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The Western diet (WD) pattern characterized by high daily intake of saturated fats
and refined carbohydrates often leads to obesity and overweight, and it has been
linked to cognitive impairment and emotional disorders in both animal models and
humans. This dietary pattern alters the composition of gut microbiota, influencing
brain function by different mechanisms involving the gut–brain axis. In addition, long-
term exposure to highly palatable foods typical of WD could induce addictive-like
eating behaviors and hypothalamic-pituitary-adrenal (HPA) axis dysregulation associated
with chronic stress, anxiety, and depression. In turn, chronic stress modulates eating
behavior, and it could have detrimental effects on different brain regions such as
the hippocampus, hypothalamus, amygdala, and several cortical regions. Moreover,
obesity and overweight induce neuroinflammation, causing neuronal dysfunction. In
this review, we summarize the current scientific evidence about the mechanisms and
factors relating WD consumption with altered brain function and behavior. Possible
therapeutic interventions and limitations are also discussed, aiming to tackle and prevent
this current pandemic.
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INTRODUCTION

Obesity and overweight are characterized by an excess of body fat accumulation, which harms
our health (Gregg and Shaw, 2017; Hales et al., 2018; World Health Organization, 2020). Both
conditions are an escalating pandemic in the 21st century. The World Health Organization
reports that obesity and overweight are major risk factors for several chronic diseases, such as
diabetes, cardiovascular diseases, and cancer (Kachur et al., 2017; Kuroda and Sakaue, 2017;
Salaün et al., 2017; Guo et al., 2018). In addition, obesity and overweight are independent risk
factors for stroke, mild cognitive impairment, and dementias, such as Alzheimer’s disease and
vascular dementia (Xu et al., 2011; Guo et al., 2016; Pedditzi et al., 2016; Rodríguez-Castro
et al., 2019). Obesity and overweight were once considered a problem only in high-income
countries, but these conditions are now growing dramatically all over the world, particularly
in urban settings in both developed and developing countries (World Health Organization,
2020). During the last decades, the worldwide prevalence of obesity and overweight has
increased markedly in adults and even more in children (Di Cesare et al., 2019; Garrido-
Migue et al., 2019). It is widely acknowledged that the main cause of obesity and overweight
is an imbalance between consumed and expended calories, which, moreover, is aggravated by a
sedentary lifestyle (Apovian, 2016). Moreover, there are more complex causes of these conditions
involving genetic (Goodarzi, 2018; Loos, 2018) and endocrine factors (Camacho and Ruppel, 2017)
together with environmental factors, such as pollution (de Bont et al., 2019), diet composition,
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and its effects on insulin or leptin secretion (Hall and Guo, 2017).
One of the main reasons related to obesity and overweight

is the current obesogenic environment with wide availability of
highly palatable foods that may drive addiction-like behaviors or
“food addiction” (Morris et al., 2015; Leigh and Morris, 2018).
However, the clinical validity of the concept of food addiction is
highly controversial, and “hedonic overeating” has been proposed
from a biopsychosocial perspective to better describe a behavioral
pattern of overconsumption of particular calorie-rich foods
together with a tendency to minimize physical activity (sedentary
lifestyle) mediated by normal (not pathological) adaptive brain-
mediated hedonic/reward processes (“wanting” or anticipatory
motivation and “liking” or experience of pleasure) modulated
by an obesogenic environment (Finlayson, 2017). This kind
of calorie-dense food enriched in simple carbohydrates and
saturated fats is known as the Western diet (WD) pattern
(Varlamov, 2017). Specifically, the nutritional characteristics of
the WD pattern are a high intake of saturated fats and omega-
6 fatty acids, reduced omega-3 fat intake, excessive amounts of
refined sugars, and an overuse of salt (Cordain et al., 2005).
The habitual consumption of a WD is associated with many
health problems, both physical and psychological (Myles, 2014).
Currently, more than 80% of deaths in Western countries are
due to non-communicable diseases, including those associated
with aging and diseases caused or influenced by the consumption
of a WD, such as type 2 diabetes, overweight, obesity, and
cardiovascular diseases (Christ et al., 2018).

This brief review has two main objectives. First, we want to
evidence how the consumption of a WD not only causes obesity,
but also adversely impacts behavior, cognition, and emotion. In
addition, we aim to discuss the current scientific evidence for
the crucial role on brain function and behavior of the gut–brain
axis and microbiota.

OBESITY, OVERWEIGHT, AND WD

Although WD causes numerous adverse health effects, first we
focus on the key problem of addiction (Rogers, 2017). The over-
availability of highly rewarding foods might lead to addiction-like
behaviors as happens with tobacco, alcohol, and psychoactive
drugs (Ziauddeen and Fletcher, 2013; Chen et al., 2017).
A growing body of research reports many similarities between
conventional addiction disorders and consumption of highly
palatable food typical of WD in both animals (Jacques et al., 2019)
and humans (Pursey et al., 2015; Teasdale et al., 2020). Some
populations self-diagnose themselves as food addicts because of
the environment full of hyperpalatable products (Hardman et al.,
2015; Ruddock and Hardman, 2018; Ruddock et al., 2019). There
are many studies about binge-like behavior associating substance
use disorders with obesity and WD consumption. Binge-type
intake of fat is related to the development of drug-seeking
and -taking behaviors as already reported (Puhl et al., 2011;
Ruddock et al., 2018). These authors suggest that fat bingeing
could predispose some individuals to show major addiction-like
behaviors, leading to drug abuse. For example, excessive intake
of highly palatable fatty food could induce excessive seeking

behavior, leading to cocaine consumption (Wellman et al., 2007).
These maladaptive behaviors remain in time because long-term
changes in brain are produced (Corbit et al., 2012; Furlong et al.,
2014). Highly palatable food consumption can alter hedonic
regulation involving opioid receptors and lead to compulsive
consumption of obesogenic foods. That is exacerbated by aversive
processes. Negative or stressful experiences could lead to binge-
like behavior associated with altered brain dopamine levels (Davis
et al., 2009; Groesz et al., 2012). Thus, when people binge on
such WD foods, there is an increased release of dopamine in the
mesocorticolimbic system, leading to compensatory changes in
receptor expression (Reichelt and Rank, 2017; Thanarajah et al.,
2019). Accordingly, changes in behavior following cessation of
access to prolonged palatable food or WD consumption have
been associated with low levels of dopamine and low expression
of dopamine receptors in rats (Volkow et al., 2008; Johnson and
Kenny, 2010; Morris et al., 2015).

WD AND BEHAVIOR

At this point, it is worth mentioning the “vicious cycle”
model relating WD intake with cognition (Hargrave et al.,
2016; Yeomans, 2017; Davidson et al., 2019). It is known that
the hippocampus, in addition to memory and other cognitive
processes, plays an important role in making decisions as in the
case of starting and finishing eating (Parent et al., 2014). High-
fat and -sugar diets involve the excessive consumption of these
kind of food products and may result in weight gain. Moreover, it
could lead to hippocampal function disturbances that alter the
normal control of ingestion, increasing overconsumption even
more (Kanoski et al., 2010). When this overconsumption persists
over time because of addictive behavioral patterns related to
food rich in saturated fats and simple sugars, the hippocampal
dysfunction worsens, producing a decreased cognitive state and
inhibiting normal intake control (Kanoski and Davidson, 2011).
Moreover, these specific nutrients could lead to oxidative stress in
brain metabolism, producing neurochemical modifications in the
hippocampus, cortex, and hypothalamus (Lizarbe et al., 2019).
When the vicious cycle is established, hippocampal dysfunction
not only affects appetite and decision making, but also begins to
affect cognition (Beilharz et al., 2015).

Overweight and obesity are usually associated with
poorer memory performance because, as mentioned above,
overconsumption of WD rich in saturated fats and simple
sugars impairs memory. Human studies have examined
how WD impairs hippocampal function and ingestive
behavior (Stevenson et al., 2020). Several animal studies
have been performed using memory tasks showing that WD
consumption impairs hippocampal-dependent memory tasks
(Francis and Stevenson, 2013; Ke et al., 2020). For example,
a recent meta-analysis included 41 studies in which different
tasks to assess hippocampal-dependent spatial learning and
memory were carried out, and they showed that high-fat and
-sugar diets may impair hippocampal-dependent forms of
cognition (Abbott et al., 2019). In addition, human studies have
demonstrated that WD is associated with decreased overall
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volume of the left hippocampus in a study performed in 60–
64-year-old men (Jacka et al., 2015). The explanation for these
harmful hippocampal effects associated with neurodegenerative
diseases and increased neurogenesis in the adult brain is currently
being investigated (Loprinzi and Frith, 2018; Hartanto et al.,
2019). High-fat and -sugar diets are detrimental for anxiety-
related behaviors, spatial learning, memory, and neurogenesis
in both rodents and humans (Ferreira et al., 2018). However,
there is a discussion about the cause–effect relationship of
obesity because the connection between brain health and obesity
is bidirectional. Obesity not only leads to impaired cognitive
function, but it is also possible that deficits in executive functions
may predispose to obesity by promoting uncontrolled food
intake and a sedentary lifestyle (Miller and Spencer, 2014; Favieri
et al., 2019).

In this regard, we need to take into consideration the
involvement of epigenetic mechanisms in cognition and reward
behaviors (Perrone-Capano and Di Porzio, 2000). In the same
way, there should be a close correlation between these epigenetic
modifications on reward circuitry and changes in our hedonic
control of feeding (Contreras et al., 2019). Several studies show
that there is a direct relationship between a high-fat diet during
the early stages of fetal development (Champagne and Meaney,
2001; Giriko et al., 2013) and higher rates of depression-like
symptoms in young adult male rodents. However, there is
currently no evidence of epigenetic memory in the brains of
human offspring born to obese mothers (Contu and Hawkes,
2017), and many more studies are necessary to be able to
contribute to establishing the existence of epigenetic mechanisms
involved in obesity and its regulation in the central nervous
system (CNS) and peripheral tissues. On the other hand, the
association between obesity and systemic neuroinflammation has
been demonstrated in numerous studies (Pistell et al., 2010;
Castanon et al., 2014; Erion et al., 2014; Lasselin et al., 2014).
It is known that high-fat diets increase the proliferation of
macrophages (phagocytes), initiating immunological processes
by inducing phagocytosis in adipose tissue. This process may
induce a proinflammatory cytokine cascade, among other
mechanisms, that further activates the immune system and
would impair food metabolism by causing neuroinflammation
(Wang et al., 2012; de Sousa Rodrigues et al., 2017; Seong et al.,
2019). Neuroinflammation is also associated with depression
and impaired cognitive function, and it produces a cluster
of disorders that are encompassed in metabolic syndrome, a
combination of diabetes, hypertension, and high risk of coronary
heart diseases and stroke (Baumgarner et al., 2014; Guillemot-
Legris and Muccioli, 2017). Biological markers of both peripheral
inflammation and neuroinflammation, such as C-reactive protein
and cytokine levels, have been associated with depression and
anxiety in several studies (Copeland et al., 2012; Kim et al.,
2016; Köhler-Forsberg et al., 2017; Rossi et al., 2017). Other
sources of neuroinflammation linked to obesity would be the
high levels of endotoxins and inflammatory cytokines or reduced
levels of anti-inflammatory commensal gut bacteria species
associated with altered microbiota diversity (dysbiosis) in this
population (Noble et al., 2017b). In addition, obesity is also
related to central inflammation in vulnerable brain regions,

such as the hypothalamus. The hypothalamus is an appetite
regulator, and it is responsible for eating behavior. Hypothalamic
inflammation deregulates brain energy homeostasis causing
cognitive impairment because it can induce insulin resistance
and leptin disbalance in the hypothalamus, which triggers
overconsumption and weight gain (De Souza et al., 2005;
Posey et al., 2009; Seong et al., 2019). Consumption of a fat-
rich diet activates a pro-inflammatory response and increases
proinflammatory cytokines (Puig et al., 2012).

WD AND STRESS

The hypothalamic-pituitary-adrenal (HPA) axis mediates the
stress response. There are some studies in which pro-
inflammatory cytokines are elevated in the hypothalamus
using rodent models of anxiety and depression, showing a
direct relationship between neuroinflammation and the HPA
axis (Wohleb et al., 2013). HPA axis dysregulation promotes
impaired cognitive function because it induces the release of
corticosterone that binds to hippocampal glucocorticoid (GR)
and mineralocorticoid (MR) receptors, mediating inhibitory
effects and causing repetitive stress (Makhathini et al., 2017).
HPA axis dysregulation changes feeding behavior, leading to
obesity because of hypercortisolism that increases the intra-
adipose tissue GRs contributing to metabolic disease (Masuzaki
et al., 2001). Thus, hypothalamic circuits and their functional
connectivity with other brain regions (such as the hippocampus
or the amygdala) are altered with neuroinflammation and obesity,
producing disruptions to cognitive function and impairing
hypothalamic satiety signals (Blundell et al., 2012; Hall et al.,
2012; Goltz et al., 2018).

Stress can increase or decrease food intake in humans and
animals. Stress triggers changes in the HPA axis, stimulating the
production of hormones and peptides, such as leptin, ghrelin,
insulin, or neuropeptide Y (Maniam and Morris, 2012; Huang
et al., 2017; Toniazzo et al., 2018). These hormones establish
neuropeptide circuits that regulate feeding control, and they
activate brain regions involved in stress and motivation circuits
during the stress response. These circuits that regulate energy
intake have a control center in the hypothalamus, where the
corticotrophin releasing hormone (CRH) neurons are located,
controlling the HPA axis function and GR release. Furthermore,
insulin and leptin regulate the appetite-satiety cycle, playing
a neurotrophic factor role that affects memory and several
behaviors by acting on the hypothalamus (Zanchi et al., 2017).
Changes in stress-related hormones and neurotransmitters such
as CRH, GRs, and norepinephrine could also sensitize brain
reward pathways, including the nucleus accumbens and dorsal
striatum, which would increase the drive to eat highly palatable
foods typical of WD (Sharma et al., 2013). The severity of
the stressor could also modulate food intake and body weight,
associated with changes in the concentration of GR receptors
(Sheriff et al., 2011; Quarta et al., 2017). Indeed, responses
to stress can vary depending on the degree of HPA axis
activation and GR release, which stimulates the release of
orexigenic neuropeptides, increasing hunger, or anorexigenic
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neuropeptides, reducing it. It causes changes in leptin and insulin
plasma levels (Maniam and Morris, 2012). This is even more
relevant when the stress events happen during the early life
period when organisms are most vulnerable. For instance, stress
exposure during gestation or during postnatal periods modifies
the offspring’s hypothalamic feeding circuits as previously
explained and changes the expression of neuropeptides (Miller
and Lumeng, 2018). Therefore, energy metabolism is altered in
the offspring, predisposing them to obesity and metabolic-like
syndromes in adulthood (Plagemann et al., 2009; Desai et al.,
2014; Butruille et al., 2019). Epigenetic changes are produced in
these new generations, such as modifications in gene promoters
involved in stress and appetite regulation (Schneeberger et al.,
2012; Schroeder et al., 2017). Moreover, early adverse childhood
experiences could cause DNA methylations in genes associated
with obesity (Kaufman et al., 2018; Rushing et al., 2020).

THE GUT–BRAIN AXIS

The gut is considered as a “second brain” for the role it plays
in influencing behavior and other basic CNS functions. The
gut–brain axis refers to a bidirectional communication network,
including the CNS, both brain and spinal cord, the autonomic
nervous system (ANS), the enteric nervous system (ENS), and
the HPA axis. The ENS establishes bidirectional communication
between brain and gut. It is mediated by the vagus nerve (ANS)
and the neuroimmune and neuroendocrine systems reaching the
CNS (Chalazonitis and Rao, 2018). In addition, it is influenced
by living gut microorganisms (microbiota), bacterial metabolites,
cytokines, and neurotransmitters released in the bloodstream and
directly affecting the ANS by the vagus nerve (Torres-Fuentes
et al., 2017). Interestingly, it is recently reported that the gut–
brain axis also contributes to sugar preference through vagal
neurons specifically sensing glucose (Tan et al., 2020).

The term “microbiota” refers to the community of
microorganisms that live in a particular place or organism
that can be mostly symbiotic but also commensal or pathogenic.
Chiefly, diet and environment determine the diversity of the
human microbiota in the gut (Sekirov et al., 2010). Mice
and human studies show the gut microbiota effect on host
metabolism (Karl et al., 2017; Mithieux, 2018; Wang et al., 2018).
It can increase or decrease energy yield from food and diet host-
derived components and change metabolic pathways (Bäckhed
et al., 2004; Ridaura et al., 2013). Probiotics and prebiotics play
an important role in regulating gut microbiota composition
(Wilson et al., 2020). Probiotics are live microorganisms that
keep a balanced and diverse microbiota, and prebiotics are
non-digestible fermented food ingredients that stimulate growth
and benefit the gut microbiota (Markowiak and Ślizewska, 2017).
Obese people usually show altered gut microbiota composition
(dysbiosis), and their satiety-promoting hormones are also
dysregulated (Zhang et al., 2015; Al-Mana and Robertson,
2018). A healthy microbiota represents balanced symbiosis,
which means mutual benefits between bacteria and guest
with inflammation levels decreased. However, an “unhealthy”
microbiota produces dysbiosis, that is, a loss of composition

and unbalanced microbiota with more pathobionts and less
symbionts (Weiss and Hennet, 2017). External factors, such as
diet, antibiotics, probiotics and prebiotics, stress, age, drug or
alcohol intake, circadian rhythms, etc., modify the gut microbiota
(Boulangé et al., 2016). Thus, it becomes a vicious cycle again
(Tremaroli and Bäckhed, 2012). However, a change in diet clearly
alters the gut microbiota, contributing to the host’s metabolic
phenotype. Metabolites, such as short-chain fatty acids (SCFA)
released by microbes, affect intestinal function and could alter
brain function too (Maruvada et al., 2017).

There are several preclinical experiments that show the direct
association between the gut microbiota and many maladaptive
or pathological conditions, such as chronic stress, anxiety-like
behavior, depression-like behavior, metabolic diseases, abnormal
feeding behavior, etc., that is to say, these preclinical studies
have identified the influence of gut microbiota on the CNS
(Sandhu et al., 2017; Martin et al., 2018; Winter et al., 2018).
The main communication pathways are mediated by molecules
derived from bacteria, including SCFAs, secondary bile acids,
and tryptophan metabolites. The latter metabolites influence
behavior, such as 5-HTP (5-hydroxytryptophan) or serotonin (5-
hydroxytryptamine) that modulate neurotransmitter release in
the CNS affecting mood, emotions, appetite, anxiety, stress, etc.
(O’Mahony et al., 2015). Bacteria interact with enteroendocrine
cells (EEC), enterochromaffin cells, and the mucosal immune
system through chemical signals (SCFAs, tryptophan metabolites,
etc.). Then, these chemical signals may cross the intestinal barrier,
being able to reach systemic circulation, and finally, they are
able to cross the blood–brain barrier (BBB) (Haghikia et al.,
2015). In addition, gut peptide hormones released by EEC are
modulated by these microbiota-derived chemical signals and
interact with several receptors of immune system cells and on
vagus terminals in the gut (Okano-Matsumoto et al., 2011;
Desbonnet et al., 2015). Gut peptide hormones released in
systemic circulation, in turn, could modulate appetite, mood, or
anxiety (Lach et al., 2018). The BBB is a selective, semipermeable
border of endothelial cells whose function is to prevent the entry
of substances to the CNS from the circulating blood (Obermeier
et al., 2016). Gut microorganisms, stress, and inflammation can
modulate the permeability of the intestinal barrier and the BBB.
Therefore, gut–brain bidirectional communication is variable
depending on the state of the host and their lifestyle habits
(Grenham et al., 2011; Claesson et al., 2012; Valle Gottlieb et al.,
2018; La-Ongkham et al., 2020).

Macronutrients and micronutrients of the diet directly
contribute to the synthesis of metabolites by gut microbiota.
Carbohydrates, proteins, and lipids are metabolized by the gut
microbiota, and each one releases different substances. Some of
these substances are SCFAs and bile acids that stimulate gut
hormone secretion, modulating the CNS and food intake control
(Dockray, 2014; Miquel-Kergoat et al., 2015). Furthermore, there
are neurotransmitters and neuroactive substances produced by
the gut microbiota that enter the circulatory system and cross the
BBB, modulating cognition and emotion, neuroprotection, and
neuropsychiatric conditions (Sandhu et al., 2017). As suggested
previously, the gut microbiota relationship changes with age
(Claesson et al., 2011; Rampelli et al., 2013; Biagi et al., 2016).
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Maternal and neonatal diet is critical for shaping the gut
microbiota in the offspring. During lactation, infants fed on
breast milk have a microbiota dominated by beneficial bacteria.
However, formula-fed infants have more pathological bacteria
and facultative anaerobic bacteria (Cerdó et al., 2018). When this
formula diet is enriched in prebiotics, the bacteria composition
improves in infants, increasing the number of beneficial bacteria,
such as Bifidobacteria and Lactobacillus sp. and reducing bacterial
species associated with pathogenesis (Ben et al., 2008; Borewicz
et al., 2019). Later, when the offspring starts eating a solid diet
during early life stages, a healthy diet (non-WD) keeps growth
and development of the beneficial bacteria, and a WD pattern
influences gut microbiota in early life (Noble et al., 2017a;
Sandhu et al., 2017). Nevertheless, there are studies suggesting
detrimental physiological effects caused by an unhealthy diet
and altered microbiota can be rescued (Blanton et al., 2016).
On the other hand, from adulthood to the elderly, it changes
too. Elderly people usually experience reductions in microbiota
diversity and composition because factors such as nutritional
behavior, digestion, dentition, stress, and lifestyle are altered
(Claesson et al., 2011).

A WD pattern rich in fats, sugar, and salt alters gut
microbiota composition and is associated with obesity, chronic
inflammation, allergies, diabetes, autoimmune disorders,
depression, metabolic syndrome, and neuropsychiatric disorders
(Martinez et al., 2017; Hintze et al., 2018; Zinöcker and Lindseth,
2018). WD is associated with low levels of beneficial bacteria
and SCFAs. The most abundant SCFAs are butyrate, acetate,
and propionate. In healthy conditions, SCFAs reinforce the BBB
integrity, modulate neurotransmission, change the neurotrophic
factor levels, and promote memory consolidation. However,
when SCFAs are unbalanced because of diet, these functions
are negatively altered (de Clercq et al., 2016; Silva et al., 2020).
Unbalanced SCFA concentrations in gut lumen can increase
intestinal permeability and induce systemic inflammation and
insulin resistance due to the synthesis of pro-inflammatory
molecules (Poroyko et al., 2016; Feng et al., 2018). Chronic
inflammation in obese people promotes clinical progression
to metabolic syndrome and some pathologies, such as type 2
diabetes or hepatic steatosis (Ellulu et al., 2015; Kim et al., 2019;
Polyzos et al., 2019; Yu et al., 2019). In addition, interactions of
the gut–brain axis modulated by microbiota could increase the
risk of anxiety, depression, and additional mental disorders (Kelly
et al., 2016; Lach et al., 2018). Finally, the vicious cycle hypothesis
of obesity is proposed because diet provides the substrate for the
gut microbiota, and the microbiota importantly contributes to
appetite and food intake through satiety neuropeptides, and last,
the CNS mediates the preference for food intake again, and the
cycle starts once more (Hargrave et al., 2016; Sandhu et al., 2017;
Davidson et al., 2019).

FUTURE DIRECTIONS

Obesity and overweight could be considered in an evolutionary
context with different theories about their genetic causes.
Genome-wide association studies (GWAS) have identified more

than 300 single-nucleotide polymorphisms associated with
adiposity traits (Gunstad et al., 2006; Larsen et al., 2012;
Goodarzi, 2018). In particular, genes near loci regulating the
body mass index (BMI) show increased expression in the
CNS, suggesting that BMI is largely regulated by hypothalamic
regions involved in energy intake (Willer et al., 2009; Speliotes
et al., 2010; Blundell et al., 2012; Locke et al., 2015). Novel
pharmacological approaches could be developed to prevent
or treat obesity based on the molecular targets reported by
gene polymorphisms found in GWAS. However, additional
GWAS studies are required by considering more complex energy
balance-related traits and taking into account the individual
variations (Müller et al., 2018; Speakman et al., 2018). Moreover,
many studies carried out in both rodents and humans have
related a worse cognitive state and obesity trends in subjects
whose mothers followed a WD during pregnancy and lactation.
In this regard, bad nutritional habits could be transmitted
through epigenetic mechanisms from mothers to offspring (Kang
et al., 2014). Interestingly, neuroinflammation and systemic
inflammation triggered by altered microbiota composition
reported in obese and overweight people could be the target
of novel pharmacological treatments and lifestyle interventions
(Guillemot-Legris and Muccioli, 2017; Solas et al., 2017;
Janakiraman and Krishnamoorthy, 2018).

In addition, sex and gender differences on programming of
behavior, brain development, and metabolism by diet during
early life should be addressed in future studies. In this regard,
exposure to a high-fat and -sugar diet prenatally and during
early life, together with early life psychosocial stress, induce
sex-dependent effects on adult metabolism, neuroinflammation,
altered brain energy metabolism, and monoaminergic activity as
recently reported by us and other research groups (Dearden et al.,
2018; González-Pardo et al., 2020).

On the other hand, in the last few years, the brain–gut axis has
become an important hidden physiological pathway. Scientific
evidence indicates that the gut microbiota may be a target
for treating metabolic diseases, using prebiotics, probiotics, and
healthy diets. But there is another alternative, the fecal microbiota
transplant (FMT). It consists of altering gut microbiota through
transplantation from stool of healthy individuals. The healthy
donor microbes are isolated from fecal sediment and are
administered to a receptor whose microbiota is altered because of
any pathologies, such as neurodegenerative diseases, depression,
irritable bowel syndrome, autism, etc. (Tremaroli and Bäckhed,
2012; Vindigni and Surawicz, 2017; Wang et al., 2019). However,
the possible long-term effects of FMT have not been analyzed
systematically, and the methods of FMT have not yet been
standardized. FMT after chronic unpredictable mild stress
in mice caused, in untreated recipient mice, anxiety- and
depression-like behaviors and increased neuroinflammation like
the donor mice (Li et al., 2019). In addition, most studies
with human microbiota-associated rodents report transfer of
pathological phenotypes to recipient animals, including obesity
and/or altered behavior, but extrapolation to humans or inferring
causality in these studies is still uncertain (Walter et al., 2020). In
this regard, clinical trials with FMT for major depression and/or
anxiety have reported no effects or return to baseline depression
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scores after 3, 5, or 6 months (Mizuno et al., 2017; Mazzawi
et al., 2018; Huang et al., 2019). The main limitation of
clinical trials of FMT for mental disorders is the small sample
size, the long-term efficacy, and the still undefined concept
of “healthy microbiota” with wide variations in the taxonomic
composition of gut microbiota among “healthy” individuals
(Chinna Meyyappan et al., 2020). In this regard, FMT for
obesity and its metabolic effects has not been successful in recent
randomized clinical trials despite host microbiota engraftment
(Yu et al., 2020) nor reduced BMI in obese patients (Allegretti
et al., 2020). There is an ongoing randomized clinical trial of
FMT for obesity in adolescents that will assess long-term BMI
changes, adiposity, and insulin sensitivity in male and female
participants (Leong et al., 2019). We need more studies in
the near future to consider FMT as a target for therapeutic
intervention of many diseases.

One of the main interventions for overweight and obesity,
besides diet modification, should be to promote a healthy lifestyle.
It should be considered that obesity is not solely a metabolic
disorder, but a multifactorial disease (Hruby et al., 2016;

Chooi et al., 2019; Rohde et al., 2019; Hu et al., 2020). The
best way to improve the situation is to provide education
in healthy diets and to raise awareness about WD diets and
sedentary lifestyle because obesity is a 21st-century pandemic
being associated with cognitive and mental health problems, non-
communicable diseases, and premature death (Lach et al., 2018;
Cena and Calder, 2020).
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