non-western populations (Sup-
plementary Note 6). Both PCo-1 and PCo-2 significantly explain
the distinctness and inter-sample variation of the Indian popula-
tion compared to all other populations. To further explore the
diversity of P. copri strains in non-western populations, the strain
level composition of P. copri in non-western populations were
analyzed using 1021 reconstructed bins of P. copri with their clade
classification information (clade A, B, C and D, see “Methods”
section) (Supplementary Fig. 13a). The P. copri clades in the Indian
population showed a similar distribution as those in non-western
populations: >70% of genomes from clades C and D were present
in >50% of samples in all non-western populations. By contrast,

only 10% of genomes from clades C and D were present in
western populations. The comparison of the average relative
abundance of each of the four clades revealed a highest
abundance of clade D followed by clade C in all non-western
populations (Supplementary Fig. 13b).
The clade composition of P. copri strains in the Indian

population was further examined by analyzing 42 reconstructed
P. copri specific bins and five isolates (see “Methods” section, and
Supplementary Fig. 14a, Supplementary Data 9). As a reference for
the clade assignment, we used 72 high-quality P. copri genomes/
bins reported previously11. The pairwise intergenomic distances of
each genome/bin were calculated, and the MASH distance-based
clustering resulted in 9 bins assigned to clade C, 7 bins assigned to
clade B, and 5 bins assigned to clade A. The remaining 26 of the 47
bins formed a separate cluster with a higher intergenomic
distance between each other. Further, this cluster contained none
of the 72 high-quality P. copri bins used as a reference
(Supplementary Fig. 14b), indicating that these 26 bins may be
other subspecies or strains of Prevotella.

Examining the association of Prevotella species/strains with
IBD cohorts

To examine the association of Prevotella with IBD, we compared
the Prevotella genomes of healthy individuals and patients with
IBD in the US and Netherlands populations by using labdsv and
found 30 genomes that differed in their abundance. Eight of these
30 genomes were significantly abundant in IBD, of which seven
were present in the US, and six of these were also present in
Netherlands data sets. These seven genomes were those of P.
pallens, P. oryzae, P. koreensis, P. ihumii, P. intermedia, and two
unclassified Prevotella strains (Prevotella sp. oral taxon 820 and
Prevotella sp. oral taxon 313) (Fig. 4), which have been associated
with oral inflammatory conditions in previous studies (Supple-
mentary Note 7)37–41. We also compared the relative abundance
of these 30 Prevotella genomes in healthy western and non-
western populations and found that they were significantly less
abundant (p-value < 0.01) in non-western populations (Supple-
mentary Fig. 15a). Principal coordinates analysis revealed a clear
separation between western and non-western populations, and

Fig. 2 Inter-sample variation of human gut microbiome samples based on Prevotella composition. Principal coordinates analysis (PCoA)
considering inter-sample Bray–Curtis distance based on the relative abundance of genomes/bins belong to Prevotella genus in each
population. The PCoA plot represented in dashed rectangle further shows the distribution of samples from different geographical regions in
India with samples from non-western populations. A nonparametric two-sided Wilcoxon rank-sum test was used for testing the box-plot
distributions. ns refers to “not significant”, * indicates p-value < 0.05 and ** indicates p-value < 0.01. The whiskers, bound of the box, and the
line in the middle of the box represent the min-to-max values, 25th–75th percentiles, and median, respectively.

V. Prasoodanan P. K. et al.

4

npj Biofilms and Microbiomes (2021)    77 Published in partnership with Nanyang Technological University



the variance explained by PCo-1 increased to 31.6% using relative
abundance of these 30 genomes (Supplementary Fig. 15b). In
addition, the classification of samples from western and non-
western populations using randomForest based on the 30
differentially abundant genomes resulted in high accuracy (AOC
= 0.92) (Supplementary Fig. 15c). The differentially abundant
Prevotella genomes in western IBD patients also showed higher
abundance in the western-healthy population in comparison with
non-western-healthy populations (Supplementary Fig. 16).

Functional composition of Prevotella genus in healthy and IBD
cohorts

We constructed a catalog of the 2,992,963 non-redundant
Prevotella genes identified in this study (see “Methods” section,
Supplementary Data 10). Abundance of Prevotella gene catalog
(PGC) in each sample was quantified and analyzed further (see
“Methods” section). The Prevotella genes in the Indian population
formed a separate cluster, but showed a small overlap with the
populations from Italy, Madagascar, Peru, and Tanzania perhaps
due to high inter-sample variation (PERMANOVA R2= 0.196, p-
value = 0.001). The first principal coordinate showed significant
separation of the Indian samples from the other populations, and
the inter-sample variation in the Indian and Italian populations
was the highest of all the populations (Fig. 5a). Also, we observed
a lower average inter-sample distance between the populations
from India and Tanzania, and India and Peru when compared to
the other populations, which indicates functional relatedness of
Prevotella in Indian and these non-western populations (Fig. 5b).
Further, based on gene abundance analysis of PGC, the
comparison of IBD and healthy samples in western populations
i.e., Spain (Fig. 5c), Netherlands (Fig. 5d), and US (Fig. 5e) showed
significantly higher inter-sample variation in IBD compared to
healthy samples. The beta-diversity analysis of KEGG KO-based
functional classes in healthy and IBD samples also showed a
similar result as observed in the case of gene abundance analysis
in western populations. The Indian population was relatively
enriched in genes involved in branched-chain amino acid
biosynthesis when compared to western populations. Likewise,
it was relatively enriched in genes involved in proline, histidine,
and lysine biosynthesis, as were the populations from Peru and
Tanzania (Supplementary Fig. 17 and Supplementary Data 11).

Abundance of plant carbohydrate metabolizing enzymes in
Indian and other non-western populations

Carbohydrate metabolism is a key function of several dominant
Prevotella species in the gut, thus we compared the abundance of
genes involved in carbohydrate metabolism in the Prevotella
genomes from the various populations using CAZy (carbohydrate-
active enzymes) database42 (details in Supplementary Note 8).
Principal coordinates analysis based on the abundance of CAZy
genes resulted in clustering of the Indian and Tanzanian
populations (Supplementary Fig. 18a, b).
The correlation between the relative abundance of Prevotella

genomes/bins and CAZy families in each population was analyzed
using the ccrepe package. All non-western populations and the
Italian population showed a higher number (54–1292) of
significant positive correlations (r-value > 0.5, p-value < 0.01),
whereas no significant positive correlations were found in the
Netherlands and the US populations. This suggests that the genes
encoding carbohydrate metabolizing enzyme families are asso-
ciated with the abundance of Prevotella genomes in non-western
populations (Supplementary Fig. 19).
To compare the carbohydrate metabolism genes of Prevotella in

healthy samples from different populations, we calculated the
relative abundance of carbohydrate metabolizing enzyme (CAZy)
families categorized as glycosyl hydrolases (GHs), glycosyltrans-
ferases (GTs), carbohydrate-binding modules (CBMs), carbohy-
drate esterases (CEs) and polysaccharide lyases (PLs). We identified
the core CAZy families (present in >80% of samples) in Prevotella
genomes, and found 78 GHs, 26 GTs, 29 CBMs, 12 CEs, and 8 PLs. A
total of 37 CAZy families and subfamilies were identified as
differentially abundant in Prevotella species in the Indian
population compared to other healthy populations (Methods
and Supplementary Note 8). Interestingly, out of 37 CAZy families
26 are GH family/subfamily of enzymes that are involved in
hydrolysis or rearrangement of glycosidic bonds and are major
contributors to carbohydrate degradation. The genes encoding
differentially abundant GHs were classified into three groups
based on their utilization of carbohydrate substrates of plant,
animal, and mucin origin33,43 (Supplementary Data 12). 73% (19
out of 26) of the differentially abundant GH family/subfamily of
enzymes in the Indian population belonged to the group that uses
plant-based carbohydrates (Fig. 6a). Among these 19 CAZy
families, ten were also significantly abundant in all non-western

Fig. 3 Significantly lower intergenomic distance of differentially abundant Prevotella genomes in non-western populations. a Cladogram
constructed based on the intergenome distance (MASH-distance) between genomes/bins differentially abundant in non-western and western
populations. Text highlighted in a lighter shade of green color are differentially abundant Prevotella genomes in non-western populations, and
the text highlighted in orange color are differentially abundant Prevotella genomes in western population. The Prevotella genome highlighted
using red-colored star is of P. copri (Assembly accession: GCA_002224675.1). b Box plots show the intergenome distance of differentially
abundant Prevotella genomes in non-western and western populations. The pair of entries that showed intergenome distance = 1 were
excluded from this plot. The whiskers, bound of the box, and the line in the middle of the box represent the min-to-max values, 25th–75th
percentiles, and median, respectively. Significance levels were evaluated using Wilcoxon rank-sum test.
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populations (Wilcoxon rank-sum test, p-value < 0.01), and
displayed the highest abundance in the Prevotella genomes from
the Indian and Tanzanian population suggesting a relatedness

between these two populations (Fig. 6b).
Further, the LEfSe and labdsv analysis revealed that 15.8% and

11.5% of CAZy families, respectively, were common in the non-
western population and Indian population (Supplementary Fig.
20). In contrast, 8.9% (identified by LEfSe) and 6.6% (identified by

labdsv) CAZy families were common in the western and Indian
population. These observations indicate that a relatively higher
number of CAZy families were commonly present in the Prevotella
genomes of Indian and non-western populations as compared to

Indian and western populations, and further supports the
relatedness of carbohydrate metabolizing activity in Indian and
non-western populations (Supplementary Fig. 20, Supplementary
Note 8 and Section 9).

Abundance of pullulanase-containing PULs in P. copri
genomes and Indian population

We further examined the abundance of Polysaccharide Utilization
Loci (PULs) in Prevotella genomes since these loci encode the
necessary machinery for carbohydrate metabolism, and usually
occur as groups in close proximity to one another in bacterial

genomes. We predicted a total of 37,389 PULs in 2204 genomes in
the Prevotella Genome database (PGD) by using PULpy based on
susC/susD-like pairs44. Of these 2204 genomes, 2197 were
predicted to have at least one PUL. The greatest number of PULs

per genome was 60 for an unclassified Prevotella genome (GCA-
003638705.1-ASM363870v1). The number of PULs per genome
was significantly higher (Wilcoxon rank-sum test, p-value = 0.015)

in the differentially abundant Prevotella genomes in non-western
populations compared to western populations. (Supplementary
Fig. 21 and Supplementary Data 13).

One of the key findings of the study emerged from the analysis
of PULs in P. copri genomes, which revealed that 77.6% (794 out of
1023) of the known P. copri genomes contained pullulanase gene
located in PULs. The pullulanase enzyme (GH13_14) acts on α-1,6-
linkages within starch (a common plant polysaccharide) and
pullanan (a fungal polysaccharide). Operon prediction analysis of
contigs having pullulanase-containing-PULs revealed that
neopullulanase-susA (Pullulan hydrolase type I) and pullulanase
genes are present in the same operon (>95% probability) and are
involved in the metabolism of α-1,4 and α-1,6-linkages, respec-
tively, present in starch-derived glucans.
Interestingly, a majority (98.49%) of the PULs containing

pullulanase gene also had other CAZy families including GH77,
GH97, GH13_14, and GH13 in the same loci, and a small fraction
(71.66%) of these PULs also contained GH43_4 and GH43_5
along with the aforementioned CAZy families. 21.16% PULs
contain GH51 with all six above-mentioned CAZy families (Fig.
6c). The enzymes in GH77, GH97 GH13_14, and GH13 CAZy
families are mainly involved in metabolizing α-1,4 and α-1,6-
linkages in starch, whereas the GH43_4, GH43_5, and
GH51 subfamilies comprise a range of debranching enzymes
that aid in the degradation of arabinoxylans and pectin that are
the major non-starch plant polysaccharides. The genomic loci
containing pullulanase-containing-PULs extracted from the 782
P. copri genomes were analyzed, and it revealed a cluster of
genes involved in starch and non-starch metabolism, and also
had several hypothetical genes. Further, multiple copies of
“TonB-dependent receptor (SusC)” were also noted in these loci
(Supplementary Note 10 and Section 11).
Notably, 23 out of the 29 differentially abundant Prevotella

genomes in the Indian population were P. copri, of which 16
(76.2%) also had PULs containing pullulanase enzyme (GH13_14).
Similarly, 24 out of 26 differentially abundant Prevotella genomes
in non-western population have pullulanase-containing-PULs, of
which 18 genomes also contained GH43_4, GH43_5, and GH51

Fig. 4 Abundance of oral inflammation-associated Prevotella species/strains in IBD cohorts. a Representation of differentially abundant
Prevotella genomes in healthy and IBD cohorts of US population. Genomes highlighted in a lighter shade of red color are differentially
abundant in the IBD cohort, and genomes highlighted in a lighter shade of green color are differentially abundant in the healthy cohort.
b Representation of differentially abundant Prevotella genomes in healthy and IBD cohorts of Netherlands population. Genome highlighted in
a lighter shade of red color are differentially abundant in IBD cohort, and genomes highlighted in a lighter shade of green color are
differentially abundant in the healthy cohort. Prevotella genomes/bins with “indval” score >0.60 and p-value < 0.01 reported by labdsv are
represented in the bar-plots. Error bars represent plus or minus one standard error of the mean.
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families in the pullulanase-containing-PULs (Supplementary Note
12). By contrast, in the western population that had a poor
abundance of P. copri, only 29% (22 out of 76) differentially

abundant Prevotella genomes had pullulanase (GH13_14). Taken

together, these findings reveal the key role of pullulanase-
containing-PULs associated with P. copri genomes in the
metabolism of starch and non-starch components of dietary

cereal grains in Indian and other non-western populations.

Fig. 5 Functional composition of Prevotella genus in healthy and IBD cohorts. a Principal coordinates analysis considering inter-sample
Bray–Curtis distance based on the relative abundance of genes from PGC (Prevotella Gene Catalog) in healthy populations. The figure shows
western and non-western populations are significantly separated based on the first principal coordinate. The figure also shows that the Indian
population has a significantly distinct Prevotella gene composition. b Box plot showing the inter-sample distance (Bray–Curtis) of Indian
samples with other populations based on the relative abundance of genes of PGC. c–e Principal coordinates analysis considering inter-sample
Bray–Curtis distance based on the relative abundance of genes of PGC in western-healthy and IBD samples (Spain, Netherlands and US,
respectively). Box plots of inter-sample distance in healthy and IBD samples are shown at the bottom part of each PCoA plot. The whiskers,
bound of the box, and the line in the middle of the box represent the min-to-max values, 25th–75th percentiles, and median, respectively.
Nonparametric two-sided Wilcoxon rank-sum test was used to test the box-plot distributions.
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Abundance of virulence factors and antibiotic resistance
genes in Prevotella in western populations

In the Prevotella genome abundance analyses described above,
we noted that P. pallens, P. oryzae, P. koreensis, P. ihumii, P.
intermedia, and two unclassified strains (Prevotella sp. oral taxon
820 and Prevotella sp. oral taxon 313) were more abundant in

samples from patients with IBD than in samples from healthy

individuals in western populations. Of these, P. intermedia, P.
marseillensis, and P. lascolaii, are key pathogens that cause
anaerobic infections in humans45–47, and were significantly
abundant in western populations. Moreover, virulence-related
genes of P. intermedia and P. nigrescens are more abundant in the
oral microbiomes of patients with oral inflammation than in
healthy individuals48. To investigate whether virulence-related
genes are prevalent in gut Prevotella species, we searched our

Fig. 6 Abundance of plant carbohydrate metabolizing enzymes of Prevotella genus in Indian and other non-western populations. a
Discriminating carbohydrate metabolizing gene families (CAZy families) of Prevotella in the Indian cohort compared to all other populations
together (Italy, Netherlands, US, Madagascar, Peru, and Tanzania) identified based on LDA score (using LEfSe). The legend shown on the right
side depicts the broad classification of CAZy families. The CAZy families highlighted with a red-colored star are the ones that were detected in
all three statistical methods for finding differentially abundant CAZy families (LEfSe, labdsv, and boruta). b Relative abundance of all
differentially abundant plant-based Glycosyl Hydrolases (based on studies mentioned in Supplementary Data12, sheet 2) in all populations.
The whiskers, bound of the box, and the line in the middle of the box represent the min-to-max values, 25th–75th percentiles, and median,
respectively. A nonparametric two-sided Wilcoxon rank-sum test was used to test the box-plot distributions. ns refers to “not significant”, *
indicates p-value < 0.05 and ** indicates p-value < 0.01. c Pullulanase-containing-PULs were detected in 782 out of 1023 P. copri genomes. The
most frequent PUL among them is susD-susC-unk-unk-GH77-GH97-GH13_14-GH13 shown as (i) is present in 113 genomes (with the same
arrangement of CAZy families). The second most frequent pullulanase-containing-PUL has GH43_4 and GH43_5 shown as (ii) with the
aforementioned CAZy gene families and is present in 93 genomes (with the same arrangement of CAZy families). Other pullulanase-
containing-PULs have GH51 with GH77, GH97, GH13_14, GH13, GH43_4, and GH43_5 at the same genomic loci shown in (iii) and are present
in 21 genomes (with the same arrangement of CAZy families). The majority of the remaining pullulanase-containing-PULs have the same gene
families with different arrangements (see Supplementary Notes-part 10 and 11).
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Prevotella gene catalog for homologies to genes in the bacterial
virulence factor databases49,50. Principal coordinates analysis
based on virulence factor abundance in each population revealed
clear segregation of western and non-western populations (Fig.
7a). The presence and abundance of the virulence protein genes

(full-data set) in each population showed that western populations
contained a significantly higher number of these genes and
Shannon diversity index compared to non-western populations
(Fig. 7b and Supplementary Fig. 22a). The above observations
were confirmed by analyzing the core virulence factor database
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(Supplementary Fig. 22b). Of the 133 virulence protein genes
identified in the core data set (see “Methods” section), 118 had a
higher average relative abundance in western populations
compared to non-western populations, and the remaining
15 showed higher abundance in non-western populations
(Supplementary Fig. 22c). By using labdsv, LEfSe, and boruta, we
identified 37 virulence factor genes that discriminate between
western and non-western populations, all of which were more
abundant in western populations. This finding was supported by
the PERMANOVA test based on Bray–Curtis distance using the
abundance of discriminating virulence factor genes, which
indicated an increment of R-squared value (Fig. 7c). Also,
classification of western and non-western samples by using
randomForest based on the relative abundance of the 37
discriminating virulence factor genes resulted in high classification
accuracy (area under ROC= 0.99) (Supplementary Fig. 22d). The
randomForest analysis carried out using 15 (out of 133) virulence
factor genes that were highly abundant in non-western popula-
tions showed lower accuracy of classification (area under ROC=
0.88) (Supplementary Fig. 22e).
Previous studies have shown the co-occurrence of antibiotic

resistance genes and virulence determinants in human gut
microbiomes51–53. Therefore, we examined the presence of
antibiotic resistance genes in Prevotella genomes in the gut
microbiome of all the populations analyzed in this study.
Antibiotic resistance genes encoding proteins involved in the
inactivation of antibiotics were the most abundant in Prevotella
genomes, followed by those involved in antibiotic efflux, antibiotic
target alteration, and target protection (Supplementary Fig. 23a,
b). Inter-sample distance based on the abundance of antibiotic
resistance genes predicted by the resistance gene identifier tool54

(in “loose” mode) showed the separation of western and non-
western samples (Fig. 7d). Prevotella genomes from the Spanish
population contained the most antibiotic resistance genes,
followed by US and Italian populations, when both “strict” and
“loose” criteria were applied with the resistance gene identifier.
Fewer antibiotic resistance genes were identified in the Prevotella
genomes from the Indian and Madagascan populations (Supple-
mentary Fig. 23c, d, e). A significant difference between western
and non-western populations was observed based on the number
of antibiotic resistance genes identified and the Shannon diversity
index (Fig. 7e and Supplementary Fig. 23f). PERMANOVA using
differentially abundant antibiotic resistance genes showed higher
abundance in the western population compared to non-western
populations. Higher R-squared value obtained using differentially
abundant antibiotic resistance genes showed higher abundance
in the western population, and these genes also discriminated
between western and non-western populations (Fig. 7f and
Supplementary Fig. 23g, h).

DISCUSSION

Prevotella copri is the most abundant species from its genus in the
human gut microbiome that has attracted most of the global

attention9,11, whereas, the role of other Prevotella species in the
human gut and their impact on human health has remained
largely unstudied. Moreover, the population-wide Prevotella-
focused gut microbiome studies have not yet included the Indian
population, which has the highest abundance of Prevotella genus
in healthy individuals. Therefore, we carried out this comprehen-
sive gut microbiome study on a large cohort of healthy samples
from various parts of India to gain new insights on the roles of
different species of Prevotella genus in human health. Secondly,
due to the association of Prevotella with a high-fiber diet, a
comparison was carried out between the Prevotella-rich popula-
tion consuming a high-fiber diet with the populations consuming
diets rich in protein and fat and poor in plant-based fibers. Lastly,
it was needed to re-examine the association of some species from
this genus with gut inflammatory disorders that had been found
in some early studies in western populations24,25. Therefore, we
also carried out a comparative analysis of healthy individuals
including both western and non-western populations with IBD
data sets (Fig. 8).
The population-wide analysis of the taxonomic composition of

the gut microbiome showed clear differences between the
western and non-western populations. It also reemphasized the
uniqueness of the Indian gut microbiome2,17,18,55, with Prevotella
being the most abundant genus in the Indian population among
all analyzed populations. In contrast, the western populations
were primarily dominated by Bacteroides. The high consumption
of a plant-based high-fiber diet is plausibly the primary reason for
the high abundance of Prevotella in Indian and other non-western
populations, in contrast to the consumption of a “typical western
diet” in western populations9. These results underscore the impact
of diet in shaping the gut microbiome of different populations9,21.
The construction of a comprehensive Prevotella genome

database containing 2204 genomes/bins and a Prevotella gene
catalog containing 2.9 million genes that include the latest
information on the recently cultured and metagenomically
reconstructed genomes of the Prevotella genus were crucial in
gaining deeper insights into the functional roles of Prevotella. The
metagenomic composition of Prevotella genomes in PGD revealed
the highest inter-sample variation among Indians reasonably
attributed to the inclusion of samples from diverse geographical
regions of India that prominently differ in their diets and cooking
styles. Despite these differences, the Indian population was
significantly different from all other populations, yet it was
comparatively more related to non-western populations (mainly
Tanzania and Peru) than to the western populations (US,
Netherlands, Spain, and Italy).
Clues on the existence of several novel strains of P. copri in

Indian and non-western populations emerged from the analysis of
differentially abundant metagenomically reconstructed Prevotella
genomes that showed lower genetic diversity and close genomic
relatedness to P. copri. Further, all four major clades of P. copri11

were highly prevalent in non-western populations, particularly the
clades C and D that have a high prevalence of genes encoding

Fig. 7 Distribution of virulence factors and antibiotic resistance genes of Prevotella genus in different populations. a Principal coordinates
analysis considering inter-sample Bray–Curtis distance based on the relative abundance of VFs present in Prevotella genomes. b Alpha-
diversity measure (using Shannon index) of VFs present in Prevotella genomes in all populations (healthy and IBD). Shannon index was
calculated based on the abundance of genes that showed best hits after homology search against full VFDB proteins. c Increase in
PERMANOVA R2 values using the relative abundance of 15 VFs showed higher abundance in western populations, 118 VFs showed higher
abundance in non-western populations, and 25 differentially abundant VFs in western populations. d Principal coordinates analysis
considering inter-sample Bray–Curtis distance based on the relative abundance of Antibiotic Resistance Genes (ARGs) present in Prevotella
genomes (using loose parameter in RGI). e Alpha-diversity measure (using Shannon index) of Prevotella ARGs in all healthy populations.
Shannon index was calculated using the abundance of genes predicted using RGI. f Increase in PERMANOVA R2 values using the relative
abundance of differentially abundant Prevotella ARGs in the western populations. The whiskers, bound of the box, and the line in the middle
of the box represent the min-to-max values, 25th–75th percentiles, and median, respectively. Nonparametric two-sided Wilcoxon rank-sum
test was used for testing the box-plot distributions. ns refers to “not significant”, * indicates p-value < 0.05 and ** indicates p-value < 0.01.
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enzymes involved in the metabolism of cellulose, hemicellulose,
and pectin.
In contrast, the western populations displayed a higher genetic

diversity in Prevotella species including P. intermedia, P. oris, P.
oralis, P. dentalis (infection related), P. bergensis (infection related),
and P. brevis (infection-related), which are also reported to be a
part of the oral microbiome in western populations and have been
associated with oral inflammatory conditions46,47,56–58. Similarly,
another discriminatory species P. lascolaii in western populations
was isolated from bacterial vaginosis patients59. Notably, the IBD
cohort also displayed an abundance of inflammation-associated
species such as P. intermedia, P. pallens, P. oryzae, P. koreensis, P.
ihumii, and two unclassified oral strains, which also displayed a
significant abundance in western-healthy cohort compared to the
healthy non-western populations. In fact, the differences in the
abundance of these inflammatory species in western and non-
western-healthy populations were sufficient enough to segregate
them with high accuracy using randomForest, and may act as
Prevotella markers to classify these two population groups.
Strong evidence about the involvement of “mouth–gut axis” in

gastrointestinal diseases such as IBD and colorectal cancer have

recently emerged23,60. In the case of newly diagnosed colorectal
cancer patients, a higher enrichment of oral species, P. intermedia
and P. nigrescens, has been observed in the gut indicating that
these species could be the biomarkers of the oncological
condition61. In IBD patients, ingested oral bacteria are believed
to play a central role in disease pathogenesis by translocating to
the lower digestive tract, where the pathobionts can evoke
pathogenic immune responses by producing bacteria-reactive
CD4+ T-cells62. Gut inflammation likely disrupts colonization
resistance mediated by the resident healthy gut microbiota,
making it possible for oral pathobionts to ectopically colonize the
gut. Thus, the inflammatory Prevotella species of oral microbiome
origin could elicit inflammatory conditions in the gut, supporting
the mouth–gut axis hypothesis22,60. Some recent studies that
associated lifestyle factors, particularly the western diet with the
abundance of oral pathobiont species indicate the western-
association of this hypothesis63,64. Another study in western obese
subjects reported the decrease in levels of salivary P. intermedia
upon the nutritional intervention of Mediterranean diet, indicating
that a western diet-associated oral P. intermedia species decreased
upon changing the diet65. However, one of the apparent

Fig. 8 Impact of Prevotella composition on human health. Schematic representation of taxonomic and functional composition of Prevotella
species in western and non-western populations is shown.
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limitations of this hypothesis is that most human gut and oral
microbiome research have been performed on westernized
populations, and similar knowledge is not available from non-
western populations. Thus, it may remain worth examining if the
mouth–gut axis observed in the western population can be
extrapolated to non-western populations such as the Indian and
African populations.
It was also noted that the richness, diversity, and distinct

composition of virulence factors (VFs) in Prevotella genomes in
western populations compared to non-western populations were
sufficient to classify western and non-western populations with
high accuracy. The number of antibiotic resistance genes (ARGs)
were also significantly higher in western populations, and showed
a similar segregation of western and non-western populations
based on ARGs abundance. Studies have found the prevalence of
ARGs in common isolates of Prevotella from the head and neck
infection including P. intermedia, P. melaninogenica, P. oris, and P.
oralis group, and these species were also among the differentially
abundant Prevotella species in gut microbiome of western
population66,67. Among the ARGs, those involved in the inactiva-
tion of antibiotics were the most prominent in Prevotella genomes
followed by antibiotic efflux, antibiotic target alteration, and target
protection. Notably, the ARGs belonging to the drug class of
tetracycline antibiotics were the most abundant in Prevotella
genomes, perhaps due to their frequent usage in treating
periodontal diseases, and P. intermedia isolates resistant to
tetracycline and its doxycycline and minocycline derivatives have
also been reported29,66,68.
Among the different species in the Prevotella genus, P. copri has

been gaining the status of a beneficial gut commensal due to its
positive association with glucose homeostasis and cardiometa-
bolic markers, and negative association with visceral fat, fasting
VLDL-D, and fasting GlycA. Further, the individuals with P. copri
showed lower C-peptide, insulin, and TG levels compared to P.
copri-negative individuals69,70. Roles of P. copri in glucose home-
ostasis71,72 and in the metabolism of high carbohydrate and fiber-
rich diet explain the intriguingly high abundance of this species in
the gut microbiome of healthy Indian and non-western population
that consumes a plant-associated carbohydrate and fiber-rich
ingredients as the major component in the diet.
The CAZy analysis provided unique insights on the contribu-

tions of P. copri in the metabolism of complex polysaccharides in
non-western populations. Plant-based diet includes dietary poly-
saccharides containing alpha (α)- and beta (β)-glycosidic bonds,
and dietary fibers comprising of insoluble and soluble carbohy-
drates, including cellulose, lignin, and non-starch polysaccharides
such as hemicelluloses, pectin, and arabinoxylan32,73,74. The
human genome encodes enzymes that readily hydrolyze α-1,4-
bonds but depends upon the ability of intestinal bacteria such as
P. copri to break down complex plant polysaccharides with
β-linkages32,75–77. Further, the presence of multiple strains of P.
copri can catabolize a greater diversity of polysaccharides than any
individual strain11,32. We also identified multiple P. copri clades
with differential representation and extensive repertoire of
carbohydrate-active enzymes (CAZy) families with a higher
number of significant correlations in non-western populations,
which highlights the importance of the presence of multiple P.
copri strains and their role in carbohydrate metabolism in non-
western populations. Majority of the differentially abundant
glycosyl hydrolases (GHs) in the Indian population were falling
under the plant carbohydrate source utilizing group described by
Kaoutari et al.43 and Smits et al.33, indicating their role in Pectin/
Hemicellulose and starch metabolism. Interestingly, the samples
from Indian and Tanzanian populations showed high relatedness
in Prevotella genome and gene composition, and also in
carbohydrate metabolism potential (CAZy familes). These obser-
vations intrigued us to examine the similarities in the diets in the

two populations, which were found to be similar and included
cereals, pulses, vegetables, and fruits as the major ingredients33.
One of the key findings of the study is the identification of PULs

containing pullulanase (GH13_14) and other CAZy families
including GH77, GH97, GH13, GH43_4, GH43_5, and GH51, which
provide evidence for the presence of complex starch and non-
starch plant-polysaccharide metabolizing enzymes including some
hypothetical genes in same genomic loci in P. copri genomes.
GH13_14 subfamily comprises pullulanases, a very potent enzyme
that catalyzes the hydrolysis of α-1,6-linked branches in glycogen,
amylopectin, and other starch-derived glucans, as well as
pullulan78. The presence of several hypothetical genes in this
locus also hints towards the role of these genes in starch and non-
starch metabolism22. These findings corroborate with the role of P.
copri species in the comprehensive metabolism of complex plant-
based polysaccharides in the Indian and other non-western
populations.
Utilization of xylan found in cereal grains has been repeatedly

established in Prevotella species and specifically for P. copri3,8,79.
The numerous xylan-degrading enzymes identified among PULs in
P. copri isolates suggested that it might have an expanded xylan-
degrading enzyme repertoire and possibly possess a superior
ability to target xylan in comparison to the other intestinal
bacteria. Here, an interesting speculation could be the association
of abundance of Prevotella with the consumption of cereals
particularly whole-grain wheat, which is a major constituent of the
Indian diet. Several studies have also reported the increase in
abundance of Prevotella with the supplementation of wheat bran
arabinoxylan oligosaccharides (AXOS)80–82. Thus, it appears that
the presence of novel species/strains of P. copri in non-western
populations provides it with an enhanced capacity to metabolize
complex carbohydrates and dietary fibers, which plays a key role
in its selection and dominance in the gut microbiome, and its
function in host metabolism and health.
In summary, the gut microbiome analysis of the largest cohort

of healthy samples of a previously unexplored Indian population
and its comparisons with non-western and western populations
have provided new insights into the yet understudied Prevotella
genus. The study revealed the highest abundance of Prevotella in
the Indian population, its relatedness with non-western popula-
tions, and also revealed that the majority of Prevotella species are
constituted by P. copri in non-western populations. The identifica-
tion of pullulanase-containing PULs and clusters of complex plant-
polysaccharide metabolism genes in P. copri clades also suggests
the role of this species in complex polysaccharide metabolism in
the gut microbiome of non-western populations. While the
Prevotella species in non-western populations were majorly
constituted by P. copri, the Prevotella species in western-healthy
and IBD populations were more diverse and enriched in known
inflammatory Prevotella species of oral origin, which makes it
tempting to speculate that perhaps the mouth–gut axis is behind
the notorious association of Prevotella with inflammations in these
populations.

METHODS

Indian data description

The study cohort consisted of 200 healthy samples belonging to different
locations and age groups. Samples were collected from six different
locations to capture the maximum diversity in the gut metagenome of the
Indian sub-population, including Madhya Pradesh (central), Delhi-NCR
(north), Rajasthan and Maharashtra (west), Bihar (east), and Kerala (south).
The samples include 104 male and 96 female, age between 0.5 and 85
years, BMI of 21.12 ± 5.32 (mean ± SD). Among the 200 samples, 93 samples
were collected from the central region (44 male and 49 female, age
between 0.5 and 71 years, BMI of 20.16 ± 4.25 (mean ± SD)), 20 samples
from the eastern region (11 male and 9 female, age between 13 and 66
years, BMI of 23.41 ± 3.99 (mean ± SD)), 57 samples from the southern
region (29 male and 28 female, age between 3.5 and 60 years, BMI of
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20.14 ± 6.13 (mean ± SD)), 16 samples were from the western region (10
male and 6 female, age between 3 and 85 years, BMI of 24.82 ± 6.66 (mean
± SD)), and 14 samples from northern region (10 male and 4 females, age
between 19 and 76 years, BMI of 23.82 ± 4.00). A fraction of samples
(phase-1)2,18 were used for the initial study that provided clues on the role
of dietary habits, and higher prevalence and abundance of Prevotella copri
in Indian subjects in shaping the Indian gut microbiome. For this study to
examine the larger question on the role and impact of such intriguingly
high abundance of P. copri in the Indian population, we have used all the
sequence data from the collected 200 samples from both phase-1
(116 samples)2,18 and phase-2 (84 samples) to gain comprehensive into
the Indian gut microbiome.
The fecal samples were collected, and their detailed information is provided

in Supplementary Data 14 (metadata section). This study was approved by the
Institute Ethics Committee (IEC) of the Indian Institute of Science Education
and Research (IISER), Bhopal, India, and the recruitment of individuals and
sample collection were carried out in accordance with IEC approved study. All
samples were frozen within 30min of collection and transported to lab within
48 h at 4 °C. After receipt, the samples were immediately stored at −80 °C
refrigerator until further processing. Each participant filled out a consent form
prior to sample collection, mentioning their age, location, gender, and dietary
habits. The recruited participants did not undergo antibiotic treatment for at
least 1 month prior to sample collection. The collected samples were taken
forward for whole metagenome sequencing.

Fecal metagenomic DNA extraction and sequencing

From all the fecal samples, the metagenomic DNA was extracted using
QIAamp Stool Mini Kit (Qiagen, United States) and following the
manufacturer’s instructions except the final elution which was done in
50 µl of Elution buffer (Qiagen, United States)83. The extracted metage-
nomic DNA was quantified on Qubit 2.0 Fluorometer using Qubit dsDNA
HS assay kit (Invitrogen, Life Technologies, United States). Until sequen-
cing, all the DNA samples were stored at −80 °C.
The metagenomic DNA libraries were prepared by using the Illumina

Nextera XT DNA library preparation kit (Illumina Inc., USA) and following
the manufacturer’s reference guide. The size of libraries was evaluated on
Agilent 2100 Bioanalyzer using a High Sensitivity DNA kit (Agilent
Technologies, Santa Clara, CA). The libraries were quantified on Qubit 2.0
fluorometer using Qubit dsDNA HS assay kit (Invitrogen, Life Technologies,
CA). Further quantification was done by qPCR following the Illumina
suggested protocol which recommends the use of KAPA SYBR FAST qPCR
Master mix and Illumina standards and primer premix (KAPA Biosystems,
Wilmington, MA). The quantified libraries were normalized, pooled, and
taken forward for 150 bp paired-end sequencing using NextSeq 500/550
v2 sequencing kit on Illumina NextSeq 500 platform (Illumina Inc., USA) at
Next-Generation Sequencing (NGS) Facility, IISER Bhopal, India.

Prevotella copri isolates

For the isolation of P. copri strains, fecal samples were collected from
healthy human donors who did not have a history of any gastrointestinal
disorders, enteric infections or exposure to antibiotics in the previous
6 months. Donor recruitment and fecal sample collection were
performed after obtaining approval from the South Dakota State
University Institutional Review Board. All donors signed informed
consent. Fecal samples were processed, and strains were cultured84.
Prevotella-positive isolates were grown on BHI agar plates, and mature
colonies were collected for genomic DNA isolation with the PowerSoil
DNA isolation kit (Qiagen). Libraries were prepared for sequencing on
the MiSeq platform with the Nexetera XT DNA PCR-free Library Prep Kit
(Illumina). In total five P. copri isolates were sequenced (Genome data is
publicly available under Bioproject IDs PRJNA561792 (BioSamples:
SAMN12628462, SAMN12628461, SAMN12628460, SAMN12628459) and
PRJNA714938).

Collection of publicly available metagenomic data sets from
other population studies

The widely used and cited representative data sets from various western
populations were selected using the below-mentioned inclusion/exclusion
criteria for comprehensive analysis. We included subsets of widely known
gut-microbiome cohorts of western populations like lifelineDeep (Nether-
lands)34,85, NLIBD (Netherlands)34,85, PRISM (US)34, MetaHIT (the US and
European)19, etc. The considered inclusion criteria include the availability
of metadata, comparable proportion of both genders and spanning a wide

range of age groups to exclude the effect of these covariates in the
analysis, sequencing of samples using the Illumina sequencing platform,
cross-section studies of cohorts to incorporate maximum diversity, and IBD
cohorts with representation from both ulcerative colitis and Crohn’s
disease. The geographical classification of regions in western and non-
western is discussed in Supplementary Note 135,86–88. Healthy samples
include both western and non-western data sets. Among non-western data
sets, 112 samples (58 male and 54 females, age between 16 and 72 years,
BMI: 21.37 ± 2.18) from Madagascar (Study accession: PRJNA485056)10,12,
67 samples from Tanzania (Study accession: PRJNA392180 (single-end
reads), PRJNA278393 (paired-end reads) (33 males and 21 females, age
between 4 and 70 years))14,33 and 36 samples from Peru (13 males and 22
females, age between 1 and 52 years, BMI: 20.55 ± 4.55)13 were included
for analysis. Among western-healthy samples, 101 samples from Italy (50
male and 51 females, age between 21 and 64, BMI: 22.51 ± 3.34)9,
34 samples US (age between 22- and 82-years), 22 samples from
Netherlands (age between 22- and 82-years LLDeep data set)34 and
14 samples from Spain (age between 18 and 68 years)19.
IBD data sets include 121 samples from the US (68 CD samples with age

between 21 and 77 years and 53 UC samples with age between 20 and 76
years), 43 samples from the Netherlands (20 CD samples with age between
21 and 71 years and 23 UC samples with age between 19 and 80 years)34

and 25 samples from Spain (4 CD with age between 21 and 41 years and
21 UC samples with age between 25 and 68 years)19.

Pre-processing of the metagenomic reads

A total of 379.36 Gbp of metagenomic sequence data (mean 1.9 Gbp ±
2.03) was generated from 200 fecal samples from the Indian population.
The metagenomic reads were filtered using the Trimmomatic (version:
0.39)89 with criteria of removing NexteraPE-PE.fa adapters and seed
mismatch value of 2 and maximum quality value 30 for paired-end reads
and 10 for single-end reads. Removed leading and trailing sequences
having less than or equal to the quality value of 25. The high-quality reads
were further filtered to remove the host-origin reads using bmtagger
v.3.101 (human contamination)90, which resulted in the removal of an
average of 0.3% of reads (Supplementary Data 14).

Assembly and binning of metagenomic data

Each of the 775 samples were processed with the standard quality control
and then independently subjected to de-novo metagenomic assembly
through metaSPAdes (version 3.13.0; default parameters)10,91. Samples that
failed to be processed due to memory requirements (>1Tb of RAM), and
samples with only unpaired reads, were assembled through MEGAHIT92

(version 1.2.8; default parameters). Reads that are not represented among
the contigs from paired-end read assembly were extracted using FR-HIT93

(v.0.7.1), concatenated with single-end reads, and assembled using
MEGAHIT. A total of 10,455,670 contigs were generated after assembly
and exclusion of contigs shorter than 1000 bps (Supplementary Data 15).
We performed single-sample assembly and binning (rather than co-

assembly) to preserve strain variation between human hosts, and because co-
assembly was not computationally feasible for our large data set. For
identifying which binning method works better for our data sets, we have
binned all 1,481,535 contigs from 200 Indian samples using metaWRAP94

(v1.2.3) pipeline using the coverage information of each contig in the
44 samples from India that sequenced recently. Binning with Metabat295

produced the highest number of high-quality bins (10 bins with completeness
>90 and contamination <10) and this method was selected for binning other
samples. CheckM96 (1.1.2) was used to quantify the quality of bins produced.
A total of 10,455,670 contigs from 8 healthy and 3 IBD data sets were

considered for binning. Reads were mapped to contigs using Bowtie297

(v2.3.5.1; option ‘--very-sensitive-local’), and the mapping output was used
for contig binning through MetaBAT295 (version 2.12.1; option ‘-m 1500’),
and initial bins were subjected to quality control to generate the final set
of reconstructed draft genomes (Supplementary Fig. 24). The ‘merge’ bin
option provided CheckM96 was used to identify pairs of bins where the
completeness increased up to ≥90% and the contamination ≤10% when
merged into a single bin. The ‘taxon_set’ option in CheckM was used to
produce marker sets for the Prevotella genus and passed it to the analyze
option in order to identify marker genes within each genome/bin and
estimate completeness and contamination. Now we have all the bins with
the aforementioned criteria of completeness and contamination based on
Prevotella-specific marker gene sets and were named as Selected Bins (SB)
in the further text (Supplementary Data 3).
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Bin refinement strategies

Bin refinement has been carried out using three strategies; alignment-
based, genomic properties based, and taxonomic annotation-based. To be
more inclusive, refinement of Contaminated Bins (CBs: the bins that are ≥

90% complete and >10% contamination) was carried out by flagging
contamination on the basis of alignment of contigs between conspecific
genomes98 (see Supplementary Note 13). Further 20,000 contigs
distributed into 164 bins (112 SBs + 52 Refined CBs) were subjected to
identification of potential contamination based on the genomic properties
(GC, tetranucleotide signatures, coverage) of contigs using RefineM
(v0.0.25) (https://github.com/dparks1134/RefineM). Next level of bin
refinement was carried out on the basis of taxonomic annotation of all
contigs in each bin using CAT99. Contigs classified till Prevotellaceae family
from each bin were retained and the other contigs were removed. Bins
having completeness ≥90 and contamination <10 were selected for further
analysis (see Supplementary Note 13).

Prevotella genome database construction and calculation of
genome abundance

1,612 reconstructed genomes assigned to Prevotella genus (out of 154,723)
having ≥90% completeness and <5% contamination were retrieved from
https://opendata.lifebit.ai/table/SGB10. Taxonomic assignment of 1612 HQ
bins was carried out using CAT/BAT for further confirmation. All genomes/
bins were assigned till Prevotellaceae family with support value per rank
>0.70 and 1610 genomes were assigned till Prevotella genus with support
value per rank >0.70 (Supplementary Data 4). In addition to these 1612
reconstructed Prevotella genomes, the Prevotella genome database
includes 547 reference genomes downloaded from NCBI, 15 Prevotella
isolates from the previous study, 5 isolates from our study and 25 final HQ
bins. A total of 2204 genome/bins were contained within the Prevotella
genome database. We calculated pairwise distances for 2204 genomes/
bins using Mash v2.1 (default sketch size)100. The relative abundance of
each genomes/bins in each sample were quantified using the quant_bins
option in Meta-WRAP and the genomes having relative abundance per
sample ≥0.001% were considered for genome/bin composition analysis.
‘Labdsv’ package101 was deployed to detect significantly discriminating
Prevotella genomes in western and non-western populations. Discriminat-
ing Prevotella genomes with indval score >0.60 (p-value < 0.01) were
considered for further analysis. A dendrogram of all 102 differentially
abundant genomes/bins was also constructed using ‘aheatmap’ function
(distfun= “spearman”) of NMF package102 in R. Prediction of Polysacchar-
ide Utilization Loci (PULs) from 2204 genomes/bins in the Prevotella
genome database was carried out using PULpy44 (https://github.com/
WatsonLab/PULpy). The presence of operon genes among PULs was
identified using Operon-mapper103.

Taxonomic annotation of reads and contigs

Taxonomic assignment of reads was carried out using Kaiju104, a program
in which reads are directly assigned to taxa using the NCBI taxonomy and a
reference database of protein sequences from microbial and viral
genomes. The database used for the analysis is a subset of NCBI BLAST
nr database containing all proteins belonging to Archaea, Bacteria, and
Viruses. Percentage of reads assigned to each genus was calculated
(Supplementary Data 1). Contigs >1000 bp from each data set were
classified into taxonomic clades using CAT99 with aforementioned
database and parameters. Percentage of contigs assigned to Prevotella
genus as well as Prevotella copri was extracted (Supplementary Data 1).

Prevotella copri clade composition analysis

1021 reconstructed bins of P. copri were also retrieved from Tett et al.11

and estimated the bin abundance across samples using the quant_bins
option in Meta-WRAP94. Representations of each clade in each population
were evaluated by calculating the number of genomes present in each
population out of the total number of genomes in each clade. To check the
distribution of genomes from each clade, we calculated the number of
genomes from each clade in each population based on different criteria
that the genomes should present in at least one sample, more than 10% of
the samples, more than 50% of the samples and more than 70% of the
samples of each population.
Contigs >1000 bp (1,481,535 contigs) from Indian population were

classified using CAT/BAT and 429,703 contigs were assigned to Prevotella
genus. Out of 200 Indian samples, 116 samples had >10% abundance of P.

copri, as estimated by Kaiju analysis, and were selected for optimal
mapping of reads as per the strategy suggested by Pasolli et al.10. The
reads from 116 samples were aligned against the Prevotella contigs to
estimate the coverage of each contig. Prevotella bins were constructed
using contig coverage and tetranucleotide frequency, and a total of 42
bins with completeness >50 and contamination <10 were identified
(Supplementary Fig. 13a and Supplementary Data 9). 72 high-quality
metagenomes assembled manually curated P. copri genomes were
retrieved from Tett et. al.11, and a P. copri genome/bin set was constructed,
including 72 high-quality P. copri genomes/bins, 42 bins constructed in this
study, and 5 Indian P.copri isolates. For clade level assignment of 47 (42
bins+ 5 isolates) P copri genomes/bins, pairwise intergenomic distances of
each genome/bin were calculated using MASH100.

Construction of Prevotella gene catalog

All possible genes from genomes belonging to the Prevotella genus have
been considered for this analysis. It includes (i) 547 reference genomes
downloaded from NCBI, (ii) 1612 reconstructed genomes assigned to
Prevotella genus (out of 154,723) having ≥90% completeness and <5%
contamination retrieved from https://opendata.lifebit.ai/table/SGB, (iii) 15
Prevotella isolates from the previous study, (iv) 5 isolates from this study, (v)
25 final HQ bins, and (vi) Genes predicted from initial contigs >1000 bp
that are assigned to Prevotella genus by CAT99. All available gene files of
547 genomes were downloaded from NCBI and for remaining genomes,
gene prediction has been carried out using Prodigal v2.6.3105 (with -p
option for gene prediction from initial Prevotella contigs), and total
(Supplementary Data 10) 31,758,457 genes were used for the analysis.
Redundant genes were removed using CD-HIT v4.8.143106 with (sequence
identity threshold of 0.99). This resulted in a total of 2,992,963 genes
(>100 bp) in the final PGC.

Gene abundance calculations

High-quality reads were aligned to the PGC using BWA (v0.7.17)107, and the
filtered read pairs were mapped to the same gene using the read_-
count_bam.pl script19, and the mapped read pairs with a mapping quality
better than 30 (-q30 below) were considered. Gene counts from samples
having paired-end, as well as single-end reads, were added to construct
the final gene count table. Rarefaction has been carried out using GUniFrac
R package108 using a value of depth as 0.1 million and 0.5 million. Principal
coordinates analysis showed that rarefaction depth is not affecting the
microbial gene composition analysis. A rarefied gene proportion table with
depth = 0.1 million was considered for further analysis. 7030 genes having
cumulative proportion ≥0.01 were used for beta-diversity analysis.
Functional annotation was performed for these 2.9 million genes present
by protein alignment using DIAMOND109 against KEGG110 and CAZy42

databases. At the functional level, 2305 KEGG orthologues and 9332 CAZy
orthologous groups were identified in the PGC.

Identification of virulence factors

The virulence factor database (VFDB) is an integrated and comprehensive
online resource for curating information about virulence factors of
bacterial pathogens. Since its inception in 2004, VFDB has been dedicated
to providing up-to-date knowledge of VFs from various medically
significant bacterial pathogens50. Both protein sequences of core data
set (http://www.mgc.ac.cn/VFs/Down/VFDB_setA_pro.fas.gz), as well as
Protein sequences of full data set (http://www.mgc.ac.cn/VFs/Down/
VFDB_setB_pro.fas.gz) were downloaded for this analysis. The core data
set includes genes associated with experimentally verified VFs only,
whereas the full data set covers all genes related to known and predicted
VFs in the database. Protein homology search of genes in PGC against both
core and full data set using DIAMOND and best hits having score ≥60 and
e-value < 10−6 were considered for calculating VF gene abundance.
Analysis using the core VF database identified 137 VF gene ids and they
were mapped to 133 UniProt-ids. Analysis using a full VF database
identified 254 VF gene ids and they were mapped into their corresponding
205 UniProt-ids. The total number of VFs identified in each population
(present at least one sample) were calculated. Differentially abundant VFs
in western and non-western were also identified.

Identification of antibiotic resistance genes

Command line version of the Resistance Gene Identifier (RGI) was used to
predict resistomes from protein or nucleotide data based on homology
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and SNP models54. Three different criteria (perfect, strict, and loose) based
on different types of hits in homology search were involved in prediction.
A “perfect” match is 100% identical to the reference sequence along its
entire length. A “strict” prediction is a match above the bit-score of the
curated BLASTP bit-score cut-off. “Loose” matches are other sequences
with a match bit-score less than the curated BLASTP bit-score that helps in
the detection of new, emergent threats and more distant homologs of
Antimicrobial Resistance (AMR) genes, and in cataloging homologous
sequences and partial hits that may not have a role in AMR. Both “strict”
and “loose” criteria were used for the detection of ARGs in this population
data sets. Analysis using loose criteria detected 1357 ARGs, whereas
analysis using strict criteria detected 18 ARGs. The total number of ARGs
identified in each population (present at least one sample) were calculated,
and the average abundance of AMR genes were calculated from
normalized gene abundance data.

Statistical analysis

Rarefied Gene proportion (0.1 million depth), Genome proportion, KO
proportion, carbohydrate metabolizing gene proportion, ARG proportion,
and VF gene proportion were used for statistical analysis. Alpha-beta
diversity and PERMANOVA (with permutations = 999) analyses was carried
out using vegan111 and ape112 R-packages. Plots were generated using
ggplot2113. indval function in the labdsv R-package was used for
identification of genomes/bins, pathways carbohydrate metabolizing gene
families differentially abundant in different groups of data under
consideration. WEKA114 was used for randomforest analysis115. Boruta116,
LEfSe117, and labdsv101 packages were utilized for finding differentially
abundant taxa in populations. “CCREPE” package in R was used for
correlation analysis and cytoscape118 was used for plotting co-occurrence
plots using significant correlation values.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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