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Abstract 

Stable suspension made of fully redispersable In2O3:Sn (ITO) conducting nanoparticles were 

developed to obtain single thick transparent conducting films (up to 500 nm) on different 

substrates using wet chemical deposition methods. The coatings can be processed at high 

sintering temperature process on glass substrates up to 1000 °C to get electrical resistivity as 

low as 1.7x10-3 Ω.cm and transmit more than 87 % of the visible spectrum. The processing of 

transparent conductive coatings on polymeric (PC, PMMA, PVY, PE, PET, foils, etc.) and 

glass substrates at low processing temperature was realized by using a modified ITO 

suspension in which a polymerisable inorganic-organic binder was added. The coatings can 

be cured by UV-irradiation and / or by a low temperature heat treatment (T < 130 °C) in air or 

reducing atmosphere. The electrical, optical, textural, mechanical and surface properties of the 

coatings are reported. Transparent conducting coatings with a single 570 nm thick layer 

exhibiting stable electrical resistivity of 9.2x10-2 Ω.cm have been made by spin and dip 

coating process. A high transmission of about 87 % is observed in the visible range. The 

adhesion and the abrasion resistance of the coatings pass the DIN or ASTMD tests: DIN 

58196-K2, ASTMD 3359, DIN 53151-Gt0, DIN 58196-G10 and DIN 58196-H25 and the 

hardness measured using the Pencil test ASTM D 3363-92a is 1H. UV-irradiation through a 

mask allows to easily pattern the coatings. 

Eine stabile Suspension, die aus völlig redispergierbaren nanokristallinen In2O3:Sn (ITO) 

leitfähigen Teilchen besteht, wurde hergestellt und entwickelt, um dicke transparente 

leitfähige Einzelschichten (bis zu 500 nm) auf unterschiedlichen Substraten mittels naß-

chemischen Abscheidungsmethoden zu erhalten. Die Schichten können bei hohen Tempera-

turen (bis 1000 °C) auf Glassubstraten abgeschieden werden, um einen spezifischen Wider-

stand von 1.7x10-3 Ω.cm erzeugen und um mehr als 87 % des sichtbaren Spektrums zu 

übertragen. Die Entwicklung von transparenten leitfähigen Schichten auf unterschiedlichen 

Kunststoffsubstraten (PC, PMMA, PVC, PE, PET, Folien, etc.) bei niedriger Bearbeitungs-

temperatur wird realisiert, indem man die ITO-Suspension durch die Zugabe von 

polymerisierten Bindemitteln modifiziert. Die Schichten werden durch UV-Bestrahlung 

und/oder durch niedrige thermische Behandlung (T < 130 °C) in Luft oder in reduzierender 

Atmosphäre gehärtet. Berichtet wird über die elektrischen, optischen, morphologischen, 

mechanischen und Oberflächen-Eigenschaften der Schichten. Der Flächenwiderstand der 

Schichten ist stark abhängig von der UV-Behandlung und der Reduzierung unter Formiergas. 

Als bester Wert wurde der niedrigste beständige spezifische Widerstand von ρ = 9x10-2 Ωcm 

gefunden. Die Transmission der Schichten im sichtbaren Bereich liegt bei 87%. Die Schichten 

zeigten gute Haftung und gute Beständigkeit gegen Abrieb nach DIN 58196-K2, 

ASTMD 3359, DIN 53151-Gt0, DIN 58196-G10 and DIN 58196-H25 und Härte 1H nach 

ASTM D 3363-92-a. Mittels UV-Bestrahlung durch eine Maske können die Schichten leicht 

strukturiert werden. 
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Zusammenfassung 

Bei der Kontrolle der Oberflächenmodifizierung und dem Wachstumsprozess wurden 

leitfähige kristalline Zinn-dotierte Indium-Oxid (ITO) Partikel erfolgreich hergestellt. Die 

Partikel sind hochdicht, ihre Größe wächst mit den Sintertemperaturen, und sie haben eine 

Teilchengröße von 20-35nm. 

Die Pulver, die bei Temperaturen niedriger als 350 °C gesintert werden, sind erfolgreich in 

Wasser oder organischen Lösungsmitteln wie Ethanol redispergiert worden. Die 

Beschichtungssole, die aus diesen Partikeln bestehen, sind über ein Jahr stabil. Die 

Partikelgrößenverteilung ist monomodal, und die Teilchengröße der Partikel betrug 15-40 nm. 

Die Zugabe von anorganisch-organischen Bindern wie MPTS verschiebt die 

Partikelgrößenverteilung zu einem höheren Wert, allerdings sind die hergestellten Sole noch 

stabil. 

Die stabile Suspension, die aus völlig redispergierbaren nanokristallinen In2O3:Sn (ITO) 

leitfähigen Teilchen besteht, wurde verwendet, um dicke transparente leitfähige 

Einzelschichten (bis zu 500 nm) auf unterschiedlichem Glas oder polymetrischen Substraten 

mittels naß-chemischen Abscheidungsmethoden herzustellen. Die Dicke der Schichten nimmt 

bei Zunahme des Feststoffanteils der Teilchen in dem Sol zu, da auch die Viskosität in dem 

Sol zunimmt. Die TEOS, GPTS oder MPTS modifizierten ITO-Sole produzieren dickere 

Schichten. 

Die aus reiner ITO-Suspension hergestellten Schichten können bei hohen Temperaturen (bis 

1000 °C) auf Glassubstraten abgeschieden werden. Die Schichten zeigen eine Abnahme des 

spezifischen Widerstandes mit der Zunahme der Ausheiztemperatur. Der spezifische 

Widerstand nimmt von 4.8x10-2 Ω.cm (550°C) auf 1.2x10-2 Ω.cm (1000°C) ab. Durch eine 

nachträgliche Reduzierung unter Formiergas bei 350°C kann der spezifische Widerstand noch 

weiter bis auf 1.5x10-3 Ω.cm reduziert werden. Die Sintertemperatur führt zu besserem 

Kontakt zwischen den leitfähigen Partikeln und zur Abnahme der Porosität der Schichten. Die 

Schichten übertragen mehr als 88 % des sichtbaren Spektrums und zeigen Reflexion bis 70 % 

im IR-Bereich. 

Die Entwicklung von transparenten leitfähigen Schichten auf unterschiedlichen 

Kunststoffsubstraten (PC, PMMA, PVC, PE, PET, Folien etc.) bei niedriger 

Bearbeitungstemperatur wird realisiert, indem man die ITO-Suspension durch die Zugabe von 

polymerisierten Bindemitteln modifiziert. Die Schichten werden durch UV-Bestrahlung 
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und/oder durch niedrige thermische Behandlung (T < 130 °C) in Luft oder in reduzierender 

Atmosphäre gehärtet. Der Flächenwiderstand der Schichten ist stark abhängig von der UV-

Behandlung und der Reduzierung unter Formiergas. 

Bei der Untersuchung verschiedener organischer oder organisch-anorganischer Bindemittel 

zeigte sich, daß die funktionalisierten Silane, besonders 3-Methacryloxypropyltrimethoxy-

silane(MPTS), zur Verbindung guter elektrischer und mechanischer Eigenschaften der 

Schichten auf Kunststoffsubstraten am besten geeignet sind. Als bester Wert wurde der 

niedrigste beständige spezifische Widerstand für eine 570 nm dicke Einzelschicht von 

ρ = 9x10−2 Ωcm gefunden. 

Die FTIR- und NMR Spektroskopie von MPTS/ITO-Schichten zeigt, dass die UV-

Behandlung zu besseren und homogeneren Verbindungen zwischen den leitfähigen Teilchen 

führt. Neben dem Polymerisationsprozeß von MPTS beeinflußt die UV- und reduzierende 

Behandlung die Konzentration des chemisorbierten Sauerstoffs auf der Oberfläche der ITO-

Partikel, die als freie Elektronenfalle dienen. Dieses führt zu einer Zunahme der 

Ladungsträgerdichte und infolgedessen zu einer Verringerung des spezifischen Widerstandes. 

Die Transmission der Schichten auf polymerischen Substraten liegt im sichtbaren Bereich bei 

87%, und die Reflexion der Schichten betrug 40 % im IR-Bereich. Die Schichten zeigten gute 

Haftung und gute Beständigkeit gegen Abrieb nach DIN 58196-K2, ASTMD 3359, DIN 

53151-Gt0, DIN 58196-G10 and DIN 58196-H25 und Härte 1H nach ASTM D 3363-92-a. 

Mittels UV-Bestrahlung durch eine Maske können die Schichten leicht strukturiert werden. 
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Chapter 1 Objective 1

Chapter 1 

Objective 

Nanomaterials are defined by a length scale of less than 100 nm, either in one dimension (thin 

films), two dimensions (nanowires) or in 3 dimension (nanoparticles). This thesis is focused 

on the production and characterization of transparent conducting coatings using sol-gel made 

tin doped indium oxide nanoparticles dispersed in a solvent. It shows how nanomaterial 

properties can be tailored by either size effect or via the modification of the surface of the 

nanoparticles. 

In general, coatings made by the sol-gel technique need to be calcined at high temperature 

(usually above 400 °C), a process not adequate for many substrate materials. In addition, the 

film thickness obtained by this method in a single step is usually very small (< 100 nm), so 

that multicoating process envolving the sequence “deposition – drying - sintering”, should be 

repeated several times in order to obtain a thickness adequate to obtain certain properties. 

This makes the procedure very complicated and not interesting for many industrial 

applications. 

One of the aim of this work was to develop a technique to produce thick transparent 

conductive film in a single step using sol-gel deposition methods on different glass substrates. 

The basic idea to solve this task was to prepare stable sols containing a high amount of 

dispersed crystalline indium tin oxide (ITO) conducting nanoparticles. Such particles have 

been made using the so-called controlled growth technique and redispersed using a dispersant 

agent in a solvent like alcohol or water to obtain highly stable suspension. This suspension 

was used as the coating solution to produce transparent conductive coatings with thickness up 

to 600 nm in a single step procedure. The properties of the particles and sols have been 

studied as a function of the crystallite size and the doping concentration. 

To obtain good electrical, optical and mechanical properties, the coatings were heated up to 

550 °C (borosilicate glass) and up to 1000 °C (fused quartz). The structural, electrical, optical 

and mechanical properties of the densified coatings at different sintering temperatures have 

been characterized. 

The second aim of this work was to find a way to deposit such coatings on substrates which 

don’t withstand a heat treatment step at high temperature, such as polymeric substrates (PC, 

PMMA, PVC, PET, foils) and already preformed glasses. 

The basic idea to solve this task was to modify the above coating solution by blending the 

ITO particles with an inorganic-organic hybrid matrix which can be polymerized at low 

temperature (T < 130 °C) or by UV-irradiation. The properties that such modifier should offer 

are: 

1. Adsorption on the surface of the ITO particles at low temperature without affecting 

the stability of the suspension. 
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2. Low temperature polymerization to bring the particles in contact together with a high 

degree of organic cross linking, which encapsulate the conducting particles. 

3. The polymerization and the condensation at low temperature should also enhance the 

adhesion of the particles to the substrate and improve the mechanical resistance of the 

coatings. 

4. The concentration of the modifiers in the coating solution should be low enough to 

prevent the formation of very large agglomerates in the deposited film and have the 

lowest possible effect on the optical quality and the electrical properties of the 

coatings. 

Patterning such coatings on polymeric and glass substrate at low temperature process was the 

third aim of this work. The coatings were patterned by selective UV irradiation through a 

mask. The exposed part strongly adheres to the substrate and the non-exposed part is easily 

washed in ethanol. 

The structural, electrical, optical, mechanical and surface properties of the transparent 

conductive films and the patterns have been studied and the different parameters affecting the 

deposition, the curing processes and the properties have been determined and discussed. 
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Chapter 2 

Fundamental 

2.1 Thin film technology 

In recent years the thin films technology has grown world-wide into a major research area. 

The importance of coatings and the synthesis of new materials for the industry have also 

resulted in a tremendous increase of innovative thin film processing technologies. Coatings 

today serve important roles in many applications, including microelectronics (1), catalysis (2), 

corrosion protection (3), and chemical sensors (4), displays, etc. 

A thin film is a two dimensional material created ab initio by the process of condensation and 

growth of atoms, molecules or ions (5). Their properties are usually different from those of 

corresponding bulk materials due to their physical dimension, geometry and microstructure. 

They are largely affected by the high surface-to-volume ratio and influence a number of 

phenomenas such as gas adsorption, diffusion, and catalytic activity. 

The substrate material has also a significant effect and many factors should be taken into 

consideration (6). For example, the cleaning, the surface energy and the roughness of the 

substrate affect decisively the adhesion of the film on the substrate. Also the stability of the 

substrate with the temperature variations as well as at the different aging processes affect their 

properties. The crystal structure, strength and the internal tension of the substrate material 

should be taken into account before the deposition process. 

Independent of the film material, the mechanical characteristics, optical properties, film 

thickness, etc of coatings are strongly influenced by the deposition parameters and conditions 

and are therefore strongly related to the coating technologies. To produce efficiently coatings 

for a certain application, it is necessary to know all the parameters that influence a desired 

film property during the deposition process. For example, for films produced by the sol-gel 

process (dip coating technique), the relevant parameters which must be taken into 

consideration are the composition of the solution, the withdrawing speed, the temperature, the 

interaction with the surrounding atmosphere during the withdrawal of the substrate and the 

reaction with the substrate during densification. 

2.1.1 Properties of thin films 

The properties of film can be divided into macroscopic and microscopic ones. Among the 

macroscopic properties are the refractive index, the optical absorption and reflection, the film 

thickness, the adhesion, the stress, the density, the scattering of light and the hardness. The 

microscopic quantities are the composition and chemical bonding between the elements, 

stoichiomerty, topography, roughness of the surface, state and formation of interfaces, 

crystalline or amorphous state, and also the crystalline structure. 
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There are various analytical tools available to characterize these properties and some of them 

are summarized in Table 1 (the list of abbreviations is given at Page II). These 

characterization techniques use different probes such as photons, electrons, ions, and also 

forces as in Atomic Force Microscopy (AFM). These probes interact with the sample which 

then emits electrons, photons, ions, etc which are collected by a detector to give information 

to describe the film (7). 

Table 1: Techniques used to characterise thin films 

Film Properties Characterization method 

Macroscopic 

Density GIXR, RBS 

Stress Bending 

Adhesion Tape test, Cutting 

Optical quantities UV-VIS-NIR Spectroscopy 

Hardness Scratching (Pencil test) 

Thickness TEM, SEM, Stylus 

Thermal conductivity PTD, LC 

Microscopic 

Composition 

 -surface composition 

 -film composition 

 -interface composition 

 

ESCA, AES, XPS 

EDX, WDX, RBS, NRA, XRF, SMNS, ESCA 

TEM/EDX  

State of oxidation ESCA, AES, SIMS, Raman, EXAFS 

Structure and texture XRD, ED, FTIR, SAXS 

Roughness of surface AFM, GIXR, WLI 

Formation of interface TEM, GIXR 

Grain and crystalline size XRD, TEM 

Surface topography AFM, SEM, WLI, GIXR 

The structural properties of the deposited films are very important. The arrangement of atoms 

in a material is determined by the strength and the directionally of the interatomic bonds. The 

arrangement of the atoms may be regular (crystalline) or irregular (polymeric or glassy). The 

degree of crystallinity of films can be determined precisely by X-ray and electron diffraction 

techniques. With electrons, one can investigate very thin layers. Electron diffraction method 

gives a better determination of hydrogen atoms or ions, which is not possible by x-ray 

diffraction (8). 

The surface properties of thin films affect the quality of these films. Szanyi (9) have studied 

the origin of haze in CVD tin oxide thin films, where the surface quality of these films are of 

great importance in the production of solar control architectural glazing. The haze were 

correlated with the surface roughness and the concentration of internal voids. The surface 
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chemical composition, impurities concentration, roughness and defects can be determined 

using many techniques such as SEM, AFM, XPS, AES, UPS, SIMS etc. 

 The mechanical properties of films are affected by the growth process, structure, chemical 

composition and incorporated impurities. They are also influenced by the state of cleaning of 

the substrate. The state of stress of the films is also very important and is related to the 

structure and microstructure properties as well as to the substrate and the heat treatment. It 

can be measured using the bending-beam method. The obtention of crack-free layer depends 

on the thermal expansion of the film and substrate and is characterized by critical thickness, 

i.e. the maximum achievable thickness without crack formation for single step deposition. 

Additives incorporated to the sols help to increase the critical thickness of sol-gel coatings 

(10). 

The adhesion and hardness of films are also important properties to be tested. The film 

density influences the hardness of the film. It is also important to test the influence of 

weathering (temperature, humidity) on the coatings. Humidity and salt water are of special 

importance in tropical areas and at sea level. All of these factors and tests should be taken into 

consideration. 

The optical properties of thin films may drastically change the reflectance, transmission and 

absorption of the substrate. They are determined by measuring their optical constants, i.e the 

extinction coefficient and the refractive index and they depend strongly on the film thickness 

and the substrate surface conditions. The most common applications related with the optical 

properties are the antireflective coatings, reflection coatings, interference filters, beam 

splitters and waveguides (5).  

2.1.2 Substrate cleaning 

The cleaning of the surface of the substrate is a very important issue in thin film deposition 

technology. It is a difficult and delicate operation to achieve highly clean surface. The 

exposure of the substrate surface to the atmosphere generates gaseous, liquid or solid 

contaminations which should be removed before the deposition process. When the substrates 

are not clean, the deposited film will usually not adhere well and the desired film properties 

will be affected by the impurities on the surface of the substrate. 

Different cleaning processes are used to remove the contaminations from the substrate 

surface. The most common methods are (8): 

a- Cleaning with solvents: Various cleaning solvents are used, such as bidistilled water to 

which detergents, diluted acids or bases as well as non-aqueous solvents such as alcohols and 

ketones can be added. The type of the solvents to be used depends on the nature of the 

contaminants. 

b- Rubbing and immersion cleaning: This method is considered as a precleaning operation. 

It is done by rubbing the surface with a cotton cloth or a brush dipped in a mixture of 

precipitated chalk or fine powder of CeO2 or Al2O3 and alcohol or ammonia. The substrates 
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can be also immersed in acids with different strength, where a chemical reaction can be 

exploited for cleaning process. 

c. Ultrasonic cleaning: This method is effective for breaking loose contaminants by 

ultrasonic waves propagating in a cleaning fluids. 

A combination of several methods is usually used to achieve an optimum cleanliness of the 

substrate surface. 

Cleaning of polymeric substrates requires special methods and handling because of their low 

thermal and mechanical stability. Proper cleaning fluids and short cleaning time should be 

carefully selected. Polymeric substrates can be also pretreated through the activation of their 

surface energy using corona, plasma or UV-irradiation (11-13). 

2.2 Deposition techniques 

The deposition techniques play a very important role to achieve desired film properties since 

the deposition of the same material by different deposition methods usually leads to different 

coating properties. Every method has its own advantages and disadvantages. The techniques 

can be broadly classified under two main categories: 

(1) Vapour deposition and 

(2) Wet chemical deposition 

Each process has its own parameters which control the formation and the growth of the films. 

For a given material the microstructure and the morphology depend on the kinetics of the 

growth, the deposition rate, the deposition atmosphere and the substrate temperature. 

Producing thin films with specific and high quality properties needs an optimisation of the 

corresponding parameters. The most commonly used techniques for deposition of thin films 

are described below. 

2.2.1 Vapor deposition techniques 

Vapor deposition techniques can be classified into two main classes: (a) Physical vapor 

deposition (PVD) and (b) Chemical vapor deposition (CVD). 

Physical Vapor Deposition (PVD) 

These techniques have been described in details in many text books (see e.g (14)). The 

deposition of a vapor from a source onto a substrate takes place under low pressure conditions 

in a chamber. The creation of the vapor from a source can be achieved by thermal evaporation 

(Vacuum evaporation) or by bombarding (Sputtering) the surface of a target by high energetic 

particles, usually Ar+. 

In thermal evaporation the source material is heated to a given temperature to obtain a vapor 

pressure of about 10-3 Torr and the vapor condenses onto a cooler substrate to form a film. 

The evaporation source can be made of a resistance-heated device, such as a tungsten wire, a 

metal sheet, a sublimation furnace, a crucible, or an electron beam evaporation device (7). 
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Activated reactive evaporation can be realized by introducing a gas or a plasma into the 

chamber during the evaporation. This method is characterized by a high evaporating rate and 

leads to better adhesion, a precise control of the stoichiometry and denser microstructure; 

however it usually needs a high substrate temperature (15). Various parameters control these 

techniques, such as substrate temperature, deposition pressure, chemical composition of the 

source, deposition rate and they are all important to optimize the film properties. 

In sputtering processes the vapor is created by bombarding the surface of a solid material 

source (target) by energetic gas ions such as Ar+. The ejected atoms are condensed on a 

substrate to form a film. These methods can be classified into three main classes: 

DC Sputtering: The target is the cathode and the substrate is the anode. The energetic ions 

are produced by a plasma ignited between the electrodes when a high dc voltage is applied 

between them. The sputtering chamber should be pumped down to high vacuum and then 

filled to about 10 to 100 Torr by a gas, usually Argon. This method is generally simple, 

relatively easy to use and good uniformity of the film thickness can be obtained over large 

area; however its use is confined to materials possessing a significant electrical conductivity, 

since insulators quickly lose their negative potential required for sputtering with positive ions 

(8). 

RF Sputtering: A high frequency alternating voltage applied between the electrodes is 

adequate to sputter conducting as well as insulating materials. In rf sputtering, the application 

of a high frequency (13.5 MHz) alternating field causes the electrons to oscillate in the so-

called “nagative glow”. In this way they acquire enough energy to cause ionizing collisions. 

The discharge is therefore less sensitive to the emission of secondary ions and self-sustained. 

Magnetron Sputtering: In this technique a magnetic field is superimposed on the electric 

field close to the target (7). This increases the percentage of secondary electrons that cause 

ionizing collisions and it helps to confine electrons near the target. This method is commonly 

used in industrial production as very high deposition rates can be obtained under low 

deposition pressureand low substrate temperature. The technique has been scaled up to very 

large target (up to 4 m width). 

Chemical Vapor Deposition (CVD) 

Chemical vapor deposition is a technique allowing to deposit reactive gases at the surface of a 

substrate without requiring vacuum (5). Gaseous precursors are flown over a substrate at 

elevated temperatures. The conditions at the substrate surface are selected to promote 

chemical reactions (pyrolysis, reduction, oxidation, etc.) of the precursors. The CVD sources 

are gases, volatile liquids, sublimable solids or a combination of these materials. These 

materials should be stable at room temperature, sufficiently volatile and the reaction 

temperature should be lower than the melting point of the substrate. This method allows high 

growth rates and the deposition of materials hard to evaporate can be achieved. However it is 

a complex process and require usually a high temperature. 
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CVD techniques are nevertheless widely used and have the ability to produce a large variety 

of films and coatings, like metals, semiconductors, oxide and compounds in crystalline phase 

or amorphous state with high purity and at relatively low cost. It has been scaled up for large 

production for a few compounds such as deposition of SnO2:F on float furnaces. 

There are three basic CVD techniques (8, 14): (1) thermal CVD, (2) plasma CVD (PCVD) 

and (3) laser CVD (LCVD). LCVD and thermal CVD use high temperatures, where 

thermodynamic processes govern the nature of the resulting deposit. In PCVD the chemical 

reactions are enhanced by the production of a plasma and occur at lower temperatures. The 

deposition processes are governed by the partial pressure of reactants, rf power and substrate 

temperature. It is a suitable technique to coat sensitive substrate materials with high 

deposition rate because of the lower deposition temperature. 

2.2.2 Wet Chemical Deposition Techniques 

Wet chemical deposition are techniques in which the material species to be deposited are 

dispersed in a liquid medium. These techniques have the ability to produce coatings with high 

optical quality on transparent substrates like glass and polymeric substrates as well as 

homogeneous coatings on non transparent substrates. The resulting coatings should be usually 

heated at high temperatures but curing at low temperatures is possible and depends on the 

coating solutions. 

Wet chemical methods are used to deposit multifunctional coatings on glass and polymeric 

substrates, such as coatings for automotive glasses and CRTs (16), water repellent coatings 

(17), antistatic and antireflective coatings (18), hard coating on plastics (19), transparent 

conductive coatings (20-22), surface protective films imparting corrosion or abrasion 

resistance (3, 23), porous films for specific goals (24, 25), metallic mirrors and many other 

applications. 

To obtain high homogeneous coatings with a desired optical property, the solution must 

possess special physical and chemical characteristics which can be obtained, according to 

Schröder (26), when the four following requirements are fulfilled: 

1. The solubility of the starting solution is high and it must have the tendency to 

crystallize during the solvent evaporation. 

2. The solution must have a sufficiently small contact angle with the substrate. The 

smaller the contact angle is, the higher is the wettability of the solution. Wettability 

can be improved in some cases by the addition of a wetting agent to the coating 

solution or by an appropriate pretreatment of the substrate. 

3. The solution must have an adequate durability under certain conditions. The colloidal 

stability is an important factor affecting the coating quality. The durability of the 

coating solution could be enhanced by using stabilizers. 

4. The drying and the heating process must be carried out carefully in order to obtain 

reproducible solid and homogeneous coatings. 
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The main wet chemical deposition methods are the spray and the sol-gel coatings: 

Spray Pyrolysis 

Spray pyrolysis is one of the most used methods to coat substrates (e.g. with oxide materials) 

in a mass production with low effective cost (27). The process consists in generating fine 

droplets which are then thermally decomposed (pyrolysis) on a hot substrate. The atomization 

can be realized by applying pressure, by using a nebuliser, ultrasonic or electrostatic methods. 

Each method results on different droplet size distribution, atomization rate and droplet 

velocity, which in turn determine the growth kinetics and hence the quality of the obtained 

films. For instance, the drop size depends on the nozzle type and the applied pressure. An 

increase in the applied pressure reduces the drop size and vice versa. The kind of the 

precursors strongly influences the microstructure, the crystallinity and the morphology of the 

films. The film formation depends on the substrate temperature which should be high enough 

to decompose the precursor’s droplet, but not too high to avoid the formation of a powder. 

The process is easy to carry out and do not need complicated equipments and it is possible to 

coat large substrates with different geometries. 

Sol-Gel Deposition 

The sol-gel process is a versatile process using chemical solutions. In general, the sol-gel 

process involves the transition of a system from a liquid "sol" (mostly colloidal) into a solid 

"gel" phase. This method allows to fabricate ceramic or glass materials in a wide variety of 

forms, ultra-fine or spherical shaped powders, coatings, ceramic fibers, microporous inorganic 

membranes, monolithic ceramics and glasses and extremely porous materials (aerogel) (28). 

The sol-gel method has many advantages for the synthesis of a large variety of thin films and 

coatings and involve chemical and physical processes such as hydrolysis, polymerization, 

drying and densification. It consists first in preparing a solution of inorganic or 

organometallic precursors or metal oxide particles dispersed in a solvent. The sol can be 

spread across the substrate by different techniques. The chemical precursors play a decisive 

role in the deposition methods and affect directly the structural, optical and mechanical 

properties and other performance characteristics of the resultant coating. We shall only 

discuss the two most widely used techniques. 

Dip coating method 

The dip coating technique is a good method to prepare thin films with high optical quality and 

homogeneity. It is simple, cheap and allows to coat complex shapes like curved substrates, 

tubes and even large substrates on both sides in one step at room temperature. This method 

does not require vacuum and no complicated instrumentation is required. 

Dip coating is a process where a clean substrate is immersed in a liquid and then withdrawn at 

a given speed under controlled temperature and atmospheric conditions. The environmental 

conditions (temperature and humidity) affect the quality of the coating.  
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The thickness of the coating depends on the viscosity of the solution, the rate of solvent 

evaporation, and the angle at which the substrate is taken out. It can be determined using the 

Landau-Levich equation (29) . 
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where  is the film thickness, h η  is the sol viscosity,  is the withdrawal speed, v LVγ  is the 

liquid-vapour surface tension, ρ  is the density, and  is the gravity. The above equation 

showed that the faster the substrate is withdrawn, the thicker is the deposited film. 

g

Fig. 1 shows the scheme of the different stages of the dip coating process: Immersion 

(dipping), formation of the wet layer where boundary layer is formed and then the drainage 

and evaporation stage. The evaporation depends on the solvents used and usually 

accompanies the start up, deposition and drainage stages. This lead to aggregation and 

gelation of the wet layer and once it has collapsed fully, a dense film remains on the substrate. 

 

 

Fig. 1: Schematics of the different stages of the dip coating process (30). 

Dip coating can be made either by lifting the substrate from the coating solution 

(withdrawing) or by lowering the solution, a process in which the substrate remains at rest and 

the liquid level of the solution is lowered by draining. The withdrawal process is the more 

economically applicable. 
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When the substrate is drawn out of the coating solution under a well defined angle of 

inclination, the process is called angle dependent dip coating (ADDC) (31, 32). Both surfaces 

are coated simultaneously and the thickness of the film being dependent on the angle between 

the substrate and the liquid surface, different thickness can be obtained on each side of the 

substrate (see Fig. 2) (32). This method has some advantages against the conventional dip 

coating method, as smaller number of layers or coating steps are required to obtain the desired 

optical properties (33). Production time and costs are therefore reduced. 

 

 

Fig. 2: Scheme of angle dependent dip coating process (ADDC). 

 

Spin coating method 

Spin coating is used for many applications in different technological fields. Thin films can be 

obtained by depositing drops of the solution on the surface of a flat substrate and then spun it 

to leave a uniform layer for subsequent processing stages and ultimate use. The stages of 

forming thin films are described as the followings below (34) (Fig. 3): 

Stage 1: The first stage is started by pouring a filtrated coating solution or spraying it on the 

substrate. The solution should wet the surface completely during this stage. 

Stage 2: The second stage is started when the substrate is accelerated up to a desired rotation 

speed. During this rotation, spiral vortices are formed as a result of the twisting motion caused 

by the inertia of the top of the fluid layer while the substrate below rotates faster and faster. 

Stage 3: In this stage the substrate is spinning at a constant rate and fluid viscous forces 

dominate the fluid thinning behavior. Edge effects are often seen because the fluid flows 

uniformly outward and it forms droplets at the edge to be flung off. 

Stage 4: The last stage occur when the solvent evaporation dominates the coatings thinning. 

At this point the coatings is effectively transformed into a gel. 

After spinning is stopped the coating may be sintered at high temperatures to densify it or be 

cured at low temperatures or using UV or infra red irradiation depending on the desired 

application. 
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Fig. 3: Scheme of the different stages of the spin coating process. 

The thickness of the films made by the spin coating method depends mainly on the rotation 

speed, time of spinning, viscosity and liquid concentration. It was modeled by Emslie, 

Bonner, and Peck (35) based on the balance between the centrifugal and viscous force. 

Assuming that the film is uniform, the time variation of the film thickness is given by: 
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where  is the film thickness at zero time, and K is a system constant defined as: 0h
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where ρ  is the liquid density, ω  is the rotation rate, and η  is the viscosity of the solution. 

Both viscosity and density are expected to increase as the solvent evaporation progresses, so 

that the film thinning will be an important factor. The thinning rate is given by: 

 32
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The effect of solvent evaporation was discussed by Meyerhofer (36) who added a constant 

evaporation term, e, to the above equation: 

 32
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= − −  [5] 
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By assuming that the evaporation rate and the viscous flow rate become equal and that the air 

flow above the spinning substrate is laminar, Meyerhofer predicted that the final thickness is 

given by: 
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where c  is the solid concentration in the solution, and  is related to the spinning speed as: 0 e

 e C ω=  [7] 

The proportionality constant C depends on the experiment conditions. 

As shown above the evaporation rate and the flow process are critical in determining the film 

thickness and the coating quality. Other factors may affect the quality of the coatings which 

may formed like the orange peel appearance (37), striations, chuk marks and Marangoni-

effect (34). Like the dip coating method the spin coating is sensitive to ambient environment 

(temperature changes, humidity). 

Sintering process 

Sol-gel coatings are typically sintered by heat treatments at high temperatures (normally 

500°C) or cured at low temperatures (T< 200°C), using IR or UV irradiation in order to make 

more compact and smoother surfaces. The sintering process leads to a decrease of the film 

thickness due to the removal of the solvents (80- 250 °C), the combustion of the organic 

materials (250-300 °C) and the reduction of the porosity (T > 300 °C). However the thickness 

of the film may also increase at high temperatures due to the growth of the crystallites. The 

heating rate is an important factor affecting the growth of the layer in certain systems. 

The sintering atmosphere is playing a decisive factor on the physical and chemical properties 

of the deposited films. In certain cases the electrical and the optical properties of coatings are 

enhanced when the sintering process is performed in vacuum or in the presence of protective 

gases. For example, a TiO2 film backed in air at 500°C has an index of refraction of 2.1; 

however the same film has an index of 2.4 if the backing is performed in vacuum (38). Steckl 

et al (39) studied the effect of ambient atmosphere in the annealing of indium tin oxide films. 

A reduction in the sheet resistance and increase in the infrared reflection of transparent 

conducting ITO thin films were observed when the films were annealed in inert or reducing 

atmosphere. 

In certain cases surface treatments of thin films are extremely important to improve some 

properties of the coatings. The common surface treatments methods are plasma treatment and 

UV-irradiation. For example, a SF6 plasma and UV-irradiation treatment of indium tin oxide 

surface has improved the power efficiency and the stability of the organic light emitting diode 

(40, 41). Surface treatment reaction may involve changes in the surface structure as well as in 

the surface chemical composition. 
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2.3 Transparent conducting coatings 

Because of the simultaneous combination of high electrical conductivity and high 

transparency in the visible region, transparent conductive films are very interesting materials 

and have today a great importance in a wide range of applications. 

There are a variety of materials which exhibit both properties. Beside the transparent 

conducting oxides which are discussed in details in the next section, two other groups of 

materials, very thin metallic films (silver, gold, copper) and conducting polymers 

(polyaniliene, polypyrole, PEDT), can be used for this purpose. 

Metallic thin films: Thin conductive metallic film are used for the fabrication of 

microelectronic devices and even recently for low-E window panes. Typical materials are 

gold, aluminum, silver and copper. Most materials are deposited via physical (PVD) or 

chemical (CVD) vapor deposition methods. The transparency and the conductivity of the 

metallic films are strongly dependent on the film thickness. To reach a high transparency, 

ultrathin films (h ∼ 10 nm) should be deposited; however the resistivity of such films may be 

high as the films often consist of isolated islands and are consequently discontinuous (42). 

The resistivity rapidly decreases when the thickness of the film increases as continuous films 

are formed. 

Conducting polymers: Polymers find a widespread use as structural and functional materials. 

The development of intrinsically conducting polymers is driven by the hope to replace the 

inorganic conductors used in electronic devices (43). The most important conducting 

polymers which has been developed in the past 20 years are those based on polyanilines, 

polypyrroles, polythiophenes, polyphenylenes, and poly(p-phenylene vinylene)s compounds 

(43-45). The conductivity of these polymers is due to the extended π -conjugated system 

which is formed by the overlap of carbon Pz orbitals and alternating carbon-carbon bond 

lengths along the polymer chain. These polymers become conductive upon exposure to acids 

or adequate oxidation or reduction (called doping) carried out by chemical or electrochemical 

means. 

A low sheet resistance of conductive polymers requires a thick layer. For example a 

conductive polymer core-shell system (46) consisting of polyurethane particles surrounded 

with polypyrrole shows antistatic properties with sheet resistance around 108 Ω   for a 

thickness of 100 nm. Lower sheet resistance of 104 Ω  is achieved for layer thickness 

between 2000 and 5000 nm. However the increases of the layer thickness lower the optical 

transmittance of the layer from 85% (at 100 nm) down to 40% at 1000 nm. 

Conducting polymers are used in many applications, as antistatic coating for cathode ray 

tubes (47), primers for electrostatic spray coating (48), hole injection layer on ITO substrates 

for organic electroluminsce devices (49), in sensors devices (50), and as transparent electrode 

for photovoltaic devices (51). 

 



Chapter 2 Fundamentals 15

2.4 Transparent conducting oxides (TCO) 

Transparent conducting oxides (TCO) are the most common used materials to produce 

transparent conducting films. They are essentially based on In2O3, SnO2, ZnO, CdO, etc. 

These materials are usually insulators and have a wide band gap (Eg > 3 eV), so that they 

show an excellent transparency in the visible region. To get them conducting 

nonstoichiometry and/or appropriate dopants, like Sn for In2O3, Sb, F for SnO2, Al, Ga for 

ZnO, etc., should be introduced in order to create an electron degeneracy in the wide band gap 

(52). 

The number of products and technologies that used these materials on a variety of substrates 

(glass, plastic, ceramic, metal, etc.) is growing tremendously. TCO thin films can now widely 

utilized for optoelectronic devices, such as flat panel displays, thin film transistors, 

electroluminescent devices, heat reflectors, gas sensors, organic light emitting diodes, solar 

cells and variety of other significant applications in demisting and deicing glass for 

automotive, train and aircraft (52-59). 

2.4.1 Transparent semiconducting materials 

a) Tin oxide 

Tin oxide (SnO2) is the first transparent conductor to have received significant attraction and 

commercialization. It is an n-type, wide band gap semiconductor (Eg = 3.97 eV) with a 

transmittance cut off at 330 nm, a refractive index in the visible spectral range of about 2.0 

and it is chemically stable (60, 61). It is largely used as a transparent conductive layer for 

ovens and electrodes (58, 62), in the fabrication of gas sensor devices (63), white pigmented 

conductive paint coatings (64), and as active catalyst for the partial oxidation and the amino 

oxidation of olefins (65).  

Tin oxide has a tetragonal (rutile) structure (66, 67). Each tin atom is at the center of six 

oxygen atoms placed approximately at the corners of a regular octahedron and every oxygen 

atom is surrounded by three tin atoms located approximately at the centers of an equilateral 

triangle. 

SnO2 is an insulator or at most an ionic conductor, when it is stoichiometric. The formation of 

oxygen vacancies in the lattice, e.g. by heating the material in a reducing atmosphere leads to 

a nonstoichiometric state and gives rise to free electrons and make this material conductive; 

however this nonstochiometry is metastable. Stable conductivity of the SnO2 thin films is 

generally obtained by doping the coating with fluorine ions (68, 69), antimony (70, 71), or 

boron (72). This doping is done by controlling the valence mechanism, whereas the dopant 

should be either a higher valency cation (e.g Sb5+) or a lower valency anion (e.g F -) than tin 

providing additional electrons to the semiconducting material. 

Fluorine doped tin oxide (FTO) is the most effective dopant due to its smaller ionic radius 

compared with that of oxygen. Fluorine doped tin oxide material has the rutile structure with 

no changes in the lattice parameters. FTO layers have generally a higher mobility than pure 
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tin oxide materials (73). The lowest electrical resistivity of doped tin oxide thin film is in the 

range of 10-3 Ω.cm and the transparency is in the range of 80-90 %. 

Many deposition techniques were used to get tin oxide film: spray pyrolysis (68, 69, 74), 

CVD (9), sputtering (75), evaporation (76) and also sol gel deposition methods (77-82). 

b) Indium oxide 

Indium oxide (In2O3) is the most widely used material for transparent conductive materials in 

technical applications due to its superior electrical properties, combined with high 

transparency and high infrared reflectivity. In2O3 exists in a modified cubic  crystallographic 

phase (space group Ia3) called the bixbyite structure (also called c-type rare earth oxide 

structure) with two non-equivalent In sites (Fig. 4), 16 molecules (80 atoms) per unit cell and 

a lattice constant of 1.012 nm (58, 83). 

 

Fig. 4: Crystal structure of In2O3. 

The band structure of In2O3 is highly complicated. To explain the conductivity mechanism 

Hamberg and Granqvist (84) have assumed a simple parabolic band structure characterized by 

an effective mass  for the conduction band and cm∗
vm∗  for the valence band with a direct band 

gap of 3.75 eV. 

In2O3 is a poor conductive material when it is stoichiometric. The conductivity is enhanced 

strongly by a reducing treatment or by doping the lattice by an appropriate dopant such as Sn. 

The reducing process of indium oxide material creates oxygen vacancies, each one leaving 

two extra electrons in the lattice. The donor state lies just below the conduction band. High 

electron concentration (1017- 1020 cm-3) can be achieved with an oxygen deficiency (e.g., 

In2O3-x) or an excess metal atoms (e.g. In2+yO3). 

The doping process leads to controlled valence semiconductors. The replacement of indium 

by higher valence cations such as aluminum, titanium, zinc, zirconium, germanium(85-88) 

and tin increases the n-type conductivity, however the last compound being the most popular. 

In Tin doped indium oxide (ITO) Sn replaces the In3+ atom in the cubic bixbyte structure 

(substitutional doping). An Sn atom forms an interstitial bond with oxygen and exists either as 

SnO (valence +2) or SnO2, (valence +4). The valence state has a decisive effect on the 

ultimate conductivity of ITO. The low valence state, Sn+2, acts as a trap for the charge carriers 

and therefore reduces the electrical conductivity (lower concentration of free electrons). On 
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the other hand Sn4+ act as a n-type donor releasing one free electron to the conduction band. 

Actually both substitutional Sn4+ and oxygen vacancies contribute to the high conductivity 

and the chemical formula of the material can be represented as In2-xSnxO3-2x. ITO films have a 

lattice parameter close to that of indium oxide and lies in the range of 1.012 to 1.0131 nm 

(83). 

The high conductivity of ITO films is due to the high carrier concentration rather than to the 

high Hall mobility (52). The observed low mobility of ITO, compared to that of bulk In2O3 

and its dependence on carrier concentration and deposition temperature has been explained in 

terms of scattering mechanisms due to ionized impurities or grain boundaries. The high 

crystallinity degree obtained by depositing the film at high temperature enhances the mobility 

of the films (89). 

The high optical transmittance of ITO films is a direct consequence of the wide band gap of 

the semiconductor. The direct band gap ranges from 3.5 to 4.1 eV so that the fundamental 

absorption edge lies in the ultraviolet region. It shifts to shorter wavelengths with increasing 

the carrier concentrations, n due to the so-called Moss-Burstein shift (90). The transmittance 

of ITO films is also influenced by the surface roughness and optical inhomogeneity in the 

direction normal to the film surface. 

ITO thin films have been obtained using many deposition techniques such as spray pyrolysis 

(20, 91), ion beam pulsed laser deposition (92-94), sol-gel deposition techniques (95-98) and 

sputtering. The latter technique being the most extensively used. Their structural, optical, 

electrical and mechanical properties have been discussed in many reports (99-102). 

ITO coatings are used as transparent heating elements for aircraft and car windows, antistatic 

coatings over electronic instrument display panels, heat reflecting mirrors, antireflection 

coatings and even in high temperature gas sensors. Many electrooptic devices such as display 

devices, solar cells, light emitting and photo diodes, photo transistors and lasers use ITO 

coatings as electrodes. ITO is therefore becoming an integral part of modern electronic 

technology and the improvement of its properties remains the focus of many researches 

worldwide (52, 57, 58, 103-108). 

c) Zinc Oxide 

Zinc oxide (ZnO) is also an important material which is used in many field of applications. It 

is an n-type semiconductor with poor electrical conductivity in its pure state and has a direct 

band gap of about 3.2 eV. Doped zinc oxide films are extensively studied, since their high 

optical transmission and electrical conduction have great potential for application in photo- 

electronic devices such as solar cells and displays (109), and as low emissivity coatings in 

windows. 

Zinc oxide is a tetrahedrally coordinated solid that crystallizes in the wurtzite structure. The 

electrical conductivity of intrinsic ZnO materials is mainly due to an excess of zinc at 

interstitial positions. The electrical properties of zinc oxide materials can be improved by 

thermal treatment in hydrogen, or by an appropriate doping process, by cationic substitution, 
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such as Al, Ga, Si, Ge, Ti, Zr or Hf (84, 110, 111), the last two elements being the best ones. 

This is attributed to the fact that the ion radius of Al3+ and Ga3+ is slightly smaller than that of 

Zn2+, in comparison to other impurities. 

ZnO films have been prepared by many techniques such as reactive evaporation (109), 

sputtering (112, 113), spray pyrolysis (114) and also by sol-gel methods (115). 

d) Other transparent conductive materials 

With the increase in demand for transparent electrodes for various optoelectronic devices, the 

need to develop new materials bearing these properties is becoming a very interesting and 

attractive issue for many researchers. Although In2O3:Sn (ITO), SnO2:F (FTO) and ZnO:Al 

(AZO) are the most commonly used materials at present, they often have limited applications 

due to their chemical instability, lack of corrosion resistance, poor adhesion under various 

environments. New transparent conducting materials have been already prepared, such as 

MgIn2O4, In2O3:Mo, CdO:In, Cd2SnO4, new ternary ZnO-V2O5 and p-type conductors 

(110, 116-122). 

p-type semiconductors are interesting materials, which have been recently investigated. When 

compared to n-type semiconductors, they show a lower conductivity for the same 

transparency because of the smaller mobilities of the charge carriers. Several types of p-type 

semiconductors have been prepared recently in the CuAlO2 and SrCu2O2 family (118). Tate et 

al (122) have prepared p-type oxides exhibiting conductivity and transparency high enough to 

turn them useful in the manufacture of transparent p-n junction diodes and other transparent 

devices. 

2.4.2 Electrical properties 

Transparent conducting oxides obey the Drude free electron theory (123). The basis of the 

conduction mechanisms of these materials is discussed in this section. 

Electrical conductivity occurs through the moving of electrical charges (electron, holes and 

ions) due to an applied electric field. The electrical conductivity of an n-type material, σ , the 

reciprocal of the resistivity, ρ is defined as the product of the number of charge carriers, n, the 

electric charge, e, and the charge mobility, µ  (124). 

 1 neσ ρ −= = µ  [8] 

From the above equation it is clear that for obtaining a high conductivity, it is important to 

have simultaneously a high concentration of the electrons and a high mobility. 

The electrical sheet resistance of the film R, is a good index to evaluate the electrical 

properties of conductive films. The sheet resistance describes the resistance of a square layer 

area. It is usually carried out using the four point technique (see Appendix A.2.1). The 

relation between R and ρ is calculated by knowing the thickness of the film as: 

 /R tρ=  [9] 
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For a given specific resistivity the sheet resistance R□ decreases as the film thickness, t, 

increases. The experimental determination of ρ, R□, n and µ are discussed in Appendix A.3.2. 

Charge carriers concentration 

A high charge carrier concentration in these materials can be achieved by two ways: 

a) Stoichiometry: A high electron concentration can be achieved by a stoichiometric 

deviation owing to oxygen deficiency, e.g. In2O3-x or to an excess of metal atoms, e.g. 

In2+yO3. The oxygen deficiency can be achieved by removing the oxygen atoms during a 

reducing treatment leaving two electrons in the lattice, and the material can be described, 

using standard notation, as (58) 

 ´
2 3 `2( )x O x xIn O V e−

ii  [10] 

where x is normally less than 0.01. V  denotes doubly charged oxygen vacancies and 

denotes electrons which are needed for charge neutrality on the macroscopic scale. 

O

ii

´e

When the concentration of the positively charged oxygen vacancies is high, they become a 

site for electron trapping. This results in a reduction of the number of charge carriers and to a 

lower conductivity (84, 85). 

Nonstoichiometry in SnO2 can also be achieved by creating oxygen vacancies. A 

nonstochiometric oxide  is formed by combining x moles of SnO with 1-x mole 

of SnO

4 2 2
1 x xSn Sn O+ +
− 2 x

−
−

2. The material contains x mole of oxygen vacancies and x moles of Sn2+ free to donate 

2x moles of electrons contributing to the conduction process (52). 

b) Doping: Dopants are substitutive materials (cations or anions) which are added into the 

host lattice in order to create free charge carriers and enhance the electrical conductivity. 

There are several requirements (85) that should be taken into consideration when choosing an 

appropriate doping material: 

1- The doping cation should posses a higher valence than that of the host metal, for 

example Sn4+ to substitute In3+ in the indium oxide lattice. The replacement of metal 

atom with higher valency release a free electron which increase the n-type 

conductivity. When the dopant cations have a lower valence, then vacancies will be 

produced that act as an electric trap in the lattice and therefore the electrical 

conductivity decreases. On the otherside a doping anion possessing a lower valence 

than oxygen such as fluorine (F-) will contribute to increase the conductivity (e.g 

SnO2 : F). 

2- The diameter of the doping ion should be smaller or equal to the diameter of the host 

ion it substitutes, otherwise it acts as a scattering site. 

3- The doping oxide and the host oxide should not be able to form any compound or 

solid solutions with each other.  
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The dopant concentration can not exceed a critical value, which, where surpassed, decreases 

the electrical conductivity. The excess of dopants may occupy interstitial positions, may also 

form defects acting as carrier traps rather than electron donors and also be the concentration 

cause of phonon or impurity scattering centers and resulting in a decrease in charge carriers 

mobility and hence to a decrease in the electrical conductivity (52). 

Charge carriers mobility 

The mobility of the charge carriers is strongly influenced by the disorder in the crystal 

structure resulting from the modification of the crystalline periodicity as a result of doping. It 

is therefore strongly affected by the different scattering processes of free charge carriers. 

Scattering mechanisms 

a) Grain boundaries scattering: The grain boundaries in polycrystalline film play a very 

important role in the scattering mechanism. These boundaries contain fairly high densities of 

interface states which can trap free carriers from the bulk of the grain (58). The interface state 

results in a space charge region where potential barriers impede the charge transport. A model 

for the charge transport mechanism was proposed by Petritz (125) and modified by Seto (126) 

assuming thermoionic emission and a conduction through the grain boundary. It was found 

that: 

 
1

2(2 ) exp b
g

e
el m kT

kT

φµ π
−∗ = 

 
−   [11] 

where  is the grain size,  is the effective mass of the charge carrier, and l m∗
bφ  is the 

boundary potential barrier. A smaller grain boundary scattering is observed in films 

possessing larger grains which exhibit smaller grain boundary potential, bφ . The grain size 

depends on the deposition process, the substrate temperature and was also found to increases 

with increasing the film thickness. The growth of the grain obtained by raising the annealing 

temperature results in lower value of the grain boundary and, consequently, to an increase of 

the mobility of charge carriers.(127). 

b) Ionized impurity scattering : This kind of scattering is very effective for charge carriers, 

because of the electrostatic field of the charged impurities. As shown in some models of 

degenerate semiconductors, the contribution of the ionized impurity scattering is given by 

(128): 

 2 34
n

3
i

e

h

πµ − =  
 

i  [12] 

where ni is the impurity concentration. The mobility therefore decreases with concentration of 

impurities. 
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c) Lattice scattering: The lattice vibration of the material is the cause of an electron phonon 

scattering due to the propagation of acoustical and optical waves through the lattice. The 

mobility due to this kind of scattering depends strongly on the temperature. The increase of 

the temperature increase the lattice vibration and hence decreases the mobility of the charge 

carriers. The mobility due to lattice scattering can be expressed as (20): 

 5 / 2

1/ 2 4

3/ 2

(8 )

3 ( )
L

L

e C

E m kT

πµ
∗

=  [13] 

where C is the elastic constant and EL is the shift of the edge of the conduction band with 

temperature per unit dilation. 

Electron-electron scattering: This scattering mechanism has a little effect on the mobility of 

the charge carriers, because the total momentum is not changed during electron collisions. 

The total mobility, µT due to the different scattering sources can be written as the reciprocal 

sum of , , ,g i L e eµ µ µ µ − , etc. (20): 

 
1 1 1 1 1

T g i L e eµ µ µ µ µ −

≈ + + + +⋅⋅⋅⋅⋅⋅  [14] 

The contribution of all the scattering processes to the mobility of the charge carriers depend 

mainly on the deposition method, the deposition rate and on the substrate temperature. For 

example, Chang et al (113) found that the ion impurity scattering is the dominant factor to 

explain the decrease of the conductivity of Al-doped zinc oxide thin films deposited by rf 

reactive magnetron sputtering. He found also that the scattering increases by increasing the 

deposition temperature of the film. Liu et al (129) found that the scattering due to the grain 

boundary is the dominant factor to explain the decrease of the electron mobility of ITO films 

deposited on glass substrate using the sol-gel dip coating method. An increase of the film 

thickness was found to increase the mobility of the charge carriers: a 10-layers dip coated ITO 

thin films shows a higher mobility than a 3-layer films (130). 

2.4.3 Optical Properties 

 The optical properties of TCO materials, like the electrical ones, depend on the deposition 

methods, their microstructure, the impurity concentration, the annealing temperature and on 

their surface morphology. They are strongly correlated to the electrical properties and can be 

understood on the basis of the Drude’s theory for free electron (123). 

The interaction of free electrons with an electromagnetic field influences the relative 

permittivity, ε, of the material. 

  [15] 2(i n ikε ε ε′ ′′≡ − = − )

where  and  are the refractive index and the extinction coefficient of the material 

respectively. The permittivity is a frequency dependent function and can be written as (131): 

n k
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where  are the effective mass, charge and density of the electrons, respectively, , , nm e∗

2 cπω
λ

=  is the circular frequency, ε∞  is the high frequency dielectric constant and  is equal 

to 

γ

1/τ , where τ  is a frequency independent relaxation time, i.e. the mean time between 

successive electron collision. Then ε ′  and ε ′′  can be written as: 
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where pω  is the plasma circular frequency given by: 

 
1

2 2
0(n / )p e mω ε ε ∗

∞=  [18] 

where 0ε  = 8.854x10-12 As/Vm is the permittivity of free space. Finally the equation [16] can 

be rewritten as: 
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+ +  
 [19] 

From the Maxwell equations the relative permittivity can be related to the complex resistivity 

ρ  by (132): 

 
0

( )
( )

iε ω ε
ε ωρ ω∞= −  [20] 

so that from equations 17 and 19, ( )ρ ω  can be derived as: 

 
2

0

( )
p

iγ ωρ ω
ε ε ω∞

+
=  [21] 

At zero frequency (long wavelength), the real part of the resistivity, ρ  is defined as:  

 
2

0

1

n pe

γρ
µ ε ε ω∞

= =  [22] 

Therefore the relation between µ  and γ  is: 

 
e

m
γ

µ∗=  [23] 



Chapter 2 Fundamentals 23

The mobility, µ , is the drift velocity of the conduction electrons in a material per unit of 

applied electric field and is therefore related to the average relaxation time <τ > = 1γ − . 

The wavelength dependence of the optical properties of the material can be classified into 

three regions: 

1) high frequency (short wavelength), with ,pω ω γ> (transparent region). 

Using this approximation, equation [19] can be written as: 
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ε ω ε
ω ω∞
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In this limit the refractive index and the extinction coefficient take the following forms: 
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The behavior of the material is therefore that of a dielectric, where k  and the refractive 

index approaches 

0→
1/ 2ε∞ . 

2) Low frequency (long wavelength), with ,pω ω γ<  (reflecting region). 

In this region equation [19] can be approximated as: 
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ω ω

ε ω ε
γ γω∞

 
= − − 

  
 [26] 

Taking the square root of ( )ε ω  and using the identity 4
1

2

i i
i e

π +
= = , we see that: 

 ( ) ( )
2

pn k
εω ω ω
ωγ

∞≈  [27] 

The normal reflectance can be written as (133): 

 
2 2

2

( 1)
( )

( 1)

n
R

n k
ω

2

k− +
=

+ +
 [28] 

In the low frequency limit, equation [28] can be approximated by: 

 1/ 2
0

2
( ) 1 1 2(2 )

( )
R

k
ω

ω
≈ − ≈ − ρωε  [29] 

This equation shows that the material behaves like a perfect reflector for 0ω → . 
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At low frequency, the optical properties of TCO materials exhibit a metal-like behavior, while 

at high frequency they are like those of insulators. The plasma frequency, pω , is therefore the 

characteristic frequency at which the material changes from a metallic to a dielectric response 

and it depends on the concentration of free electrons as shown in equation [18]. 

3) Intermediate region pω ω γ> >  (reflecting region) 

In this region, equation [19] can be written as: 
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i
ω ω γ

ε ω ε
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= − − 

  
 [30] 

so that 
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2
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The refractive index reaches a minimum at pω ω=  and the extinction coefficient decreases 

rapidly for pω ω> . In this region equation [28] can be approximated to: 

 
1/ 2

2
1

p

R
γ

ω ε∞

= −  [32] 

This equation indicates that the higher the plasma frequency is (shorter plasma wavelength), 

the highest reflectance of the material is. 

Fig. 5 shows a typical T,R curve for commercial sputtered ITO layer on glass substrates. The 

reflection decreases and the transmission is high at high frequency and the coating behaves 

like a dielectric. In the intermediate region the free carrier absorption becomes important and 

the reflection starts to increase rapidly. A high reflection is observed for pω ω< . The plasma 

frequency has been defined as the cut-off frequency (transmittance = reflectance) (134), and 

some where else as the frequency at the minimum resistivity (58) (see Fig. 5). 

Hamberg and Granqvist have studied a quantitative model to determine the dielectric function 

of ITO films from the spectrophotmetric data (T, R) by combining the Drude free electron 

model with the effect of valence electrons and phonons. Brewer et al (135) also have used the 

reflectance data of ITO films to determine the plasma frequency using the the Drude free 

electron model, the dielectric function of ITO and the two- and three-phase Frensel equations 

for reflectance. 
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Fig. 5: Typical transmission and reflection spectrum of a commercial sputtered ITO layer (TEC 8). 

Optical properties near the band gap: 

At short wavelengths, light is strongly absorbed due to the forbidden band. The absorption 

coefficient, α, can be determined from the expression (136): 

 
1

exp( )
R

h
T

α−
=  [33] 

where T, R and  are the transmittance, reflectance and the thickness of the film, 

respectively. The variation of the absorption coefficient with the photon energy for different 

band to band transition is given by (137): 

h

  [34] (h )x

gA Eα ν= −

where hν  is the photon energy, gE  is the band gap energy (the difference between the 

conduction band and the valence band), A is a constant and the value of x  is ½ for allowed 

transition and 3/2 for the forbidden transition. The energy gap for allowed transition can be 

determined from the plot of 2α  versus the photon energy by extrapolation the linear portion 

of the curve to zero absorption. 

The value of the direct band gap shifts to higher value, when the charge carrier concentration 

increases, according to the Burstein-Moss (BM) theory (138). However, in a more complete 

theory one also has to include a band gap narrowing due to the electron-electron and electron-

impurity scattering (84). 

2.4.4 Application of transparent conducting oxides 

The application areas of transparent conducting oxides are widespread. Different values of 

sheet resistance are needed to match each application. Table 1 shows some examples: 
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Table 2: Application of TCO materials and their electric requirements 

Application Required sheet resistance  

Optoelectronics 

Shielding 

Electrostatic coating

Antistatic 

very low to medium: < 102 Ω  

low: 100- 101 Ω  

medium to high: 102- 104 Ω  

high: 106- 109 Ω  

 

There is therefore no unique material which matches all the industrial demands. Moreover 

other criteria (139) also influence the choice of the transparent conducting materials to be 

used. Among them it can be mentioned the transparency, the value of the plasma frequency, 

the work function, the thermal stability, the mechanical and chemical durability, the etching 

capability, the deposition temperature, the toxicity and also the cost of the material. Some of 

the most important applications are discussed in the next section. 

a) Low-emisivity and Heat Mirror Coatings 

Low emissivity coatings, as well as heat mirror coatings, reduce the heat transfer through 

windows. They reflect the external heat in the summer months and retains the internal heat 

during winter months. These features can be achieved using low resistivity TC materials 

which transmit the visible spectrum and reflect the long wave thermal radiation. This 

application needs highly conductive coatings (105). In hot environment a short plasma 

wavelength ( 1p mλ µ≤ ) is required, but in cold environment fairly long plasma wavelength 

2p mλ µ≥  is sufficient. There is also an increasing interest for this kind of coatings in the 

fields of solar cells, fire protection glass, glazing car windows for avoiding dew and frost 

formation, to save the energy required to heat the filament of incandescent lamps and 

reducing the unwanted heat radiation (52, 62, 103). Very thin layer of silver and FTO layers 

are to be used broadly for heat insulated glasses (103). 

b) Electromagnetic radiation shielding 

Electromagnetic (EM) radiation in the frequency range from a few GHz to hundreds of MHz 

is emitted from many sources and may cause many kinds of damage. Conductive coatings aim 

to attenuate these radiations and are required e.g. for medical equipments, computer screens 

and for high frequency operated equipments. The shielding efficiency (SE) is measured in 

decibels as: 

 
incident intensity

10log ( )
transmitted intensity

SE dB=  [35] 

It depends on the sheet resistance of the coating, the type of the source of the radiation and its 

distance to the shielding layer. For far field (d > λ/2π) it is estimated as (103): 
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where  is the wave resistance of the vacuum (0z 0 377z = Ω ) and R  is the sheet resistance of 

the coating. The above equation shows that the lower the sheet resistance is, the higher is the 

shielding efficiency. ITO coatings are the most widely used material to achieve this purpose 

(140). 

c) Transparent electrodes 

Transparent conducting layers are used as transparent hole injection electrodes in many 

devices. Typical applications are: liquid crystal displays (LCD), plasma displays panel (PDP), 

window panes with controllable transmittance based on the use of liquid crystals, photovoltaic 

modules, electrochromic cells and light emitting diodes, etc. Etching is a very important 

factor to obtain patterned electrodes (5, 57, 106, 107, 141-144). 

ITO, FTO and AZO are the most widely used materials for transparent electrodes, but 

recently, silver-based layer systems have also been used. Modern display electrodes need a 

high transparency (> 90 %) and sheet resistance smaller than 5 Ω  (145), which is difficult to 

be obtained using TCO materials. The low chemical and mechanical resistance of silver based 

layers restrict their use. 

d) Touch panel controls 

Touch panels or touch screens are optoelectronic devices in which an electrical contact 

(switch) is established by bringing together mechanically two conducting panes. Transparent 

switches are used as electronic keyboards to operate electrical and electronic devices and 

machines in air traffic and railway control terminals, in automatic ticket-vending machines 

and in household appliances (103). Coatings deposited on thin glass foils with sheet resistance 

smaller than 1 k Ω  and transmittance greater than 80 % are required for these applications. 

Low cost transparent conducting materials with high mechanical durability and easily etched 

are good choices for these applications. 

e) Electrostatic and antistatic coatings 

Glasses and plastics are electric insulators and their surface can be easily electrically charged 

by rubbing and when exposed to high-energy radiation. When these surfaces are touched by 

hand, high frequency voltage peaks of several kilovolts can be produced which may cause 

damage to high-cost electronic components or even fire and explosions leading to potentially 

serious accidents. In addition, the accumulation of dusts from the atmosphere on insulating 

surfaces is particularly undesirable in rooms subject to high hygienic standards. 

Electrically conducting coatings can easily remove the electric charges from a surface and 

prevent also the accumulation of dust. Sheet resistance in the range of MΩ□ is enough to 

prevent the dust accumulation on the surfaces. However a sheet resistance 10R k≤ Ω  is 

usually required to remove electric charges (103). Chemical and mechanical stability are also 
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important factors to be taken into consideration. The antistatic coatings can be combined with 

antireflection and antiglare properties. Antistatic coatings are used in cathode ray tubes, in 

television tubes, computer displays, to coat food and drug containers and the walls and floors 

of clean rooms, to shield plastic displays windows and other plastic components that are 

suspected to lint and particulates build up and to coat plastic components of equipment used 

to handle microchips and other static sensitive devices (64). 

f) Gas sensors 

The changes in the conductivity of transparent conducting materials when exposed to certain 

gases make them interesting devices to detect hazardous gases (gas-sensing devices). ZnO 

and SnO2 are widely used as sensing materials (146, 147). The sensitivity is related to the 

conduction mechanism of these materials, which is on the other hand correlated with the 

intrinsic defects structure. The major problems related to these materials are the inherently 

poor selectivity, the decrease in sensitivity and the degradation of their performance over a 

long period of operation (146). 

2.5 Coatings deposited at low temperatures 

The substrate temperature used during the deposition process and the post annealing 

treatments have a significant effect on the surface structure, morphology, microstructure, 

optical, electrical, and mechanical properties of the coatings. A high deposition or sintering 

temperature is usually necessary to crystallize many inorganic thin films. Wet chemical 

deposition methods usually require either hot substrates (T > 400°C- spray pyrolysis) or 

substrates which can be heated to high temperature after the deposition (sol-gel methods). 

These processes are therefore only adequate to coat substrates thermally stable at high 

temperatures such as ceramics and glasses (8). 

There is however today a great interest to coat materials and devices which do not withstand 

high temperature such as preformed glasses or plastic substrates and also to lower the cost of 

energy required to heat the substrates in conventional deposition methods. The deposition of 

inorganic coatings onto these kind of substrates using sols adequate for high temperature 

process results usually in either a non-adherent layer or a soft surface that is easily scratched, 

so that new concepts are required. 

Coatings on Polymeric substrates 

Plastic materials are today very common and used for containers, packaging, building 

materials, cloths, contact lenses, medical implants, etc. Their importance is growing due to 

benefits in forming and processing. They are also promising to substitute glass in many fields, 

because they are durable, cheap, safe (unbreakable), have a high flexibility, light weight and 

have little or no corrosion problems. Despite of their positive properties they have also several 

disadvantages which limit their application such as poor temperature stability, poor abrasion 

and scratch resistance, high sensitivity to UV radiation, high permeability for water vapor and 

oxygen and high fatigue when stressed. 
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Improvement of these properties by depositing a functional coating on their surface is the aim 

of many researches, especially for outdoor application where the abrasion resistance and the 

UV stability play an important role. Because of their poor thermal stability, the deposition 

techniques available to coat plastic substrates are therefore limited. 

The surface properties of polymers are determined by their chemical composition and the 

differences between them are more significant than those of inorganic glasses and moreover 

they vary with the preparation conditions and aging. The most common plastics are made of 

long chains carbon atoms. Some of the most significant plastics and their structures are listed 

in Table 3 (11). 

Table 3: Structure of some plastic materials 

Material Structure 

Polystyrene (PS) 
CC

H

H

H

 
Polyethylene (PE) 

CC
H

H

H

H  
Polycarbonate (PC) 

C

CH3

CH3

O C O

O

 
Polymethyl methcrylate (PMMA) 

CC
H

H
C

O
O

CH3

CH3

 
Polyvinyl chloride (PVC) 

CC
H

H

H

Cl  

Cleaning the plastic substrates before coating is a difficult task because of their poor 

mechanical stability. In most cases, special surface pretreatments should be done to increase 

the free surface energy to obtain a good coating adhesion and mechanical durability. Such 

process include flame, plasma, corona, chemical, UV-irradiation or the deposition of an 

adhesion promoting primer. These processes generally roughen the surface of plastics and 

remove part of a weakly bound layer present on the top surface which alter the surface 

chemistry of the surface. The surface pretreatment processes to be applied depend 

significantly on the type of the substrates, the type of the coating material to be deposited and 

also on the deposition method. For example, PMMA can be modified by a DC cathode 

sputtering and water-reactive gas mixture to restructure the surface polymer to ease the 
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deposition of thin films by evaporating technique. However, in the case of PC substrate, a 

light argon-ion treatment using a plasma source is sufficient to activate the surface of the 

substrate (148). 

For many application the plastic substrates need to be coated to obtain the required properties, 

e.g. antistatic, abrasion resistance, antireflection etc.. Processes like magnetron activated 

deposition, hollow cathode activated deposition and pulsed magnetron sputter deposition 

process (149) have been developed to coat such substrates with hard optical coatings. The 

introduction of reactive gas into the chamber or the production of a plasma close to the 

substrate enhance the layers properties. Low temperature arc vapor deposition (LTAVD) 

method (150) has been developed to coat plastic substrates with thick conducting and 

semiconducting materials with enhanced adhesion by generating a large flux of energetic ions 

even at 25 °C. 

The most used materials required to modify the surface characteristics are inorganic-organic 

materials based on the processing of metal alkoxide and organosiloxanes by the sol-gel 

method (28, 151), and can be cured thermally at low temperatures (152, 153) or by UV-

irradiation (19, 154). These materials form a cross-linked Me-O-Me inorganic backbone 

providing high abrasion resistance and the polymerization of the organic network offers better 

adhesion and impact toughness. When other inorganic compounds are added to the sol, 

additional functions such as nonlinear optical properties (155), antifogging, low energy 

coating materials (156), antistatic - antiglare (18, 157, 158) can be obtained. 

2.6 Nanostructured Materials Technology 

2.6.1 Introduction 

Nanometer sized particles have unusual mechanical, optical, magnetic and electrical 

properties that make them of interest for novel applications. There is no universally agreed 

definition of a nanoparticle, However most research groups consider that particles with at 

least one dimension smaller than 100 nm are nanoparticles and those with dimension in the 

range 100 nm < d < ~10 µm are called microparticles. The physical properties of the 

nanoparticles can vary significantly as the particle size changes (159). The specific properties 

of nanoparticles include (160, 161): dispersability in an immiscible phase, uniformity and fine 

grain size, extremely high specific surface area, control of the scattering of light, enhanced 

chemical activity of atoms and molecules at the interface, absorptive capabilities, 

microstructure control, transport properties of small domains and in pores, controlled 

electronic states of atoms etc. 

Due to these properties, nanoparticles have numerous commercial and technological 

applications (162-167). For instance, because of their very small size (20 times smaller than 

the wavelength of the visible light), they do not scatter light providing new perspectives for 

optical coatings (168). Their large specific area make them attractive to realize chemical or 

physical sensors for detecting the state of chemical reactions (169). Also these nanoparticles 
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demonstrate quantum effect resulting in material innovations in communication, data storage, 

non-linear optic or with special magnetic properties (170, 171). 

Many of these applications deal with dispersions or coatings with enhanced specific features. 

Much of the demand comes from the cosmetic and pharmaceutical industries (160, 172), 

where they show incredible commercial potential as for example to shield the skin from 

particularly damaging ultraviolet irradiation (173). In the field of medicine, magnetic 

nanoparticles found application particularly for the precise delivery of drugs to the exact 

target tissue by application of external magnetic fields (174). 

Various methods were used for synthesizing nanoparticles. The first development was made 

by Gleiter and Siegel (175, 176) by evaporation and condensation (nucleation and growth) in 

a subatmospheric inert-gas environment. This method, called gas phase synthesis, is similar to 

the physical vapour deposition (PVD), but instead of using a substrate, liquid nitrogen is used 

to condense the vaporized material. The disadvantages of this method are the high 

temperature processing, the difficulty to control the particle size and distribution and the low 

production rate. Various aerosol processing techniques have been then reported to improve 

the production yield of nanoparticles (177). These include synthesis by combustion flame, 

plasma, laser ablation, chemical vapor condensation, and plasma spray (178-182). 

The chemical synthesis of nanoparticles is a promising technique to produce nanomaterials 

via low temperature processes. The sol-gel process (discussed in the next section) can form 

nanoparticles starting with precursors of different composition and structure. The institute of 

new materials (INM) in Saarbruecken is one of the few research centers which succeeded to 

produce a broad range of nanoparticles like TiO2, Al2O3, BaTiO3, ITO, ATO, etc through this 

process. The new materials built with these nanoparticles have already found many industrial 

applications (183-189). 

2.6.2 Synthesis of nanomaterials via Sol-Gel technology 

The sol-gel process is a versatile solution process for making ceramic and glass materials. It 

involves the transition of a system from a colloidal suspension, called sol, into a solid "gel" 

phase. The precursors used in the preparation of the "sols" are usually inorganic metal salts or 

metal organic compounds such as metal alkoxides which are subjected to hydrolysis and 

polymeration reactions to form a colloidal suspension. By further processing (drying, heat 

treatment), ceramics or glass materials in a wide variety of forms can be obtained: ultra-fine 

powders, thin film coatings, ceramic fibers, microporous inorganic membranes, monolithic 

ceramics and glasses, or extremely porous aerogel materials (28, 190). This low-temperature 

process for synthesizing materials can be totally inorganic in nature or involve inorganic and 

organic parts and due to a reduction of the loss of volatile components it is a more 

environmental friendly process. 

The most commonly used precursors for sol-gel film formation are metal alkoxide (M(OR)z), 

where R stands for an alkyl group (CxH2x+1) and M for a metal. Normally, the alkoxides are 
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dissolved in alcohol and hydrolyzed by the addition of water under acidic or basic conditions, 

as in the following simplified example: 

 4 2 3( ) ( )M OR H O HO M OR ROH+ → − +  [37] 

The chemical reactivity of metal alkoxides is related to the R groups; the larger the R is, the 

slower is the hydrolysis. Condensation reactions involving the hydroxyl ligands produce 

polymeric species composed of M-O-M bonds, and in most cases, water or alcoholic by-

products as shown below: 

 3 4 3 3( ) ( ) ( ) ( )M OR OH M OR RO M O M OR ROH+ → − − +  [38] 

 3 3 32 ( ) ( ) ( ) 2M OR OH RO M O M OR H O→ − − +  [39] 

Drying and / or heating lead eventually to the formation of metal oxides. 

The sol-gel process is also a versatile technique for the preparation of crystalline 

nanopowders. The synthesis chemistry is very complex and controlled by a large number of 

parameters which were studied extensively (24, 70, 191-201). Among the advantages of this 

technique is the possibility to obtain raw materials with better sintering activities, more 

homogeneous powders in multicomponent systems and to tailor grain sizes and distribution 

(191). 

The emulsion and the precipitation routes  are the main nanoparticles sol-gel routes. In the 

former case, a sol-gel reaction is carried out in “mini” reactors containing a dispersed liquid 

phase in another one, such as an emulsion of water-in-oil (w/o) or oil-in-water (o/w). The 

stability of the emulsions are controlled by adjusting the interfacial tension of the two systems 

by using surface active additives (emulsifiers) (202). 

The chemical precipitation is a well established method for producing a large variety of 

nanoparticles. The process is a controlled growth technique, initiated by a nucleation step 

followed by the growth of the particles. Nucleation is the least understood step. Three main 

types occur in chemical precipitation (161): homogeneous, heterogeneous and secondary 

nucleation. The first one occurs in the absence of solid interface, the second one in the 

presence of foreign seed surfaces and the last one in the presence of solute particle’s interface. 

The dominance of each nucleation type varies with the precipitation conditions. After the 

nucleation process, the particles growth takes place and the kinetic of this process determines 

the structure and particle size distribution, a very important task. 

Normally crystals do not occur as discrete units but usually form clusters. The agglomeration 

of the particles during their growth can be avoided by controlling the thermodynamics of the 

interfaces either by restricting the reaction volume in the case of the microemulsion 

techniques or by controlling the surface energy of the particles by in-situ surface modification 

in the case of the controlled growth reaction, which provides steric repulsive forces between 

the particles. 
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2.6.3 Colloidal Suspension 

A colloidal suspension, as defined by Ostwald (203), is a system consisting of two phases, i.e. 

a continuous phase in which the other phase, containing entities having at least on the 1 to 

1000 nm length scale, is dispersed. The particles in the suspension undergo a Brownian 

motion and collide with each other. When they come close enough to each other, they stuck 

due to the Van der Waals attraction and aggregates are formed leading to phase separation. 

The aggregation of particles can be prevented or reduced by different mechanisms. 

Steric stabilization: The steric force is a repulsive force used to prevent the particle to come 

close to each other by attaching physically or chemically a surfactant or polymers to the 

surface of the particle. When two particles with their envelopes of organic chains approach 

each other, the chains in the gap between the particles lose its conformational entropy and 

resist a further approach as shown in Fig. 6 (204). This dispersion (or stabilization) repulsive 

force is a function of the surfactant coverage, the type of bond formed at the surface and the 

type of the solvent(205). 

 

Fig. 6: Nanoparticles dispersion via steric stabilization. 

Electrostatic Stabilization (double layer): The electric charging of the particle can arise from 

different mechanisms and can be manipulated and controlled by adjusting the suspension pH 

and by using suitable dispersants. This is done by measuring the so-called zeta potential. The 

particles charge is balanced by equal and opposite amount of charges carried by the ions in 

the surrounding liquid. These counter ions tend to cluster in diffuse clouds around the 

particles forming a so-called an electrical double layer (Fig. 7). The electrical potential drops 

off exponentially with the distance from the particle and reaches a uniform value in the 

solvent outside the diffuse double layer. The zeta potential is the voltage difference between a 

plane at short distance from the particle surface and the solvent beyond the double layer 

(206). 

When two particles come close together so that their double layers overlap, they repel each 

other. The strength of the electrostatic force depends on the zeta potential. If it is too small 

(typically less than about 25 mV), the repulsive force is not strong enough to overcome the 

Van der Waals attraction between the particles and they start to agglomerate. A high zeta 

potential prevents the particle-particle agglomeration and keeps the dispersion uniform and 

free flowing. Therefore, the goal in most formulations is to maximize the zeta potential. This 

is particularly important to produce high strength ceramic materials (207). 
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Fig. 7: The electrical double layer and the zeta potential (208). 

A well electrostatically stabilized sol can be used for ceramic processing or the deposition of 

coatings using the conventional sol-gel methods. However the transformation of sols to gels is 

the crucial point in the nanoprocessing (209). The removal of the electric charge from the 

stabilized sol leads to a very fast gelation process which is difficult to control and which result 

in a high concentration of defects and a broad size pores distribution. These pores could be 

eliminated by sintering the coatings at very high temperatures. 
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Chapter 3 

TCO coatings: state of the art 

This chapter presents an overview of the state of the art of TCO coatings deposited on both 

glass and polymeric substrates. The industry demand for TCO materials is continuously 

growing as such coatings are today essential components in numerous applications. The 

choice of TCO materials depends mainly on the specific requirements and for many of them a 

low resistivity and, simultaneously, a high transparency is mandatory. 

3.1 Transparent conducting coatings on glass substrates 

Glass is one of the most important industrial materials. Their properties can be changed by 

depositing specific coatings on their surface leading to new chemical, surface, mechanical, 

electrical and optical properties. Making glasses electrically conductive by depositing on their 

surface a TCO material and letting them at the same time retain their optical quality has 

opened many avenues for their application. Electrical resistivity, optical transmission, IR 

reflection, environmental and life time stability, structural and morphological properties of the 

surface, chemical resistance and etchability of the layers are among the most important 

required properties. 

Transparent conductive coatings have been deposited on glass substrates by vapor and wet 

chemical deposition methods. Each of these methods has its own advantages and 

disadvantages. The properties of such coatings have been studied extensively as a function of 

the deposition parameters for a variety of TCO materials such as oxides of cadmium, tin, 

indium, zinc and complex ternary and quarternary oxide compounds. 

3.1.1 Vapor deposition of TCO coatings on glass 

Sputtering  

It is the most extensively used method for obtaining high quality transparent conducting 

coatings. The deposition temperature of the substrate ranges from 30°C to 600°C and high 

quality films are obtained if the deposition rate is low. The TCO films obtained by this 

method require usually a post deposition heat treatment under protective atmosphere in order 

to enhance their electrical conductivity. 

The properties of sputtered TCO films are controlled by many parameters. Bhagwat et al. 

(210) have studied the effect of the deposition time, oxygen flow rate, argon partial pressure, 

etc. on the electrical, optical and mechanical properties of indium tin oxide coatings deposited 

by d.c. magnetron sputtering. Resistivity of 10-3 Ωcm and visible transmission of about 85% 

have been obtained at room temperature. By annealing the films in argon atmosphere at 

200°C, the conductivity was improved by 20 to 40% and only little variation of the 

transmission was observed. The same technique was also used to produce transparent 

conductive ZnO and Al doped ZnO (AZO) films on silicon and quartz substrates (211). The 
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resistivity of ZnO:Al film was found seven order of magnitude smaller than that of pure ZnO. 

AZO film with a resistivity of 3.3x10-2 Ωcm was obtained at a substrate temperature of 

350 °C. Increasing the substrate temperature to 560 °C decreased the resistivity to 9.3x10-

3 Ωcm. Chang et al (113) have observed an enhancement of the crystallinity and of the grain 

growth of AZO films by raising the substrate temperature. The lowest obtained resistivity was 

4.1x10-4 Ωcm for a substrate temperature of 250°C. 

The properties of TCO sputtered thin films were also found to depend on the sputtering 

atmosphere. The presence of hydrogen gas during the process enhances the smoothness and 

the number of charge carriers of ITO films deposited at low temperature (212). The electrical 

conductivity of rf sputtered TCO films can also be enhanced by further post annealing in 

nonoxidising atmosphere at higher temperature (300-400°C). For example it was found by 

Nanto et al (213) that heating rf sputtered ITO films in air deteriorates the electrical 

conductivity; however, heating in vacuum or nitrogen atmosphere decreases the resistivity, as 

the number of charge carriers increases. By these post-deposition heat treatment, resistivity as 

low as 2x10-4 Ω.cm was obtained. The influence of the post annealing treatment was also 

investigated for rf sputtered AZO films (214). A resistivity as low as 6.2x10-4 Ωcm and a 

transparency greater than 80 % were obtained when the films were post annealed in vacuum 

at 400°C for 20 min. 

El Akkad et al (101) reported a detailed study of the properties of ITO films deposited under 

various preparation conditions using the rf sputtering technique. The influence of the 

thickness was examined and the electrical resistivity of the film was found to decrease from 

1.07x10-3 to 3.14x10-4 Ωcm when the thickness increased from 90 to 850 nm, respectively. 

Evaporation 

This method was also used to deposit transparent conductive indium oxide thin films 

(83, 89, 215, 216). The substrate temperature has a significant effect on the surface structure, 

composition and morphology of the coatings. Changes in the morphology of ITO thin films 

are reported in (89) and (217). An increase of the deposition temperature helps the 

substitution of Sn4+ at the In3+ site and increases the mobility of the charge carriers. George et 

al (218) has reported a significant decrease of the resistivity of electron beam evaporated ITO 

films from 3x10-2 Ω.cm to 3x10-4 Ω.cm when the substrate temperature was increased from 

50 to 350 °C. High quality ITO films with resistivity as low as 2.2x10-4 Ω.cm and average 

transmission of 88 % were reported by Nath and Bunshah (83) using activated reactive 

evaporation with a substrate temperature of 350 °C. By producing a dense plasma at the same 

temperature, a resistivity of 7.5x10-5 Ω.cm and average transmission of 85 % was reported for 

ATO films (219). 

Pulsed laser deposition (PLD) 

This method was used successfully to deposit high conductive transparent films on many type 

of substrates (53, 220-222). Their electrical and optical properties are influenced significantly 

by the substrate temperature and the oxygen pressure during the deposition. ITO thin films 
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were deposited by PLD on glass substrates using a KrF excimer laser (λ = 248 nm) (223). 

Their electrical conductivity was increased significantly by raising the substrate temperature 

from 25 to 300 °C due to the growth of the grain size. In another work, Suzuki et al (94) have 

deposited ITO films on glass and quartz substrate using an ArF excimer laser coupled to a 

magnetic field perpendicular to the plume. A very low resistivity of 7.2x10-5 Ωcm and a high 

optical transmittance of more than 90 % in the visible range were obtained for a 30 nm thick 

films deposited on a substrate at a temperature of 300 °C. The high conductivity was due to 

the high carrier concentration of 2.5x1021 cm-3. Similar result was obtained by Adurodija et al 

(220). For a substrate temperature of 300 °C, a resistivity as low as 8.5x10-5 Ωcm, a high 

carrier concentration of 1.2x1021 cm-3 and a high Hall mobility, 40-57 cm2/V.s., were 

achieved. 

High quality indium-zinc oxide thin films were deposited on glass substrate at a substrate 

temperature of 500 °C and oxygen pressure of 10-3 mbar (224). The lowest resistivity, 

ρ = 6.5x10-4 Ω.cm, was obtained for the Zn2In2O5 composition with a band gap of about 

3.5 eV and a 90 % transmission in the visible region. PLD methods have been also used to 

deposit transparent conducting mixed oxides of ZnO and ZrO2 at T = 200 °C (222). A 

resistivity of 5.4x10-4 Ωcm and a transparency of more than 80 % in the visible range were 

obtained. 

Chemical vapor deposition (CVD, MOCVD) 

This method is simple and inexpensive, but it needs usually high deposition temperature. 

Yadava et al (225) have used a CVD technique in order to produce highly transparent 

conducting tin oxide films on glass from the reactive thermal evaporation of SnCl2. The best 

results concerning the structural, optical and electrical properties were obtained at a substrate 

temperature in the range of 500-550 °C. Highly transparent conducting FTO coatings with 

resistivity of 5x10-4 Ωcm, carrier concentration of 7x1020 cm-3 and carrier mobility of 

20.1 cm2/V.s were prepared by atmospheric pressure CVD (APCVD) (226). Low pressure 

CVD of fluorine doped indium oxide films was performed by Miinea et al (87) using an 

alkoxide complex. The films were polycrystalline, with a transparency of more than 85 % in 

the visible region and a resistivity of ca. 1.4x10-3 Ωcm after annealing in Argon atmosphere at 

500 °C. 

 Zhao et al (227) have prepared tin doped CdO films deposited on glass substrate at 

temperature in the range of 200-300 °C by atmospheric metalorganic chemical vapor 

deposition (MOCVD). The film showed a strong adherence to the substrate and its resistivity 

showed a minimum of 2.1x10-4 Ωcm at 250 °C. The value was further improved by post 

annealing under He or H2 atmosphere and the state of the art value is 1.4 - 1.6x10-4 Ωcm. 
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Conclusion 

Vapor deposition methods allows to deposit TCO films with low specific resistivity on glass 

substrates. Typical values are in the range of 10-3 to 10-4 Ωcm, however resistivity of the order 

of 10-5 Ωcm has been reported for films deposited by PLD and ARE techniques. Deposition 

and post annealing temperature, which lead to higher electron mobility and carrier density, are 

decisive in enhancing the conductivity of the coatings. These films show high transmittance 

(> 80 %) in the visible range. 

3.1.2 Wet chemical deposition of TCO on glass (high temperature process) 

As shown in section 2.2.2, spray pyrolysis, pyrosol and sol-gel (spin or dip coating) are 

adequate processes to deposit high quality TCO coatings on glass with sintering at high 

temperatures. 

Spray pyrolysis 

This method was used extensively to deposit indium oxide (In2O3), tin oxide (SnO2) and zinc 

oxide (ZnO) (20, 68, 72, 114, 228, 229). The substrate temperature was found to affect 

strongly the structural, electrical and optical properties of spray deposited films. The 

resistivity of Boron doped tin oxide deposited on glass decreases  from  5.4x10-3   to  7.0 x 10–

4 Ω.cm when the deposition temperature was raised from 425 °C to 500 °C (72). The low 

resistivity was achieved because of the higher degree of crystallinity of the films. Bisht et al 

(230) studied the deposition of FTO, ATO and ITO coatings on hot borosilicate glass 

substrates. A low resistivity of 2-3x10-4 Ω.cm was obtained for ITO layers after reducing the 

samples in forming gas at 400 °C, a higher value of 1x10-3 Ω.cm was obtained for ATO layers 

and a value of 5x10-4 Ω.cm was obtained for FTO layers. Therefore sheet resistance less 

than 10  , i.e. comparable to those obtained by sputtering, can be achieved for 200 nm 

thick ITO coatings or 500 nm FTO coatings. ATO coatings showed a lower transmittance in 

the visible region (70-75 %) compared to that of ITO and FTO coatings (> 80 %). 

Ω

Shanthi et al (231) reported a similar resistivity (5.5x10-4 Ω.cm) for FTO films with high 

optical transmission (> 80 %) with a substrate temperature of 400 °C. Both the concentration 

and the mobility of free carriers was found to increase with the substrate temperature, the 

change in the mobility being however larger than that of the carrier concentration. 

Pyrosol 

It is a CVD method where the precursor of the material to be deposited is dissolved in a 

solvent. Smith (74) has reported the deposition of ZnO and SnO2 based films. The relation 

between the solution chemistry, growth rate and the morphology of the film was studied. This 

method was also used to prepare undoped and Al-doped zinc oxide thin films on heated 

Corning 7059 glass substrates with transparency of 80 % and a resistivity of 3.5x10-3 Ω.cm 

(232). Similar result was obtained for IZO films deposited on the same substrate at 425 –

 475 °C (233). The pyrosol method was also used to deposit FTO thin films on large-area 

soda-lima glass substrates. Resistivity of 5x10-4 Ω.cm and optical transmittance in the visible 
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region of more than 80 % for 300 nm thick films were obtained by Dutta et al (27). High 

conducting ITO thin films with resistivity of 1.7x10-4 Ω.cm and transparency of ca. 94 % 

were prepared on glass substrates at a deposition temperature of 480 °C (234). 

Sol-gel processes 

Sol-gel transparent conductive films have been frequently studied. It has been reported by 

Arfsten (105) that ITO thin films with electrical and optical properties comparable to those 

obtained by PVD methods could be processed on glass substrates by controlling the process 

parameters. 

Heat and post annealing treatment: Sol-gel films are strongly affected by either heat 

treatment and post annealing treatment, because a high thermal energy is needed to densify 

and enhance the crystallinity of the layers. Nishio et al (235) have prepared ITO thin films on 

quartz glass substrates by dip coating process. The resistivity of the coatings decreased from 

1.5x10-2  down to 1.5x10-3 Ω.cm by increasing the heat treatment temperature from 400 to 

800 °C. Takahashi et al (97) have also observed a decrease of the resistivity of dip coated ITO 

films by one order of magnitude by increasing the firing temperature from 400 to 700 °C. 

This decrease was due to the remarkable increase of the carrier mobility from 1.3  cm2/V.s at 

400 °C to 14 cm2/V.s. at 700 °C. After annealing the films at 650 °C in Nitrogen a resistivity 

of 4x10-4 Ω.cm was obtained. Tahar et al (236) have prepared cadmium stanate films by a dip 

coating technique with resistivity of 3.3x10-4 Ω.cm after annealing at 680 °C in Nitrogen, 

similar to ITO films prepared at 650 °C by the same technique (237). 

The fabrication of indium tin oxide films on a Corning glass by multi-dip coating process 

using ethanolic solution of chlorides and surfactants was reported in (238). The coatings were 

sintered at 600 °C in air for 30 min and then post annealed in forming gas (N2/H2 = 90/10) at 

600 °C for 1 h. The resistivity of the ITO layers decreased drastically from 2x10-3 Ω.cm down 

to 2.5x10-4 Ω.cm. The post annealing in nonoxidizing atmosphere was found to increase 

remarkably the carrier concentration from 2.5x1020 cm-3 to 9.1x1020 cm-3and the mobility 

from 20 cm2/V.s to 30 cm2/V.s. Similar annealing effect was also reported by Shiegeno et al 

(239). The resistivity of a 200 nm thick film obtained by the dip coating method decreases 

from 1.9x10-3 Ω.cm down to 3.1x10-4 Ω.cm when annealed at 600°C for 1 h in a N2-0.1% H2 

atmosphere. 

Effect of other annealing treatments: Wakagi et al (240) reported that spin coated ITO films 

post treated using an electron plasma exhibited lower resistivity compared to thermally 

annealed ones. The explanation given is that such plasma annealing leads to a higher density 

and a lower amount of organic impurities. Kololuoma et al (241) have studied the effect of 

argon plasma post treatment on the electrical conductivity of spin coated ATO thin films. The 

sheet resistance decreased from 600 Ω  to about 200 Ω  after about 20 to 75 min. This 

improvement was attributed to the porous nature of the sol-gel films. The depletion layers 

between the particles was effectively removed by the process and more oxygen vacancies 
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were created in the bulk of the film. No measurements of the carrier concentration and the 

carrier mobility were carried out to investigate the plasma treatment. 

Multi-layer deposition: The influence of multilayer dip coating deposition of tin oxide film 

on the thickness, microstructure and the electrical properties was investigated by Park et al 

(242). The resistivity was reduced by a factor 10 by increasing the number of the layers from 

1 to 10, while the porosity of the coatings was found to decrease significantly from 60 % 

down to 12 %. Takahashi et al (97) observed that multilayer deposition of ITO films develop 

a columnar structure with resistivity of 4x10-4 Ω.cm, while single layers are composed of 

particles of spherically shape with resistivity of 6.4x10-3 Ω.cm. Aegerter et al (82) have 

studied the influence of multiple deposition of ATO coatings produced by the dip coating 

method. It was also observed that the resistivity decreases with the number of layers and that 

the coatings become denser. 

Single thick layer: It is difficult to produce single layer with reasonable thickness using sol-

gel methods. Therefore multiple coating processes are required in most cases to produce thick 

films, a process which is inadequate for practical application. Neverthless Furusaki et al (22) 

succeeded to dip coat ITO films with a thickness up to 2 µm using a single dipping-firing 

procedure (550 °C for 30 min). The resistivity was 0.1 Ω.cm and the transparency in the 

visible region was greater than 90 %. On the other hand Gallagher et al (243) prepared single 

dip coating ITO films sintered at 518 °C with a thickness of 273 nm, a specific resistivity of 

1x10-3 Ω.cm and a transparency of 95 %. 

Wet deposition using conducting nanoparticles 

The use of conducting nanoparticles to produce transparent conducting films via wet chemical 

deposition is an interesting issue which has not been extensively studied. Solutions made of 

dispersed particles allow to deposit a thick layer in a single step. Aikens et al (244) have 

prepared crystalline ITO nanopowder by the gas phase condensation method. Aqueous 

dispersion of such particles could effectively be deposited on glass substrates by the spin 

coating method but the films had however a high sheet resistance, . After a 

thermal treatment in air at 350 °C, the sheet resistance decreased down to 10

610R = Ω
4 Ω  With a 

further heat treatment under forming gas at 350 °C for 30 min, a reduction of the sheet 

resistance down to 103 Ω  was obtained. The thickness of the layers was not reported. 

Ederth et al (245) also studied the electrical and the optical properties of films prepared by 

spin coating a dispersion of nano-sized ITO particles. The films had a resistivity of 30 Ω.cm. 

After annealing in vacuum at 200-400 °C for 2 hours, and subsequently in air at 500 °C for 

2 hours, the resistivity decreased down to 1x10-3 Ω.cm. The layers had a transmittance of 

90 % in the visible range. 

ATO particles prepared by a co-precipitation method followed by a hydrothermal processing 

step was used to produce thick transparent conductive layers (200 – 700 nm thickness) on 

glass substrate (70). An aqueous ATO sol was spinned and then fired at different temperature 



Chapter 3 TCO coatings: state of the art 41

up to 700 °C. The films dried at low temperature (50 °C) showed a resistivity of 7.5 Ω.cm and 

by increasing the sintering temperature up to 700 °C the resistivity decreased significantly 

down to 7.5x10-3 Ω.cm. It was reported that the sintering at higher temperature was 

accompanied by a decrease in the specific BET surface of the particles, resulting in a better 

contact between them and a lower grain scattering. 

Burgard et al (246) have deposited transparent conductive ATO coatings on glass substrates 

using aqueous solution of fully dispersed nanocrystalline particles, made by the controlled 

growth reaction method. The deposited layers were conducting after thermal densification at 

T > 400 °C and showed a minimum resistivity of 2.5x10-2 Ω.cm and a transparency of 90 % 

in the visible range. In another work, Goebert et al (247) prepared crystalline ITO and ATO 

nanoparticles using the same method. Suspensions of these particles were used to prepare 

transparent conductive coatings on glass substrates using wet chemical deposition methods. 

For ATO coatings, the lowest resistivity, ρ  = 1.7x10-2 Ω.cm was obtained after sintering at 

550 °C. In the case of ITO layers, the lowest resistivity, ρ  = 3.4x10-3 Ω.cm was obtained 

after sintering temperature at 900 °C and a post annealing at 300 °C in nitrogen atmosphere. 

The optical transmission of both coatings was excellent in the visible range (> 90 %). Kawata 

et al (248) have claimed that transparent conductive films can be formed using a transparent 

electroconducting ink made of dispersed ITO nanoparticles and a binder. The specific 

resistivity of films backed at temperatures of 400 °C or higher ranged from 0.5 to 0.01 Ω.cm. 

Conclusion 

TCO films deposited on glass substrates by wet chemical deposition methods showed low 

resistivity down to about 10-4 Ω.cm like those obtained by vapor deposition methods. The 

need of high temperature sintering is essential to bring the crystallite grains into contact 

together easying the transfer of the charge carriers across the layer. Post annealing treatment 

under reducing atmosphere increases the carrier density of ITO films which exhibit the lowest 

resistivity among the TCO family. Low sheet resistance can however only obtained by 

multilayer deposition. 

The production of thick films in a single step is still a challenge. The use of sols made of 

dispersed conducting nanoparticles allows to obtain thick films with high transparency in a 

single step; however a very high thermal energy is needed to sinter the particles. The lowest 

resistivity obtained from such coatings was in the range of 10-3 Ω.cm. 

3.2 Transparent conductive coatings on plastic substrates (low 

temperature) 

There is a growing interest in replacing glass substrates by polymeric ones in many 

applications. Therefore the need to coat such heat sensitive substrates and also preformed 

glasses which can not withstand high temperature sintering treatments have considerably 

increased. The challenge is to find suitable conducting materials which can be deposited at 

low temperature and to find a method allowing to crystallize the materials at low temperature 
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without affecting the film optical quality. As shown above the conductivity of TCO materials 

is proportional to the product of the carrier concentration and mobility. The obtention of a 

high carrier mobility needed to achieve both low resistivity and high transparency is the major 

problem for coatings deposited at low deposition temperature because the mobility was found 

to strongly increase with the deposition temperature (249, 250). A low value will always limit 

the electrical conductivity unless non-thermal techniques are developed to improve the 

coating microstructure (251) without damaging the heat sensitive substrates. 

3.2.1 Physical deposition 

ITO is a material which crystallizes at relatively low temperature, about 150 °C. The 

deposition of films on unheated substrate via a low energy process may therefore result in the 

formation of an amorphous layer. Paine et al (252) have monitored the crystallization process 

starting from an amorphous ITO film. They have found that under annealing, amorphous 

films undergoe a structural relaxation occurring via local ordering that increases the carrier 

density and a crystallization process occurring via the classical nucleation and growth 

mechanisms which enhances the carrier mobility. The crystallization of reactive evaporated 

ITO films was achieved at temperature lower than 150 °C by increasing the film thickness as 

observed by Muranaka (253). 

 New low temperature deposition techniques have been also developed. Akagi et al (254) 

prepared high quality ITO films using synchrotron radiation ablation at room temperature. A 

resistivity as low as 1.3x10-4 Ω.cm and a transparency of 85 % at 550 nm were obtained. 

Using a dual ion beam sputtering system, polycrystalline ITO films were obtained on glass 

substrates at room temperature (255). By increasing the assisted ion beam voltage, they 

observed an increase of the transmittance from 80 % to 90 % and unfortuntly an increase of 

the resistivity from 1.3x10-3 Ω.cm to 3x10-3 Ω.cm due to the decrease of the grain size of the 

crystals. Reactive evaporation method was also used by Ma et al (256) to deposit ITO thin 

films with resistivity of 7x10-4 Ω.cm on different polymeric substrates such as PET, PI and 

polyester substrates at temperatures between 80 and 240 °C. A new method called dc arc-

discharge ion plating was reported recently to produce low resistivity ITO thin films on SiO2 

coated polycarbonate substrates at temperature less than 100 °C (257). The films were 

polycrystalline with [111] preferred orientation and exhibit a resistivity of 2.45x10-4 Ω.cm 

and a transmission of 80 % in the visible spectrum without any deformation of the substrate. 

Pulsed laser deposition method is also a quite effective method to deposit transparent 

conducting films at low temperatures (258, 259). The crystallization state and consequently 

the resistivity of ITO films are affected by the substrate temperature. On glass substrates 

amorphous films with resistivity of 4.5x10-4 Ω.cm have been obtained at room temperature 

while polycrystalline layers with lower resistivity of 1.6 - 1.8x10-4 Ω.cm have been obtained 

at 200 °C (260-262). 

This technique has been used to deposit ITO films on different polymeric substrates. 

Resistivity value of 7x10-4 Ω.cm and 4.1x10-4 Ω.cm were obtained for ITO films deposited on 
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PET substrates at 25 and 100 °C, respectively (263). For PC substrates a CeO2 thin film was 

first deposited to prevent the coloring of the substrate (264). The deposition of an Al2O3 layer 

between the PC substrate and the CeO2 layer resulted in a marked decrease of the resistivity 

of ITO layer. 

dc magnetron sputtering techniques have also been used to deposit TCO on polymer web at 

low temperature (265). Minami et al (266) produced ITO films on PET substrate with a 

resistivity of 1x10-3 Ω.cm by annealing the film at 150 °C for 100 h. ITO coatings have been 

deposited on curved polymer substrates (267) at low temperature by controlling the sputter 

deposition uniformity across the complex shapes. Low resistivity of 6.2x10-4 Ω.cm, carrier 

concentration of 3.6x1020 cm-3 and mobility of 28 cm2V-1s-1 were obtained on unheated 

polymer substrates. A kinetic energy controlled sputter-deposition technique (268) was found 

to decrease the resistivity of ITO films down to 3.5x10-4 Ω.cm even at temperature below 

50 °C. 

Ando and Haacke have claimed (269) that cadmium stannate thin films can be deposited on 

polymeric substrates (PC, PMMA) using dc magnetron sputtering method. The precoating of 

the plastic substrates with a metal oxide, such as SiO2 or TiO2, improves the adherence of the 

films onto the substrate. The average optical transmission was 80 %, the sheet resistance was 

26 Ω and the films passed the tape adhesion test. 

rf sputtering method allows to deposit thin films onto substrates without requiring substrate 

heating during the film preparation or any additional post annealing treatments. Kulkarni et al 

(270) have obtained a resistivity of 1.2x10-3 Ω.cm for ITO film on PET, polycarbonate and 

glass substrates. rf sputtering was used successfully to prepare zero stress ITO films on 

polyester substrates near room temperature (271) with a low resistivity of 3x10-4 Ω.cm and a 

high transparency (> 80 %). 

Rf magnetron sputtering method was used by Wu et al (102, 272) to deposit transparent 

conductive ITO films on acrylic and PC substrates. To prevent the deformation of the acrylic 

substrate, the temperature of the substrate was maintained at 80 °C and a low rf power was 

used. For PC substrates higher values could be used. A low resistivity of 6x10-4 Ω.cm was 

obtained for ITO films on both substrates and that deposited on PC substrate showed higher 

visible transparency (∼ 90 %) and IR reflection than that on acrylic substrate (∼ 74 %). 

Nanto et al (213) have prepared highly conducting (resistivity ∼ 2x10-4 Ω.cm) ITO thin films 

with high transparency (85 %) in the visible region on low temperature (T < 140 °C) 

substrates with a relatively high deposition rate by rf magnetron sputtering technique using Ar 

and O2 gas mixture under plasma focused by magnetic field. In another work Maniv et al 

(273) have deposited transparent conducting zinc oxide and indium tin oxide films on plastic 

substrates using a modified reactive planar sputtering. The best zinc oxide film was achieved 

by a radio-frequency discharge close to the substrate to increase the oxidation rate. The films 

were polycrystalline with transmittance of 80 % and electrical resistivity of 3x10-2 Ω.cm but 

their chemical stability was poor. In the case of ITO films a transmittance of 79 % and 
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resistivity of 1x10-4 Ω.cm were obtained by coupling an rf power of 105 mW with a substrate 

self-bias voltage of less than 5 V. These films were amorphous and chemically stable. 

Transparent conducting Al-doped zinc oxide was deposited by rf magnetron sputtering (274) 

on different polymeric substrates, such as polypropylene (PPA), polyisocyanate (PI) and 

polyester substrates exhibiting a good adhesion, low resistivity (∼ 5.8x10-4 Ω.cm) and high 

transmittance (∼ 80 %). 

Conclusion 

Transparent conductive oxide coatings can be produced at low deposition temperature using 

conventional physical and new developed deposition methods on glass as well as on 

polymeric substrates with resistivity ranging between 10-2 and 10-4 Ω.cm and transparency 

higher than 80 %. ITO is the most preferred material to realize this task because of its low 

crystallization temperature. 

3.2.2 Wet chemical deposition of TC coatings on plastics 

The use of the conventional sol-gel techniques to deposit transparent conducting coating on 

polymeric substrates face a real challenge because a heat treatment of the coatings at high 

temperature can’t be avoided to get good electrical, optical and mechanical properties. There 

are therefore not much works reported for the preparation of sol-gel made transparent 

conducting coatings on such substrates. 

Foot (275) has claimed a sol-gel route to deposit TCO films on glass, PC and PMMA using 

spin, spray, dip and brush techniques. For instance sheet resistance of 380 k  and visible 

transmittance of 90 % were obtained with pre-treated PC substrate exposed to UV/ozone for 

two hours after drying the coatings under vacuum during more than 8 hours at 20 to 30 °C and 

followed by a short period of illumination with near infrared radiation. No information was 

reported about the adhesion of the coatings on the substrate. In another patent, Murouchi et al 

(276) have claimed the production of transparent conductive films on  glass and plastic 

substrates with thickness in the range 0.5 to 5 µm with a sheet resistance of the order of 10

Ω

2 –

 105 , a transmittance of at least 80 % in the visible range and a haze not greater than 6 %. 

The films were formed from a composition of ITO powder dispersed in a binder solution and 

cured by an actinic radiation ( UV-light, 0.1 – 5 J/cm

Ω

2) or an electron beam (~ 200 µC/cm2). 

Imai et al (277) have reported the deposition of sol-gel ITO films which have been 

crystallized by exposing the coatings to a low fluence UV-irradiation of an ArF laser (193 nm, 

10 – 20 mJ/cm2). Resistivity of 6.6x10-2 Ω.cm was obtained for coatings applied on 

polyimide, PET and glass substrates; however the process failed for PC and polyethyl-

ethylketone substrates because of the degradation of the substrate by the UV-irradiation. The 

mechanical properties of such coatings were not mentioned. 

Conducting polymers 

Conducting polymers are another group of very interesting materials which have been 

developed over the past two decades. These materials are mainly based on polyaniline, 
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polypyrrole, polythiophene, polyacetylene, polyphenylenvinylene, etc. (44, 45, 278). 

Depending on the conducting polymer the doped and the undoped state can be either 

transparent or intensely coloured. Most of the known conducting polymers are coloured and a 

very thin layer is required for obtaining high transparency. The electrical and the chemical 

properties of these conducting polymers change strongly during storage in environmental 

atmosphere. The electrical resistivity changes by the reaction with various redox agent or 

because of their instability to moisture (279). This makes them very useful as sensors. 

The stability of the mechanical and the electrical properties of polypyrrole films were 

investigated as a function of the dopant concentration and the oxidative aging (280). The 

films were prepared by the galvanostatic electrochemical synthesis method with p-toluene 

sulphonate doping concentration of 0.005, 0.01 and 0.05 M yielding an initial resistivity of 

66.6, 2.5 and 0.03 Ω.cm, respectively. The rate of loss of the conductivity was higher in the 

case of low dopant concentration. 

Lee et al (281) have reported a novel transparent electrically conductive polymer composite 

prepared by blending a conductive poly(3,4-ethylendiethoxythiophene) (PEDOT) and an 

inorganic silica network. The PEDOT polymer act as the conducting material and the silica 

network enhances the mechanical properties of the coatings. The films were spin coated and 

then processed at 130 °C in air for 1 hour. An increase in the content of PEDOT increases the 

conductivity but decreases the optical transparency. Films with a resistivity of 5x10-3 Ω.cm, 

more than 80 % transparency and 9 H pencil hardness have been obtained for a weight ratio 

PEDOT/silica of 0.6. 

Conducting polymers are used extensively in organic light emitting diodes (OLED) devices. 

Gustaffson et al (282) have reported that polyaniline coated glass or plastic substrates are 

effective anode for these devices. They increase the work function of the anode and this 

results to a lower device operating voltage and a higher quantum efficiency due to the 

enhanced injection of holes into the highest occupied molecular orbital of the emitting organic 

layer. Cao et al (283) have prepared optical quality transparent conducting films of 

polyaniline and of conducting blends of polyaniline with amorphous bulk polymers by casting 

from a solution. The films are clear and combine low surface resistance with excellent 

transparency. By varying the thickness of the film and / or the volume fraction of polyaniline, 

the sheet resistance of the film can be controlled over very broad range 

(102  <  < 10Ω R 6 ). Ω

Conclusion 

Producing transparent conducting coatings on polymeric substrates via wet deposition 

methods is a difficult task. The lowest reported resistivity of TCO layers is of the order of 10-

2 Ω.cm. Transparent conducting polymers are good candidates to produce films with lower 

resistivity, however the degradation of their electrical, optical, chemical and mechanical 

properties by aging is still a real challenge. 
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Chapter 4 

Experimental Methodology and Procedure 

Introduction 

The synthesis method of redispersable nanocrystalline In2O3:Sn (ITO) powders, used in this 

work, is based on the so called in-situ surface modification of the particles performed during 

the precipitation and the growth process in a liquid phase. By the control of their free surface 

energy, their growth and the crystallite size can be adjusted and the aggregation process can 

be prevented. This chapter describes the synthesis of the redispersable ITO conducting 

nanopowder, the preparation of transparent conductive layers on glass and polymeric 

substrates and the patterning of the coatings at low temperature. All chemicals used are listed 

in appendix B. 

4.1 Preparation of conducting ITO nanopowders 

The preparation of the nanoparticles follow a recipe given in (91, 189, 246). A mixture of 

indium chloride (InCl3), tin chloride pentahydrate (SnCl4.5H2O) and C-caprolactam are 

dissolved using bidistilled water in a three neck round flask. The molar ratio indium chloride: 

tin chloride pentahydrate: C-caprolactam: water was 1: 0-0.12: 0.075 :114. This mixture is 

stirred continuously until a clear solution is obtained. Then the solution is heated up to 50°C 

in an oil bath. When the temperature of the solution is 50°C, an aqueous solution of 

ammonium hydroxide (25 wt.%) is slowly added dropwise to the solution under vigorous 

stirring. A white suspension is formed and left under stirring for 24 h at the same temperature 

(50 °C). The pH of the solution is then adjusted between 11 and 14, by adding further amount 

of ammonia for complete precipitation. The solution is then cooled down to RT and 

centrifuged at 4000 rpm for 30 minutes to separate the solid phase from the liquid phase. The 

obtained powder is then washed with bidistilled water and again centrifuged at 4000 rpm for 

30 min several times. Then the resulted white powder is dried at 150°C for 24 hr. 

The dried material is grinded using a hammer mill to reduce the size of the agglomerates until 

a fine powder is obtained (size < 0.2 mm). It is then post annealed at different temperatures 

(250-600 °C) under forming gas (N2 , H2) atmosphere using a GERO furnace. It is first 

evacuated and then N2 gas is supplied at a flow rate of 100 l/h during the heating process at a 

rate of 250°C/h. When the desired temperature was achieved, the furnace is left for 60 min. 

under the flow of forming gas (N2/H2: 92/8) at a flow rate of 75 l/h and then cooled down to 

RT under a flow of N2 with a flow rate of 50 l/h. The cooling rate is 1500°C/h. The so-

obtained post annealed powder shows a green-blue colour. The powder is then characterized 

to determine the phase structure and the crystallite size using XRD technique. The density and 

the specific (BET) surface area were also determined. Detailed description of the methods of 

characterization of the prepared powders is found in appendix A.1. 
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4.2 Preparation of ITO coating solution 

The post annealed ITO powders were used to prepare coating solutions by dispersing the 

powders in solvents like water or organic compounds, (e.g. ethanol). Two kinds of sols were 

used in this work: called a “pure ITO sol” and a “modified ITO sol”: 

4.2.1 Pure ITO sol 

The ITO powder is wetted in a small amount of EG/DBG (1 : 1 in weight) and a dispersion 

agent like TDOS. The concentration of the dispersing agent to the ITO powder ranges 

between 3 to 7 wt.%, which gives a pH value between 3 and 5. The concentration of ITO 

powders in the ranges between 75 – 80 wt.%. The wetted ITO powder is dispersed 

mechanically using a three rol mill (Exact) during 10 to 15 min. The process breaks up the 

agglomerated powder and insures that the particles are evenly wetted and dispersed down to 

the primary size. A thick and highly viscous dark blue ITO paste is obtained. This paste is the 

raw material for the coating solution, and it can be easily dissolved in water or ethanol. 

Typically, to obtain a sol with a 25 wt. % ITO particles (~ 14 vol. %), 35 g of ITO paste is 

dissolved in 65 g of ethanol and then stirred for 30 min at RT. The blue suspension is 

centrifuged at 4500 rpm for 10 min to remove the large remaining agglomerates and then it is 

filtered using a 0.45 µm filter. 

These sols were used to coat glass and polymeric substrates using the dip and spin coating 

methods. They were found stable for more than one year. 

4.2.2 Modified ITO sols 

A modification of the ITO sol was done to allow the curing of the coatings at low temperature 

(T < 150 °C) or by applying UV-irradiation or a combination of these different low 

temperature treatments. Organic and inorganic-organic hybrid materials were used as 

coupling agents in order to bind the particles together and which can be polymerised at low 

temperature. A small amount of prehydrolysed TEOS, GPTS, MPTS etc. (see the list of 

chemicals in appendix B) are added to the pure ITO sol and mixed in an ultrasonic bath for 

5 min. The concentration of the coupling agent referred to the pure ITO coating solution 

ranges from 0 to 20 wt. %. A UV curing agent, such as Irgacur 184, was also incorporated 

into the formulation in order to promote the polymerization and the hardening of the coatings. 

The modified sols were used to coat glass and polymeric substrates by dip or spin coating 

methods followed either by a thermal or a UV curing process. These sols are stable for more 

than 6 months depending on the concentration of the additives. 

The hydrolysis of some functionalised silanes used as a modifier are described below:  

Hydrolysis of MPTS 

100 g of MPTS were put in a two necks round glass flask. 10.9 g of 0.1 M HCl was added 

slowly to the MPTS under stirring with reflux. The molar ratio MPTS:H2O was 1:1.5. When a 

clear solution obtained, the sol was heated to 40°C in an oil bath and stirred vigorously for 
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24 h. Thereafter the sol was cooled to RT and then the methanol, resulting from the reaction, 

was extracted using a rotary evaporator at 40°C, 80 mbar for 30 min. 

Hydrolysis of GPTS 

123 g of GPTS were put in a two necks round glass flask. 13.5 g of 0.1 M HCl was added 

slowly to the GPTS under stirring with reflux. The molar ratio GPTS:H2O was 1:1.5. When a 

clear solution is obtained, the sol was heated to 40°C in an oil bath and stirred vigorously for 

16 h. Thereafter the sol was cooled to RT and then the methanol resulting from the reaction 

was extracted using a rotary evaporator at 40°C, 80 mbar for 30 min. 

Hydrolysis of TEOS 

Two solutions were prepared: for the first one, 49.44 g of TEOS was mixed with 31.92 g 

ethanol and stirred together in a two necks round glass flask. For the second one, 31.92 g of 

ethanol was mixed with 36.94 g of 0.1M HCl under stirring. The second solution was added 

to the first solution. The resultant sol was stirred at RT for 2h. 

4.3 Deposition methods 

The conventional sol-gel methods (spin and dip coating) were used to deposit transparent 

conductive thin films on glass and polymeric substrates at room temperature. Before 

deposition, all coating sols were carefully filtered using a 0.45 µm filter. All prepared coating 

sols were suitable to be deposited using these coating processes, but the first method was 

prefered as it uses less material. The description of these methods is found in Appendix A.2.2. 

The spinning and withdrawal speed were varied to obtain films with different thicknesses and 

optimized to obtain crack free thin films with good optical quality. 

4.3.1 Coatings on glass 

Different sizes and shapes of float glass, borosilicate glass and fused quartz substrates were 

coated . Before the coating processes all substrates were cleaned carefully (see Appendix 

A.2.1). The deposited layers were then dried and densified usin different hardening and 

sintering treatments. Coated fused quartz substrates have been heat treated up to 1000 °C, 

borosilicate glasses were treated at lower temperatures (400 < T < 550 °C) and soda lime 

glasses (float glass) have been heated till 500 °C because of their poor thermal stability and to 

avoid the Na diffusion into the coating, which strongly affect the electrical properties of TCO 

layers. The modified ITO coating sols were deposited on glass substrates and hardened at low 

temperatures (< 130 °C) or by UV-irradiation curing. 

4.3.2 Coatings on polymeric substrates 

Different kinds of polymeric substrates, such as PC, PMMA, PVC, PE, PET and PC foils 

have been coated using the modified ITO sols. Because of the low thermal stability of the 

substrates, the coatings were heated at low temperature (T < 150 °C) for several hours or 

cured by using an UV-irradiation source (Beltron, GmbH). Some polymeric substrates were 

pretreated using a plasma source to examine the adhesion of the film material on the substrate. 
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4.4 Post-treatment of the coatings 

The deposited layers were dried and cured using different methods. 

4.4.1 Heat treatment 

The films deposited on fused quartz substrates were heat treated from 80-1000°C either in 

ambient atmosphere or in a reducing atmosphere. The films were introduced in a furnace 

previously heated to the desired temperature and then left for different periods of times. The 

films were then post annealed in a flux of forming gas (N2/H2 : 92/8) using a Gero furnace. 

The furnace was first evacuated to remove the ambient air from the furnace and N2 gas is then 

introduced during the heating up to the desired temperature at a constant rate. The samples 

were then kept under a flux of the forming gas for a period ranging from 30 to 120 min. 

Finally the furnace was cooled down to 20°C under a flux of N2 with a fixed cooling rate of 

1500°C/h. 

4.4.2 UV-Irradiation 

UV-curing was carried out to densify the deposited films using a UV-system with emission 

ranging from 200 to 600 nm (UV / IR dryer, TYP 20 / III with strong emission lines at 365, 

405, 435, 550 and 580 nm, Beltron GmbH, Germany). The samples were moved by a 

conveyor at different speeds+ ranging from 0.2 to 6 m/min. The average UV-energy received 

by the coating during one run depends on the speed of the conveyor. Fig. 8 shows the 

relationship between the total average energy density, the temperature measured at the surface 

of a substrate and the conveyor speed of the Beltron system. As the process also heats the 

substrate (strong emission bands in the visible and near infrared range), a conveyor speed of 

0.4 m/min was used for glass substrates, of 0.8 m/min for PC substrates, of 2 m/min for 

PMMA and PE, of 5 m/min for PVC substrates and of 6 m/min for PC and PET foils. 
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Fig. 8: Relationship between the total energy density and the temperature measured  

at the surface of a substrate and the conveyor speed of the Beltron system during one run. 
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4.4.3 Plasma treatments 

Argon plasma treatment were also applied to ITO coatings as a post treatment. The plasma 

was consisting of high energetic argon ions at room temperature. The treatment was carried 

out in a previously high evacuated chamber at a plasma power of 400 watt (Plasma 

Electronic, Buck Technology). 

4.4.4 Combination of treatments 

A combination of UV-irradiation and heat treatment was also performed. The samples were 

irradiated with UV-irradiation and then heated under ambient atmosphere or forming gas or 

vise versa. The electrical properties were then measured to determine the best combination to 

obtain the best electrical and optical properties. 

4.5 Shelf life under different atmospheres 

The ITO coatings were characterized for their electrical, optical, mechanical and surface 

properties. The time evolution of these properties was examined during the storage of the 

prepared samples under different atmospheres, such as ambient atmosphere, vacuum, 

nitrogen, argon and oxygen. 

4.6 Patterning of ITO coatings 

The patterning of ITO coatings was carried out by irradiating the wet deposited modified ITO 

films with UV-irradiation through a various structured masks. The masks were fitted on the 

top of the layers and illuminated during 2 to 3 min with UV irradiation. The substrate was 

then washed in an ultrasonic ethanolic bath for 2 min. The unexposed parts of the film are 

removed and the exposed parts remain on the substrate. The morphology of the patterned 

structure was determined using a WLI equipment (see Appendix A.3.4). Fig. 9 shows 

schematically the patterning process. 

 

Fig. 9: Schematic digram of the patterning process. 
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4.7 Conclusion 

The structural, morphological, optical, mechanical and surface properties of the ITO layers 

deposited on glass and polymeric substrates were done using different techniques. The 

description of these techniques is given in appendix A.3. 

Finally, Fig. 10 illustrates the different stages of the experimental steps used to produce and 

characterize transparent conducting ITO nanoparticles films on polymeric and glass substrates 

via the sol-gel technology. 

 

Fig. 10: Schematic diagram illustrating the different stages to produce and characterize  

transparent conducting ITO nanoparticle layers on glass and polymeric substrates. 
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Chapter 5 

Results and Discussions 

5.1 Structural and physical properties of ITO powders 

Indium tin oxide powders with Sn / In mol ratio up to 12 at. % are white in colour after drying 

and turn to a blue colour after post annealing treatment between 250 and 550°C under 

forming gas (N2:H2 = 92:8) for 1 h. The powders were denoted ITO250, ITO300, ITO350, 

ITO400, ITO550 respectively. This section reports on their phase structure, density and BET 

specific surface area. 

5.1.1 Phase structure (XRD) 

The XRD patterns of ITO300 powders with Sn / In mol ratio 0, 3, 6, 8, 12 at. % are shown in 

Fig. 11. The patterns of all powders are independent of the Sn concentration and show clearly 

that the particles are already crystalline with the In2O3 cubic bixbyite crystal structure (JCPDS 

card no. 06-416) without the existence of any SnOx phases. The ITO crystallites are not 

oriented. There is a slight shift of the peaks toward small angles by increasing the Sn 

concentration indicating an expansion of the unit cell caused by the substitution of In atoms 

by Sn atoms (25). 

The crystallite size (inset in Fig. 11) calculated using the Scherrer equation from the 

broadening of the [222] peak decreases continuously with the increase of Sn concentration. 

The value is 39 nm for 0 at% Sn, 21 nm for 6 at % Sn and 18 nm for 12 at %. This is a 

consequence of the substitution of Sn4+ ion for In3+ ion in the In2O3 host lattice because of the 

smaller ionic radius of Sn4+ (0.71 Å) in comparison to In3+ ion (0.81 Å). Yanagisawa et al 

(284) reported for hydrothermal treated ITO powders that a high solubility of Sn4+ ions 

decreases the volume of the ITO unit cell. Above 6 wt.% Sn concentration only a slight 

decrease of the crystallite size is observed indicating a lower solubility of Sn4+ ion in the host 

lattice. Frank and Köstlin (285) observed the formation of bound complexes of Sn4+ ions at 

doping concentration above 5 at.% Sn according to the ionisable and non-ionizable tin-

oxygen defects. Yamada et al (286) studied the mechanism of the Sn doping in In2O3 host 

lattice using XRD and Mössbauer spectroscopy and found that the Sn-based defects depends 

on the Sn concentration. They begin to appear at 4-5 at.% Sn and their amount increases 

above 5 at.% Sn. 
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Fig. 11: XRD patterns of dried and post annealed (T = 300°C) In2O3:Sn powder with different  

Sn concentrations. The vertical lines refer to the JCPDS database (06-416). The inset shows  

the crystallite size as a function of the Sn concentration calculated from the (222) peak. 

Fig. 12 shows the XRD pattern of In2O3:Sn (8 at. %) powders annealed at different 

temperatures up to 550°C. All spectra are typical of polycrystalline ITO particles having the 

same cubic In2O3 phase. No evidence was found for the existence of an SnOx phase structure. 

The material can be described as In2-ySnyO3 (unreduced system) or In2-ySnyO3-2x (reduced 

system). The particles are already crystalline at 250°C with crystallite size of 17 nm. A 

calcination at higher temperature increases the crystallite size up to 38 nm at 550°C (see inset 

of Fig. 12). The intensity of the diffraction peaks increases with the calcination temperature 

and, in all spectra, the intensity of the (222) peek is always greater than the intensity of the 

(400) peak. However the ratio I (222) / I (400) decreases gradually by increasing the post 

annealing temperature from 3.52 at T = 250°C (practically the value determined from the 

JCPDS database) down to 1.7 at T = 550°C. This behaviour is not understandable; however it 

shows that the crystallites have a tendency to grow along the (400) crystallographic plane as 

the calcination temperature increases. 

The shift of the diffraction peaks toward higher angles observed at 550°C may be a result of a 

distortion in the bixbyite structure due to the increase of the thermal microstrains in the 

lattice, particularly observed for high index surfaces (287). 
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Fig. 12: XRD patterns of ITO(Sn: 8 at. %) powder calcined at different temperatures.  

The inset shows the crystallite size growth with the temperature of calcination. 

5.1.2 Particle density and specific BET surface area 

The density of ITO particles calcined at T = 350 °C as a function of the Sn-doping 

concentration and that of particles doped with 8 at % Sn as a function of the calcination 

temperature are shown in Fig. 13. Pure indium oxide particles heat treated at 350°C are quite 

dense, ρ ~ 6.93 g/cm3, about 96.5 % of the theoretical value (7.18 g/cm3) but their density 

decreases gradually with the increase of the Sn concentration down to 6.6 g/cm-3 (12 at. % Sn) 

(Fig. 13 a). This means that the tin doping leads to a lower packing within the particles (larger 

porosity). 

For a given doping concentration, the ITO particles become denser as a function of the 

sintering temperature (Fig. 13 b). This means that the pores inside the particles are gradually 

removed and that the grains building the particles become more tightly packed. 
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Fig. 13: Density of ITO particles (a) as a function of the Sn-doping concentration for particles  

calcined at 350 °C and (b) as a function of the calcination temperatures for 8 at% Sn. 
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Fig. 14 shows that the specific surface area (BET) of the powders decreases gradually by 

increasing the calcination temperature from 64 m2/g at 250 °C down to 21 m2/g at 550 °C. 

This result is due to the thermal growth of the crystallites as shown by the XRD 

measurements (Fig. 12). Higher temperatures also result in the formation of larger and denser 

aggregates of primary particles with more contact points between the particles resulting in a 

lower specific surface area. Song et al. found a sharp decrease in the BET surface area of tin 

oxide particles as the calcination temperature is increased (63). This reduction was also 

explained by a better contact between the grains building the particles due to the elimination 

of ammonia and the physically and chemically adsorbed water in the precursor powder. 

The average size of the particles was calculated from the BET values and the density of the 

particles, assuming that their shape is spheric (see appendix A1.2). The particle size increases 

from 15 nm at T = 250 °C up to 47 nm at T = 550 °C (Fig. 14). 
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Fig. 14: Specific (BET) surface area of crystalline ITO nanopowder and  

calculated particle size as a function of the calcination temperature. 

The crystallite size measured from the XRD (222) peak broadening and the particle size 

calculated from the BET surface area and the particle density, ρ  (from Fig. 14) are listed in. 

Table 4. Both values increase with the calcination temperature and follow the same trend. It is 

interesting to observe that the average size of the particles is almost equal to the average 

crystallite size up to about 350 °C. This indicates that each particle consists practically of a 

single crystal. At higher temperature the size of the particles increases more than the 

crystallite size, an indication that they are made of more than one crystallite. 
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Table 4: Crystallite and particle size of nanocrystalline ITO powders. 
 

powder crystallite size(nm) 

(from XRD) 

Particle size (nm) 

(from BET and ρ ) 

ITO250 16 15 

ITO300 19 20 

ITO350 22 25 

ITO400 26 35 

ITO550 37 48 

5.1.3 Conclusion 

Crystalline indium tin oxide (ITO) nanoparticles exhibit the indium oxide cubic structure and 

no other phases were detected. At a given calcination temperature the substitution of the Sn4+ 

ion in the indium oxide host lattice leads to a decrease of the crystallite size. The prepared 

conducting particles are highly dense and their density increases with the calcination 

temperature. The specific BET surface area decreases with increasing the sintering 

temperature while the size of the particles grows gradually. Comparing the particle and 

crystallite size, it was concluded that the particles calcined up to 350 °C are in average built 

with a single crystallite, while those calcined at higher temperature begin to contain several 

crystallites. 

5.2 Characterization of the coatings sols 

The coatings sols consist of surface modified ITO nanoparticles redispersed in ethanol as a 

solvent. The powders annealed at temperature up to 350°C have been successfully redispersed 

and stable coating solutions were obtained. It is difficult to redisperse powders prepared at 

T > 400 °C and the resulting sols prepared from these powders are only stable for a few hours. 

The resulting suspensions were also modified by the addition of functional coupling agents, 

like TEOS, GPTS, MPTS and other organic materials. 

This section reports on the characterization of the coatings sols. 

5.2.1 Zeta Potential 

The pH value has an enormous effect on the stability of the colloidal suspensions.The 

measurements of the Zeta potential is a good index of the magnitude of the interaction 

between the colloidal particles and is used to assess the stability of a colloidal system as a 

function of the pH. 

Fig. 15 shows the measurements over a pH range 2 < pH < 12 for suspensions obtained with 

ITO nanoparticles calcined at T = 250, 300, 350 and 550 °C and dispersed mechanically in 

TDOS (dispersion agent). The isoelectric point of the suspensions pHiep lies between 7.5 and 

8 and therefore it is necessary to use a pH < 6 in order to obtain stable suspensions. 
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The suspension made with the ITO550 powder has a weak zeta potential (<  20 mV), meaning 

that the repulsive force between the particles does not overcome the Van der Waal forces. The 

suspension is not stable because large aggregates are formed (precipitation). Further work 

should be done to find a suitable dispersion agent or a better process to redisperse such 

particles. On the other hand the ITO250, ITO300 and ITO350 sols have a higher zeta 

potential. The dispersed particles with positive potential higher than + 30 mV (pH < 6) form a 

stable suspension and no aggregation was observed during their storage at room temperature 

for more than one year. The sols used for the deposition of the coatings had a pH of about 3 to 

4. 
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Fig. 15: Zeta potential of ITO suspension as a function of pH. 

5.2.2 Sol morphology (TEM) 

The coating sols prepared from the dispersion of ITO250, ITO300 and ITO350 nanoparticles 

were investigated using TEM microscopy (Fig. 16 a,b,c). The images show clearly that the 

suspensions consist of almost monodispersed nanoparticles, with size in the range from 15-

40 nm. As expected the ITO250 suspension has a finer and smaller particles distribution than 

the others. 

 

 

 

 

(a) 

(b) 

 (b) (c) 

 

Fig. 16: TEM images of the crystaline nanopowders redispersed in ethanol.  

(a) ITO250, (b) ITO300, (c) ITO350 (size of the bar is 50 nm) 
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Many particles show crystallites with a regular “etch pit” at their surface (as shown in the 

inset of Fig. 16 b and c). These pits were formed during the particle growth and are typical 

manifestations observed during the crystal growth on low indexed surfaces, like the cubic 

ones (288). Gleiter (289) reported that the formation of this core structure is a result of the 

constraining forces acting between the atoms of the surrounding crystal lattices and the atoms 

in the core region. 

The crystallinity of the particles can be also clearly identified from the structure imaging of 

the particles by the presence of lattice fringes as shown in Fig. 17. The In2O3 cubic phase is 

identified when comparing these diffractions with the JCPDS references 06-416 and 44-1087. 

 

Fig. 17: Structure imaging showing the diffraction pattern of a polycrystalline ITO250 nanoparticle. 

The composition of ITO powders was determined by Energy Dispersive X-ray (EDX) 

technique. The energy of the K-lines of In and Sn, refered to the different L-spectrum were 

resolved quantitively. Fig. 18 shows that the atomic ratio of In / Sn in the particle is about 

10.52 / 1 which is, within the precision of the technique ( ±  20 %), comparable to that of the 

sol preparation (8 at. % Sn, In / Sn = 11.5 / 1). 
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Fig. 18: EDX spectrum of an ITO350 sol (8 at. % Sn). 
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5.2.3 Particle size distribution (UPA) 

The hydrodynamic particle size distribution of pure and MPTS modified ITO colloidal 

suspensions were determined using an Ultrafine Particle Analyzer (UPA) as shown in Fig. 19.  
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Fig. 19: Particle size distribution of (a) ITO250 and (b) ITO350 powders  

dispersed in ethanolic solution without and with different amount of MPTS (modifier). 

All distributions are monomodal. The one for pure ITO250 particles has a size ranging 

between 15 to 20 nm and the previous results obtained from XRD, BET (see Table 1) and 

HRTEM (Fig. 16-a) are confirmed. The size distribution of the particles modified by the 

addition of up to 6 wt.% MPTS is almost in the same range (17-23 nm) although a slight shift 

towards larger size is observed. For higher MPTS concentration larger particles are observed 

due to the aggregation of the primary ITO particles. This may be due to a decrease of the ξ 
potential of the surface of the particles forcing the particles to aggregate and form larger 

clusters. 

On the other hand the colloidal pure ITO350 particles are distributed in the range 20 to 40 nm, 

a value somewhat larger than the primary particle size; each particle appears therefore to be 

formed by two or three primary particles (see Fig. 16 c). When different concentration of 

MPTS are added, the size distribution follows the same behaviour observed for the ITO250 

particles suspension. For a concentration of 12 wt.%, a broader size distribution and large 

clusters are formed with a range of 40 to 120 nm. 

5.2.4 Rheology 

The rheology of the sols is an important property to be determined as the viscosity controls 

the thickness of spin or dip coated layers and as a Newtonian behaviour of the sol is 

preferable for these coating processes (see equation 1). 

Table 5 summarizes the values of the kinematics viscosity of the four different sols a function 

of the solid content (wt. %). Up to 30 wt. % the viscosity increases only slightly and the sols 

behave practically as a Newtonian fluid (Fig. 20). The sols made with ITO350 particles have 
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always a slightly higher viscosity than those made with ITO250 particles. The addition of 

6 wt. % MPTS also slightly increases the sol viscosity. 

The behaviour of the paste (72 wt. % of ITO particles) is however different. The values of the 

viscosity is much higher and a clear shear thinning behaviour is observed. Such property is 

quite promising for web-coating process. 

Table 5: Kinematic viscosity of the four coating solutions as a function of the solid content concentration. 

 

 

solid 

content (wt.%) 

 

ITO250 ITO250+6%MPTS ITO350 ITO350+6%MPTS

5 1.85 1.92 1.96 2.16 

10 1.93 2.09 2.14 2.26 

15 2.07 2.21 2.2 2.37 

20 2.16 2.35 2.25 2.5 

25 2.37 2.54 2.45 2.66 

30 2.56 2.71 2.75 2.8 

Viscosity 
(mm2/s) 
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Fig. 20: Dynamic viscosity and shear stress of the ITO paste,  

the pure and MPTS modified ITO sols as a function of the shear rate. 

5.2.5 Thermal analysis (DTA/TG) 

The thermal behaviour of both pure and MPTS modified coating sols made with redispersed 

ITO250 and ITO350 particles and dried at 130 °C under UV-irradiation (Beltron, 5 min.) are 
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shown in Fig. 21 a, b. All DTA/TG investigations were carried out in air under the same 

conditions. 

The thermogram of Fig. 21 a, b shows that no endothermic peak is observed for T < 130 °C 

for both pure and MPTS modified ITO particles indicating that the ethanol was evaporated 

during the UV drying pretreatment. An exothermic peak is seen in Fig. 21 a for the ITO250 

sample at 235 °C with a shoulder at 286 °C corresponding to a weight loss of 6 %. For the 

ITO350 sample the exothermic peak and its shoulder are slightly shifted to 259 and 315 °C, 

respectively and correspond to a weight loss of 4.5 %. The source of these exothermic peaks 

are probably due to the thermal degradation of the organic groups used to disperse the 

particles. 

Larger weight losses are observed for the MPTS modified samples (Fig. 21 b). This is clearly 

due to the presence of MPTS in the sol leading to more decomposition and combustion of 

organic species. The first exothermic peaks observed between 250 and 300 °C are certainly 

related to the same peaks observed for the pure ITO samples. The exothermic peaks at 390 

and 490 °C are therefore related to the decomposition of the different organic bonds of MPTS 

and the formation of the Si – O – Si network. The slight shift of the peaks to higher 

temperature for the ITO350 particles with respect to those for the ITO250 particles is 

probably related to the particle size, as ITO250 particles have larger surface area (64 m2/g) 

than the ITO350 ones (35 m2/g) which means better thermal conductivity. 
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Fig. 21: DTA/TG curves for colloidal particles (a) ITO250 and  

(b) ITO350 after drying the samples at 130 °C during UV-irradiation. 

5.2.6 Stability of the coating sols (Liquid-NMR-spectroscopy) 

The colloidal stability of all the sols was visually observed by letting them in a closed vessel 

at room temperature until a precipitation was observed and it is reported in Table 6. The 

ITO250 systems are more stable than the ITO350 ones and when unmodified they retain their 

original properties for more than 1 year. The addition of MPTS reduces the stability. 
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Table 6: Storage time without observable precipitation for the colloidal systems ITO250 and ITO350 as a 

function of the concentration of MPTS. 

MPTS-concentration (wt.%) ITO250 ITO350 

0 ~2 years ~ 1 year 

3 ~ 1 year ~ 6 months 

6 ~ 1 year ~ 6 months 

9 ~ 2 months ~ 2 weeks 

12 ~ 1 week ~ 2 days 

In order to get a better insight in the evolution of the condensation and polymerisation degree 

of a pure prehydrolysed MPTS sol, a study was performed by means of liquid 29Si  and 13C 

NMR spectroscopy, respectively. 29Si-NMR measurements were carried out with solutions 

stored at 5 °C within a period of one to 240 days after the hydrolysis of MPTS. The degree of 

the condensation of the RSi(O0.5)3-units, i.e. the percentage of built Si-O-Si was calculated by 

integrating the different signal intensities. Fig. 22 shows the NMR spectra.  
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Fig. 22: 
29

Si-liquid NMR spectra of prehydrolised MPTS sol after storage at 5°C for different times. 

The percentage changes of the T-groups are listed in Table 7. During the first 3 months no 

changes are observed for T1, T2 and T3 . T1 then decreases and totally disappears after 

8 months. T2 decreases from 62 to 55 % after 5 months and further decreases to 47 % after 

8 months. The amount of T3 increases significantly from 33 to 53 %, when the sample was 

stored for 8 months. The degree of condensation calculated according to the formula given in 

appendix A.1.8 remains constant up to 90 days, about 76%, but then increases to reach 84 % 

after 8 months. 
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Table 7: Percentage of the T-groups, degree of condensation and viscosity of prehydrolyzed MPTS sols as 

a function of the storage time.  

Storage 

time 

T
0
  

(%) 

T
1
  

(%) 

T
2
  

(%) 

T
3
  

(%) 

Degree of 

condensation (%) 

Viscosity η  

(Pa.s) 

4 days 0 5 62 33 76 0.41 

30 days 0 5 63 32 76 0.43 

90 days 0 5 62 33 76 0.45 

150 days 0 1 55 44 81 0.86 

240 days 0 0 47 53 84 1.06 

The viscosity of the prehydrolysed MPTS sol increases after the extraction of methanol from 

8 mPa.s to 0.41 Pa.s. The time evolution of the viscosity of the prehydrolysed MPTS sol 

stored at 5°C is also shown in Table 7. There is a very slight increase during the first three 

months, but a significant increase is observed after 150 days (0.86 Pa.s) and 240 days 

(1.06 Pa.s). These results are in agreement with the time evolution of the condensation degree 

of the prehydrolysed MPTS sol and show that the prehydolyzed MPTS sol retains its original 

properties (stable) up to three months when stored at 5 °C. 

The corresponding 13C-NMR-spectrum which allows to characterize the polymerisation of the 

methacryloxy groups was measured for an 8 months old MPTS sol. Fig. 23-A shows the 

signals of the C = C and C = O bonds (135 ppm, 167 ppm) of the methacryl groups but no 

signals characteristics of the polymerization products expected at approx. 45 ppm and 

177 ppm were found (labelled as 5* and 4* in Fig. 24). This means that the reactive double-

bonds are still present in the MPTS sol after the condensation reaction of the Si-OH units and 

that the methacryl groups can be polymerized.  
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Fig. 23: 
13

C-NMR spectroscopy of (A) prehydrolysed MPTS sol,  

8 months old and (B) ITO/MPTS sol (20 h old) 
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13C-NMR-spectrum was also determined to examine the effect of ITO particles on the 

stability of the double bonds. Fig. 23-B shows the spectrum of a mixture of prehydrolysed 

MPTS sol and ITO suspension measured after storage at RT during 20 h. No polymerisation 

of the methacryl groups (4* and 5* in Fig. 24) is found, so that the MPTS / ITO sol can be 

polymerized. 
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Fig. 24: 
13

C-NMR spectroscopy of MPTS product and 50 % polymerized MPTS (right),  

and the corresponding scheme of MPTS (left) (290). 

5.2.7 Conclusion: Sol Characterization 

Nanocrystalline ITO powders calcined at temperature lower than 350 °C were successfully 

redispersed in water or organic solvents, such as ethanol (zeta potential > 30 mV). The best 

pH value to obtain a stable sol with a shelf life of more than 1 year is between 3 and 4. 

However those calcined at higher temperature are difficult to redisperse as they show a large 

aggregation and a zeta potential smaller than 20 mV. 

TEM and UPA investigations of ITO colloids have confirmed that the nanocrystalline 

particles are well dispersed with a size in the range of 15 – 40 nm. The structural phase of the 

particles corresponds to the In2O3 cubic phase. The addition of small amount of MPTS (up to 

6 wt. %) to the ITO colloidal suspensions shifts slightly the size distribution towards larger 

value; this shift increases by increasing the concentration of MPTS. The addition of MPTS 

reduces the stability of the sol. 

Sols with solid content lower than 30 wt. % have a kinematics viscosity ranging between 1.85 

and 2.7 mm2 / s and behave as a Newtonian fluids. 

29Si-NMR spectroscopy showed that the prehydrolyzed MPTS sol is stable if stored in a 

closed vessel at 5 °C during 90 days. An increase of the viscosity and the condensation degree 

was observed for large storage time. 13C-NMR spectroscopy showed that the MPTS sol can 

be polymerized even after long time storage (8 months) and that the presence of ITO particles 
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do not affect the stability of the C = O and C = C double bonds (at least during a 20 h storage 

time). 

5.3 Coating thickness 

The coating sols containing ITO nanoparticles dispersed in ethanol with solid contents of 5 to 

30 wt.% were deposited on borosilicate, quartz and float glasses and polymeric substrates 

(PC, PMMA, PET, PVC, etc.) using the spin and dip coating techniques. The sols made with 

nanocrystalline ITO particles annealed at 250 and 350 °C are called “ITO250” and “ITO350” 

sols, respectively. These sols were also modified by adding a suitable coupling agent like 

MPTS, TEOS, GPTS to produce conducting coatings cured at low temperature and are called 

thereafter “modified ITO250” and “modified ITO350” sols, respectively. 

The thickness of the deposited thin films was measured as a function of the deposition 

parameters, the composition and the concentration of the sols. 

5.3.1 Dip coated ITO films 

Fig. 25 shows the thickness variation of pure ITO single layer deposited by the dip coating 

technique at a withdrawal speed of 4 mm/s on borosilicate glass substrates as a function of the 

solid content of the sol. The films were sintered at 550°C in air during 30 min. 
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Fig. 25: Thickness of dip coated ITO250 and ITO350 films deposited on a borosilicate glass substrate heat 

treated at T = 550°C during 30 min as a function of the solid content concentration. 

Both ITO250 and ITO350 sols lead to the same behaviour: the thickness increases with the 

solid content concentration from 90 nm for a solid content of 5 wt% up to 500 nm for a 

concentration of 30 wt.%. This is due to the increase of the sol viscosity with the solid content 

given (see Table 5). As the ITO350 sols were always found slightly more viscous than the 

ITO250 sols, it is understandable that the thickness of the ITO350 film is always higher than 

that of ITO250 film for a same concentration. 
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The effect of the withdrawal speed on the thickness of a single layer deposited with the 

ITO250 sol having a solid content of 25 wt% is shown in Fig. 26. The behaviour is in good 

agreement with the  dependance of Landau-Levich equation (equation 1). 2/3v

Although crack free single layers have been obtained up to a withdrawal speed of 8 mm/s, a 

value of 4 mm/s was usually used in all the work to assure an optimum film quality. 
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Fig. 26: Single layer thickness of pure ITO250  films deposited on glass substrates and heated at 550 ° for 

30 min versus the withdrawal speed. The dashed line represents a fit with the Landau-Levich equation. 

Fig. 27 shows the thickness variation of single layers withdrawed at a speed of 4 mm/s and 

hardnened using UV-irradiation (Beltron, 5 min) as a function of the amount of the additives, 

such as MPTS, GPTS and TEOS. As the viscosity increases with the addition of the coupling 

agents, the thickness of the film consequently increases. 
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Fig. 27: Effect of the modifier (MPTS, GPTS, TEOS) concentration  

on the thickness of the dip coated film (withdrawal speed of 4 mm/s). 
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5.3.2 Spin coated ITO films 

Spin coating is also a successful method to produce good quality transparent conducting 

coatings. This method was preferred in our work in order to reduce the amount and cost of the 

solution used for the deposition. The coatings were obtained using a spinning speed between 

500- 3000 rpm and spinning time of about 10-15 s. The variation of the thickness of single 

layers made with the MPTS modified ITO350 sol (solid content of 25 wt%) with the spinning 

speed is shown in Fig. 28. It decreases with increasing spinning speed or by diluting the sol 

(lower viscosity). The films were then hardened using UV-irradiation (Beltron, 5 min.). Crack 

free coatings with thickness of 630 nm were typically obtained at a spinning speed of 

1000 rpm. 
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Fig. 28: Variation of the thickness of spin coated film on glass substrate made with the MPTS  

modified ITO350 sol (solid content 25 wt%) with the spinning speed (UV hardening) 

Multilayers coating can also be deposited in order to obtain thicker coatings by repeating the 

coating process (spinning, drying, densification). The thickness of the layers increases 

practically linearly, however the process leads to a slight reduction of the optical quality. Fig. 

29 shows the variation of the thickness and the optical transmittance at λ = 550 nm of 

multilayers MPTS/ITO350 films deposited on glass substrate and cured by UV-irradiation. 
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Fig. 29: Variation of thickness and optical transmission (λ = 550 nm) of  

multilayer spin coated ITO/MPTS films on glass substrate (UV-treated). 
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5.3.3 Conclusion 

The coating sols used in this work consisted of redispersable ITO nanoparticles post annealed 

in forming gas at 250 °C or 350 °C. Dip and spin coating methods produce transparent 

conducting films. The thickness of the films were examined as a function of the solid content 

concentration, the sol viscosity, the spinning and withdrawal speed. 

The thickness of the film increases significantly by increasing the concentration of ITO 

particles in the sol, as a result of the increase of the viscosity. Single good optical quality 

layers with thickness between 400 and 500 nm were obtained for a solid content of 25 wt.%. 

The addition of a modifier like TEOS, GPTS or MPTS to the coating sol increases its 

viscosity and consequently the thickness of the film. 

Multilayers can be obtained to produce thicker films by repeating the deposition and the 

hardening steps; however the optical transmission of the resulting coatings decreased with the 

number of layers. 

5.4 Transparent conducting coatings deposited on glass substrates 

Films were deposited on different glass substrates (float, borosilicate and fused quartz) and 

heat treated at different temperatures up to 1000°C. This section reports on the 

characterization of their structural, morphological, electrical, optical and mechanical 

properties. 

5.4.1 Structural and morphological properties 

Phase structure (XRD) 

XRD measurements were carried out in order to investigate the structural properties of pure 

ITO coatings made of redispersable indium tin oxide nanopowders. Fig. 30 shows typical 

XRD patterns made with the the ITO350 sol and spin coated on fused quartz substrates and 

then heat treated in air at 130, 550, and 1000°C. The layer heated at low temperature 130°C 

was deposited on borosilicate glass. 
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Fig. 30: XRD patterns of spin coated ITO layers on borosilicate and quartz glass.heated at 130°C,  

550°C and 1000°C. The vertical lines refers to the JCPDS database (06-416). 
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As expected all the films are polycrystalline. They show the same cubic bixbyite In2O3 phase 

crystal structure (JCPDS of indium oxide , card number 06-416) independent of the sintering 

temperatures up to 1000 °C. No phases of Sn oxides or hydroxide were found. 

There is however a slight difference between the 2θ-peaks positions and those of the JCPDS 

of pure Indium oxide. This can be explained by the substitution of In ions by Sn ions which 

leads to a slight lattice expansion because of the size differences of the atoms. Another 

possibility for this deviation may be due to a strain effect due to the thermal expansion 

coefficient mismatch between the film and the substrate. Similar results have been observed 

by Shigesato et al (291) who studied the doping mechanisms of ITO films deposited by highly 

dense plasma assisted electron beam evaporation. They reported that the slight shift of the 

XRD peaks observed by doping the In2O3 lattice with tin oxide was due to the presence of 

crystallographic faults. 

The intensity of the diffraction peaks increased significantly when the layers are sintered at 

higher temperatures indicating the better crystallization. The crystallite size also increases 

from 20 nm at 130 °C, 25 nm at 550 °C then 35 nm at 1000 °C. It is also found that the ratio 

I (222) / I (400) decreases from 3.62 at 130 °C to 3.56 at 550 °C then to 2.43 at 1000 °C, 

indicating a gradual growth of the crystallite with an orientation normal to the (400) 

crystallographic plane. A similar behaviour was already observed for the powders (see section 

5.1.1). ITO films grown with a (400) crystallographic orientation were found to have larger 

grain size than the (222) textured ones(292, 293).  

Surface morphology (SEM) 

The surface morphology of the coatings sintered at different temperatures and post annealed 

in a reducing atmosphere is shown in Fig. 31. As expected, all films consist of nano-

crystalline particles, which have approximately a regular granular shape. The growth of the 

particles with the sintering temperature is clearly observable. The grain size of the film 

sintered at 550°C ranges between 35-45 nm, that of films sintered at 750°C between 50-60 nm 

and that sintered at 1000°C is larger and ranges between 75-90 nm. It is also seen that the 

edge texture of the particles become sharper and the grain boundaries become clearer by 

increasing the sintering temperature. The obtention of large grain size is important for 

transparent conducting thin films. This leads to smaller electron scattering and therefore the 

higher is the charge mobility and the electrical conductivity (see section 5.4.2). 

 

 

 

 

 



Chapter 5 Results and Discussions 70

 

100 nm
100 nm

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 31: SEM images of the surface morphology of spin coated ITO layers on quartz substrates sintered  

at a) 550°C, b) 750°C and c) at 1000°C. The insets are an enlargement of a part of the figures. 
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5.4.2 Electrical Properties 

The electrical properties of indium tin oxide coatings were characterised as a function of the 

doping concentration (Fig. 32), the heat treatment (Fig. 34, Fig. 35) and the type of the 

coating sol (Fig. 32). As shown in Fig. 32, the specific resistivity of spin coated ITO layer 

sintered in air at T = 550 °C first decreases with increasing Sn concentration, passes by a 

minimum at around 6 to 8 mol % and then increases. The ITO layers made of ITO350 

particles show a minimum of the resistivity at a slightly lower Sn/In ratio than those made of 

ITO250 particles. Undoped indium oxide layer with thickness between 400 to 460 nm has a 

resistivity ρ ∼  1 Ω.cm (R  > 20 kΩ ). The minimum resistivity is about 7.5x10-2 Ω.cm (R  

= 1.7 kΩ ) at Sn concentration of 8 wt.% (ITO250) sol and to 4.6x10-2 Ω.cm (R  = 0.9 kΩ ) 

at Sn concentration of 6 wt.% (ITO350 sol). The resistivity of the film is 0.32 Ω.cm at 

12 wt.% Sn concentration. 

The slightly different behaviour between the two type of particles is probably due to the 

temperature at which the particles have been prepared. ITO 350 particles were heat treated at 
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higher temperature, and therefore the diffusion of Sn ions into the indium oxide matrix was 

more effective than in the case of the particles sintered at lower temperature. In addition the 

ITO350 particles were found to have larger crystallite size than the ITO250 ones, so that the 

electron scattering at grain boundaries is smaller. 
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Fig. 32: Variation of the resistivity of ITO250 and ITO350 films deposited on borosilicate substrate by 

spin coating and sintered at 550°C in air as a function of Sn concentration in the coating sol. 

The specific resistivity, carrier density and mobility of ITO350 layers as a function of the 

doping concentration is shown in Fig. 33. It is seen that the carrier mobility is low and 

continuously decreases with increasing Sn doping and, as expected, that the carrier 

concentration increases, passes by a maximum at 6 wt. % and then decreases. This shows that 

the decrease of the resistivity of the films with the Sn concentration is essentially due to the 

increase of the electron density. The substitution of Sn4+ ion for In3+ ion releases one electron 

in the lattice contributing to the conductivity. When the Sn concentration increases, the 

crystallite size decreases (Fig. 1) and this results in more grain boundaries, which behave as 

barriers for the electron mobility and this explain the behaviour of µ . An excess of tin 

concentration in the film may also form defects such as Sn2O, Sn2O4, and SnO, which behave 

as electron traps rather than effective donors (58). The variation of the specific resistivity of 

indium oxide thin films with the doping concentration of Sn was studied intensively in many 

papers (258, 294-299) and follows the same tendency. 

Frank and Köstlin (285) reported that for a concentration of above 5 at. % Sn, the ITO film 

become less conductive, where the excess of Sn doping results in a formation of impurity 

scattering centers and do not donate free electrons. Omata et al (295) reported that the 

increase of Sn concentration in ITO layers results in an increase of the interstitial oxygen ions 

which behave as a trap of the mobile electrons. 
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Fig. 33: Specific resistivity, carrier concentration and mobility of ITO350 layers deposited  

on borosilicate substrate and sintered at 550 °C in air for 30 min. 

The effect of the sintering time on the specific resistivity was tested at 550 °C for spin coated 

ITO250 layers (Fig. 34). The specific resistivity first decreases, passes by a minimum value 

for a firing time of about 30 min and then slightly increases. This period of time is sufficient 

to sinter the particles and to bring them close together. The increase of the resistivity at longer 

time may be attributed to the oxidation of the film due to a slow oxygen surface 

chemisorption effect, which removes the oxygen vacancies and reduces the concentration of 

charge carriers. 
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Fig. 34: Variation of specific resistivity of ITO coating  

as a function of the duration of the heat treatment in air at 550°C. 

The sintering of the layers was also tested up to 1000 °C with films deposited by spin coating 

on fused quartz substrates. Fig. 35 shows the variation of the specific resistivity, ρ, and the 

sheet resistance, R , of single ITO350 layer fired in air at different temperatures during 

30 min and also further post annealed in forming gas (N2/H2: 92/8) at 350°C during 30 min. 

The Sn concentration of the coatings was 7 mol%. The resistivity of the film fired in air at 
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550°C is 4.8x10-2 Ωcm and decreases gradually by increasing the firing temperature down to 

1.2x10-2 Ωcm at T = 1000°C. 
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Fig. 35: Sheet resistance, R , and specific resistivity, ρ, of a 500 nm thick nano-ITO coating  

deposited on quartz substrate as a function of the sintering temperature in air during 30 min.  

and also further annealed under reducing gas (350°C, 30 min.) 

This behaviour is related to a better sintering and to the growth of the particles which improve 

remarkably the carrier mobility which varies from 1.08 cm2 / V.s at 550 °C to 4.25 cm2 / V.s 

at 1000 °C as shown in Fig. 36. Increasing the sintering temperature also leads to a slight 

increase of the carrier concentration from 1.19x1020 cm-3 at 550 °C to 1.55x1020 cm-3 at 

1000 °C. These results are in agreement with the growth of the crystallite size calculated from 

the XRD pattern (section 5.4.1) which increases from 25 nm at 550°C to 33 nm at 1000°C and 

with the SEM observations of the surface morphology of the coatings where the growth of the 

particles and a denser structured layer with larger and sharper grain size is clearly observed by 

increasing the firing temperature (Fig. 31). 

The mobility of the charge carriers in polycrystalline ITO thin films is affected by two main 

scattering mechanism: ionised-impurity scattering and grain boundary scattering. As the firing 

temperature is raised, the growth of the grain size results in smaller grain boundary and 

smaller grain boundary potential (see equation 11, chapter 2), and consequently to a smaller 

grain boundary scattering. This leads to a better transport of the electrons and consequently 

higher conductivity. 

The same trend was found by Takahashi et al (97), who found that the main parameter 

affecting the resistivity of dip coated ITO films sintered at different temperatures is the 

mobility of the carriers rather than the carrier concentration. A few nanometer increase of the 

crystallite size assists the growth of the ITO particles and increases the conductivity of the 

formed films. Seki et al (300) observed that the mobility of dip coated ITO films was affected 

mainly by grain boundary scattering rather than by scattering inside the grains. The effect of 

heat treatment in air on the electrical properties of sol-gel ATO coatings made of redispersed 

nanocrystalline ATO particles was investigated in ref. (70). It was found that the specific 
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resistivity of these ATO layers decreased with increasing the firing temperature (up to 

750 °C) and that a high firing temperature results in a large contact surface between the 

particles leading to smaller grain boundary scattering. It was also believed that the increase of 

the charge mobility was the dominant factor. 

The slight increase of the carrier concentration will be discussed later. 
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Fig. 36: Variation of ,   n and  ρ µ  of ITO350 layers sintered in air at different temperatures. 

Fig. 35 also shows that the conductivity of the coatings is improved remarkably by post 

annealing treatment in a forming gas at 350°C during 30 min. For instance the specific 

resistivity of the coatings fired in air at 550 °C and 1000°C which is 4.8x10-2 and 9.7x10-3 

Ωcm, respectively decreases down to 1.45x10-2 and 1.55x10-3 Ωcm, respectively after the 

reducing process. 

The treatment in non oxidizing atmosphere leads to a slight increase (typically 11 %) of the 

charge mobility but to a significant increase of the carrier concentration as shown in Fig. 37. 

The mobility and the carrier density for the film sintered at 550 °C in air are 1.08 cm2 / V.s 

and 1.2x1020 cm-3, respectively (Fig. 36) and increases after post annealing to 1.2 cm2 / V.s 

and 3.32x1020 cm-3 respectively (Fig. 37). The carrier mobility and concentration increase 

gradually with the sintering temperature up to 5.32 cm2 / V.s and 7.63x1020 cm-3 at 1000 °C. 

The improvement of ρ  by the reducing treatment is more effective for layers sintered at 

higher temperature. 

The remarkable increase of the carriers concentration after post annealing is due to the 

increase in oxygen vacancies which ideally produce two free electrons (see equation 10, 

chapter 2). The oxygen concentration in ITO films were investigated by Hunda et al (301) and 

Mizuna et al (302) before and after post annealing of the films in vacuum. It was found that 

the oxygen concentration decreased upon post annealing. 
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Fig. 37:  Variation of ,  n and  µρ  of ITO350 layers sintered in air at different temperatures  

and further post annealed at 350 °C in forming gas for 30 min. 

It was also observed that the post annealing temperature affect the electrical and optical 

properties of the coatings. A post treatment performed at temperature higher than 350 °C 

leads to a slight decrease of the specific resistivity and the optical quality of the films 

deteriorates. All the films reduced at T > 400°C have a smoky-brown appearance, typical of 

metal-rich ITO. 

The values shown in Fig. 35, 36 were measured at least one week after the production of the 

coatings and correspond to stable values. Interestingly it was observed that the specific 

resistivity and the sheet resistance of the post annealed coatings measured immediately after 

the process was lower and unfortunately increases with time until reaching a stable value. Fig. 

38 shows the sheet resistance of the ITO coatings measured at three different stages: before 

annealing, immediately after annealing and after storage in air during one week (20 °C, 

40 % RH). The time evolution of the sheet resistance of the post annealed layers varies 

significantly and depends on the temperature at which the layer was sintered in air before the 

reducing process. For instance a layer sintered in air at 550 °C shows a sheet resistance of 

70 Ω  immediately after the reducing process and then increases by about 285 % until 

reaching a stable value. By increasing the sintering temperature to 775 °C or 1000 °C, the 

variation is smaller, 96 and 28 %, respectively. The layers sintered at higher temperature 

show a higher degree of stability after the reducing process. 
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Fig. 38: Sheet resistance of ITO coatings deposited on fused quartz glass measured before annealing in 

reducing atmosphere, directly after the annealing and after one week storage in air (stable values) 

These results indicate that the improvement of the electrical conductivity after post annealing 

the samples which essentially originate from the creation of oxygen vacancies, is not stable 

and that back reactions with oxygen species occur within the coating. It is believed that these 

species are chemisorbed at the surface of the ITO particles and capture free electrons 

decreasing therefore the charge carrier concentration. Coatings fired at high temperatures 

(T > 750 °C) are denser so that the diffusion of oxygen species in or out the coatings become 

more difficult and the specific surface area of the particles become smaller so that the surface 

chemisorption reactions are reduced. This explains the slighter changes of the sheet resistance 

of the samples fired at 1000°C comparing to that fired at lower temperatures. This also 

explain the small variation shown for the carrier density in Fig. 36, where smaller surface 

results in less interaction with the adsorbed oxygen species. 

To get a better insight on this phenomena, the porosity of the films was estimated by 

measuring the refractive index of the coatings using the following relation (22, 242): 
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where P and  are the porosity (in %) and the refractive index of the porous material, 

respectively and 

pn

sn  is the theoretical refractive index of the dense material ( n  = 1.9 at 

λ = 550 nm (259)). 

The refractive index of the coatings was measured by the VASRA method (see appendix 

A3.3). Fig. 39 shows the Bθ  shifts to higher value when the firing temperature raises. The 

refractive index of the coating at λ = 550 nm increases from 1.52 to 1.62 when the firing 

temperature raises from 550 to 1000°C respectively. 
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Fig. 39: Reflection determined according to the VASRA method (at λ = 550 nm) for coatings  

deposited on fused quartz glass and fired at different temperatures. 

The measurements of the refractive index using the ellipsometry method shows the same 

trend. All the results are listed in Table 8.  

The porosity of the films decreases from 51% to 37% by increasing the firing temperature 

from 550°C to 1000°C. The densification of the coatings results in a filling of the open pores, 

and the coatings sintered at higher temperatures, although still porous, become denser and the 

distances between the  ITO grains become smaller. It is worth to note that films made by sol-

gel methods remain too porous even after a high temperature sintering. Choi et al (303) 

reported that the film density influences the electrical properties of sputtered ITO thin films 

and in particular that the carrier mobility increases with the film density. This confirms that 

the grain boundary scattering is the main factor influencing the carrier mobility. ITO coatings 

made of conducting nanoparticles have a higher resistivity than those made by physical 

methods indicating that point defects, pores and voids in the films are probable the major 

scattering source for the charge carriers. The maximum mobility obtained for the ITO layer 

sintered at 1000 °C is about 5 cm2 / V.s, a very small value compared to those obtained by 

sputtering (40 – 50 cm2 / V.s) (293, 304) or conventional sol-gel deposition methods (10-

30 cm2 / V.s) (97, 300, 305). 

Table 8: Measured refractive index at 550 nm and estimated porosity of ITO coatings on fused quartz 

substrates fired at different temperatures. 

Firing 

Temperature °C 

Refractive index 

(550 nm, VASRA) 

Refractive index (550 nm, 

ellipsometry) 

Porosity 

(%) 

550 1.52 1.52 51 

775 1.55 1.53 46 

1000 1.61 1.62 37 
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5.4.3 Optical Properties 

The optical properties of pure ITO350 coatings deposited on fused quartz substrate and 

submitted to different thermal treatments were characterized by measuring the transmission, 

absorption and reflection spectrum from UV to IR range. 

Far infrared range 

In this region practically only the reflection property of ITO coatings can be measured 

because of the high absorption of the substrate. Fig. 40 shows some representative data of 

ITO coatings sintered in air at different temperature and further heat treated in a forming gas 

atmosphere at 350 °C during 30 min. 
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Fig. 40: IR optical reflection of ITO films fired at different sintering temperatures Ts  

and annealed in forming gas at 350 °C: 1. Ts = 550 °C fired in air, 2. Ts = 550 °C  

and annealed, 3. Ts = 775 °C and annealed, 4. Ts = 1000 °C and annealed. 

The far IR reflectance of the coatings depends on the dc resistivity and increases when ρ  

decreases. However the results are only in partial agreement with the Drude theory (see 

section 2.4.3). In the IR range the Hagen-Ruben relation states that for a given frequency 
1/ 21 R ρ− ∝ . This expression is however only valid when ω γ , /e mγ µ= ∗  being the 

inverse of the average electron relaxation time assumed to be independent of the frequency. 

Fig. 41 shows a plot of the IR reflection of all studied samples measured at 22 mλ µ= . The 

Hagen-Ruben relation hold well only for the low resistivity coatings (reduced samples 

sintered at T ). This probably indicate that the condition 775≥ °C ω γ  is not satisfied for 

the coatings having a high dc resistivity. 
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Fig. 41: 1-R vs 
1/ 2ρ  for reflection data taken at 22 mλ µ= . 

Vis- near IR range 

Fig. 42 shows the transmission T, reflection R and absorption A (calculated as 1-(T+R)) for a 

550 nm thick pure ITO350 coatings sintered at 550 °C in air ( ) and then 

further reduced in forming gas at 350 °C for 30 min ( ). 
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Fig. 42: T, R and A for coatings sintered in air at 550 °C (……) and then reduced in forming gas (___). 

Both films exhibit a high transmission in the visible range, that for the reduced ones being 

however somewhat smaller. The coating sintered in air shows a large transmission window 

extending from the UV up to  (T = 50 %). This window is however sharply 

reduced in the near IR range for the reduced coating ( , T = 50 %). 

2.3 mλ µ=

1.2 5 mλ µ=

For a very thin dense ITO coating obtained for instance with a sputtering process, a sharp 

decrease of the transmission around 1.25 mλ µ=  would have indicated a coating exhibiting a 

very low sheet resistance with resistivity of the order of a few 10-4 Ω .cm (high n and µ ). It 
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would also have been accompanied by an almost anticorrelated sharp rise of the reflection up 

to value close to 80 % for 2.5 mλ µ= . This is not the case here. The reflectance curve shifts 

towards shorter wavelength (shift of the plasma wavelength from about 2.7 mµ  to 1.7 mµ ), 

indicative of a large increase of the carrier concentration but the values of the reflectance 

remain very low (about 20 % at 2.0 mλ µ= ). Therefore its contribution to the decrease of the 

transmission is small. The main effect comes from the presence of a high broad and 

asymmetric absorption peaking at about 1.7 mµ  related to the free carriers. This photon loss 

is given by (298): 
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where C is a constant and t is the thickness of the coating. As t and n are high and µ  is small, 

the value of A is particularly high for this reduced coating. 

The optical behaviour can not be fitted with a simple Drude model (306). The asymmetric 

shape of the curve is also an indication that this model is not adequate to describe the optical 

behaviour in this frequency range. This is due to the different morphology of the coatings 

(aggregation of dense particles, most of them made of a single crystallite and probably highly 

conducting, see section 5.1.2). The photons in this frequency range begin to probe the 

behaviour of electrons within the particles so that the values of the resistivity and mobility are 

not the low values which have been determined by dc electrical methods (corresponding to 

those obtained optically in the far infrared, γ ) which are limited by grain boundary 

scattering but those corresponding to the inside of the particles for which ρ  should be lower 

and µ  should be higher as they will be limited only by ion impurity scattering. 

Another information which corroborates the above discussion is the optical behaviour of the 

coatings sintered at different temperatures and further annealed in forming gas. Fig. 43 and 

Fig. 44 show some representative T and A curves for coatings sintered between 550 °C and 

1000 °C. 
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Fig. 43: Transmission of 550 nm thick coatings 

sintered in air at different temperature and then 

further annealed in forming gas at 350 °C 

for 30 min. 
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Fig. 44: Corresponding absorption of the 

coatings shown in Fig. 43. 
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As the electrical resistivity strongly decreases with the increase of the sintering temperature 

(see Fig. 35), a shift of the near IR transmission edge toward lower wavelength was expected, 

but the contrary is observed. This behaviour is due to the shift of the large IR absorption edge 

toward longer wavelength (Fig. 44). Equation [41] and the variation of the ratio n /µ  obtained 

from the dc electrical data (see Fig. 37) indicate that such a behaviour should be observed, but 

the values independent of the frequency can not explain the results. Similar observation was 

found by Bommel et al (70) for layers made of redispersable ATO particles, however no 

explanation for the shift toward longer wavelength was given. 

Therefore the theoretical model to be used for describing the visible- near IR range optical 

behaviour is much more complicated and can only be made using a computer fitting program. 

From a theoretical point of view the layer should also not be treated as a homogeneous one 

but probably as an effective medium as proposed by Bruggeman (307) involving highly 

conducting ITO particles connected in a percolating network surrounded by a dielectric 

background (e.g air). Similar consideration have been reached by Ederth (308) for ITO 

coatings made with 20 nm size ITO particles, although heat treatments and consequently the 

results were different from ours. 

UV range 

The band gap energy can be estimated from the transmission and refection spectra in the UV 

region according to equation [34]. Fig. 45 shows how the direct energy gap of the same 

coatings mentioned previously has been estimated by extrapolating the linear part of 2α  vs. 

photon energy with the abscissa. Some representative curves for coating sintered in air at 550, 

775 and 1000 °C are shown in Fig. 45. A large shift of the absorption band toward lower 

energy (longer wavelength) is observed for increasing sintering temperature. A value of 

3.77 eV is obtained for the coating sintered at 1000 °C in agreement with published values but 

the data for the two other coatings are not good enough to ascertain a value. The value of the 

energy gap Eg is proportional to n2/3 (138), therefore the data indicate that n1000 < n775 < n550 °C 

which is contrary to the results given by the dc electrical measurement which shows that n 

slightly increases. Such behaviour was also reported without explanation by Bommel et al 

(70) for ATO coatings made of redispersable nanoparticles, where no shift of the optical band 

gap was observed although the resistivity of the coatings decreased by 3 order of magnitude. 
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Fig. 45: 2α  vs. hν  for ITO coatings deposited on quartz substrate fired in air at 550, 775 and 1000 °C. 

A similar behaviour has been observed for coatings sintered at the same temperature and then 

reduced in forming gas at 350 °C for 30 min, although in this case a much larger variation of 

n with the temperature has been observed (Fig. 37). 

A comparison of the data for both type of coatings (Fig. 46) shows nevertheless that the 

reduced coatings have a larger optical band gap for all sintering temperatures which is in 

agreement with the data of n and confirm the Moss-Burstein shift when coatings sintered at 

the same temperature are compared. 

3,0 3,2 3,4 3,6 3,8 4,0
0

1

2

3

4

5

6

7

8

550°C

775°C

1000°C

550°C

775°C

1000°C

  post

annealed

sintered

  in air

α
2
 [

x
1
0

6
 c

m
-2
]

hν [eV]  

Fig. 46: Comparison of 2α  vs. hν  for ITO coatings deposited on quartz substrate  

sintered only in air and also further post annealed in forming gas at 350 °C for 30 min. 

Figure of Merit 

The figure of merit, φ  is a measure of the quality of the films and it is estimated by the 

following relation (108): 

  [42] 10 /T Rφ =
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where T is the average transmission in the visible range and R  is the sheet resistance. 

The calculated figure of merit of the coatings deposited on quartz substrate after different kind 

of treatments are shown in Table 9. The figure of merit is enhanced with increasing the firing 

temperature and is improved drastically by post annealing the films under forming gas. The 

values are nevertheless smaller than those obtained for rf sputtered ITO films (108) which 

range between 14x10-3 and 40x10-3 Ω-1. 

Table 9: Figure of merit calculated from the electrical and optical properties of ITO films on quartz 

substrates 

Substrate temperature (°C) Φ (Without reducing)

x10
-3

 Ω-1 

Φ (With reducing) 

x10
-3

 Ω-1
 

550 0.5 1,2 

625 0,7 1 

775 1 2.1 

850 1.3 4.6 

925 1.7 6.9 

1000 1.85 6.8 

5.4.4 Mechanical properties 

The mechanical properties (adhesion, abrasion resistance, hardness) of transparent conductive 

thin films have a significant meaning for industrial application. They are listed in Table 10. 

They become better as the firing temperature is increased but are not very good in view of 

some demands of industrial application. The abrasion test with a rubber under a load of 9.8 N 

is a severe test for such coatings and the films are totally removed after rubbing the surface of 

the coating during 10 cycles. 

Table 10: Mechanical properties (adhesion, abrasion resistance) of ITO films sintered at different 

temperatures. 

T (° C) Tape test 

DIN 58196-K2 

Cloth test 

DIN 5896-H25

Rubber test 

DIN 58196-G10 

120 Totally removed Class 5 Class 5 

550 Partially removed Class 3 Class 5 

775 Ok Class 2 Class 4 

1000 Ok Class 2 Class 3 

The addition of a small amount of prehydrolysed organosilane, such as TEOS, GPTS in the 

coating sol, improves the adhesion and the abrasion resistance (see 5.5.9). However the sheet 

resistance of the silane modified coatings is higher than those sintered without binder at 

temperature higher than 300 °C. Fig. 47 shows the variation of the sheet resistance of ITO 

coatings deposited on borosilicate glass made with the ITO350 sol and the GPTS modified 

ITO350 sol as a function of the heat treatment. At low temperature the GPTS modified 
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coatings have a lower sheet resistance than the pure ones; however at higher temperature 

(T > 300°C) the opposite is found. This can be interpreted as a result of the transformation of 

GPTS into silica in form of a very thin SiO2 layer surrounding the conducting particles. This 

was confirmed from FTIR spectrum where the formation of a Si – O - Si network is clearly 

seen (Appendix E). 
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Fig. 47: Sheet resistance variation of ITO350 and GPTS modified ITO350 coating with heat treatment.  

5.4.5 Conclusion 

Transparent conductive films were deposited on glass substrates using the spin and dip 

coating method using sols made of nanocrystalline ITO particles dispersed in ethanol. The 

thickness of the deposited films is determined by the concentration and the viscosity of the sol 

and follows the Landau-Levich relation. The wet films were sintered in air at different 

temperatures up to 1000°C and with further post annealing in a nonoxidising atmosphere. 

The lowest film resistivity was achieved for a doping concentration between 6-8 wt. %, and 

was found to decrease by increasing the firing temperature, an effect essentially related to the 

increase of the charge carriers mobility. Further improvement of the electrical resistivity was 

obtained by a further post annealing of the coatings at 350°C for 30 min in forming gas 

atmosphere. This effect was related to the increase of the number of charge carriers due to the 

creation of oxygen vacancies. The minimum resistivity for a 500 nm single ITO layer was 

1.55x10-3 Ω.cm for samples fired at 1000°C and further annealed at 350°C in a forming gas. 

By increasing the firing temperature the porosity of the film decreased, the surface 

morphology becomes denser and the particle size increases. 

All the films exhibit a transparency greater than 85% in the visible range. A shift of the 

plasma wavelength toward shorter wavelength was observed in the NIR region and related to 

the change of the carriers density. The films behave as heat mirrors in the IR region, where 

the reflection increases up to 70% at λ  > 10 µm. The band gap energy measured optically 

ranged between 3.7 and 3.9 eV. The widening of the energy gap observed by the reducing 
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treatment was related to the Moss-Burstein shift. The produced films have a figure of merit in 

the range of 1 to 7x10-3 Ω-1. 

5.5 Transparent conducting coating cured at low temperature 

This section presents the characterization of transparent conducting ITO coatings cured using 

low temperature processes (T < 130°C). The coatings have been obtained by using modified 

ITO coating sols deposited by spin or dip coating methods mainly on polycarbonate (PC) 

substrate but also on other polymeric substrates and glasses which don’t withstand thermal 

treatment at high temperature. The films have been hardened using either UV-irradiation 

(Beltron), by heating in air at T < 130°C or by a combination of both processes. Their 

structural, electrical, optical, and mechanical properties are described below. 

5.5.1 Microstructure of the coatings (XRD) 

Fig. 48 shows the XRD patterns of spin coated MPTS modified ITO thin films deposited on 

PC substrates. Both films are made of redispersable ITO250 and ITO350 particles and cured 

using UV-irradiation (Beltron). They consist of polycrystalline particles and have the same 

cubic bixbyie In2O3 phase structure as those made with pure ITO particles; as before no other 

phases were detected. The broad peak observed at 17 ° corresponds to the substrate. 

The films made of ITO350 particles have stronger peak intensities than that those made with 

the smaller ITO250particles. From the calculation of the line broadening of the major (222) 

peaks, the crystallite size of MPTS/ITO250 and MPTS/ITO350 films are 14 and 20 nm, 

respectively. 
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Fig. 48: XRD patterns of spin coated MPTS modified ITO250 and ITO350 layers  

on PC substrates after UV-treatment. 

5.5.2 Electrical properties 

Several organic or organic - inorganic coupling agents all polymerizable at low temperature or 

by UV-irradiation, have been used to link the particles together. The coatings were densified 

by irradiating the wet deposited films by UV-irradiation and by further heat treatment at 
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130°C for several hours as described in section 4.4. The sheet resistance, thickness, the optical 

quality (eye inspection) and the adhesion to a PC substrate are summarized in Table 11. The 

concentration of the additives given in Table 11 referred to the whole solution, and is that for 

which a minimum sheet resistance was obtained. The thickness of the ITO film without 

additives was 470 nm and it slightly increases by using the modified coating sols. 

Table 11: Electrical, optical and mechanical properties of modified ITO350 coating treated with UV-

irradiation (Beltron, 5 min) and further heat treatment at 130 °C for 10 h. 

 

Additive 

Additive 

concentration 

(wt. %) 

Sheet 

Resistance 

R  (kΩ ) 

Thickness 

(nm) 

Optical 

quality 

Adhesion 

Tape test 

DIN 

58196-K2 

Without additive 0 640 470 transparent failed 

Dbasic Ester 7 100 513 transparent Ok 

Disobutyladipat 6 87 577 hazy Ok 

Butyldiglycolacetat 6 200 519 transparent Ok 

MPTS 6 8 570 transparent Ok 

GPTS 7 18 547 transparent Ok 

TEOS 8 63 510 transparent Ok 

APTS 4 70 550 hazy Ok 

MTEOS 5 80 549 transparent Ok 

The sheet resistance of a single pure ITO350 layer irradiated with UV (105 mW / cm2, 5 min) 

and further heated for 10 h. at 130°C is high, 640 kΩ , and the layer does not adhere well on 

the substrate. The modification of the coating sols enhances clearly the electrical conductivity 

and the adhesion of the ITO coatings to the substrate. The optical quality of the films is 

almost the same except for those made with APTS and disobutyladipate which were hazy. It 

is believed that these additives act as coupling agents binding the conducting particles 

together without the need to sinter them at high temperature. 

TEOS, GPTS and MPTS are known as silane coupling agents and are predominantely used as 

mediators and binding organic to inorganic materials. Many reports (198, 309-312) have 

shown that these material can be used to improve the adhesion of coatings and paints on 

several substrates. They are also used as a thickening agent for sol-gel coating as can be seen 

in Fig. 27. They can be hydrolysed and polymerized to form chains and act as network 

former. These coupling agents were found the most promising materials for ITO particles as 

they produce a minimum sheet resistance of 65, 18 and 8 kΩ , respectively. 

The effect of TEOS, GPTS, MPTS concentration on the sheet resistance of ITO350 thin films 

is shown in Fig. 49 a, b, c. The coatings were deposited by spin coating and hardened at low 

temperature either by heating the wet films at T = 130 °C in air for 10 h, by UV irradiation 
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using a Beltron equipment (110 mW/cm2, 5 min.), by a combination of UV and heat treatment 

or by heating at T = 130 °C in the presence of forming gas for 2 h. 
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Fig. 49: Sheet resistance of ITO350 thin films on PC substrates hardened with different treatment  

as a function of (a) TEOS, (b) GPTS and (MPTS) concentration. A: heating at 130 °C for 10 h,  

B: UV-irradiation (Beltron, 5 min.), C: B+A, D: C+ heating in forming gas for 2 h. 

In all cases the sheet resistance of the layers was found to decrease by increasing the 

concentration of the modifier in the coating sol up to a value of 8 wt. % (TEOS), 7 wt. % 

(GPTS) and 6 wt. % (MPTS). The lowest sheet resistance, 2 kΩ  was obtained by using 

MPTS modified ITO coating after reducing the UV treated MPTS/ITO layer in forming gas at 

130 °C for 2 h. After the same treatment TEOS/ITO coatings showed a sheet resistance of 

25 kΩ  and the GPTS/ITO coatings showed a sheet resistance of 9 kΩ . The results indicate 

a clearly observable effect of the modifier on the improvement of the electrical conductivity 

of such coatings. 

A short time UV treatment (process B) is much more effective to decrease the sheet resistance 

of the coatings than the heat treatment at low temperature for several hours (process A). After 

10 hours of heat treatment in air at T = 130 °C, the sheet resistance of TEOS/ITO, GPTS/ITO 

and MPTS/ITO coating were 630, 466 and 870 kΩ  , respectively. However after 5 min of 

UV irradiation, the sheet resistance of the coatings decreased down to 74, 31 and 13 kΩ , 
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respectively. By further heating the UV-treated samples at 130 °C (process C), the sheet 

resistance of the coatings further slightly decreases down to 65, 20 and 8 kΩ , respectively. 

Fig. 50 shows the time evolution of the sheet resistance of a spin coated MPTS / ITO layer 

under UV-irradiation. It decreases from 103 kΩ  down to 13 kΩ  in almost 5 min. A longer 

irradiation time does not improve the conductivity. There is also a slight variation in the 

thickness of the deposited film with increasing the time of irradiation, but this variation is 

within the standard error of the profilometer. 
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Fig. 50: Effect of UV-treatment time on the sheet resistance and the thickness of spin coated ITO/MPTS 

thin film deposited on PC substrate. 1 min correspond to a UV energy of 1.8 J/cm
2
. 

The same behavior was found in the case of GPTS and TEOS modified ITO coatings. It will 

be shown that the UV-treatment allows to polymerize the coupling agent (see section 5.5.7) 

enhancing the cross linking between the conducting particles and fill the pores of the layer 

that act as electron scattering centers. However at the same time it acts as a reducing process 

in which oxygen species are removed from the surface of the ITO particles. This results in an 

increase of the number of the oxygen vacancies and the charge carrier concentration leading 

to a drastic decrease in the sheet resistance. 

The effect of UV-irradiation on the electrical properties of transparent conducting coatings 

were also studied by other authors. Kololuoma et al (313) have used suitable organic ligands 

to modify antimony doped tin oxide solution for patterning sol-gel ATO coatings by UV-

irradiation. The authors believed however that the increase of the film conductivity by UV-

irradiation results mainly from an increase of the crystallite size. It was nevertheless also 

observed from the analysis of the chemical composition of the surface that the concentration 

of oxygen species on the surface of the film decreased after the exposure to UV-irradiation. 

In another study (314), it was observed that the electrical conductivity of tin oxide thin films 

grown by a sol-gel dip coating technique was improved by photodesorption of the films using 

UV-irradiation source. The conductivity was found to raise by 4 orders of magnitude by UV-

irradiation followed by an annealing under vacuum. Imai et al (315) reported that a UV-laser 
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irradiation allows to effectively crystallize sol-gel derived indium oxide thin films and to 

decrease the sheet resistance. This decrease was explained as a result of the increase of the 

charge carrier concentration due to the formed oxygen deficiency. Petritz (125) studied 

theoretically the photoconductivity in semiconductor thin films and reports that the change in 

the conductivity observed under the irradiation can result from a change in the density of the 

charge carriers and from the reduction of the intercrystalline potential barriers. 

Fig. 51 shows the variation of the sheet resistance of MPTS/ITO layer as a function of the 

conveyor speed of the Beltron equipment, after the coatings have been irradiated during 5 

runs. It is worth to remember that the temperature reached by the coated substrates also 

depends on the conveyor speed (see Fig.8). 
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Fig. 51: Dependence of the sheet resistance of  MPTS/ITO layer on the conveyor speed of the Beltron 

equipment, after the layers have been irradiated during 5 runs. The right axis represents the 

corresponding amount of UV energy emitted by the lamp during 1 run. 

The right axis in Fig. 51 represents the amount of the UV-energy recieved by the samples 

during each run. It is obvious that an increase of UV energy decreased the sheet resistance. 

The sheet resistance of samples treated with the higher energy (speed = 0.8 m/min, 5 runs, 

about 9.5 J / cm2) was 13 kΩ  and is much lower than that obtained for samples treated with 

lower UV-energy, 280 kΩ  (speed = 5 m/min, 5 runs, about 2 J / cm2). 

Fig. 52 shows the variation of the sheet resistance of UV irradiated (5 runs at 0.8 m/min.) 

GPTS/ITO and MPTS/ITO layers as a function of the duration of a heat treatment at 130 °C 

in air. The value of both layers further decrease slightly with the subsequent heat treatment 

from 33 kΩ  down to less than 20 kΩ  for GPTS/ITO layers after 40 h and from 13 kΩ  

down to 8 kΩ  for MPTS/ITO layers after about 20 h. 
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Fig. 52: Time variation of the sheet resistance of UV-irradiated GPTS and MPTS modified  

ITO coatings during heating at 130°C in air. 

A heat treatment in a reducing atmosphere ( N2/H2 : 92/8) at 130 °C has however a more 

drastic improvement on the sheet resistance of the layers which is decreased from about 

8 kΩ  down to 2 kΩ  after a two hours treatment (Fig. 53). An increase of the time slightly 

degrades the sheet resistance by about 5 %. 
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Fig. 53: Dependence of the sheet resistance of MPTS/ITO layers  

on the time of reducing in the presence of forming gas. 

5.5.3 Coatings on other polymeric substrates 

The same modified coating sols were deposited on other polymeric substrates. The deposited 

layers with thickness between 550 and 600 nm were also UV-irradiated several times using 

Beltron´s conveyor speeds which maintain the substrate temperature below a value for which 

no deformation is observed. The substrates were allowed to cool down to room temperature 

after each run. 
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Table 12 show the electrical sheet resistance of a single MPTS/ITO layer deposited on 

different polymeric substrates. The values for all coatings lay between 13 and 30 kΩ , the 

lowest one being that of coated PC substrate, 13 kΩ . 

Table 12: Sheet resistance of MPTS/ITO coatings deposited on different polymeric substrates treated with 

UV-irradiation. 

Substrate Thickness of 

substrate (mm) 

Conveyor-speed 

(m/min.) 

No. of UV-runs / total UV 

energy (J/cm2) 

R  

(kΩ ) 

PC 3 0.8 4-5 / 9.2 13 

PVC 1 5 17 / 6 17 

PC-foil 0.05 6 25 / 5.3 30 

PMMA 2 2 8 / 6.6 15 

PET-foil 0.1 5 20 / 7 15 

PE 2-3 2 7 / 5.8 20 

Fig. 54 shows the evolution of the sheet resistance of MPTS/ITO coatings on PVC and 

PMMA substrates as a function of the number of runs (a) under UV-irradiation (Beltron) and 

the corresponding UV energy (b). Similar to the behavior shown in Fig. 50 the sheet 

resistance decreases by increasing the amount of the UV energy and reaches its minimum, 

15 kΩ , after 9 runs (7.3 J/cm2) for PMMA substrate and 17 kΩ , after 18 runs (6.4 J/cm2) 

for PVC substrate. Fig. 54 b shows also clearly that the parameter to reduce the sheet 

resistance is the total UV energy density received by the sample. The sheet resistance was 

further slightly reduced to 15 and 12 kΩ , respectively, after further heating them in air at 

80 °C for several hours. 
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Fig. 54: Sheet resistance of MPTS/ITO single layer deposited on PVC and PMMA substrates as a function 

of the number of UV-runs (a) and the UV-energy (b) through the Beltron equipment. 
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5.5.4 Time evolution of the electrical properties 

The values of the sheet resistance given in the last section are stable values measured after 

storing the films in ambient atmosphere (20°C, 40 RH) during many days. However the effect 

of the UV and reducing treatments is more effective than that presented. Fig. 55 a, b shows 

the time evolution of  the sheet resistance of a 530 nm thick GPTS/ITO (a) and 570 nm thick 

MPTS/ITO (b) coatings on PC substrates after UV-irradiation for layers kept under different 

atmospheres, such as vacuum, air (20 °C, 40 % RH) and water (20 °C). In this example a 

sheet resistance of 7 kΩ  and 3.7 kΩ  for GPTS/ITO and MPTS/ITO respectively were 

measured directly after 5 runs of UV-irradiation. The value remains constant for long time 

(> 200 h) when the UV treated samples are stored under vacuum or nitrogen atmosphere. 

When the samples are stored in ambient atmosphere, the sheet resistance increases gradually 

with time by a factor of about 4.5 for GPTS/ITO and 3.3 for MPTS/ITO coatings to reach a 

stable value of 30 kΩ  and 12.5 kΩ , respectively after 200 h. The sheet resistance change of 

a sample stored in water increases to even higher value, 80 kΩ , (a factor of about 10) after a 

period of 200 h. 
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Fig. 55: Time evolution of the sheet resistance of coatings deposited on PC substrate and stored in 

different atmospheres, vacuum, air and water. a) GPTS/ITO, b) MPTS/ITO 

It is believed that the effect of the storage atmosphere on the stability of the sheet resistance is 

related to the chemisorption of oxygen and OH species on the ITO particle surface. A 

confirmation was obtained by analyzing the evolution of the mobility and carrier 

concentration in air under the same conditions (Fig. 56). The increase of the electrical sheet 

resistance during storage in an oxidizing atmosphere (Fig. 55) is accompanied with an 

observable decrease of the carrier concentration from 8.2x1019 cm-3 measured immediately 

after the UV treatment down to 3.2x1019 cm-3 after 200 h and also a slight decrease of the 

mobility (Fig. 56). This can be referred to the reduction of the amount of oxygen vacancies 

(created during the UV-irradiation), by the diffusion of the oxygen species into the layer. The 

catalytic action of water (Fig. 55 a) may activate and accelerate the diffusion of oxygen 

species into the layer and the oxidation process (316). 
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Fig. 56: Evolution of carrier concentration and mobility of  

UV irradiated 570 nm MPTS/ITO layer during storage in air. 

The time evolution of the sheet resistance was also determined after heating the sample in a 

reducing atmosphere. Fig. 57 shows the results of a 570 nm thick MPTS/ITO layer (Fig. 49 c) 

post annealed at 130 °C in forming gas for 2 h (process C) and then stored either in ambient 

atmosphere (20 °C, 40 % RH), under vacuum or under a protective gas (N2, Ar). The sheet 

resistance measured just after the reducing treatment is 800 Ω , i.e. a factor 10 lower than 

before the reducing treatment. It does not change when the sample is stored in vacuum or 

under a protective gas. However it increases from 800 Ω   to 1650 Ω  (a factor of about 2) 

when the film is left in air for 200 h. 
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Fig. 57: Time evolution of the sheet resistance of 570 nm thick MPTS/ITO coating on PC,  

after reducing the coating at 130 °C in forming gas. 

This behavior is clearly linked to the decrease of the carrier concentration from 3.7x1020 cm-3 

to 1.9x1020 cm-3 and the slight decrease of the mobility. It is interesting to note that this 

behavior is fully reversible and the lowest value of the sheet resistance can be reproduced by 

repeating the reducing process. The UV irradiation and the reducing process result in a 
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metastable state of the electrical properties. When the samples are exposed to air, oxygen 

species diffuse back into the layer decreasing the number of the created oxygen vacancies and 

consequently of the carrier concentration. The high porosity of the layers is certainly 

responsible for the diffusion rate. It is therefore remarkable that the change of the sheet 

resistance comes mainly from the change of the carrier concentration, where the oxygen 

vacancies concentration play an important role. 

The mobility of the charge carriers of the MPTS/ITO350 coatings is however very low value, 

about 0.5 cm2/V.s and remains practically constant during the different treatments. Similar 

measurements made with MPTS/ITO250 coatings (smaller particle size) leads to even smaller 

mobility, µ  = 0.1 cm2 / V.s. These values are far lower than those measured for films 

prepared by physical or chemical vapor deposition (30 < µ < 100 cm2 / V.s) and from those 

obtained by conventional sol-gel methods (10 < µ < 30 cm2 / V.s) (52, 317). This indicates 

that in our coating the free charges suffer a high scattering process during their drift. The size 

of the particles play an important role. The smaller the particles are, the larger is the grain 

boundary scattering. The low charge mobility is therefore a result of the scattering at particles 

and cluster grain boundaries. The slight decrease in the mobility of the charge carriers, about 

8 %, (Fig. 56, Fig. 57) is probably also related to the oxygen diffusion mechanism at the grain 

boundaries as reported by Lopes et al (318), who claimed that oxygen species act as traps for 

the free charge carriers and increase the potential barrier between the grains (higher grain 

boundary scattering). 

The reversible change of the optical and the electrical properties of indium oxide thin films by 

photoreduction and oxidation have been investigated by Fritzsche et al (319). The authors also 

observed that the resistivity of the films decreased by exposing the films to UV-light. By 

reoxidizing the films under ozone or oxygen plasma treatments, an increase of the resistivity 

was observed. The value of the optical band energy gap was also found to increase by 

exposure to UV-light, which is another confirmation of the increase of the charge carriers 

through the UV-irradiation. The change of the electrical properties of ITO films reduced in 

N2 / H2 atmosphere was studied in a recent work by Hüultäker et al (320) who reported a 

decreasing in the conductivity due to water up-take by the ITO particles film when exposed to 

air. Barlow et al (321) have also observed a degradation of the electrical properties of ITO 

films consisting of fine particles when exposed to air. 

The stability of the sheet resistance of our coatings was also investigated as a function of the 

thickness of the film. MPTS/ITO layers with different thicknesses were deposited on PC 

substrates using different sol concentrations and then cured under UV-irradiation. The sheet 

resistance was measured directly after the treatment (Rٱ (t = 0) and then after storage in air 

during 7 days (Rٱ (t = 7 days). The stability factor, defined as the ratio Rٱ (7 days) / Rٱ 

(t =0), decreases from 12 down to 2 with the increase of the film thickness from 80 to 

1000 nm, respectively as shown in Fig. 58. The increase of the thickness may result in a 

denser layer limiting the diffusion of the oxygen species back into the film. 
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Fig. 58: Stability factor (Rٱ (7days) /Rٱ (t = 0)) of UV cured MPTS/ITO layers  

as a function of the film thickness. 

Fig. 59 (a) shows the effect of Ar-Plasma treatment on the sheet resistance of 570 nm UV-

irradiated MPTS/ITO layer deposited on PC substrate as a function of the treatment time. It is 

observed that such process also enhances the conductivity of the coatings. After a 10 min 

treatment the sheet resistance of the film decreases from 13 kΩ  down to 6.5 kΩ . This 

plasma treatment therefore also acts as a reducing process for such coatings; however, as 

before, the sheet resistance of the treated film returns to its original value when the layer is 

left in air during 120 h (Fig. 59 b). 
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Fig. 59: Sheet resistance of 570 nm UV treated MPTS/ITO layer a) as a function of the Ar plasma 

treatment time, b) during storage in ambient atmosphere. 

Fig. 60 represents the behavior of the sheet resistance of MPTS/ITO layer treated by heating 

in forming gas and submitted subsequently to an Ar plasma. It is interesting to note that the 

Ar-plasma treatment of a UV cured film further reduced in forming gas does not induce any 

change in the value of the sheet resistance (stage b). However, as before, during the storage in 

air the sheet resistance increases (stage c). A subsequent Ar-plasma treatment reduces the 

values but it is not as effective as the forming gas treatment because process can not reach the 

whole bulk of the layer, as does the reducing treatment in forming gas. 
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Fig. 60: Behavior of Rٱ of MPTS/ITO layer as a function of several processes:  

a) Reducing (130 °C, forming gas), b) Ar-plasma treatment directly after a, c) evolution of Rٱ after b,  

d) repeating Ar-plasma after c, e) evolution of Rٱ after d. 

5.5.5 Optical Properties 

The optical properties (transmission, reflection) of the coatings were measured in the UV-

VIS-NIR region (0.3- 3 µm) and the IR reflection in the IR region (3- 20 µm). The 

transmission of a UV-treated pure ITO350 layer on PC substrate and that of a 3 mm thick PC 

substrate are shown in Fig. 61. The average transmission in the visible region is about 87 %. 

The coatings exhibit a high near IR absorption band starting at a wavelength of µm and 

an increase of the reflection beginning at about 1.75 µm both due to the presence of the free 

charge carriers. The layer shows a strong absorption in the UV region, which is due to the 

excitation across the fundamental band gap similar to that observed in section 5.4.3. The 

sharp feature observed in all spectra are due to the PC substrate. 
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Fig. 61: Optical transmission, reflection and absorption in UV-VIS-NIR region of a 3 mm thick PC 

substrate (left) and that of a UV treated pure ITO 350 coating deposited on PC substrate. 

Fig. 62 shows the transmission of a 570 nm thick 6 wt. % MPTS modified ITO layers 

deposited on PC substrates and treated during UV-irradiation. The layer exhibits also a high 
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transmission > 87 % in the visible range like the pure ITO layer, a sharp decrease in the 

transmittance (strong absorption) at wavelength below 400 nm, a high absorption edge due to 

the free carrier absorption at λ  > 1.0 µm and an increase of the reflectance for λ  > 1.6 µm 

which reach about 20 % at λ  = 3 µm. 
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Fig. 62: Optical transmission spectra of MPTS / ITO layer  

on PC-substrate in UV-VIS-NIR region 

The transmission spectra of MPTS/ITO coatings on different polymeric and glass substrate 

are shown in Fig. 63. 

The following spectra show that all MPTS/ITO coated substrates have a transparency greater 

than 85 % between 400 and 800 nm whatever is the thickness of the substrate. All the spectra 

show a high absorption band beginning at λ > 1.0 µm. These coatings act as IR-shielding 

coatings for λ > 1.7 µm as the transmission of the system is less than 1 %. At the same time 

the coatings have a strong absorption in the UV-region for wavelength smaller than 400 nm 

and therefore act also as a protective layer against the degradation of the polymeric substrates 

when exposed to UV-irradiation. For example PC substrates are found to change to a yellow-

brown colour when exposed to UV-irradiation; however they remain clear with a transparency 

greater than 85 % in the visible range (400-800 nm) when coated with an ITO layer. 

 



Chapter 5 Results and Discussions 98

500 1000 1500 2000 2500 3000
0

20

40

60

80

100

a  PVC_substrate

 MPTS/ITO on PVC

T
 %

Wavelength [nm]  
500 1000 1500 2000 2500 3000

0

20

40

60

80

100
b  PMMA-substrate

 MPTS/ITO on PMMA

T
 %

Wavelength [nm]  

500 1000 1500 2000 2500 3000
0

20

40

60

80

100
c  PET-foil_100µm

 MPTS/ITO

T
 %

Wavelength [nm]  
500 1000 1500 2000 2500 3000

0

20

40

60

80

100

d

 PC-foil_50µm

 MPTS/ITO

T
 %

Wavelength [nm]  

500 1000 1500 2000 2500 3000
0

20

40

60

80

100
e  Float-glass_6mm

 MPTS/ITO

T
%

Wavelength [nm]  

Fig. 63:Transmission spectra in the UV-VIS-NIR region of spin coated MPTS/ITO layers cured using UV-

irradiation on a) PVC_1 mm, b) PMMA_2mm, c) PET_100 µm, d)PC_50 µm and e)Float glass_6 mm 

The optical transmission and reflection spectra of a 570 nm thick MPTS/ITO layers coated on 

3 mm thick PC substrate are shown in Fig. 64. The layers have been treated according to the 

process C and D in Fig. 49 c. The influence of the free charge carriers is clearly observed by 

the strong absorption occurring in the NIR and the increase of the reflection for λ > 1.5 µm. 
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The reduced sample exhibit a higher NIR reflection than that of the unreduced one because of 

the higher carrier concentration (n = 1.6x1020 cm-3). 
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Fig. 64: UV-VIS-NIR transmission (T) and reflection (R) of 570 nm thick MPTS/ITO layer on 3 mm thick 

PC substrate for UV-treated  and UV+ reduced (130 °C, forming gas) sample. 

The far IR reflection spectra of a 3 mm uncoated thick PC substrate and a coated substrate 

with a 570 nm MPTS/ITO layer treated according to the process C and D and that of a 

commercial sputtered ITO layer on PC substrate are shown in Fig. 65. Because of its high 

conductivity, the sputtered ITO coating exhibits a higher reflection (about 80 %) than that of 

our coatings which only reflect 30 to 40 %. 
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Fig. 65: IR-reflection of spin coated 570 nm thick MPTS/ITO coatings  

on 3 mm thick PC substrate and a commercial sputtered ITO on PC-substrate (30 Ω ). 

5.5.6 FTIR spectroscopy 

The UV-irradiation treatment of GPTS, TEOS and MPTS/ITO coatings lead to high 

conductive coatings compared with the heat treatment at 130 °C in air for several hours. The 

UV-irradiation increases the number of oxygen vacancies into the film and affect as well the 

structural and the chemical composition of the layer. To better understand these effects a 
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FTIR spectroscopy study is presented in this section. MPTS was used as a 

photopolymerizable component in the modified ITO sol-gel coatings. 

Fig. 66 shows the FTIR spectrum of untreated (as deposited), thermally cured (heating at 

130 °C, 10 h) and UV treated (110 mW/cm2, 5 min) coatings made of prehydrolyzed MPTS 

sol on Si-wafer substrate. The broad band at 3440 cm-1 encompasses the overlapping O-H 

bands of hydrogen bonded molecular water and hydrogen bonded silanol. The band at 2954 

cm-1 and the well formed shoulders represent the vibration of the aliphatic CH stretching 

modes of methyl and methylene groups. The shape and the intensity of the OH and CH 

stretching modes depend on the annealing processes. 
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Fig. 66: FTIR spectroscopy of MPTS coating on Si-wafer: as deposited,  

with heat treatment (130°C,10h) and with UV irradiation (110 mW/cm
2
). 

The bands at 1720 cm-1 and at 1638 cm-1 represent the carbonyl group C = O stretching mode 

and the vinyl group C = C stretching mode, respectively. As shown in the figure the C = C 

stretching mode disappeared after heating the film or after UV light exposure, indicating a 

polymerization of MPTS. The intensity of the C = O stretching mode decreases by heat and 

UV treatments and the band shifts to higher wavenumber, also indicative of a polymerization 

process in which the carboxyl group does not conjugate with carbon double bond any more 

(322). The C = O stretching mode of UV treated film decreases significantly compared with 

the thermally cured sample, indicating that the irradiation accelerates and promotes the 

polymerization of MPTS. 

The bands between 1200 and 1400 cm-1 represent the vibration of several organic groups, 

such as the methyl or methylene bending ν (CH2, CH3), the alkoxy groups δ(SiOCH3), and the 

methacrylate group ν (O – CH2 – C). Their intensity decreases after the heat treatment process 

and are totally eliminated by the UV illumination. It is therefore obvious that the UV 

irradiation reacts with the residual organics groups in the film producing volatile materials. 

The band at 1166 cm-1 observed in the as deposited sample is corresponds to the methacrylate 

group and it is eliminated by the heating and UV treatments. The corresponding asymmetric 

alkoxysilane band of MPTS ν(Si - O – C) is found at the broad band at 1080 cm-1. By heating 
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and UV-irradiation this band is transformed into the well defined Si – O – Si mode band at 

1100 cm-1 which becomes sharper and distinct by the UV treatment. This means that the UV 

treatment results in the formation of a silicate network by further polymerization and 

condensation. 

Fig. 67 shows the FTIR spectra of MPTS/ITO coatings deposited by spin coating method on 

Si-wafer and treated either thermally at 130 °C for several hours, or UV irradiated or sintered 

at 550 °C. The decrease and the complete disappearance of the organic groups and the 

condensation of the silicate network are clearly observed for the film annealed at 550 °C. The 

broad band at 3440 cm-1 corresponding to the O-H group is eliminated in the as deposited 

MPTS/ITO layer and CH stretching mode band at 2954 cm-1 decreases significantly. 

The figure also shows that the C = C band at 1630 cm-1 is completely eliminated by the UV 

treatment, but it is not eliminated in the case of the thermally cured  sample. The C = O band 

at 1716 cm-1 is strongly reduced by the UV treatment. These results indicate that the UV 

treatment is highly efficient and fundamental to promote the coating  photopolymerization, 

i.e. the reduction of the carbon double bonds which represents the degree of polymerization. 

This leads consequently to a well defined Si-O-Si network (band at 1080 cm-1) which links 

the conducting particles together. 
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Fig. 67: FTIR spectra of MPTS/ITO layer on Si-wafer for untreated layer (as deposited)  

and for layers heated at 130°C for several hours, UV-treated or sintered at 550 °C.  

The main Si – O – Si peak for thermally cured coatings (130 °C) is shifted to higher 

wavenumber at 1166 cm-1 with two shoulders at 1124 and 1197 cm-1, which correspond to the 

Si - O – C vibration. Some small peaks between 600 and 1000 cm-1 are observed in the 

spectra of thermally cured sample and are attributed to non bridging oxygen atoms of the Si –
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 OH vibrations. These peaks disappear after the UV treatment and are transformed into the 

Si – O – Si network. 

The previous results give an explanation why the UV treatment of the MPTS/ITO coating 

system induces a far better conductivity compared with those only heat treated, even for 

several hours. The thermal curing alone is not effective for the polymerization and the 

condensation process of the coatings. On the opposite, the UV treatment eliminates the C = C 

band, strongly reduces the C = O band and forms a well defined Si-O-Si network linking 

homogeneously the particles together. 

5.5.7 NMR spectroscopy 

The determination of the polymerization and the condensation degree of the MPTS composite 

were carried out using solid state NMR spectroscopy. The polymerization degree of the 

methacryl group of MPTS was determined using 13C-NMR spectroscopy by comparing the C-

signal intensity of the double bonds (C = C, peak 5 at 136.9 ppm and 5* at 45.5 ppm in Fig. 

24) and that of the carboxy group (C = O, peak 4 at 166.9 ppm and 4* at 137 ppm in Fig. 24) 

with the original intensity of the corresponding C atom of MPTS at 45.4 ppm and 177.0 ppm, 

respectively. 

Fig. 68 shows the 13C-solid state NMR spectra of a MPTS/ITO composite thermally cured at 

130 °C for 15 h (a) and UV cured (b). The degree of polymerization of the UV cured sample 

(process a) is 74 % and much higher than that of thermally cured sample, 22 %. Remembering 

that the polymerization degree of a thermally cured pure MPTS system is 64 %, this shows 

therefore that the presence of the ITO nanoparticles impedes the thermal polymerization. The 

significant difference between the two processes corroborate the effectivness of the 

photopolymerization process in enhancing the electrical conductivity of the films. 
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Fig. 68: 
13

C-solid state-NMR spectroscopy of MPTS/ITO composite  

as thermal cured sample (a), and for UV cured sample (b). 
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Fig. 69 shows the 29 Si solid state NMR spectra for MPTS/ITO film material after heat and 

UV-treatments. The condensation degree of the Si – O  Si network, i.e. the percentage of built 

Si-O-Si bonds, was calculated for both treatment according to the formula given in appendix 

A.1.8. The results show that both composites have the same condensation degree, about 78 %. 

The T0 unit is not present and the amount of T1, T2 and T3 units are 4, 55 and 41 %, 

respectively. This means that the condensation degree contrary to the polymerization degree 

does not depend on the treatment process. 
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Fig. 69: 
29

 Si-solid state NMR spectroscopy of MPTS/ITO layer 

5.5.8 Structural and morphological properties 

a) SEM and TEM observations 

The morphological and structural features of coatings deposited on PC substrates were also 

investigated using SEM and TEM methods. Fig. 70 a depicts SEM picture of the surface of a 

pure ITO layer treated using UV-irradiation and further cured thermally at 130 °C for 10 h. 

The film consists of very loosely packed globular highly porous grains with size ranging from 

20 to 40 nm formed by the aggregation of two or three primary particles. 

The surface morphology of a GPTS/ITO layer (Fig. 70 b) is different. The particles aggregate 

together to form large clusters with sharp grains with size ranging from 60 to 80 nm. The 

layer is highly porous. 

(a)  

 

(b) 

Fig. 70: SEM micrograph of the surface of a) pure ITO layer and b) GPTS/ITO layer deposited on PC 

substrate after UV-irradiation and further thermal treatment (130 °C, 10 h) 
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The surface of an MPTS/ITO layer showed in Fig. 71 a has another morphology. It consists of 

ITO nanoparticles linked together by a small strip of polymerized MPTS (dark regions) 

forming raspberry like globular grains, about 80 - 100 nm in size. The microstructure is 

uniform and denser without any cracks but some nanoscale porosity is still present. The UV 

polymerization of MPTS brings the ITO nanoparticles in denser contact and stick them 

together to form large clusters, enhancing the transport of the free charge carriers between 

them and consequently the conductivity. A SEM cross section of a MPTS/ITO layer 

polymerized with UV-irradiation and further heat treated is shown in Fig. 72. The bonding 

between the conducting clusters increases the density of the film and reduce the porosity. 

The thermally cured MPTS/ITO layer shown in Fig. 71 b has a different morphology than the 

UV-cured one. The micrograph shows spherical particles dispersed and well separated from 

each other in the MPTS matrix. It is clear that the polymerization of the MPTS is not 

complete. This result explains also the big difference of the conductivity between the 

thermally and UV cured samples. 

(a) (b)

Fig. 71: SEM micrograph of the surface of a spin coated MPTS/ITO layer  

on PC-substrate a) UV cured and b) heat treated. 

 

Fig. 72: SEM-cross sectional view of MPTS/ITO layer deposited on PC-substrate  

and treated using UV-irradiation and further heat treatment at 130 C for 10 h. 
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To better investigate the structure of MPTS/ITO coatings on polymeric substrate, TEM 

spectroscopy was carried out. The preparation of thin cross sections using the conventional 

ion-milling technique is very difficult because of the ion damage of the polymeric substrates, 

thus ultramicrotomy was used instead. 

Fig. 73 shows TEM images of a 550 nm thick of MPTS/ITO films deposited on PC substrate 

cured by UV-irradiation (a and c) or only heat treated at 130 °C for several hours (b). The 

TEM images reveal a dense packing of 20 – 50 nm size crystalline ITO particles in the case of 

UV-cured MPTS/ITO layer (Fig. 73 a) and a very loose packing ITO particles in the case of 

thermally cured sample (Fig. 73 b). 

Fig. 73 c shows an enlarged TEM picture of the UV-cured MPTS/ITO layer fragment 

indicating the presence of MPTS surrounding the ITO particles. The thickness of the MPTS 

strips are typically 3 to 6 nm. The particles appear strongly bonded together by the 

polymerized matrix. The above result is a direct explanation why UV cured MPTS/ITO layers 

have a higher conductivity than the thermally cured ones. However the UV-cured samples are 

still porous, and this explains the changes of the electrical properties due to the back diffusion 

of oxygen species into the layer. Further images of SEM and TEM images of the coatings on 

polymeric substrates are found in appendix (G). 

 

 

 

(b)
(a) 

(c)

Fig. 73: TEM micrograph of cross section of MPTS/ITO thin film for UV-cured sample (a),  

thermal cured sample and (c) represents a layer fragment of the sample in (a). 



Chapter 5 Results and Discussions 106

b) WLI and AFM observations 

Investigation of the surface of MPTS/ITO layer using white light interferometry allows to 

characterize the topography of the surface (Fig. 74 a). The coating roughness of a 53 x 70 µm² 

area with a lateral resolution of 600 nm determined without electronic filtering is Ra = 0.8 nm, 

(Rrms =1 nm) and a peak-to-valley maximum value of RPV = 15 nm. No large defects were 

found on the coatings and the surface appears smooth on this length scale. The corresponding 

profile (Fig. 74 b) was obtained across the center of the tested area showing a peak-to-valley 

variation smaller than 15 nm. The high peak shown in the center of the profile is originated 

from a dust particl formed during the preparation of the coatings. 

 

(a) (b) 

Fig. 74: Surface morphology of 570 nm thick MPTS/ITO coating observed with WLI on a 53 x 70 µm² 

area (a), and the corresponding surface profile taken within the center of the tested area (b). 

Atomic force microscopy was also used to investigate the surface topography and to 

determine the average roughness of the coatings on a smaller region and at a smaller scale. 

Fig. 75 shows the surface of a 570 nm thick MPTS/ITO film deposited on PC substrate with a 

53 x 70 µm² area. The surface consists of aggregated ITO nanoparticles with average size of 

50 – 100 nm confirming the SEM investigation. The average roughness of this coating is 

6 nm. 



Chapter 5 Results and Discussions 107

 

63 nm 

1µ m 

1µ m 

Fig. 75: Atomic force microscopy (AFM) of the surface of 570 nm thick MPTS/ITO  

coatings on PC substrate on a 1 x 1 µm² area 

5.5.9 Mechanical properties 

This section presents the mechanical properties (adhesion, abrasion and scratch resistance, 

and hardness) of the films deposited on polymeric substrate. They are summarized in Table 

13. 

The mechanical properties of pure ITO thin films are very poor as the layers are removed or 

partially destroyed after each test. 

Those of ITO coatings made by adding different silane modifiers (MPTS; TEOS, GPTS) to 

the coatings sols were improved drastically. All coatings showed an excellent adhesion on the 

substrate in agreement with the Tape test procedure (DIN 58196-K2) and the result of the 

lattice cut test (ASTMD 3359, DIN 53151) was Gt 0, i.e. the cutting edges are completely 

smooth. No scratch (class 1) was observed for MPTS or GPTS modified ITO coatings after 10 

rubbing cycles with an eraser under a load of 10 N (DIN 58196-G10) and only slight 

scratches (class 2) are observed for TEOS/ITO coatings. The milder rubbing test with a cotton 

cloth, 25 rubbing cycles under a load of 10 N (DIN 58196-H25) is also class 1 (no scratch) for 

all types of modified ITO coatings. 

The hardness measured using the Pencil test ASTM D 3363-92a is 1H for MPTS/ITO 

coatings, F for GPTS/ITO coatings and HB for TEOS/ITO coatings. The amount of TEOS, 

GPTS and MPTS in the coating sols were 6 to 8 wt. %. It is particularly noteworthy to notice 

that only a relatively small amount of these coupling agents is sufficient to enhance the 

mechanical properties of the ITO films. Better mechanical properties are obtained when the 

amount of silane is increased, but such coatings present also a higher value of the sheet 

resistance. 
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Table 13: Mechanical properties of transparent conducting ITO coatings and modified ITO coatings 

deposited on a 3 mm thick PC substrate. 

Test method ITO MPTS/ITO GPTS/ITO TEOS/ITO

Tape test 

DIN 58196-K2 
fail pass pass pass 

Lattice cut test ASTMD 3359, DIN 

53151 
Gt5 Gt0 Gt0 Gt0 

Cotton test 

DIN 5896-H25 
Class 4 class 1 class 1 class 1 

Rubber test 

DIN 58196-G10 
class 5 class 1 class 1 class 2 

Pencil test 

ASTM D3363-92a 
6B 1H F HB 

The enhancement of the mechanical properties of the coatings on polymeric substrates is 

already obtained by a short UV curing time. This is therefore attributed to the building of a 

silica network (Si – O – Si) during the photopolymerization and the condensation of the 

functionalized silanes. It is possible that the functional groups on the substrate surface also 

react with the silanol functional groups (i.e., SiOH). It was observed that the MPTS modified 

ITO coatings have the best adhesion and abrasive resistance among all of the used modifier. 

This may be attributed to the homogeneity of the polymerization and the high degree of 

condensation, which enable the functional groups to form a denser inorganic network with a 

higher adhesive and abrasive resistance. 

The changes of the electrical sheet resistance and the optical transmission at 550 nm of 

MPTS/ITO coatings on different polymeric substrates after applying different mechanical 

tests are listed in Table 14. The values remain practically identical except for those of the 

sheet resistance determined after storing the layer in a 95 % RH humidity during 100 h which 

decreases by about 20 to 30 % and those of the transmission which decreases by 3 to 7 %. As 

shown in Table 14 the coatings deposited on a PC substrate was the most durable coating. 

This is probably due to the fact that the adherence of the coating to this surface is higher than 

the other polymeric substrates. Lee et al (323) also found that the adhesion and the abrasion 

resistance of the coatings on a PC substrate is better than on a PMMA substrate. The authors 

argued that this was due to the less water adsorption on PC (0.4 %) as compared with that on 

PMMA (2.2 %). 
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Table 14: Changes of the electrical sheet resistance and transmission at 550 nm of MPTS/ITO coatings 

deposited on polymeric substrates after abrasion, adhesion and humidity tests. 

 Abrasion resistance 

DIN 58196-G10 

(rubber test) 

Adhesion resistance 

DIN 58196-K2 

(tape test) 

Humidity resistance 

95 % RH, 60 °C, 

100 h 

substrate PC PMMA PVC PET PC PMMA PVC PET PC PMMA PVC PET

Increase in sheet 

resistance (%) 

6  7  10 10 < 1 < 1 < 1 < 1 20 26 29 30 

decrease in trans-

mission (%) 

< 1  2  2  3 < 1 < 1 < 1 < 1 3 5 5 7 

The evolution of the sheet resistance of MPTS/ITO coatings on PC and PE substrates 

investigated during the eraser rubbing test is shown in Fig. 76. For PC substrate the value 

remains constant up to 10 cycles and then increase continuously, reflecting a decrease of the 

thickness of the coatings. A similar behavior is observed for coatings deposited on PE 

substrates. 
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Fig. 76: Sheet resistance of MPTS/ITO coatings on PC and PE substrates vs.  

the number of rubbing cycles of an eraser under 10 N load. 

Fig. 77 shows the evolution of the sheet resistance of MPTS/ITO and GPTS/ITO layer 

deposited on PC substrate after scratching an insulated area of the coatings with pencils of 

different hardness scales (6B – 9 H) and measured across the scratch (see appendix A.2). In 

the case of MPTS/ITO layer no cut or scratch is observed by using pencils softer than 1H and 

the sheet resistance remains constant. For GPTS/ITO layer the value was F. For both systems 

the layer is not completely cut when a scratch is made with the hardest pencil (9H). In the 

worst cases the sheet resistance of MPTS/ITO and GPTS/ITO coatings increased by a factor 

10 and 50 respectively 
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Fig. 77: Sheet resistance of MPTS/ITO and GPTS/ITO layers on PC-substrates  

versus different scales of pencil hardness 

The mechanical properties of our modified ITO coatings deposited on PC substrates are quite 

similar to those obtained with a commercial conducting polymer such as Baytron® P [20] but 

better than commercial Japanese products (PCND MR680, TAKIRON CO., LTD., antistatic 

layer on PC substrates). Fig. 78 shows a photograph of the surface of our coating (left) and 

that of Takiron Co. Ltd after a 10 cycles rubbing with an eraser under 10 N load (DIN 58196-

G10). The MPTS/ITO coatings withstands the test (class 1, no scratch) but a reasonable 

scattering is observed for the Japanese product (class 3). 

(a) (b) 

10 mm 

 

 

 

 

 

 

Fig. 78: The surface of a MPTS/ITO coating on PC substrate (a) and of a commercial antistatic Japanese 

product (b) after rubbing each surface with an eraser 10 cycles under 1 kg load. 

Taber test (DIN 52347/CS10F/5.4 N) performed on 570 nm thick MPTS/ITO coating 

deposited on PC substrate leads to a 15 % haze after 50 cycles and 42 % after 1000 cycles. 

The coatings are not hard enough to protect the surface of the polymeric substrates from hard 

mechanical influences. Nevertheless, comparing the values obtained after 1000 cycles Taber 

test with an uncoated substrate (haze = 60 %), the MPTS modified ITO coating brings some 
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protection, but does not achieve the properties of specially designed hard coatings derived 

from organic-inorganic nanocomposites (Nanomer) on plastics (154). 

5.5.10 Conclusion 

The modification of the ITO nanoparticle ethanolic sols by adding a small amount of a UV 

polymerizable binder such as a hydrolysed silane (TEOS, GPTS, MPTS) allows the 

deposition of transparent conducting and antistatic coatings fully processable at low 

temperature (T < 130°C). Single layers with thickness up to 600 nm have been obtained by 

spin or dip coating processes on different plastic (PMMA, PC, PE, PVC, PET,..) and glass 

substrates. 

The MPTS modified ITO coatings exhibit the best results compared to the other modifiers 

used to bind the conducting particles. The best curing process involves a UV irradiation (105 

mW/cm², 5 min) followed by a heat treatment at T = 130°C during several hours followed by 

a reducing treatment in forming gas for 2 h. The sheet resistance of the coatings measured 

directly after the UV-irradiation or after a reducing treatment is only stable in vacuum or a 

protective gas atmosphere. When the samples are kept in air the values unfortuently increase 

slowly with time to a stable value, and the variation depending on the thickness of the film. 

This was explained as a result of a decrease of the charge carrier concentration due to the 

diffusion of oxygen species into the layers. A stable sheet resistance as low as 1.7 kΩ  

(resistivity ρ = 9.4x10-2 Ωcm) was achieved for a single 570 nm thick MPTS/ITO layer 

deposited on PC substrates cured by UV-irradiation, followed by a heat treatment at T = 

130°C during several hours and then a reducing treatment in forming gas at 130 °C for 2 h.  

A short period of UV irradiation is much more effective than a very long time heat treatment. 

FTIR and NMR spectroscopy of the coatings revealed that the UV treatment resulted in a 

better polymerization and condensation of the binder leading to a more homogeneous particle 

bonding of the material. These results were confirmed by visualizing the morphological 

structure of the coatings by SEM and TEM investigations. The average roughness of the 

coatings measured by WLI on a 53 x 70 µm2 area is 0.8 nm while that determined in a smaller 

region (1 x 1 µm2) measured by AFM is 6 nm. 

The transparancy of coatings on plastic substrates was higher than 85 % in the visible region 

and the transmission decreased sharply for λ > 1.2 µm due to the presence of a strong 

absorption band. The reflection of the coatings increases for λ > 1.5 µm and reflect 40 % of 

the spectrum at λ ≥  10 µm. 

The modification of the ITO particle layers enhanced very significantly the mechanical 

properties of the coatings. The abrasion resistance is in agreement with DIN 58196-G10 class 

1, the adhesion passes the tape test DIN 58196-K2 and the lattice cut test ASTMD 3359 or 

DIN 53151 and the pencil hardness according to ASTM D 3363-92c is 1 H. 
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5.6 Patterning ITO coatings with a low temperature process 

The modified ITO transparent conductive coating can be easily patterned using a one step 

short time UV-irradiation without using a complicated photoresist based photolithography 

process. A metallic mask with different opening has been used. The unexposed part of the wet 

coating remained in the original state, i.e. the as deposited state and can be easily removed by 

washing the film in alcohol in an ultrasonic bath. The exposed parts hardened by UV light, 

become insoluble. The thickness of the resulted patterned structure is almost the same as the 

thickness of chemically etched UV exposed film. 

Fig. 79 a shows a pattern obtained by irradiating a 1.8 x 1.35 mm2 MPTS/ITO film with UV 

light and (b) shows the surface profile plot measured on the center of the tested area. The 

surface morphology of a 70 x 50 µm2 exposed area is shown in (c). The edges of the pattern 

are sharp and indicate that the patterning process is highly effective. The roughness of the 

UV-exposed area is 0.7 nm and is almost the same as that obtained in Fig. 74. 

 

 

a 

b 

c 

Fig. 79: WLI photograph of a 600 nm thick 1.8 x 1.35 mm
2
 MPTS/ITO patterned structure (a). Surface 

profile plot through the center of the tested area (b). Surface morphology of the exposed part of the 

pattern observed with WLI on a 53 x 70 µm² area (c). 

The UV-irradiation approach allows therefore to fine pattern such nanocomposite coatings. 

MPTS nanocomposite system were already used by Krug et al (324) to produce fine patterns 
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of thin sol-gel films by embossing the wet films with a stamper followed by a UV-irradiation 

and by a further thermal treatment at 130 °C. It was reported that the build-up of the inorganic 

backbones takes place during the sol-gel synthesis, while the final polymerization takes place 

during the UV-irradiation. Tadanaga et al (325) have prepared fine patterns, 3 to 50 µm in 

width, of transparent conducting SnO2 thin films by UV-irradiation. They reported that the 

UV-irradiation led to a change of the solubility of the films in alkaline solution. The 

unexposed part was removed by leaching in alkaline solution. 

The use of finer grids allows to pattern the coating with even smaller features (Fig. 80). The 

edges wall are almost straight and very sharp. Other patterned structure of MPTS/ITO 

coatings are shown in appendix H. 

  

(b) (a) 

Fig. 80: WLI photograph of (a) MPTS/ITO patterned structure and (b) shows the profile of the pattern. 

5.7 Surface properties 

The surface properties such as surface energy and work function of transparent conducting 

thin films have been seldom studied. They change significantly when the coatings are exposed 

to certain surface treatments (41, 326-330), or when they are exposed to different atmospheres 

and the variations have been usually attributed to adsorption and desorption processes. 

Because of the high degree of porosity of the sol-gel films, these processes will not only occur 

at the surface but also in the bulk of these films and their knowledge is of a great importance 

for obtaining stable properties. 

The previous observations (see sections 5.4 & 5.5), have shown that the time evolution of the 

sheet resistance of ITO coatings was strongly dependent on the UV irradiation, the reducing 

treatment and the storage conditions. These variations were essentially attributed to reaction 

occurring in the bulk of the coatings. In this section we discuss the changes of the surface 

properties (work function, surface energy) of ITO nanoparticles coatings observed during the 

UV treatment and their storage. 

5.7.1 Work function 

The work function is defined as the amount of energy required to bring the most loosely 

bound electrons from the Fermi energy level to the vacuum energy level. Fig. 81 shows its 

variation for GPTS/ITO and MPTS/ITO films deposited on PC substrates as a function of the 
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UV-treatment duration. Both layers were prepared one month before and were deposited 

using the spin coating method, hardened by UV-irradiation and subsequently heat treated at 

130 °C for 10 hrs. The work function of both layers decreased during the UV illumination 

from 5.37 down to 4.97 eV for the GPTS/ITO layer and from 5.29 down to 4.92 eV for the 

MPTS/ITO layer. The work function of GPTS/ITO films was always found slightly higher 

than that of MPTS/ITO films. This perhaps refers to the cluster size formed by the 

aggregation of the ITO particles during the polymerisation. It was reported in ref. (161) that 

the work function of metal thin films increases by decreasing the cluster size. 
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Fig. 81: Work function (φ) of GPTS/ITO and MPTS/ITO layers  

as a function of the duration of the UV-treatment (105 mW/cm ). 
2

It is worth to note that the main decrease of the work function during the UV-treatment occurs 

during the first 3 min and then the value remains practically constant. These variations 

indicate changes of the surface compositions. It was reported (331) that the work function of 

ITO films was depending of three factors: I) the O / In ratio, II) the carbon contamination at 

the surface and III) the In / Sn ratio (in decreasing order of importance). Mazon et al (332) 

reported that the work function of ITO film is largely determined by the surface oxygen 

concentration. From the data shown in section 5.5.4, it was found that the concentration of the 

charge carriers, n, of UV-treated MPTS/ITO layer increases during the UV treatment or in 

other words the oxygen concentration in the films is reduced. This results in an upward shift 

of the Fermi energy level, since the Fermi energy (εf) is proportional to n  (333). This shift 

results in a reduction of the work function. Fan et al (334) also reported that oxygen vacancies 

form donor states which cause an upward shift to the Fermi energy of ITO and a decrease in 

the work function. Similar consideration have been reported by Minami et al (335) for 

transparent conducting multicomponent oxide films and by Ishida et al (336) for electron 

beam evaporated ITO films. On the other hand Kim et al (337) have measured the work 

function and the Hall constants of indium tin oxide surfaces submitted to various surface 

2/3
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treatments such as oxygen plasma, aquaregia or a combination of both processes. All the 

processes led to an increase of the work function consistent with a large number of defect 

states (neutral or ionised) created just below the edge of the conduction band pushing the 

Fermi level to lower values. 

The work function appears therefore as a sensitive indicator of the state of the surface and for 

the monitoring of reactions occurring with the environment atmosphere. The adsorption 

species may induce substantial variation of the energy required to remove electrons from the 

Fermi level (338). Fig. 82 shows the time evolution of the work function of UV-treated 

MPTS/ITO film (see Fig. 81) as a function of the storage time in two different atmospheres. A 

slight increase is observed when the layer is stored in a low vacuum but a larger increase 

occurs if the UV-treated layer is exposed to air, an effect certainly related to the adsorption of 

oxygen species and organic contamination onto the layer as reported in (328, 330). The same 

low value of the work function can be obtained by switching again the UV-treatment. A 

similar behaviour was observed by Kim et al (see figure 1 in (339)) for oxygen plasma treated 

ITO film. 
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Fig. 82: Time evolution of the work function of UV-treated MPTS/ITO film  

during storage in vacuum and air  atmosphere. 

5.7.2 Contact angle and surface energy 

The contact angle measurement is a practical technique to determine the free energy of a 

surface. Its determination is obtained by measuring the contact angle of drops of different 

solutions deposited on the surface and was modelled by several authors. The total surface 

energy σs consists of two components, a polar part σp resulting from the different 

intermolecular forces due to the permanent and induced dipoles and hydrogen bonding and a 

dispersion part σd (nonpolar) due to the instantaneous dipole moment (327). 

Fig. 83 shows the time variation of the contact angle of water and the surface energy of 

MPTS/ITO film during the UV-treatment and determined using the model of Wu (340). The 
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contact angle of water decreases considerably from 54 ° down to a minimum of 11.4 ° and the 

surface becomes hydrophilic. The total surface energy of the layer increases from 32.3 mN/m 

to a maximum value of 74.7 mN/m. The variation occurs during the first 3 minutes of UV-

irradiation and is essentially due to the polar component, pσ , as the nonpolar component, dσ  

remains almost constant (  14 mN/m). Consequently a UV-light irradiation increases the 

polarity of the surface energy of the film. 

∼

The changes of the contact angle and the surface energy observed after UV-irradiation are 

stable if the layers are stored in vacuum or in a protective gas atmosphere. When they are 

stored in ambient atmosphere, the surface energy decreases gradually until it reaches its 

original value (before the UV-treatment). The processes are fully reversible. These changes 

can be also interpreted as a result of the variation of the chemisorbed oxygen or water on the 

surface of the layer. Zhong et al (341) have studied recently the evolution of the surface 

energy of ITO films during an oxygen plasma treatment using the same technique. They also 

observed a similar behaviour. This was attained to re-contamination or to the re-arrangement 

on the ITO surfaces. 
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Fig. 83: Variation of  the surface energy (dispersion and polar component) of MPTS/ITO surface  

as a function of the duration of UV-treatment 

Fig. 84 summarizes the variation of the electrical sheet resistance and the surface properties 

(work function and surface energy) for MPTS/ITO layer UV irradiated, stored thereafter in 

vacuum and then exposed to ambient atmosphere (20 °C, 40 % RH). It is clear that the UV-

treatment has a significant effect on the electrical and the surface properties of the MPTS/ITO 

layer. The sheet resistance decreased from 8 to 2 kΩ□, the work function decreased from 5.3 

to 4.92 eV, and the surface energy increased from 32 to 74 mN/m. 

Under vacuum storage conditions, the sheet resistance, work function and the surface energy 

remains almost constant. However by exposing the layer to air (oxidizing condition), the sheet 
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resistance, the surface energy and the work function returned to their initial values before the 

UV-treatment. The diffusion of oxygen into the layer results in a decrease of the number of 

the charge carriers (see section 4.5.4), and a downward shift of the Fermi energy level 

resulting in an increase of the work function. The rate of change of the surface properties is 

clearly faster than the rate of change of the electrical sheet resistance (bulk phenomena), as 

the oxygen species react first with the top surface layer and slowly with the bulk of the film. 
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Fig. 84: Variation of the electrical sheet resistance and the surface properties of MPTS/ITO thin film as 

studied during the UV-treatment and storage in vacuum and then as exposed to ambient atmosphere. 

Fig. 85 shows that there is a linear correlation between both surface properties but no 

correlation was found between the surface and the electrical properties except during the first 3 

min of the UV-treatment (Fig. 86). To obtain a minimum of the sheet resistance a longer 

treatment time is needed since the change in the sheet resistance is due to a bulk effect. 
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Fig. 85: Correlation between the surface energy 

and the work function of MPTS/ITO surface.. 
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energy) of MPTS/ITO film. 
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5.7.3 Conclusion 

The evolution of the electrical properties of ITO particle layers and their surface properties 

(surface energy and work function) were examined during the UV-treatment and their storage 

in different conditions. The UV-treatment decreases the sheet resistance and the work 

function but increases the surface energy of the MPTS/ITO layer. The water contact angle 

decreases and the surface become highly hydrophilic. It is worth to note after UV-irradiation 

the coatings have a high surface energy75.4 mN/m, dominated by a high polar component. 

(62.8 mN/m). 

The evolution of the sheet resistance and the surface properties of UV-treated MPTS/ITO 

coating depend on the storage atmosphere. No change was observed when the coatings were 

stored under vacuum or inert gases but an increase of the sheet resistance, accompanied with 

an increase of the work function and a decrease of the surface energy was observed when the 

layers are left in air. These variations are believed to be due to the reaction of the layer with 

the surrounding atmosphere. 
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Chapter 6 

Summary and conclusions 

Tin doped indium oxide (Sn: In2O3) crystalline conducting nanoparticles were synthesised 

successfully using the so called controlled growth technique. The conducting nanoparticles 

are highly dense and their size grows with the calcination temperature. The average crystallite 

size ranges from 20 to 35 nm when the particles are calcined between 250 to 500 °C. 

The powders calcined at temperature lower than 350 °C were successfully redispersed in 

water or organic solvents, such as ethanol (zeta potential > 30 mV) down to their primary 

particle size forming stable coating sols with a shelf life of more than 1 year. However, those 

calcined at higher temperature are difficult to redisperse and the suspensions form large 

aggregates and a zeta potential smaller than 20 mV. The particle size distribution of the 

coating sols is monomodal with a size in the range of 15 to 40 nm. The addition of a small 

amount of polymerizable inorganic-organic binder such as MPTS shifts slightly the 

distribution to larger value and up to 6 wt.% of MPTS the coating sols retain their stability. 

The sols described above have been used to obtain transparent conducting coatings on glass 

and plastic substrates by spin and dip coating methods. The thickness of the film increases 

significantly by increasing the concentration of ITO particles in the sol, as a result of the 

increase of the viscosity. Single high optical quality layers with thickness between 400 and 

500 nm were obtained for a solid content of 25 wt.%. The addition of a modifier like TEOS, 

GPTS or MPTS to the coating sol also increases the viscosity and consequently the thickness 

of the film. 

Pure ITO suspensions were used to deposit coatings on glass substrates with a further 

processing at high temperature up to 1000 °C. The electrical resistivity of such layers was 

found to decrease by increasing the sintering temperature because of the better contact 

between the conducting particles, the decrease of the porosity of the layers (denser 

morphology) and increase of the particle size. All these effects lead to a significant increase of 

the charge carrier mobility. 

Further post annealing of the layers in forming gas was found effective to further decrease the 

resistivity as observed by the increase of the charge carrier concentration produced by the 

creation of oxygen vacancies. The lowest stable resistivity for a 500 nm thick single ITO layer 

deposited on fused quartz substrate was 1.5x10-3 Ω .cm (corresponding to a sheet resistance 

R  30Ω∼ ) when the layer was sintered in air at 1000 °C for 30 min and further reduced in 

forming gas at 350 °C for 30 min. 

All the films exhibit a transparency greater than 88% in the visible range. A shift of the 

plasma wavelength towards shorter values related to the increase of the carriers density was 

observed in the NIR region. In the IR region the reflection increases up to 70% at λ  > 10 µm 

and the films behave as heat mirrors. The measured optical band energy gap of the films 
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ranged between 3.7 and 3.9 eV. The films have a figure of merit in the range of 1 to 

7 x 10 3 Ω1. 

The modification of the ITO suspensions by adding a small amount of a UV polymerizable 

binder such as a hydrolysed silanes (TEOS, GPTS, MPTS) allows the deposition of 

transparent conducting, and antistatic coatings on different plastic (PMMA, PC, PE, PVC, 

PET,..) and also on glass substrates fully processable at low temperature (T < 130°C) using 

UV-light irradiation. 

The MPTS modified ITO coatings exhibit the best results compared to the other modifiers 

used to bind the conducting particles. The sheet resistance of the coatings measured directly 

after the UV-irradiation or after a reducing treatment is only stable in vacuum or a protective 

gas atmosphere. When the samples are kept in air it unfortunately increases with time. The 

variation however decreases with the thickness of the film. This was explained as a result of a 

decrease of the charge carrier concentration due to the diffusion of oxygen species into the 

layers. A stable sheet resistance as low as 1.7 kΩ  (resistivity ρ = 9.4x10-2 Ωcm) was 

achieved for a single 570 nm thick MPTS/ITO layer deposited on PC substrates cured by UV-

irradiation, followed by a heat treatment at T = 130°C during several hours and then a 

reducing treatment in forming gas at 130 °C for 2 h.  

A short period of UV irradiation is much more effective than very long time of the heat 

treatment. FTIR and NMR spectroscopy of the coatings revealed that the UV treatment 

resulted in a better polymerization and condensation of the binder leading to a more 

homogeneous particle bonding of the material. These results were confirmed by visualizing 

the morphological structure of the coatings by SEM and TEM investigations. The average 

roughness of the coatings measured by WLI on a 53 x 70 µm2 area is 0.8 nm while that 

determined in a smaller region (1 x 1 µm2) measured by AFM is 6 nm. 

The coatings on plastic substrates showed a transparency higher than 85 % in the visible 

region which decreases sharply for λ > 1.2 µm due to the presence of a strong absorption 

band. The reflection of the coatings increases for λ > 1.5 µm and achieves a value of 40 % at 

λ = 10 µm. 

Pure ITO coatings processed at low temperature showed a bad adhesion to the substrate and 

also a weak abrasion resistance. On the contrary the silane modified ITO particle layers 

exhibit an excellent adhesion to the different substrates and pass the tape test DIN 58196-K2 

and the lattice cut test ASTMD 3359 or DIN 53151. The abrasion resistance of these layers is 

in agreement with DIN 58196-G10 class 1 and the pencil hardness according to ASTM D 

3363-92c is 1 H. The mechanical properties can be further enhanced by adding more binder to 

the ITO sol; however the sheet resistance of the layer increases. 

The surface energy and work function of MPTS modified ITO layers deposited on PC 

substrates were examined as a function of the UV-treatment and the storage conditions. It was 

found that the UV irradiation produces a highly hydrophilic surface with a surface energy of 

75.4 mN/m, dominated by a high polar component (62.8 mN/m). The increase of the surface 
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energy was correlated with a decrease of the work function. Similarly to the electrical 

properties these properties are also affected by the storage atmosphere due to the reaction of 

the layer with the surrounding atmosphere. 

In conclusion: 

• Sols made with redispersable nanoparticles allows to deposit thick coatings (up to 

600 nm) in a single step process using conventional sol gel techniques. 

• The conductivity of the ITO nanoparticles coatings increases by increasing the contact 

surface between the particles (higher sintering temperature leads to lower electron 

scattering and higher charge carrier mobility) and by creating oxygen vacancies to 

increase the charge carrier concentration. 

• The obtention of denser conducting layers (lower porosity) is an important issue to 

prevent the chemisorption of oxygen species into the layer and consequently to get 

lower and stable sheet resistance. 

• The presence of already conducting crystalline ITO nanoparticles in a sol containing a 

polymerizable inorganic-organic binder allows the wet deposition of transparent 

conductive coatings on several plastic or preformed glass substrates processed totally 

at low temperature using a UV-irradiation. 

• The UV treatment is a fundamental process for such coatings to perform the 

polymerization of the binder and to bring together homogeneously the conducting 

particles and at the same time to increase the number of charge carrier concentration. 

• The evolution of the electrical resitivity of such coatings in a normal atmosphere after 

the reducing treatment is still a problem to face the obtention of higher conductivity. 

• The electrical, optical and mechanical properties of the so produced layers processed 

at low temperature are promising and find increasing demands for several industrial 

applications (antistatic, antistatic-antiglare, electrostatic and also EM shielding). 
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Appendicies 

A.Methods of Characterization 

Several methods of characterization were used to analyze the prepared materials and coatings. 

A.1 Powder and suspension 

A.1.1 Crystalline phase and crystallite size 

An x-ray powder diffractometer is primarily used for the identification of phases and the 

determination of the crystallite size of powders. An x-ray beam of known wavelength is 

focused on a powdered sample and x-ray diffraction peaks are measured using a germanium 

detector. The d-spacing of the observed diffraction peaks is calculated using Bragg's Law 

2 sinn dλ θ=  and the mean crystallite size (d) can be evaluated from the line broadening of 

the XRD peaks using the Scherrer’s equation: 

 
cos

k
d

λ
β θ

=  [43] 

where d is the average diameter of the crystallite lying in the (hkl) lattice plane, K is a 

constant ~ 0.94, λ  is the X-ray CuKα wavelength (λ = 1.5418 Å), β  is the full width at half 

maximum and θ  is the diffraction angle. 

All ITO powders obtained after the various treatments and with different tin concentrations 

were analyzed using a 2θ θ−  X-ray Powder Diffractometer, SIEMENS Type D500 

employing a CuKα radiation (λ = 1.5418 Å) source and equipped with a 25 kV power. The 

data were taken in the range 10 < θ < 90° with the step-scan mode using 0.02° steps and scan 

speed of 3°/min. The evaluation of the phases and the different diffraction patterns were 

analysed using a SIEMENS Software and compared to the joint commission of power 

diffraction standard (JCPDS) data files. 

A.1.2 Particles density and specific BET surface area measurements 

The bulk density of the particles refers to the average mass per unit of particle volume. The 

volume of the particles is most commonly determined by a helium Pycnometer. 

The density of the synthesized ITO powders obtained after various treatments and different 

tin concentration was determined using a helium AccuPyc1330, pycnometer from 

Micromeritics calibrated with steel spheres of known densities. The data obtained are the 

average value of five measurements with standard deviation of  about ± 0.02 g/cm3. 

The Brunauer-Emmelt-Teller (BET) gas adsorption measurement technique was used to 

measure the specific surface areas of the powders. The measurement was conducted at the 

saturation vapour pressure of liquid nitrogen using an ASAP 2400, Micromeritics equipment. 

The powder samples were degassed in vacuum for 12 h at 130°C prior analysis. The particle 
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size, dBET was evaluated by assuming that the powder was composed of spherical particles 

using the equation: 

 
6000

( )
( ² / ). ( / ³)

BET

BET

d nm
S cm gm density g cm

=  [44] 

A1.3 Hydrodynamic size distribution 

 The coating solutions were characterised by measuring the hydrodynamic particle size 

distribution using an Ultrafine Particle Analyzer (UPA 400, Grimm). The equipment 

determines the Doppler shift of the scattered light caused by the moving particles. Smaller 

particles cause a greater shift in the frequency than larger particles. The difference in the 

frequency of the scattered light is used to determine the size of the particles. 

A1.4 Morphology of the ITO suspension 

Transmission electron microscopy (TEM) is a good tool to determine the particle size and 

morphology of the colloidal suspensions down to a nanometer scale as well their crystalline 

structure. It is possible to study the local chemical composition of the suspension using 

energy dispersive X-ray (EDX) and to identify the crystal structure by analysing the electron 

diffraction patterns. The ITO suspensions were characterized using a high resolution 

transmission electron microscopy (HRTEM-CM200 FEG, Philips). 

A1.5 Thermal analysis (DTA/TG) 

Thermal analysis are methods by which the physical and chemical properties of a substance, a 

mixture and/or reaction mixtures are analyzed as a function of temperature or time, while the 

sample is subjected to a controlled temperature program. The program may involve heating or 

cooling (dynamic), or holding the temperature constant (isothermal), or any combination of 

these. 

The thermal behaviour of the sols and the coated materials obtained after different post 

deposition treatments were examined simultaneously by differential thermal analysis (DTA) 

and thermogravimetriv (TG) using a Bähr Gerätbau, STA501 equipment. For this purpose two 

types of samples were examined. First the coating sols were poured into Al2O3 crucibles and 

heated up to 1000°C at a heating rate of 10°C/min under synthetic air atmosphere. The second 

type of samples were xerogels obtained by drying the sols and precured using UV irradiation. 

The samples were put in Al2O3 crucibles and fired up to 1000°C at a heating rate of 10°C/min. 

under synthetic air atmosphere. 

A1.6 Zeta Potential measurements 

The particles charge can be manipulated and controlled by adjusting the suspension pH and 

by using suitable dispersants. The optimization of the formulation of the sols requires a 

suitable method for measuring the particle’s charge, known as the zeta potential. The zeta 

potential is positive for low pH values and negative for high pH values. The pH at which the 
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zeta potential of the particle is zero, is known as the isoelectric point (IEP) of the colloid and 

is a property of the particle surface. 

The zeta potential of the coating solution was measured using an Acoustosizer II equipment, 

Colloidal Dynamics. It was determined by titrating the pH, starting from a value of 2 up to 12. 

A.1.7 Viscosity 

The dynamic viscosity (η) was measured according to DIN 53018 using a physical Rotational 

Viscometer ME2 using the disc ninepin accessory. About 12 ml solution was filled into the 

gap to obtain a contact with the bell-shaped rotor both on the inside and outside. The viscosity 

was calculated using a commercial software RS120. This technique was used for measuring 

solutions with viscosity higher than 50 mPas.s. 

For solutions of lower viscosity, the kinematic viscosity (ν) was carried out with Schott 

Ubbelhode capillary viscosimeter according to DIN 51 562 at a constant temperature of 

20 °C. The measurements were performed by measuring the time needed for a distinct volume 

of a liquid to flow in a capillary under laminar condition. The solutions were filtered before 

the measurements and 5 runs were carried out with each sample and the results were 

averaged. 

By knowing the density of the liquid ( ), the dynamic and the kinematic viscosity are related 

as: 

ρ

 ρη ν=  [45] 

A.1.8 Liquid NMR-spectroscopy 

Liquid 29Si and 13C NMR-spectroscopy were used to characterize the stability of the MPTS 

sols. The degree of condensation and polymerization were calculated out from the spectra. 

The degree of polymerization of a mixture of ITO sol and MPTS sol was also examined. A 

liquid-NMR-Spectrometer AC200 from Bruker was used to carry out these measurements. 

The evaluation of the polymerisation degree was carried out from the 13C NMR spectra by 

comparison of the intensity of the methacrylate group with that of the methylene group signal 

used as reference. 

The condensation degree was carried out from the 29Si NMR spectra by comparing the 

integrated Tn signal of the Si-O-Si binding groups with that of the internal standard. The 

condensation degree was evaluated according to the formula (290): 

  [46] 1 2(%) 0.33 0.67 1.0C T T= + + 3T

where Tn is the condensed silanol units indicating the conversion of silanol gel into silica 

network. T1, T2, T3 are corresponding to dihydroxy-, monohydroxy- and nonhydroxy-

substituted silica, respectively. 
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A.2 Coating procedure 

The coating sols consisting of dispersed nanocrystalline conducting ITO particles were used 

to produce transparent conducting coatings on different kind of substrates using the spin or 

dip coating techniques. The pre-treatment of the substrate before coating and the methods to 

harden the wet film are affecting strongly the properties of the coatings. 

A.2.1 Cleaning of the substrates 

Before the coating process the substrates were cleaned by different methods. The used 

substrates and the cleaning processes are listed in Table 15. 

Table 15: Cleaning methods performed to different substrates before coating. 

Substrates Cleaning 

Fused quartz glass  

Borosilicate glass 

All substrates were polished using CeO2 powder and washed 

in a professional IR 6001, MIELE Aqua Purificator 

dishwashing machine G7795/1 (program 17). 

Si-wafer, p-doping The substrates were etched in 3 wt.% HF solution, then 

washed with bidistilled water and dipped in a 2-propanol bath, 

and then dried in a flow box. 

Polycarbonate (PC) 

Polymethyl methacrylate 

(PMMA) 

Polyvinyl chloride (PVC) 

All these substrates were coated after removing the protective 

foil covering the substrates (as received). The substrates have 

been also pre-treated in an O2-plasma (40W, 2 min.) to 

examine the adhesion of the coating on the substrates. 

Polyethelene  

PC-foils  

PET-foils 

These substrates were immersed in a 2-propanol bath and then 

dried in a flow box. 

A2.2 Coatings methods 

Single and multilayer Transparent conducting films have been obtained using the well known 

spin- or dip-coating processes on either polymeric and glass substrates. 

Dip coating method: The dip coating process was carried out in flow box with relative 

humidity of 40 ± 2 % and a temperature of 20°C using homemade equipments. The substrates 

with size up to 10 x 10 cm were dipped into the coating sol and pulled out at a withdrawal 

speeds ranging between 2 and 10 mm/s. The whole process was controlled by a software 

controlling the step motor. The film was dried at 130°C for 5 min. or irradiated by UV-

irradiation for 30 s. The whole cycle was repeated several times to obtain coating with higher 

thickness. 

Spin coating method: The coating sols were deposited onto cleaned substrates using a spin 

coater model 1001 CPS II from CONVAC with spinning speed ranging between 500 and 

2000 rpm for 15 s. The substrates were fixed on a vacuum chuck. The layers were then dried 
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at 130°C for 5 min. or irradiated by UV-irradiation for 30 s. The whole cycle was repeated 

several times to increase the desired film thickness. 

A3. Coatings characterization 

A.3.1 Film thickness 

The measurement of the film thickness was carried out using a Tencor P-10 surface profiler. 

The surface of the sample was scanned by a diamond stylus through uncoated part obtained 

by etching the coating using a mixture of zinc powder and hydrolic acid. The stylus registers 

the vertical motion at the etched edges and thereby allow to determine the thickness of the 

coatings.  

A3.2 Electrical properties 

The sheet resistance, resistivity, concentration of charge carriers, charge mobility of the films 

were measured using different methods. The time evolution of these properties was also 

examined during the storage of the samples in various atmospheres. 

Sheet resistance (R): The sheet resistance R□ of the films was measured using the four-point 

probe technique. The probe consists of four equally spaced gold tips with finite radius. Each 

tip is supported by springs on the other end to minimize the sample damage during probing. A 

current is supplied through the outer two probes and a voltmeter measures the voltage across 

the two inner probes (Fig. 87). 

 

Fig. 87: Scheme of the four-point probe configuration 

The measurements were carried out using a 34401-A Multimeter of Hewlett-Packard. For a 

thin layer (thickness t << s), assuming a current ring through the sheet and the expression of 

the area A = 2 πxt, the sheet resistance is derived as (342): 
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consequently, for 
2

V
R

I
= , the specific resistivity for a thin sheet is given by: 

 
ln 2

t V

I

πρ  =  
 

 [48] 

The specific resistivity for a thin sheet can be written as R tρ = , so that the sheet resistance 

is given by: 

 0 4.53
ln 2

0R R R
π

= =  [49] 

where 0R = V/I is the resistance in ohm measured by the multimeter. The results given are the 

average value of 5 measurements. 

The sheet resistance was also measured using a contactless nondestructive system 

(LEHIGHTON Electronics, Inc.). The operating principle relies on the generation of eddy-

currents. The tested sample was positioned into the gap of two circular ferrite cores. An 

oscillating magnetic field produces eddy-currents in the sample. The power absorbed in the 

layer is proportional to the conductivity of the sample. The device is calibrated using a Si 

wafer with known conductivity. The measured data are processed with a software giving the 

values of the sheet resistance in Ω . The results given are the average value of 5 

measurements. 

Resistivity, mobility and carrier density: The density and mobility and sign of the charge 

carriers determines the specific conductivity of a conductor σ. The equation defining the 

specific conductivity is: 

 enσ µ=  [50] 

where e is the electronic charge (1.6x10-19 C), n is the carrier density in cm-3 and µ  is the 

mobility of the charge carriers in V/cm2.s. These parameters can be measured using the Van 

der Pauw- and Hall effect techniques. 

The measuring system consists of a MPS-50 programmable power supply H-50, a Hall van 

der Pauw controller with a K-20 programmable temperature controller from MMR 

Technologies. The van der Pauw method allows to measure the resistivity, while 

measurements of the Hall coefficient allows to determine the mobility and the sign of the 

charge carriers, by placing the material into a magnetic field. The intensity of the magnetic 

field (B) was 1.3 T. The samples were cut into a size of 1x1 cm2 and 4 copper wires were 

glued to the sample using a silver conducting paste, (H20H part A, B from Polytec). These 

contacts were hardened in a dry oven at 130°C for 15 min. For each sample the validity of the 

Ohm’s law was verified and 10 measurements were carried out and averaged at T = 300 K. 
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A3.3 Optical Properties 

UV-VIS-NIR Spectroscopy: The transmission, reflection, and absorption of the coatings were 

measured using a CARY 5E UV-VIS-NIR spectrophotometer from Varian. The 

measurements were carried out within the range 300 to 3000 nm. All measurements were 

done at room temperature. The transmission (T) was measured at normal incidence against air 

as reference. The reflection (R) was carried out using the VW-geometry with a near normal 

incidence of 7°. From the T and R results, the absorption (A) was calculated as A = 1-T-R. 

The true absorption coefficient α was calculated using the transmission and reflectance data 

as: 

 (1 ) tT R e α−= −  [51] 

where t is the film thickness. 

The absorption coefficient data were used to determine the values of the energy gap, Eg, using 

the relation (137) : 

  [52] 1/ 2h (h )gEα ν ν≈ −

where hν  is the photon energy. By plotting 2α  versus hν , the value of the direct optical band 

gap, Eg, was determined by the extrapolation of the linear region of the plot to zero 

absorption. 

IR-Reflection: The reflection of the coatings in the middle infra red range between 3 to 

20 µm was measured using a FTIR-Spectrometer (Brucker IFS 66V). The samples were 

measured against a gold reference. 

Refractive index: The refractive index of the films was measured using the Variable Angle 

Specular Reflectance Accessory (VASRA) of the Cary 5 E equipment. The measurements 

were carried out by measuring the reflection spectrum at a given wavelength, as the sample 

rotates around an axis parallel to the plane of incidence of a polarized light throughout an 

interval between 20° to 70°. The refractive index can be estimated using the relation (343): 

 tan Bn θ=  [53] 

where Bθ  is the Brewster’s angle, i.e. the angle at which the reflection of  the substrate is the 

same as that of the film. The accuracy of the measurements for isotropic and homogeneous 

transparent layers is within ±0.002. 

A.3.4 Structural and morphological properties 

XRD: The structural characterization of the deposited films was carried out using the X ray 

Diffractometer SIEMENS Type D 500. The identification of the phases and the determination 

of the crystallite size were done as mentioned in A.1.1. 

FTIR-Spectroscopy: Fourier Transform Infrared (FTIR) spectroscopy was used to get 

information about the curing and the polymerisation of the coatings. The structure of the 
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molecules was measured using a Bruker (IFS 66V) FTIR spectrometer in the range of 400 to 

4000 cm-1 with resolution of 4 cm-1. The coatings were deposited on Si wafer substrates by 

the spin coating method and cured using different treatments. 

Solid state NMR-spectroscopy: Nuclear magnetic resonance (NMR) spectroscopy was used 

to measure the polymerisation and condensation degrees of MPTS in the modified ITO 

coatings. All measurements were performed with a very small amount of a bulk material 

hardened using UV- or heat treatments at 130°C. The solid state 29Si and 13C spectra were 

recorded at room temperature using a Bruker MSL 200 spectrometer at 4.7 Tesla. The 

quantitive evaluation of the spectra was carried out by comparing the integrated signal 

intensity with that of the internal standard (see A.1.8) 

Scanning Electron Microscopy (SEM): The scanning electron microscopy (SEM) is the most 

widely used equipment in the field of materials science (344) to get information about the 

surface of materials. 

The surface of the coatings was imaged using a high-resolution scanning electron microscopy 

FR-SEM (JSM6400F, JEOL) using the secondary electron signal excited by a 10 keV primary 

beam.. To get charge free surfaces, a very thin gold conducting layer was previously sputtered 

on the surfaces of the sample. 

HR-Transmission Electron Microscopy (HR-TEM): High-resolution transmission electron 

microscopy gives information about the crystallinity, structure and the texture of coatings. 

TEM cross sections were prepared by thinning the specimens using Ar+ ion-milling. Using the 

electron diffraction contrast (bright and dark field modes) the crystalline structures can be 

determined by Fourier analysis. Quantitative chemical compositions of the coatings were 

obtained using energy X-ray spectrophotometry. 

The characterization were made using a HRTEM-CM200 FEG, Philips equipped with an 

energy dispersive X-ray spectrometer (DX-4 system, EDX). The investigation of the layer 

structure of the coatings deposited on polymeric substrates was difficult as the thinning of the 

specimen by ion-milling technique damages the polymeric substrates. Thus ultramicrotomy 

(345) was used to prepare thin cross sections. 

Atomic Force Microscopy (AFM): The topography of the coatings can be measured using an 

atomic force microscope (AFM), where a sharp tip is scanned over a surface with a feedback 

mechanism that enables the piezo-electric scanner to maintain the tip under a constant force to 

obtain height information. AFM operates by measuring attractive forces (noncontact mode) or 

repulsive forces (contact mode) between the tip and the sample. 

The measurements were carried out using the noncontact mode with a NewViewTM head from 

L.O.T. ORIEL attached to the white light interferometer (Zygo New View 5000). 

White Light Interferometer (WLI): The surface morphology as well as the roughness of the 

coatings were characterized using a White Light Interferometer (WLI), Zygo New View 

5000. It is a 3D surface profiler imaging a surface detail and providing accurate measurements 
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without contacting the surface. The measurements were carried out using a white light beam, 

devided within an optical objective. One portion is reflected from the tested part and the other 

from a high quality flat reference. Interference patterns are formed and all intensities are 

directed onto a solid state camera. A MetroPro software was used to convert the intensities 

into images. The time of measurements is very short and the surface topography with feature 

up to 5 mm height can be determined with a vertical resolution down to 0.1 nm. Surface 

characterization, such as forms, volumes, roughness, step height (film thickness) and 

waviness are available. This method was used to characterize the pattern structure of the 

coatings and the average roughness Ra of the layers is defined as: 

 1 2 3..... N
a

y y y y
R

N

+ + +
=  [54] 

where y is the absolute value of each point and N is the number of discrete elements. 

A.3.5 Mechanical properties 

The mechanical properties of the coatings, such as adhesion, abrasion resistance and hardness 

were examined following DIN-Norm and ASTM tests. 

Adhesion: It is an important property, which is related with the durability of the coating. The 

adhesion of the coating was examined by the lattice cut test (Erishsen, ASTM D 3359, DIN 

53151) and the tape test (DIN 58196-6-K2). The classification of the cut test ranges from 

GT/TT = 0 (excellent adhesion) to GT/TT = 5 (no adhesion). The tape test classification 

follows a vissual observation after pulling off of a tape from the substrate. The layer is 

classified as either wholly removed , partially removed or left on the substrate. 

Abrasion: The abrasion resistance is a mechanical test to determine how much physical 

damage the coating will take. This can be performed by rubbing a loaded cloth (DIN 58196-4) 

or a loaded eraser (DIN 58196-5). The tests were done by applying a 9.8 N force by rubbing 

the coating with a cloth during 25 cycles and during 10 cycles in the case of the rubber. The 

surface is examined by illuminating the tested surface with a lamp and the result is classified 

from no visible damage, class 1 to totally damaged layer, class 5. The abrasion resistance was 

also monitored by measuring the electrical sheet resistance of the tested part of the coatings. 

The abrasion resistance of the coating was also examined using the Taber abrasion test 

(ASTM D1044, D3389). The test specimen is placed on the abrasion tester and a 1000 g load 

is placed on top of the abrader wheel which is allowed to spin for a specified number of 

revolutions. A haze measurement is taken before and after the process. Results are expressed 

by percent changes of the haze per number of cycles. 

Hardness: Pencil leads of known hardness allows to evaluate the film hardness. The process 

is a traditional test for gauging the hardness and to determine the scratch resistance of 

coatings by simply scratching the surface with a pencil. The pencil is hold against the film at a 

45° angle and pushed away from the operator with a 6.5 mm stroke. The process is initiated 
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with the hardest pencil and  continued down the scale of hardness of the pencil that will not 

cut the film. The classification of the drawing leads meets the following scale: 

6 5 4 3 2 2 ....6

.......................................................

B B B B B B HB H H H

softer harder

− − − − − − − −
 

The electrical sheet resistance of the coatings was also measured using a multimeter between 

two points around the stroke of the pencil. 

A.3.6 Surface Properties 

The surface properties such as work function, contact angle and surface energy of the 

transparent conducting coatings were characterized. 

Work function: This property was measured using a vibrating capacitor Kelvin Probe system 

from KP technology in ambient atmosphere. The Kelvin method determines the contact 

potential difference (CPD) of a sample with respect to a reference electrode (stainless steel 

tip, diameter 5 mm). The CPD values were referenced to a nominal gold work function of 

5.1 eV.(346). 

Surface Energy: The surface energy of the coatings can be determined by measuring the 

contact angle of different liquids with the surface of the films using the sessile drop method. 

The determination of the contact angle is a measure of the wetting of a solid by a liquid and is 

an indirect method to determine the changes in the surface energy of a thin film. This method 

is used to estimate the wetting properties of a localized region on a solid surface. The angle 

between the baseline of the drop and the tangent at the drop boundary is measured. The 

surface energy of a surface is calculated from the contact angle data of a series of three well 

characterised wetting liquids selected with different viscosities, polarities and surface tension, 

such as distilled water, glycerine and formamide. Different models are used to estimate the 

surface energy of the solid. The determination of the surface energy were done due to the Wu 

model (340) using a G2/DSA 10 contact angle measuring system from Krüss with a G 40 

programme. 
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B. List of used chemicals: 

Chemicals Symbol Supplier Purity

2-(2-Butoxyethoxy) ethyl acetate CH3CO2(CH2CH2O)2(CH2)3CH3 Aldrich 99% 

3,6,9- Trioxadecanoic acid (TDOS) CH3O(CH2CH2O)2CH2CO2H Aldrich  

3-Aminopropyl- 

trimethoxysilane (APTS) 

H2N(CH2)3Si(OCH3)3 Fluka 97 % 

3-Gycidoxypropyl- 

trimethoxysilane (GPTS) 

C9H20O5Si ABCR 98 % 

3-Methacryloxypropyl-

trimethoxysilane (MPTS) 

C10H20O5Si  ABCR 98 5 

6-Caprolactam C6H11NO Fluka >98% 

Ammonium hydroxide solution NH3.aq Fluka 25% 

Bidistilled water H2O INM  

DBE dibasic ester CH3O2C(CH2)nCO2CH3 Aldrich 98 % 

Diethylendlycole-monbutylether 

(DBG) 

CH3(CH2)3OCH2CH2OCH2CH2OH Fluka >99% 

Diisobutyl adipate [-CH2CH2CO2CH2CH(CH3)2]2 Aldrich 99 % 

Ethylene Glycole (EG) HOCH2CH2OH Fluka >99.5%

Hydrochloric acid HCl Fluka 37% 

Indium (III) Chloride InCl3 Chempur 99.999 

Irgacur 184 C6H10OHCOC6H5 Ciba  

Tetraethoxysilane (TEOS) (C2H5O)4Si ABCR 98 % 

Tin (IV) Chloride pentahydrate SnCl4.5H2O Aldrich 98% 
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C. List of equipments 

The equipments used in this research are listed in the following table: 

Measurements Equipment Supplier 

Adhesion Lattice cut test (model 295) Erichsen 

Atomic Force Microscopy 

(AFM) 

NanoViewTM AFM 

(noncontact mode) 

L.O.T. ORIEL 

Centrifuge Hermel Z 323 Jochen Thieme 

Contact angle and  

Surface energy 

G2 / DSA 10, G40 programme KRÜSS 

Dip Coater homemade INM 

Dynamic Viscosity Rotation Viskosimeter UM 

PHYSICA, (ME DIN 53018) 

Rheolab MC20 Physica 

Film Thickness Profilometer, P10 surface 

Profiler 

TENCOR 

FTIR Spectroscopy IFS 66V BRUKER 

Heat treatment up to 1000 °C L3/R Oven Nabertherm 

Heat treatment up to 600 °C Furnace K 750/1 Heraeus 

High Resolution Transmission 

Electron Microscope 

(HRTEM) 

CM200 FEG Philips 

Kinematic Viscosity Ubbelohde Viscosimeter, 

AV 5410_Thermosta CT 1450 

SCHOTT 

Liquid-NMR Spectroscopy AC200 BRUKER 

Particle Size distribution Ultrafine Particle Analyzer 

(UPA 400) 

Grimm 

Paste synthesis Three roller grinding mill Exact 

Post heat treatment Protective gas tube furnace 

(Gero furnace) 

GERO GmbH 

Powder density Gas Pyknometer, 

AccuPyc 1330 

MICROMERITICS 

Resistivity, charge carrier 

density and mobility 

Van der Pauw method MMR Technology, Inc. 
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Scanning Electron Microscopy 

(SEM) 

JSM 6400 F JEOL 

Sheet Resistance (4-point 

technique) 

34401A Multimeter HEWLETT PACKARD 

Solid state-NMR Spectroscopy MSL 200 BRUKER 

Spin Coater Modell 1001; CPS II control 

system 

CONVAC 

Substrate cleaning Rinsing machine, professional 

IR 6001 

Miele 

Surface area and Porosity ASAP 2400 MICROMERITICS 

Taber abrasion resistance S 130 Abraser Taber industry 

Thermal Analysis (DTA/TG) STA 501 Bähr Gerätebau 

Thermal drying system Drying furnace Heraeus 

UV-curing system UV/IR dryer, TYP 20/III Beltron-GmbH 

UV-VIS-NIR Spectroscopy Cary 5E VARIAN 

White Light Interferometry Zygo Newview 5000 Zygo 

Work function Scanning Kelvin Probe System KP Technology 

X-ray Diffraction XRD D500 Siemens 

Zeta Potential Acoustosizer II Colloidal Dynamics 
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D. XRD spectrum 
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Fig. 88: XRD patterns of MPTS/ITO coatings on PC substrate. ( − ) as UV-treated film, (---) or thermally 

cured film at 130 °C for 10 h. 

E.FTIR spectroscopy 

2000 1800 1600 1400 1200 1000 800 600

 MPTS/ITO (UV)

 MPTS/ITO (UV+reducing)

T
 [

a
.u

.]

Wavenumber [cm
-1
]

 

Fig. 89: FTIR spectrum of MPTS/ITO coatings deposited on Si-wafer with different curing treatment: UV 

and UV+reducing at 130 °C for 2 h in forming gas. 
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Fig. 90: FTIR spectrum of 470 nm thick GPTS/ITO layer deposited on Si-wafer substrate cured with UV-

irradiation 

 

2800 2400 2000 1600 1200 800 400

Si-O-Si

T
 [

a
.u

]

Wave number [cm
-1
]  

Fig. 91: FTIR spectrum of 520 nm thick GPTS/ITO layer deposited on Si-wafer substrate  

heated in air at 550 °C. 

 

 

 

 

 



 Appendicies 137

F. NMR spectroscopy 
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Fig. 92: 
29

Si-NMR spectroscopy of GPTS/ITO coatings cured by  

a) UV irradiation (5 min.), b) thermal treatment at 130 °C 
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G. Topography and morphology of the coatings 

 

Fig. 93: AFM picture of spin coated ITO particle layer on borosilicate glass heated in air at 550 °C 

 

 

Fig. 94: TEM picture of ITO300 suspension showing the diffraction pattern of the ITO particles 
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Fig. 95: TEM cross section of a 470 nm thick UV-treated MPTS/ITO250 layer  

deposited on a glass substrate. 

H. Patterning of ITO coatings 

                

100 µm 100 µm

Fig. 96: WLI pictures of the topography of an ITO film patterned using UV-irradiation on PC-substrates. 
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