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Abstract: Efficient methodologies for vegetation-type mapping are significant for wetland’s man-
agement practices and monitoring. Nowadays, dynamic time warping (DTW) based on remote
sensing time series has been successfully applied to vegetation classification. However, most of the
previous related studies only focused on Normalized Difference Vegetation Index (NDVI) time series
while ignoring multiple features in each period image. In order to further improve the accuracy of
wetland vegetation classification, Mahalanobis Distance-based Dynamic Time Warping (MDDTW)
using multi-dimensional feature time series was employed in this research. This method extends the
traditional DTW algorithm based on single-dimensional features to multi-dimensional features and
solves the problem of calculating similarity distance between multi-dimensional feature time series.
Vegetation classification experiments were carried out in the Yellow River Delta (YRD). Compared
with different classification methods, the results show that the K-Nearest Neighbors (KNN) algorithm
based on MDDTW (KNN-MDDTW) has achieved better classification accuracy; the overall accuracy
is more than 90%, and kappa is more than 0.9.

Keywords: wetland vegetation classification; multi-dimensional features; MDDTW; time series;
remote sensing

1. Introduction

Wetlands are one of the most important and biologically diverse ecosystems on earth,
providing numerous essential ecosystem services and representing significant economic
value [1]. Wetland vegetation, as an important component of wetland ecosystems, plays
an important role in biodiversity conservation [2,3], climate regulation [4], and water
conservation [5]. The knowledge of the geospatial distribution of vegetation is paramount
to support high levels of biodiversity and provide a wide range of ecosystem services
in wetland. The Yellow River Delta (YRD) reserve is the largest natural vegetation area
of new wetland along the coast of China, which has been challenged by climate change
and alien vegetation invasion in recent years, and some plant communities are facing
significant threats [6]. Therefore, wetland monitoring and mapping has become the key to
protecting the ecological environment of the region. However, traditional wetland plant
community mapping requires intensive field work, which is labor intensive, expensive,
time consuming, and sometimes not applicable due to limited accessibility. Fortunately,
remote sensing technology provides a powerful tool for identifying and mapping wetland
plant communities in large areas [7,8].

With the improvement of the spatial and temporal resolution of satellite remote
sensing, time series remote sensing images have played an important role in land cover
mapping and other fields [9–12]. The accessibility of multitemporal satellite images could
reduce the impact on classification caused by the complexity of surfaces and, to some
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extent, the similarity between the spectrum of different vegetation [13]. However, part
of the image is occluded by clouds and fog, resulting in missing data values [14,15], and
the inconsistency of the input data dimensions makes it difficult to apply conventional
classifiers, which need consistent data dimensions. In addition, time series remote sensing
images have proven to be of great value to acquire phenological insights for land cover
mapping, which is reflected by vegetation indexes [16,17]. Some data fitting methods, such
as Linear fitting [18] and Fourier transform [19–21], were used to fit vegetation growth
curves and extract phenological features for classification [22–25], but the periodicity of
vegetation is vulnerable to climate, and the time of plant growth and withering may be
delayed or advanced [26–28], which affects the classification results.

The dynamic time warping (DTW) algorithm, which was first applied to speech and
pseudo signature recognition, has been proven to be an effective solution to deal with
the time series challenges described above [29,30]. As an algorithm widely used for time
series matching, this method finds the minimum distance of time series to measure the
similarity between two time series by stretching or shrinking distorted time series [31],
and the partial data values could be overcome. Although the DTW method can make
full use of all time information for better time series shape matching, it ignores the time
range, which is a troublesome issue for vegetation classification with similar time series
shape but different phenological cycles. In response to this shortcoming, some scholars
have introduced time constraints and proposed time-weighted dynamic time warping
(TWDTW) to help distinguish different types of land cover categories. This avoids the
false matching caused by time delay considering the time offset of vegetation phenological
characteristics [32–34]. This method has been widely used in crop phenological information
extraction and mapping, forest tree species classification, etc.

At present, the time series analysis method based on DTW has been successfully
applied to the field of vegetation classification; unfortunately, most of the relevant studies
are based on a single vegetation index such as Normalized Difference Vegetation Index
(NDVI) or Enhanced Vegetation Index (EVI) [35,36]. Plants have obvious spectral reflec-
tion characteristics, which are closely related to their development, health, and growth
conditions. Making full use of spectral information in complex wetland environments is
very important for vegetation classification. For example, paper [37] extracted a variety of
spectral indices combined with DTW for classification. However, this method uses each
time point as a vector to calculate its Euclidean distance in the DTW local distance, which
is also DTW based on Euclidean distance (EDDTW), and assigns the same weight to each
feature while ignoring the relationship between different features [38,39]. On the one hand,
the time series with multiple features should be considered as a whole in order to maintain
the correlation between features [40]. On the other hand, different features may be subject
to various interferences or have nothing to do with the final classification results, and
there are differences between features. Therefore, how to calculate the overall time series
similarity distance and maintain the relationship between different features is the focus of
research in time series classification with multiple features.

In this study, Mahalanobis Distance-based Dynamic Time Warping (MDDTW) was
proposed to solve the problem of calculating the distance of multi-dimensional feature
time series. This method extends the traditional time series similarity calculation based
on single features to a multi-dimensional feature time series, and effectively combines
multiple vegetation indexes for wetland vegetation classification. Specifically, this study
combined multiple spectral indexes to construct multi-dimensional feature time series, then
calculated similarity distance with MDDTW. Finally, the Random Forest (RF) algorithm and
the K-Nearest Neighbors (KNN) algorithm, based on distance measurement, was carried
out in wetland vegetation classification mapping. There are many abbreviations in this
study, which are summarized in Appendix A.
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2. Materials and Methods
2.1. Study Area

The Yellow River Delta (118◦33′–119◦20′ E, 37◦35′–38◦12′ N) is located in the Shandong
Peninsula. The study area, approximately 50 square kilometers, is shown in Figure 1.
Located in the land-sea transition zone at the estuary of the Yellow River, the YRD is about
to be ranked as one of the most intact, largest, and the most juvenile wetland ecosystems on
the planet [41]. It is also the largest natural vegetation area of newborn wetland along the
coast of China, with an abundance of natural plants resources. The halophyte community
that consists of Phragmites australis (P. australis), Robinia pseudoacacia (R. pseudoacacia), Suaeda
salsa (S. salsa), Tamarix chinensis (T. chinensis), Salix matsudana (S. matsudana), and Spartina
alterniflora (S. alterniflora), is the main biocoenosis in the study area. Furthermore, there
are many farmlands on the edge of the study area, which will be classified as a vegetation
type in this study because crops are similar to wetland halophytes and have a certain
growth cycle.
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Figure 1. Location of study area in Shandong Province of China. The image to the right is a true color
composite (red, green, blue bands) from Sentinel-2.

2.2. Data Set
2.2.1. Remote Sensing Data

The Sentinel-2 MSI data used in this study were from the European Space Agency’s
Sentinel Scientific Data Hub. The Sentinel-2 consists of two identical satellites, namely
Sentinel-2A and Sentinel-2B, allowing a 5-day revisit time at the equator and an even
shorter time toward the poles. As a system suitable for monitoring vegetation growth,
the Sentinel-2 records the reflected radiance in 13 spectral bands covering the visible and
near-infrared to the short-wave infrared spectrum, with a spatial resolution as high as 10 m.
The data were the top-of-atmosphere (TOA) reflectance after orthophoto correction and
geometric fine correction. In order to avoid the interference of cloud, 31 images with less
cloud cover were selected, and the image dates obtained are shown in Table 1.

Table 1. Satellite image dates.

Satellite Name Sentinel-2 Sensing Date in 2019

Sentinel-2A
02/21 03/13 03/23 04/02 05/02 05/12 05/22 06/11 07/01
07/21 09/09 09/29 10/19 10/29 11/08 11/28 12/08 12/28

Sentinel-2B
01/17 02/16 03/08 04/07 04/17 05/07 05/27 06/26 07/26
08/15 08/25 09/24 12/03
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2.2.2. Field Survey Data

Compared with the landlocked environment, natural coastal wetland environments
are complex and variable. In order to better understand the spatial distribution of vegetation
communities, researchers conducted a field expedition of wetland vegetation groups in the
YRD from 20 September to 30 September 2019.

There are 116 field stations, which can be seen as calibration points in this investigation,
whose distribution is shown in Figure 2. Furthermore, UAV aerial photography was used
to obtain information regarding 574 validation points in three areas that are difficult for
personnel to reach: natural tidal beach area, semi closed area affected by S. alterniflora, and
fully closed tidal flat. The collection of field survey data could be used as a reference for
selecting training samples and validation samples.

Figure 2. The distribution of field survey points overlaid on the Sentinel-2 MSI false-color images (R:
8, G: 4, B: 3). The image to the right is the photo of different vegetation types, including (a) P. australis,
(b) S. alterniflora, (c) T. chinensis, (d) R. pseudoacacia, (e) S. salsa, (f) S. matsudana.

The distribution of validation points covers the vegetation growth area, as shown
in Figure 3. In the remote sensing image, pixel points of 3 × 3 window size with each
point as the center are selected, and the vegetation of different pixels in the same window
is guaranteed to be the same, which reduces the influence of positioning error. The final
classification results are evaluated by validation pixel points in combination with the field
survey data. It should be noted that the calibration points and validation points selected in
the experiment are completely independent and their sites are different.

 
Figure 3. The distribution of verification points.
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2.3. Data Preprocessing

Preprocessing is required because the Sentinel-2 Level-1C products in this research are
top-of-atmosphere radiance. Firstly, all images were subjected to radiometric calibration
and atmospheric correction to obtain surface reflectance, employing the Sen2Cor algo-
rithm [42] using SNAP software. The Fmask4.0 [43] model in MATLAB software was then
used to set the pixels affected by cloud as invalid pixels because the pixels of the original
image can be cloud-contaminated. Finally, the Sentinel-2 satellite images were clipped to
extract the study area.

The land cover types in the study area are complex, because there are many non-
vegetated areas such as bare tidal flat and water. However, this study mainly focuses on
the classification of vegetation using its time series. Extracting the vegetation covered area
is the top priority of vegetation classification. Because the vegetation grows vigorously
in September, when the image has fewer clouds and fog, a single decision tree was used
to generate the surface classification for the image of 29 September to classify water,
vegetation, and tidal flat with the support of eCognition software, which contains a variety
of multi-scale segmentation methods. The classification results of the ground surface are
shown in Figure 4. It should be pointed out that the automatic classification results are
manually edited in combination with the survey data to ensure the accuracy of extracting
the vegetation coverage area as much as possible. In the experiment, classification is only
carried out in the vegetation area.
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2.4. Methods

In this study, four vegetation index features (NDVI, DVI, EVI, RVI) were extracted
based on Sentinel-2 data to first construct multi-dimensional feature time series. The
Mahalanobis distance was then used to extend the DTW algorithm-based one-dimensional
features to multi-dimensional features for calculating the similarity distance of multi-
dimensional feature time series. Because the traditional Mahalanobis distance based on the
covariance of the sample set could not accurately measure the sample similarity relationship,
this study uses metric learning to train the Mahalanobis matrix and then solve the similarity
distance. Finally, the KNN classifier was used to classify wetland vegetation. The overall
steps of the experiment are shown in Figure 5.
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2.4.1. Multi-Dimensional Feature Time Series

The Ratio Vegetation Index (RVI) is the earliest vegetation index [44], which strength-
ens the difference between vegetation in the infrared band and the near-infrared band.
However, it does not consider the influence of atmospheric and soil factors. The EVI [45]
has a high sensitivity for vegetation, especially for high vegetation cover, and reduces the
interference of soil area and atmospheric factors. The Difference Vegetation Index (DVI) [46]
is sensitive to vegetation with medium and low coverage. The NDVI is one of the most
widely used vegetation indexes, and is also the most commonly used index to monitor
plant growth status. Based on these analyses, four common vegetation indices (NDVI, DVI,
EVI, RVI) were extracted to build multi-dimensional time series. It is important to point
out that different features can be developed for classification, including but not limited to
the above four.

The vegetation indices were calculated by the following Equations (1)–(4).

RVI =
ρRED
ρNIR

(1)

EVI = G× (ρNIR − ρRED)

(ρNIR + C1 × ρRED − C2 × ρBLUE + L)
(2)

DVI = ρNIR − ρRED (3)

NDVI =
ρNIR − ρRED
ρNIR + ρRED

(4)

where, ρNIR represents the near-infrared band reflectance and ρBLUE is the spectral re-
flectance of the blue band, while ρRED represents the red band reflectance. As for EVI, G is
the gain factor, which was set to 2.5. L is the background adjustment factor, which was set
to 1. Furthermore, C1 and C2 are adjustment factors for fit; in this study, C1 was set to 6 and
C2 was set to 7.5.

2.4.2. Mahalanobis Distance-Based DTW (MDDTW)

DTW is an algorithm based on the idea of dynamic programming; it is commonly used
to measure the similarity of two time series of different lengths and was initially applied
to problems involving template matching [47,48]. It has been widely cited in the analysis
of time series remote sensing data processing in recent years [49]. The algorithm uses the
time warping function, satisfying certain conditions to describe the time correspondence
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between the standard time series features and the time series features to be matched.
According to the warping path corresponding to the minimum cumulative distance when
the two-time series features are matched, the similarity of different time series is measured,
and the DTW distance is obtained.

Two time series data, X and Y, are expressed as:{
X = {x1, x2, x3, . . . , xm}
Y = {y1, y2, y3, . . . , yn}

(5)

where m and n are the lengths of X and Y.
In order to calculate the DTW distance, a matrix of m × n is constructed according

to the time series X and Y, where elements (i, j) represent the relative distance, d(xi, yj),
between the two points xi and yi in the corresponding sequences. The data on sequence Y
are nonlinearly mapped to sequence X.

The optimal warp path W is expressed as:

W = (w1, w2, · · · , wk, · · · , wK) (6)

where max(m, n) ≤ K ≤ m + n− 1. The path satisfies the following constraints: boundary,
continuity, and monotonicity [50]. The main aim is to find the only optimal path among
many bending distances that minimizes the cumulative optimal distance, as shown in
Figure 6.
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The final DTW distance is calculated according to Equation (7).{
r(i, j) = d(i, j) + min[r(i− 1, j− 1), r(i− 1, j), r(i, j− 1)]

DTW(X, Y) = min{r(m, n)}
(7)

where r(i, j) represents the cumulative distance, which is the cumulative minimum distance
from the starting point (1,1) to the end point (i, j), and r(1, 1) = DM

(
X1, Y1). The local

distance measure, d(i, j), is defined as:

d(i, j) =
√
(xi − yi)

2 (8)

For the multi-dimensional feature time series constructed by NDVI, DVI, EVI, and
RVI, different index features will be given the same weight, and the correlation between
features will be ignored if the Euclidean distance is chosen to calculate the DTW local
distance. As mentioned above, features have different correlation with the label of subjects,
and there might also be correlations between the different features. A feasible strategy
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is to use the Mahalanobis distance function to measure the local distance of vectors in
multi-dimensional feature time series.

Mahalanobis distance was designed to measure the distance between a distribu-
tion and a single point [51], and it is an effective method to calculate the similarity of
two unknown sample sets, using the Mahalanobis matrix to calculate the correlation
between variables.

Two multi-dimensional time series X and Y are expressed as:

X =


x11 x12 · · · x1m
x21 x22 · · · x2m

...
...

. . .
...

xd1 xd2 · · · xdm

Y =


y11 y12 · · · y1n
y21 y22 · · · y2n

...
...

. . .
...

yd1 yd2 · · · ydn

 (9)

where d is the dimension of the multi-feature time series, and m and n represent the length
of multi-dimensional time series X and Y, respectively.

The local distance in DTW is calculated by the Mahalanobis distance as Equation (10),

DM

(
Xi, Y j

)
=
(

Xi −Y j
)T

M
(

Xi −Y j
)

(10)

where Xi = (x1i, x2i, . . . , xdi)
T , 1 ≤ i ≤ m represents the ith column of X, which is the value

of each variable at time i; Yj = (y1j, y2j, . . . , ydj)
T , 1 ≤ j ≤ n represents the jth column

of Y, which is the value of each variable at time j. The PSD matrix, M, is named as the
Mahalanobis matrix.

The dynamic time warping algorithm is expressed as:{
r(i, j) = DM

(
Xi, Y j) + min{r(i− 1, j), r(i, j− 1), r(i− 1, j− 1)}

DTWM(X, Y) = min{r(m, n)}
(11)

where r(i, j) is the cumulative minimum distance from (1,1) to (i, j), and r(1, 1) = DM
(
X1, Y1).

Through the above theoretical derivation, a new measure called MDDTW is formed,
combining Mahalanobis distance and DTW, which represent the similarity of multi-
dimensional characteristic time series. How to obtain the appropriate Mahalanobis distance
is a key problem in this study. The traditional Mahalanobis distance is generally obtained
based on the inverse of the covariance matrix, which represents the relationship of the
internal aggregation of data. However, it is not enough that the measurement distance
function can only reflect the internal aggregation relationship of data. More importantly, it
is necessary to establish the relationship between sample attributes and categories. There-
fore, a metric learning method is employed for Mahalanobis distance learning to calculate
the similarity of multi-dimensional characteristic time series in this study.

2.4.3. Metric Learning for MDDTW

In the study of metric learning, Mahalanobis distance is no longer simply limited
to the inverse of the covariance matrix, but needs to be obtained through the process of
metric learning [52]. The purpose of metric learning based on Mahalanobis distance is
to obtain a positive semi-definite symmetric matrix, M, for a given training sample set,
X, to establish the relationship between the eigenvectors of the samples. In this way, the
similar relationship between the training samples is preserved, and the distance of the same
samples is closer, while different kinds are distant. The paper [53,54] developed a new
Mahalanobis distance metric learning algorithm using triple constraint and information
entropy, and it succeeded in image processing and pattern recognition. Therefore, this
method is employed in this study.
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Applying the LogDet divergence as the regularization term, the LogDet divergence-
based metric learning model [55,56] for multi-dimensional features time series is ex-
pressed as:

Mt+1 = argmin
M≥0

Dld(M, Mt) + ηtl(M, ŷt, yt) (12)

where Mt is the Mahalanobis matrix of the tth iteration and ηt represents a regularization
parameter, which satisfies ηt > 0 to balance Dld(M, Mt) and l(M, ŷt, yt).

Dld(M, Mt) is the regularization function, which is expressed as:

Dld(M, Mt) = tr
(

MM−1
t

)
− log

(
det
(

MM−1
t

))
− n (13)

l(M, ŷt, yt) is the loss function, which is expressed as:

l(M, ŷt, yt) = max
(
0, ρ + dM

(
xi, xj

)
− dM(xi, xk)

)
(14)

where ŷt represents the predicted value, yt represents the expected value, and dM is the
Mahalanobis distance of two samples. The three samples

{
xi, xj, xk

}
in the sample set

constitute a set of triple constraints, and xi, xj, xk represent multi-dimensional feature time
series and belong to two different categories, respectively.

The final solution result of M is expressed as Equation (15) through mathematical
derivation [57,58], while

(
qt MtqT

t − pt Mt pT
t
)
< ρ .

Mt+1 = γt +
ηtγtqtTT

t γt
1 − ηtqT

t γtqt

ηt =
α

tr
(
(I − Mt)

−1 MtqtqT
t

)
γt = Mt − ηt Mt pt pT

t Mt
1 + ηt pT

t Mt pt

(15)

where pt =
(

xi − xj
)
; qt = (xi − xk), and α is a constant learning rate parameter, which

is chosen between 0 and 1. When the M is obtained by metric learning, the similarity
distance of multi-dimensional feature time series can be calculated by MDDTW. In the later
stage of this study, a KNN algorithm suitable for distance measurement is combined for
vegetation classification.

In the vegetation covered area, each pixel position is time-expanded, and the Ma-
halanobis matrix (M) is obtained by using the metric learning method described as above.
Because the triple constraint needs to be rebuilt whenever M is updated, the number
of cycles for setting the dynamic triple constraint construction strategy is set to 10. In
each cycle, the number of ternary constraints is N = 5n, where n is the number of training
samples. In the later stage of this study, a KNN algorithm suitable for distance measurement
is combined for vegetation classification.

3. Experiment and Results

In order to verify the effectiveness of the classification method based on MDDTW, this
study compared four classification methods, including Random Forest based on multitem-
poral (RF-Multitemporal), Random Forest based on pixel-differential time series (RF-PDTS),
TWDTW, and EDDTW. Section 3.1 mainly explains the experimental details and the pa-
rameter settings of different classification methods. The classification maps of the different
methods are shown in Section 3.2.

3.1. Experiment

For the classification based on MDDTW, RF, and KNN, the classifiers were employed
after calculating the distance of multi-dimensional features by the MDDTW method. For RF
classifiers, the number parameter of classifiers is set to 10 and the depth of decision tree is
50. For the KNN classifier, the distance between each pixel and the samples was calculated
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directly and then classified. In this study, the K was set to 1 after many experimental
comparisons. It should be noted that parallel processing was used to improve efficiency
during the KNN classifier employed. As for the EDDTW, which is similar to MDDTW, the
time series is constructed by combining four vegetation indexes. Different time points are
regarded as vectors, and the local distance of DTW is calculated by Euclidean distance [59].
The RF and KNN classifiers were used for classification, and the parameter settings are the
same as for MDDTW. For the classification based on RF-Multitemporal, the remote sensing
images of the four seasons of spring, summer, autumn, and winter are selected as the data
to be classified, as shown in Figure 7; this can reflect the seasonal difference and ensure
that the vegetation area is cloudless. The number of Random Forest classifiers is set to 10,
and the depth of the decision tree is 50.
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For the RF-PDTS [25], the number of Random Forest classifiers is set to 10 and the
depth of the decision tree is 50.

TWDTW constrains time by setting weights and takes into account the seasonal
changes of land cover types. It is an advanced time series classification method [60], where
α (gain factor) and β (time distance) are important weight parameters. In this study, α = 0.25
and β = 45 were determined based on experiments, as shown in Figure 8. The RF and
KNN classifiers are used for classification, respectively, and are the same as the MDDTW
parameters settings.

  
(a) (b) 

Figure 8. Parameter settings of TWDTW. (a) OA/kappa-β (α = 0.1). (b) OA/kappa-α (β = 45).

3.2. Result

The classification results based on multitemporal Random Forest, RF-PDTS, TWDTW,
EDDTW, and MDDTW are shown in Figure 9a–h. For crops S. alterniflora, R. pseudoacacia,
and T. chinensis, different classification maps have spatial consistency, and the distribution
of those is roughly the same. Seven areas, A–G, where classified maps have obvious
differences, are selected for further analysis.
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As shown in Figure 9, the difference between areas A, B, and C is the most obvious.
According to the field survey, area A is the production area of Dongying Shengli Oilfield,
where artificial buildings, bare land, and P. australis are mixed. The same complex situation
occurs in area B, where the mixed growth of P. australis, S. salsa, S. matsudana, and T. chinensis
is serious, and there is a small amount of bare land. The classification results (a), (b), and
(f) suggest that P. australis occupies a dominant position in the A and B area and other
vegetation is ignored. Because the backgrounds of bare land and farmland are relatively
similar, the classification results (g) and (h) are closer to the actual situation in area B. Area
C is an ecological restoration area; it is in a bare land state due to water shortage in spring
and winter, while P. australis, S. salsa, and T. chinensis coexist in summer and autumn. The
results of different classification methods differ the most in region C, because the ground
features in this region are the most complicated, so it is difficult to evaluate the pros and
cons of the different methods in this region. In conclusion, except that the classification
results of RF-EDDTW, RF-MDDTW, and KNN-MDDTW in area B are significantly better
than other methods, it is meaningless to compare the classification results in areas A and C,
considering that there are many non-vegetation interferences.

  
(a) (b) 

  
(c) (d) 

Figure 9. Cont.
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(e) (f) 

  
(g) (h) 

Figure 9. Classification map of different methods: (a) RF-Multitemporal images, (b) RF-PDTS, (c) RF-
TWDTW, (d) KNN-TWDTW, (e) RF-EDDTW, (f) KNN-EDDTW, (g) RF-MDDTW, (h) KNN-MDDTW.

Except for (c) and (e), classification methods have shown outperforming classification
results in area D. The main vegetation types in this area are P. australis and S. matsudana.
The results (a) and (f) show that the distribution of S. matsudana is relatively concentrated,
while the other classification results are relatively broken, which is mainly due to the
classification based on pixels in this study. Figure 9c,e shows that this area is mainly
covered by S. matsudana, which proves that RF-EDDTW and RF-TWDTW have a poor
distinction between P. australis and S. matsudana.

For area E, there are mainly P. australis and S. salsa and T. chinensis. T. chinensis is
mainly scattered at the junction of P. australis and S. salsa, so the classification results (a), (b),
and (h) are more reasonable. For areas F and G, comparing different classification results, it
can be seen that the area of S. alterniflora in the classification results of KNN-MDDTW is
significantly larger than that of the other classification methods. Among them, (h) shows
that there are scattered S. alterniflora on both sides of the tidal trench in area F. Although
the area is small, the classification results, except for (d), failed to identify the classification
of S. alterniflora at this location. Combined with the field survey situation, KNN-MDDTW
is more accurate in the classification of S. alterniflora in these two areas.

The overall accuracy (OA) and kappa of different classification results are shown in
Table 2. Because the RF classifier is not suitable for distance measurement classification,
the OA and kappa of RF-TWDTW and RF-EDDTW have not reached 80%. Furthermore,
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the operation of averaging the time series of different samples as the standard time series
cannot accurately reflect the category characteristics [59], which is also the reason why
RF-TWDTW and RF-EDDTW have poor classification accuracy. The OA and kappa of
MDDTW and TWDTW based on the KNN classifier are better than other classification
methods because MDDTW and TWDTW calculate the distance metric, which is based
on the KNN classifier. In addition to that, the classification accuracy of KNN-MDDTW
based on multi-dimensional features is better than the current advanced KNN-TWDTW
that uses single feature classification, indicating that the use of multi-dimensional features
has advantages in temporal classification. However, despite the use of four vegetation
indices for classification, the classification effect of EDDTW is not satisfactory, and the
simple Euclidean distance is less effective for calculating the similarity distance of multi-
dimensional feature time series.

Table 2. Accuracy of different classification methods.

Classification Type OA (%) Kappa

RF-Multitemporal 80.63 0.77
RF-PDTS 88.30 0.85

RF-TWDTW 78.58 0.75
KNN-TWDTW 91.25 0.89

RF-EDDTW 70.95 0.66
KNN-EDDTW 86.50 0.83
RF-MDDTW 82.39 0.79

KNN-MDDTW 94.56 0.93

The user accuracy (UA) and producer accuracy (PA) of the classification results of
different methods are further calculated, as shown in Figures 10 and 11. The classification
method based on KNN-MDDTW ranks among the top three in terms of user accuracy
and producer accuracy in all categories except T. chinensis. Among them, S. alterniflora,
S. matsudana, S. salsa, and R. pseudoacacia have the best UA. PA achieves the best accuracy on
all vegetation types except R. pseudoacacia and T. chinensis, so this method is the best overall.
At the same time, the results show that although the combination of multiple spectral
indexes has achieved good results, the traditional RF-PDTS and TWDTW based on NDVI
single vegetation index still have good performance in wetland vegetation classification;
however, the effects are better than the multi-dimensional feature calculation method based
on EDDTW.
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4. Discussion
4.1. Comparison of Vegetation Classification Methods

In this section, the RF-PDTS and KNN-TWDTW methods, which were successfully ap-
plied in the field of vegetation classification with time series remote sensing data [25,32–34]
and also performed well in this research, are selected for comparing. The RF-PDTS selects
the key phenological phases to classify by analyzing the vegetation growth curve, while the
TWDTW and MDDTW both classify by calculating the distance of vegetation growth curve.
Therefore, different vegetation growth curves are shown in Figure 12a–g, and confusion
matrices from different methods are shown in Table 3 (SA = S. alterniflora, PA = P. australis,
SM = S. matsudana, RP = R. pseudoacacia, TC = T. chinensis, SS = S. salsa.). The purpose is
to discuss the applicability and deficiencies of different methods by analyzing the growth
curves of different vegetation and the misclassification of vegetation.
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As shown in Figure 12, the curves of S. alterniflora (b) and S. salsa (g) are obviously
different from the others. This is the reason why all classification methods have less
misclassification of S. alterniflora and S. salsa in the confusion matrix. Therefore, only the
other five types of vegetation are considered in the follow-up comparison. The growth
curve comparison is shown in Figure 12h, which clearly shows the differences between the
different curves.

In order to describe the misclassification of different vegetation from confusion matrix,
the following Equation (16) is used to simply quantify the degree of confusion between the
two vegetations:

M(A, B) =
MB ,A + MA ,B

TA + TB
× 100% (16)

where M(A, B) represent the possibility of misclassification between vegetation A and
vegetation B, MB ,A represents the amount of vegetation A that was misclassified into B,
and TA represents the amunt of vegetation A. The same definition applies to MA ,B and TB.
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Table 3. Confusion matrix of the wetland vegetation classification.

Crops SA PA SM RP TC SS PA

Method: RF-PDTS, Overall accuracy = 88.30%, kappa = 0.85

Crops 524 0 18 3 2 11 0 93.91%
SA 0 1240 3 0 1 0 0 99.68%
PA 40 0 1022 75 15 100 0 81.63%
SM 39 6 76 235 19 0 0 62.67%
RP 0 0 51 1 116 0 0 69.05%
TC 6 5 120 10 0 222 0 61.12%
SS 0 0 0 0 0 0 1188 100%

UA 86.04% 99.12% 79.22% 72.53% 75.82% 66.67% 100%

Method: KNN-TWDTW, Overall accuracy = 91.25%, kappa = 0.89

Crops 530 0 29 3 3 4 0 93.15%
SA 2 1242 11 2 0 0 0 98.81%
PA 34 5 1097 67 5 49 0 87.27%
SM 12 1 106 251 13 3 0 65.03%
RP 4 0 1 1 132 0 0 95.65%
TC 18 3 65 0 0 274 0 76.11%
SS 3 0 5 0 0 3 1188 99.08%

UA 87.89% 99.28% 83.49% 77.47% 86.27% 82.28% 100.00%

Method: KNN-MDDTW, Overall accuracy = 94.56%, kappa = 0.93

Crops 565 1 18 0 1 0 0 96.58%
SA 0 1224 5 1 0 1 0 99.43%
PA 24 23 1209 66 9 19 0 89.56%
SM 4 0 46 255 2 1 0 82.79%
RP 1 0 0 2 140 0 0 97.90%
TC 9 1 35 0 1 304 0 86.86%
SS 0 2 1 0 0 8 1188 99.08%

UA 93.70% 97.84% 92.01% 78.70% 91.50% 91.29% 100.00%

For example, M(Crop, TC) represents the misclassification between Crop and T. chi-
nensis. The higher the value, the greater the possibility of misclassification between the
two vegetations. Figure 13 shows the misclassification of different types of vegetation with
different methods.

In the RF-PDTS method, P. australis and T. chinensis are the most likely to be misclassi-
fied. From Figure 12h, it can be seen that their growth curves (yellow and dark blue curves)
are the closest, and the time when the maximum NDVI value occurs of those are both
around 210 days. After reaching the maximum value, it almost keeps the same trend and
drops to the minimum value. At the same time, the possibility of misclassification between
Crop and R. pseudoacacia is the smallest in this method. The reason for this can also be found
in Figure 12h. The two vegetations have the largest difference in growth and withering
time. In other words, the phenological difference between Crop and R. pseudoacacia is large.
Although the overall accuracy of KNN-TWDTW is better than that of the RF-PDTS method,
the results in Figure 13 show that the possibility of misclassification in the classification
of part of the vegetation is greater than that of the RF-PDTS method, such as P. australis
and S. matsudana classification. This is mainly because the TWDTW method expresses
its similarity by calculating the distance of the curve as a whole. In the classification of
P. australis, S. matsudana, and T. chinensis, this method may consider P. australis (yellow)
and S. matsudana (light blue) curves as being more similar in overall shape compared to
P. australis and T. chinensis. Nevertheless, the TWDTW method has fully proved its role in
the field of time series classification, especially for vegetation with similar phenological
time. As for the KNN-MDDTW, it has achieved good results in almost all vegetation.
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The difference in phenology is the basis for the RF-PDTS based on time series remote
sensing images. The greater the phenological difference of vegetation, the better the
classification effect. The vegetation of the YRD wetland is complex, and the growth
cycles of different vegetation are similar, which lead to more errors in classification results.
The TWDTW method is an improvement based on DTW, relying on time series curves for
classification. The TWDTW algorithm works by comparing the similarity between two time-
series and finds their optimal alignment, resulting in dissimilarity measures. The time series
curve of typical vegetation in the YRD wetland has a high degree of similarity, as shown in
Figure 12. Therefore, it has a poor effect on the classification of some vegetation. Compared
with RF-PDTS and TWDTW, the KNN-MDDTW has achieved better results, whether it
is vegetation with similar phenological time or similar curve shape. The use of a single
vegetation index has limited effect on the classification of complex wetland vegetation;
however, the KNN-MDDTW shows the effectiveness of using multi-dimensional features
for time series classification. This method can calculate reasonable similarity distance from
different multi-dimensional features, which meets the needs of classification. But it needs
to be pointed out that although the method has achieved good accuracy, its computational
cost is also too large to ignore. At the same time, how to select effective features and the
importance of different features still needs further research.

4.2. Influence of Parameters on MDDTW Performance

For the classification based on MDDTW, the learning efficiency of M depends on the
number of samples. Therefore, it is important to compare the efficiency and accuracy under
different sample numbers. The results are shown in Figure 14. It should be pointed out that
the experiment was carried out by randomly selecting sample points to calculate time and
accuracy, and the result is the average of multiple experiments, which avoid the uncertainty
caused by selecting sample points at different positions.

The number of samples has a significant relationship with the accuracy of the final
result and the required time. With the increase of the number of samples, the accuracy and
kappa both increase, but the time consumption also increases, as shown in Figure 14a. The
classification accuracy and kappa coefficient change little with the increase of the number
of samples when the number of samples reaches 900. The accuracy has exceeded 90% and
kappa was more than 0.9 when the number of samples reaches 1000, as shown in Figure 14b.
In the experiment, 1000 samples were chosen for MDDTW classification.
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5. Conclusions

The composition and distribution information of wetland vegetation plays a significant
role in protecting the wetland ecological environment and formulating effective wetland
management plans. In this study, we extracted multiple vegetation indexes based on
Sentinel-2 data and studied the multi-dimensional feature time series classification method.
The results show that the classification method based on multi-dimensional features has
significant advantages in wetland vegetation classification. The overall classification accu-
racy based on KNN-MDDTW is more than 90% and kappa is more than 0.9, which is better
than comparison methods.

The traditional remote sensing time series classification based on DTW has been ex-
tended to multi-dimensional feature time series in order to fully utilize spectral information
in the current research. This method calculated the similarity distance of multi-dimensional
feature time series and effectively improved the accuracy of wetland vegetation classifica-
tion in the Yellow River Delta, and it is expected to play an important role in the annual
dynamic monitoring of wetland vegetation. However, only four indexes (including NDVI,
RVI, EVI, and DVI) were selected to construct the multi-dimensional feature time series in
the current research. The impact of different index features on classification and the subse-
quent addition of other features to construct more time series dimensions for classification
will be focused on in future research.
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Appendix A

There are many abbreviations in this study. In order to facilitate reading and un-
derstanding, all abbreviations and corresponding explanations are summarized in the
Table A1.

https://scihub.copernicus.eu/dhus/#/home
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Table A1. Acronym List.

Acronym Meaning

YRD Yellow River Delta
DTW Dynamic Time Warping

MDDTW Mahalanobis Distance-based Dynamic Time Warping
KNN K-Nearest Neighbors
NDVI Normalized Difference Vegetation Index
EVI Enhanced Vegetation Index

RF-PDTS Random Forest based on pixel-differential time series
RF-Multitemporal Random Forest based on multitemporal

TWDTW Time-Weighted Dynamic Time Warping
EDDTW DTW based on Euclidean distance

DVI Difference Vegetation Index
RVI Ratio Vegetation Index
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