
Wet adhesion between two soft layers

Kai Lia and Shengqiang Cai*b

Two solids can adhere to each other in the presence of a liquid bridge between them, which is called wet

adhesion. When the solid is soft, the liquid bridge can cause deformation in the material, and in turn, the

deformation may have dramatic effects on the wet adhesion. To investigate the effect, in this article, we

calculate the deformation in two soft layers with different separations and connected by a liquid bridge.

We illustrate the effect of deformation in the soft layers on the adhesive force. For a given liquid volume

and separation between the two layers, the adhesive force increases dramatically by decreasing the

elastic moduli of the soft layers. We also discuss the contact between the two soft layers due to the

deformation caused by the liquid bridge. Depending on the volume of the liquid bridge, the two layers

may be in contact with each other at the center of the wetting area or some other locations between the

center and the contact line. The results may improve current understanding of wet adhesion between

soft materials and have potential applications in designing and fabricating soft devices and structures.

Introduction

Adhesion between two solid surfaces can be vital in making

various structures and devices.1–3 In terms of the adhesive

mechanism, adhesion between two solids can be broadly

divided into dry adhesion and wet adhesion. For dry adhesion,

intermolecular interaction such as van der Waals force is

responsible for the adhesion.4,5 Many animals, including

insects, spiders, lizards and geckos, have the capability to cling

to different surfaces using van der Waals forces.6,7 For wet

adhesion, liquid bridges exist between two adjacent surfaces

and capillary force is responsible for the adhesion.8,9 Examples

of wet adhesion range from the aggregation of granular mate-

rials in a wet environment10 and crack propagation in the

presence of moisture,11 to the attachment of animals like

beetles, blowies and ants, which can release uid to attach

their pads onto different surfaces.12–14

Many experiments have shown that adhesion can cause

deformation in the material, which, in turn, can dramatically

affect the adhesion properties.15–17 In the past, deformation in

the material due to dry adhesion has been intensively

studied.18,19 For example, based on London theory of van der

Waals forces between small particles and colloids,20 Johnson–

Kendall–Roberts (JKR) theory extended the Hertz contact

theory21 to study the adhesion between two elastic spheres, with

considering the deformation caused by van der Waals forces.22

Gao et al. proposed an accordion model to investigate the

properties of gecko adhesion, and found that deformation in a

foldable hard skin due to dry adhesion is crucial for the multi-

functionalities of the accordion pad including self-cleaning,

strong attachment and easy detachment.23 Diverse deformation

modes and mechanical instabilities, such as cavitation and

elastic ngering, have been frequently observed in the process

of separating a rigid probe from the surface of a so adhesive

thin lm.24–26 It has been clearly demonstrated that complex

deformations in the materials are closely related to their

adhesion properties.24–26

Compared to dry adhesion, the deformation in the material

due to capillary forces in wet adhesion has been much less

studied. This is probably because the deformation in the

material caused by capillary force is usually small and negli-

gible. However, recent experiments have shown that capillary

forces can induce large deformations or even mechanical

instabilities in so materials.27–29

As a matter of fact, the deformation in the material due to

capillary force can be estimated by comparing the size of the

material with elasto-capillary length: g/E, where E is the elastic

modulus of the material and g is the surface free energy

density.30 When the size of the material is much larger than the

elasto-capillary length, capillarity-induced deformation can be

ignored in the material. However, when the size of the material

is comparable or smaller than the elasto-capillary length,

capillarity-induced deformation in the material can be

dramatic.31,32 Therefore, in this paper, we study wet adhesion

between two so layers with considering the deformation of the

material.

In calculating the deformation of a solid caused by a liquid

droplet, the analysis of the deformation around a three-phase

contact line is critical. To avoid possible deformation singu-

larity in the three-phase contact line, surface stresses in the

solid33,34 are considered. By closely following the methods in the
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literature,35 we calculate the deformation of the so layers

caused by the liquid bridge connecting them. Using the

shooting method, for a given liquid volume and separation

between two layers, we calculate the adhesive force caused by

the liquid bridge. The inuence of elastic moduli of so layers

on the adhesive force is also investigated. The results may

improve current understanding of wet adhesion in so mate-

rials and have potential applications in designing and fabri-

cating so devices and structures.

Model and formulation

Fig. 1a sketches the system to be investigated in this article. Two

identical so layers, with innitely large lengths in two planar

directions and nite thickness h, are in wet adhesion with each

other through a liquid bridge with volume V. The two layers are

attached to two rigid plates respectively. Two separation forces

with equal magnitudes but opposite directions are applied on

the rigid plates. We assume that the shape of the liquid bridge is

axisymmetric with radius R of wetting area on the top and

bottom of the so layers, as shown in Fig. 1a. We specify a

cylindrical coordinate system, whose origin O lies on the surface

of the undeformed lower so layer (Fig. 1a).

Due to the presence of liquid surface tension, the pressure

inside the liquid bridge is different from the pressure outside,

and the difference is dened as Laplace pressure P, which can

be calculated by the Young–Laplace equation,36

P ¼ glg

�

1

R1

þ 1

R2

�

(1)

where R1 and R2 are the two principle radii of curvature of the

surface of the liquid bridge as shown in Fig. 1a, and glg is the

surface tension of the liquid. Since the effect of gravity is

neglected, P is the constant in the liquid bridge, and the surface

of the liquid bridge has the same mean curvature at any

point.

The contact angle q0 of the liquid bridge on the layer is given

by Young's equation,36

gsg � gsl ¼ glg cos q0 (2)

where gsl and gsg are the solid–liquid interfacial free energy

density and solid–gas interfacial free energy density, respec-

tively. Eqn (2) is the consequence of minimizing total interfacial

free energy of the system with allowing the contact line move

freely in the tangential direction of the surface. However, eqn (2)

leads to an imbalance of vertical forces with magnitude

glg sin q0 (Fig. 1b), which can deform the so layers as well.

When the system is in equilibrium, the separation force F is

balanced with the adhesive force which is the sum of the effect

of liquid surface tension and Laplace pressure P as shown in

Fig. 1c:

F ¼ 2pRglg sin q0 cos (q � q0) + pR
2
P (3)

where q is commonly known as the “apparent” contact angle,

which is the angle between the surface of the liquid bridge at

the contacting point and the horizontal surface as shown in

Fig. 1b.

To obtain the Laplace pressure in eqn (3), we need to

calculate the prole of the liquid bridge for a given volume and

separation between two layers. To describe the prole of the

liquid bridge affected by surface deformation of layers, we set

up a new vertical coordinate as z1 ¼ z� uz(R, 0), where uz(R, 0) is

the vertical displacement of the so layer at the contact line.

The shape of the liquid bridge can be described by the function

Fig. 1 (a) Schematic of a liquid bridge connecting two soft layers. (b)

Young's equation leads to a net force withmagnitude glg sin q0 per unit

length at the contact line. (c) The soft layer deforms under the action of

the Laplace pressure and liquid surface tension. In this case, the Lap-

lace pressure P always pulls the soft layer because the pressure inside

the liquid is smaller than the atmospheric pressure.

This journal is © The Royal Society of Chemistry 2014 Soft Matter, 2014, 10, 8202–8209 | 8203
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r ¼ r(z1) (Fig. 1a), and the two principle radii of curvature are

given by R1 ¼ �r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ r02
p

, R2 ¼ (1 + r02)3/2/r0 0. So, the Young–

Laplace equation in eqn (1) can be rewritten as

P

glg

¼ r
00

ð1þ r02Þ3=2
� 1

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ r02
p : (4)

The boundary conditions for eqn (4) are

r|z1¼0 ¼ R (5a)

r0|z1¼0 ¼ �1/tan q. (5b)

Because of the mirror symmetry, we have,

r
0|z1¼d/2�uz(R,0) ¼ 0. (6)

Ignoring the deformation of the two so layers, the above

equations are adequate to compute the Laplace pressure and

the adhesive force. However, as discussed in the Introduction,

in this article we intend to take into account the deformation of

the so layers caused by the liquid bridge and investigate the

effect of the soness of the layers on the wet adhesion. In the

following section, we are going to list the equations for calcu-

lating the deformation in the so layers.

Because the shape of the liquid bridge is assumed to be

axisymmetric, the deformation of the so layers is also

axisymmetric. We assume both strain eld and rotation in the

material are small, so the governing equations for the axisym-

metric deformation of so layers are the Navier equations,37

ð1� 2nÞ
�

V
2
ur �

ur

r2

�

þ v

vr
ðV$uÞ ¼ 0 (7a)

ð1� 2nÞV2
uz þ

v

vz
ðV$uÞ ¼ 0 (7b)

where ur and uz are the r and z components of the displacement

u, and n is the Poisson ratio of the material. In this article,

strains in deformed so layers do not exceed 8% in all the

calculations. Although 8% strain is by no means innitesimal

deformation, we believe that linear elasticity can still be a good

approximation in our model. As a matter of fact, linear theories

have met with remarkable success in describing even moder-

ately large deformation.

Because the two so layers are identical, we only need to

calculate the deformation in the bottom layer. The layer is

constrained by a rigid plate on its bottom surface, so the

boundary condition for the displacement is

u(r, �h) ¼ 0 (8)

for all r with origin O.

The traction imposed by the liquid bridge on the surface of

the so layer in vertical direction is given by

szz(r, 0) ¼ glg sin q0 cos (q � q0)d(R � r) + PH(R � r) (9)

for all r with origin O, where d(x) and H(x) are the Dirac delta

and Heaviside step functions, respectively. It is noted that the

angle q can be affected by the deformation of the so layer, as

q ¼ q0 � arctan

�

vuzðR; 0Þ
vr

�

: (10)

To solve the axisymmetric problem, we follow the method

adopted by Jerison et al.35 Because the tangential traction on the

surface szr(r, 0) is negligible, we assume that the deformation of

the so layer is only caused by the vertical traction szz(r, 0). The

surface displacement of the so layer is given by35

uz(r, 0) ¼ H0
�1[Kzz

�1(s)H0[szz(r, 0)]] (11)

where H0 is the Hankel transformation of order 0, and Kzz
�1(s)

is35

where s is the radial wavenumber of the Hankel transform of

order 0, and the surface stress of the so layers gs is considered

here for cutting off the divergence of strain at the triple line. For

simplicity, we assume that surface stress is the same on the

solid–liquid interface and solid–gas interface. The deformation

can be obtained by a dual integral equation when the surface

stresses on the solid–liquid interface and solid–gas interface are

different.38 In the following calculations, we set the ratio

between solid–liquid interfacial free energy density and surface

stress of the so layer as glg/gs ¼ 0.5.

Combining eqn (9) and (11), we can obtain the vertical

displacement of the so layer on the surface caused by the

liquid bridge as

uzðr; 0Þ ¼
ð

N

0

s

�

glg sin q0 cosðq� q0ÞRJ0ðsRÞ

þ PRJ1ðsRÞ
s

�

Kzz
�1ðsÞJ0ðsrÞds (13)

where the expression within the square of the integration is the

Hankel transform of order 0 of the right-hand side of eqn (9), J0
and J1 are the 0 and 1 order Bessel function of the rst kind

respectively.

Based on the displacement given in eqn (13), we can calcu-

late the volume of the liquid bridge by the integration,

Kzz
�1ðsÞ ¼ 2ð1� n2Þ

sE

1

5� 12nþ 8n2 þ 2s2h2 þ ð3� 4nÞcoshð2shÞ
ð3� 4nÞsinhð2shÞ � 2sh

þ 2sð1� n2Þgs

E

(12)
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V ¼ 2

ð

d=2�uzðR;0Þ

0

pr
2dz1 � 2

ð

R

0

2pr½uzðr; 0Þ � uzðR; 0Þ�dr; (14)

where the rst term of the right-hand side is the volume

enclosed by the outline of the liquid bridge r ¼ r(z1) and two

horizontal axes z1 ¼ 0 and z1 ¼ d � 2uz(R, 0), and the second

term corresponds to the volume of the so layers above z1 ¼
0 and below z1 ¼ d � 2uz(R, 0).

In the following section, we are going to describe the

numerical method of solving the above equations and discuss

the results we obtain.

Results and discussion

For a given volume of the liquid bridge, to calculate the adhesive

force as a function of the separation between two layers, we use

the shooting method. In the calculation, we rst assume the

values of radius R of the wetting area and Laplace pressure P,

and calculate surface deformation by solving eqn (13) with the

corresponding boundary conditions. Aer the surface defor-

mation is computed, we further calculate the liquid prole by

solving eqn (4) with the corresponding boundary conditions

eqn (5a) and (5b). Based on the surface deformation and liquid

prole, we can calculate the separation d and liquid volume V,

by solving eqn (6) and (14), respectively. Through several itera-

tions, we can obtain the contacting radius and Laplace pressure

for prescribed liquid volume V and separation d. Aer the

radius of the wetting area R and the Laplace pressure P are

calculated, we derive the adhesive force between the two so

layers for a given liquid volume V and separation d from eqn (3).

In the calculation, we assume that the so layer is incom-

pressible, i.e., n ¼ 0.5, and the contacting angle q0 ¼ p/3.

Fig. 2 plots the adhesive force as a function of separation d

for several elastic moduli of the so layers and different

volumes of liquid bridge. Because the radius of the wetting area

R and the Laplace pressure P decreases with increasing sepa-

ration d, the adhesive force decreases monotonically with

increasing the separation. From Fig. 2a–c, we can also conclude

that larger volume of liquid bridge results in larger adhesive

force for the same separation distance between the two layers.

Fig. 2 also illustrates that the separation force is larger for

soer layers with the same separation distance between the two

layers. To better show the inuence of soness of the layer on

the magnitude of adhesive force, Fig. 3 plots the adhesive force

as a function of modulus of the so layer for three different

volumes of liquid. It clearly shows that the adhesive force can

dramatically increase when the layer is so. For instance, with

the liquid volume V/h3 ¼ 0.3 and the separation d/h¼ 0.359, the

adhesive force can increase as large as 4 times when the non-

dimensional number glg/Eh changes from 0.01 to 0.08.

If the separation between two layers is too large, the liquid

bridge breaks, which can be predicted by instability analysis on

the liquid.39,40 In this paper, because we focus on the effect of

the elastic modulus of the so layer, we stop our calculation of

the force-separation curve once the Laplace pressure becomes

zero, which is actually very close to the breakage of the liquid

bridge.

Fig. 2 Adhesive force between two soft layers as a function of sepa-

ration distance for different elastic moduli of the soft layers with three

different volumes of the liquid bridge: (a) V/h3¼ 0.05; (b) V/h3¼ 0.1; (c)

V/h3 ¼ 0.3. To avoid the complexity of calculating contact between

the two layers, calculations start from a separation distance larger than

the distance for the initial contact, which is marked as grey circular

dots in the figure.

Fig. 3 Adhesive force between the two soft layers increases with

decreasing the elastic moduli of the soft layers.

This journal is © The Royal Society of Chemistry 2014 Soft Matter, 2014, 10, 8202–8209 | 8205
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If the separation between the two layers is too small, under

the action of surface tension and Laplace pressure, the surfaces

of the two so layers can deform and come into contact with

each other. To avoid the complexity of calculating contact, our

calculation starts from the separation distance larger than the

distance when the contact between the two so layers initially

happens. The circular solid points in Fig. 2 indicate the

conditions when two surfaces of the layers initially come into

contact with each other.

Fig. 4 plots how the elastic modulus affects the contact

between the twoso layers, fordifferent volumesof liquidbridge.

The layerswith a lowermodulus canbe in contactwith eachother

for a larger separationdistance.However, the separationdistance

between the two layers for the initial contact does not necessarily

change monotonically with increasing liquid volume, as shown

in Fig. 4. For glg/Eh ¼ 0.1, the separation distance for initial

contact with V/h3¼ 0.3 is smaller than that with smaller volume,

V/h3 ¼ 0.1. Interestingly, the separation distance for initial

contact with V/h3¼ 0.05 is also smaller than that with V/h3¼ 0.1.

Fig. 5 plots the mean curvature of the liquid bridge as a

function of separation, for different liquid volumes. For a xed

elastic modulus of the so layer, mean curvature of the surface

of the liquid bridge decreases with increasing the separation.

For a given separation, the mean curvature of the liquid bridge

increases with decreasing elastic modulus. The result implies

that so layers tend to increase the Laplace pressure in the

liquid bridge. We can understand the results as follows: for a

xed liquid volume and separation, the surfaces of the two

layers with smaller elastic modulus are closer to each other

through larger surface deformation. Therefore, for soer layers,

the mean curvature of the liquid bridge and the Laplace pres-

sure in the liquid are larger.

Fig. 6a and b plot the displacement of the wetting area of the

so layer for several separation distances, with liquid volumes

V/h3¼ 0.05 and V/h3¼ 0.1, respectively. For V/h3¼ 0.05 (Fig. 6a),

when the separation is large, the maximum vertical displace-

ment of the so layer is at the contact line, i.e. r/R¼ 1. When the

separation is small, themaximum displacement is at the center,

i.e. r/R¼ 0. Therefore, when the two so layers get close enough,

they come into contact with each other at the center rst. For

V/h3 ¼ 0.1 (Fig. 6b), when the separation is large, the maximum

displacement is also at the contact line. However, when the

separation decreases, the maximum displacement moves to the

center of the contacting area. When the separation becomes

small enough, the maximum displacement appears at a loca-

tion between the center and the contact line. In consequence,

when the two so layers get close enough, they rst come into

contact with each other at certain location between the contact

line and the center of the wetting area.

As shown in Fig. 1c and eqn (3), the deformation in the so

layer is induced by the surface tension and Laplace pressure. The

surface tension acts on the contact line, thereby generating the

largest vertical displacement at the contact line. However the

Laplace pressure induces the largest vertical displacement at the

center of the wetting area, when the radius of the wetting area is

small. The Laplace pressure can cause the largest vertical

displacement at a location apart from the center, when the

wetting area is large. The deformation shown in Fig. 6a and b is

due to the combination of surface tension and Laplace pressure.

Fig. 6c plots vertical displacement at the center of the wetting

area as a function of the separation. For V/h3 ¼ 0.05, the vertical

Fig. 4 Dependence of separation distance for the initial contact

between the two soft layers on their elastic moduli, for three different

volumes of liquid bridge.

Fig. 5 Mean curvature of the liquid bridge surface, which is defined as

k¼ 1/R1 + 1/R2, decreases with the increase of the separation between

the two soft layers for three different liquid bridge volumes: (a) V/h3 ¼
0.05, (b) V/h3 ¼ 0.1, (c) V/h3 ¼ 0.3.
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displacement at the center is a monotonic function of the

separation. For V/h3 ¼ 0.1, the vertical displacement at the

center is a non-monotonic function of the separation. To be

more detailed, the vertical displacement at the center of the so

layer increases rst and then decreases with increasing the

separation. The non-monotonic function can be understood by

considering the nite thickness of the so layer and the Poisson

effect of the material. Both Laplace pressure and wetting area

decrease with increasing the separation between the two so

layers. Although larger Laplace pressure tends to cause larger

vertical displacement at the center, larger wetting area (scaled

by the thickness of the so layer) results in smaller vertical

displacement at the center due to Poisson's effect. Therefore,

maximal vertical displacement at the center may appear for

medium Laplace pressure and wetting area and consequently

medium separation as shown in Fig. 6c.

To better illustrate the effect of Laplace pressure on the

deformation of the so layer, we calculate the vertical

displacement with assuming the contact angle q0¼ 0. Therefore,

the surface deformation is only induced by the Laplace pressure.

Fig. 7a and b plot the displacement for several separations with

two different liquid volumes V/h3 ¼ 0.06 and V/h3 ¼ 0.3. When

the separation between the two layers is small, for a small liquid

volume, themaximal displacement is at the center of the wetting

area (Fig. 7a); for a large liquid volume, the peak displacement

appears at a location between the center and the contact line

(Fig. 7b). Now, however, the maximal vertical displacement of

the layers is not at the contact line, even for large separations.

Fig. 7c plots the vertical displacement at the center of the

wetting area as a function of the separation. For a small volume

V/h3 ¼ 0.06, the vertical displacement at the center is a mono-

tonic function of the separation. For a large volume V/h3 ¼ 0.3,

the vertical displacement at the center is a nonmonotonic

function of the separation. The result is qualitatively similar to

that shown in Fig. 6, though the surface deformation is only

induced by the Laplace pressure shown in Fig. 7.

Fig. 8 plots the calculated conguration of two so layers

connected by a liquid bridge with different separations. When

the two so layers are close enough to each other (Fig. 8a), the

two so layers contact at a location between the center and the

contact line. With increasing the separation, the radius of the

Fig. 6 Vertical displacement of the wetting area of the soft layers for

different separation distances with contact angle q0 ¼ p/3 and two

different volumes of the liquid bridge: (a) V/h3 ¼ 0.05 and (b) V/h3 ¼
0.1. (c) Plots vertical displacement at the center of the wetting area of

the soft layer as a function of the separation, with two different

volumes of the liquid bridge V/h3 ¼ 0.05 and V/h3 ¼ 0.1.

Fig. 7 Vertical displacement of the wetting area for different separa-

tion distances with zero contact angle q0 ¼ 0 and two different

volumes of the liquid bridge: (a) V/h3 ¼ 0.06, (b) V/h3 ¼ 0.3. (c) Plots

vertical displacement at the center of the wetting area of the soft layer

as a function of the separation, with two different volumes of the liquid

bridge V/h3 ¼ 0.3 and V/h3 ¼ 0.06.

This journal is © The Royal Society of Chemistry 2014 Soft Matter, 2014, 10, 8202–8209 | 8207
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wetting area and the curvature of the surface of the liquid bridge

gradually decrease (Fig. 8b–d). There exists a critical separation

between the two layers, beyond which a stable liquid bridge no

longer exists due to instability.39,40

Conclusions

In this paper, we study wet adhesion between two so layers

connected by a liquid bridge. We calculate the adhesive force

between the two so layers for different separation distances. In

the calculation, we have taken into account the surface defor-

mation of the so layers caused by the liquid bridge. The

calculation shows that the adhesive force between two so

layers decreases with increasing separation. For a given liquid

volume and separation, the adhesive force caused by the liquid

bridge increases with decreasing the elastic moduli of the so

layers. Our calculations have also shown that the two layers may

contact each other at small separation. Depending on the

volume of the liquid bridge and the moduli of the so layers,

the two so layers may contact each other at the center of the

wetting area or some place between the center and contact line.

Our results may improve the understanding of elasto-capillary

phenomena in somaterials and have potential applications in

designing and fabricating so devices.
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