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Abstract

Part 1 of this review synthesizes recent research on status and climate vulnerability of freshwater and saltwater wetlands, and their
contribution to addressing climate change (carbon cycle, adaptation, resilience). Peatlands and vegetated coastal wetlands are
among the most carbon rich sinks on the planet sequestering approximately as much carbon as do global forest ecosystems.
Estimates of the consequences of rising temperature on current wetland carbon storage and future carbon sequestration potential
are summarized. We also demonstrate the need to prevent drying of wetlands and thawing of permafrost by disturbances and
rising temperatures to protect wetland carbon stores and climate adaptation/resiliency ecosystem services. Preventing further
wetland loss is found to be important in limiting future emissions to meet climate goals, but is seldom considered. In Part 2, the
paper explores the policy and management realm from international to national, subnational and local levels to identify strategies
and policies reflecting an integrated understanding of both wetland and climate change science. Specific recommendations are
made to capture synergies between wetlands and carbon cycle management, adaptation and resiliency to further enable re-
searchers, policy makers and practitioners to protect wetland carbon and climate adaptation/resiliency ecosystem services.
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Introduction

The Millennium Ecosystem Assessment (2005) identifies cli-
mate regulation as one of the most significant ecosystem ser-
vices provided by wetlands, and also identifies their role in
buffering the effects of climate change (thereby supporting
climate adaptation and resiliency), as well as many additional
ecosystem services. Wetlands sequester some of the largest
stores of carbon on the planet, but when disturbed or warmed,
they release the three major heat-trapping greenhouse gases
(GHGs), carbon dioxide (CO2), methane (CH4) and nitrous
oxide (N2O). Rising planetary temperatures are causing a pos-
itive feedback from warming wetlands and thawing perma-
frost that is accelerating global warming. By 2015 increased
concentrations of greenhouse gases in the atmosphere have
raised the global average temperature by approximately 1°C
above preindustrial values (Hawkins et al. 2017). Further
warming is expected to add 130-160 Pg (1 Petagram is 1015

grams) of permafrost carbon (C) to the atmosphere by 2100
(Schuur et al. 2015). To place this in perspective, that amount of
C is comparable to continuing current annual United States fos-
sil fuel emissions until the end of the century (Friedlingstein
et al. 2014, USEPA 2017).

Protecting all types of wetland ecosystems from direct hu-
man disturbance, minimizing additional warming by reducing
GHG emissions from all sources, and increasing terrestrial
CO2 sinks to remove atmospheric CO2 are major priorities
for limiting future temperature increases.

In Part 1 of this paper, we provide a comprehensive review
of the consequences of climate change for saltwater and fresh-
water wetlands. Freshwater wetlands include a variety of cov-
er types characterized by herbaceous plants, shrubs and/or
trees. Some freshwater wetlands are underlain by permafrost
(soil temperature <0°C for two or more years). In this paper,
saltwater wetlands refer to tidal coastal wetlands that include
salt marshes, mangroves and seagrass meadows. We also ex-
amine the important and often-neglected role that wetlands
play in actively removing CO2 from the atmosphere and se-
questering C in wetland soils over long time periods, the po-
tential for expanding that role and the important climate adap-
tation and resiliency ecosystem services that wetlands pro-
vide. For the purposes of this paper, resiliency is defined as
the ability for an ecosystem to restore healthy ecological func-
tion, complexity, diversity and processes following a disrup-
tion, although specific species and species assemblages may
change.

In Part 2 of this paper, we identify international, national,
sub-national and local wetlands policies and explain their im-
plications for addressing climate change. We note that often
the role of wetlands in climate treaties and policies is only by
inference. We conclude by describing how climate scientists,
wetland scientists, policy makers and wetland practitioners
can manage and conserve wetlands in light of climate change.

Part 1: Wetlands In a Changing Climate:
The Science

The United Nations Framework Convention on Climate
Change calls for the Bstabilization of greenhouse gas concen-
trations in the atmosphere at a level that would prevent dan-
gerous anthropogenic interference with the climate system^

(UNFCCC 1992). The Paris Climate Agreement in 2015
(UNFCCC 2017) established a goal of keeping global average
temperature increase substantially less than 2oC above the
preindustrial value, and making every attempt to keep it below
1.5oC.

In order to have a two in three probability of keeping global
average temperature from rising by more than 2°C, it is essen-
tial to have Bnegative emissions" of GHGs; in other words,
meeting the goal of the Paris Climate Agreement requires
active removal and sequestration of atmospheric C
(Sanderson et al. 2016). Sequestration is used here to refer to
the photosynthetic removal of CO2 from the atmosphere and
its conversion into cellulose and other carbon compounds in
plants, and its conversion from decaying plants into soil
organic matter. Ricke and Caldeira (2014) have shown that
peak warming occurs within about one decade after a pulse
of CO2 is added to the atmosphere. Hence the benefits of
avoided CO2 emissions will bemanifested within the lifetimes
of people who acted to avoid those emissions. Solomon et al.
(2009) have shown that after peak warming is reached, effects
will persist for 1000 years. IPCC estimates that depending
upon the scenario, Babout 15 to 40% of CO2 emitted by
2100 will remain in the atmosphere longer than 1000 years^
(Ciais et al. 2013) affecting 40 generations. Hence avoiding
emissions of GHGs to the atmosphere is recommended to be a
prime consideration that benefits both present and future
generations.

Formost types of wetlands, the bulk of sequestered carbon is
in the soils rather than in the plant communities. Draining these
wetlands to convert them to agriculture as has been done in
many countries and regions including Indonesia, Malaysia,
Russia, New Zealand, Florida Everglades and in Northern
Europe, allows soil organic matter to be oxidized and release
CO2 into the atmosphere. When mangroves are removed for
coastal development and for aquaculture, or forested wetlands
are harvested, additional carbon is released from soils and har-
vest residues. In the Southeast United States, a major wood
pellet fuel industry has developedwhere the carbon in the wood
is released as CO2 immediately upon combustion. The use of
wood pellets to replace coal for electricity, on the mistaken
assumption that it is carbon neutral, is expected to grow sub-
stantially by 2050 (IEA 2017), further degrading forested wet-
lands while adding large amounts of CO2 to the atmosphere.

CO2, added to the atmosphere by human activity, is the
primary GHG responsible for climate change, followed by
CH4 and N2O (Myhre et al 2014). These gases move among
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the natural reservoirs of terrestrial and marine plants, soils,
oceans and the atmosphere. Human activity has reduced the
size and capacity of these reservoirs while increasing GHG
emissions (Ciais et al. 2013). Altering albedo (solar reflectiv-
ity from the earth’s surfaces) from land use change can in-
crease or decrease global warming. Climate forcing (heat trap-
ping) from black C (particulate matter from fossil fuel and
biofuels combustion (Bond et al. 2013) is a significant con-
tributor to global warming.

The average annual anthropogenic CO2 emissions for the
period 2006-2015 are estimated to be 10.3 PgCy-1

(Petagrams C per year or 1015 grams C per year) with 9.3
±0.5 PgCy-1 from fossil fuels and industrial processes and
1.0±0.5 PgCy-1 from land use change (Fig. 1, Le Quéré et al.
2016). The total CO2 emissions from fossil fuels and indus-
trial processes between 1750 and 2011 are estimated to be
375±30 PgC, and the total amount from land use change is
estimated to be 180±80 PgC. Therefore, nearly one-third of
CO2 added to the atmosphere from human activity has come
from deforestation and oxidation of disturbed soil organic
matter (Ciais et al. 2013). By November 2017, CO2 in the
atmosphere had increased to 865 PgC or 406 ppm (NOAA
2018).

The net annual increase of CO2 in the atmosphere each year
is 4.5±0.5 PgCy-1 or slightly less than half of annual emis-
sions, and concentrations have increased by over 40% above
preindustrial levels. The biosphere has been the major means
for removing and sequestering atmospheric CO2 for over 300
million years, but its potential to be a major resource for ad-
dressing climate change has been underappreciated in current
policy discussions. Each year, 2.6±0.5 PgC equal to about
25% of annual emissions is removed by the ocean’s phyto-
plankton or is dissolved in the ocean’s waters. The difference
between total emissions to the atmosphere and net removals
by the oceans requires that an additional amount of CO2

equivalent to 3.1±0.9 PgCy-1 would need to be removed by
terrestrial ecosystems to balance the carbon flows. This is
nearly 30% of annual anthropogenic emissions from all
sources. This analysis only reports estimates of the aggregate
removal of CO2 by the terrestrial biosphere (all plants and
soils), and does not explicitly consider the specific role of
wetlands as either a source or a sink (Fig. 1, Le Quéré et al.
2016).

CH4 has a 100-year Global Warming Potential more than
28 times that of CO2 (Myhre et al. 2013). It is estimated that
between 1750 and 2011 human activity has increased

Fig. 1 Global carbon dioxide

budget (Le Quéré et al. 2016).
Note that approximately 10% of
annual emissions are from land
use change, and that the land sink
removes an amount equal to about
33% of annual emissions. This
value is calculated by difference,
and wetlands are not counted
separately from the total land
sink. 1 Gigatonne (109 tonnes)
equals 1 Petagram (1015) grams
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atmospheric CH4 by a factor of 2.5 from 1984 to 4954 Tg CH4

y-1 (722 ppb to1803 ppb) (1 Teragram CH4 is 1012 grams
CH4) (Ciais et al. 2013). Currently the major sources of emis-
sions arise from fossil fuel usage (85-105 Tg CH4 y

-1), rumi-
nant livestock (87-94 Tg CH4 y

-1), landfills and waste (67-90
Tg CH4 y

-1), and rice production (33-40 Tg CH4 y
-1). Average

annual anthropogenic emissions of CH4 from all these sources
between 2000 and 2009 total between 272-329 Tg CH4 y-1

CH4 is removed from the atmosphere at a rate of 492-785 Tg
CH4 y

-1 mostly by atmospheric chemistry with small contribu-
tions from soil oxidation (Fig. 2) (Ciais et al. 2013). CH4 emis-
sions from wetlands are between 177 and 284 Tg CH4 y

-1, with
an additional 8-73 Tg CH4 y

-1 emitted from freshwater sources.
Nitrous oxide (N2O) has a radiative forcing ~300 times that

of CO2. It is a byproduct of both nitrification (under aerobic
conditions) and denitrification (under anaerobic conditions),
and thus can be produced in wetland soils (Megonigal et al.
2004). However, freshwater and saltwater wetland soils are a
source of N2O only if they receive excessive levels of reactive
nitrogen – otherwise they may be a sink for this potent GHG
(e.g. Auget et al 2014, Chmura et al. 2016).

While natural solutions have focused on the role of forests to
remove and sequester CO2, there is substantiallymore C seques-
tered in soils than invegetation.The rangeof estimates for carbon
sequesteredinvegetationis450-650PgC,whiletheestimateforC

stored in soils is 1500-2400 PgC with an additional 1700 PgC
estimated tobe inpermafrost (Ciais et al. 2013).The largeamount
of carbon sequestered inwetlands is discussed in subsequent sec-
tions. As soils warm, and as permafrost thaws, these soils
release their stored C as CO2 or CH4 resulting from micro-
bial decomposition of soil organic carbon (SOC). These
feedback emissions trap additional heat and warm the plan-
et further. A first priority is to avoid disturbing wetlands
and keep temperatures from rising as much as possible. As
the subsequent sections illustrate, wetlands can play a sig-
nificant role in addressing climate change by sequestering
C, and by providing climate resiliency and adaptation
while providing additional ecosystem services.

To limit excessive warming, it is necessary to stabilize
CO2, CH4, N2O and other GHG concentrations in the atmo-
sphere at an appropriate level, by decreasing emission rates
and increasing removal rates. There are three basic strategies
for accomplishing this goal.

1. Reduce the addition of GHGs into the atmosphere from
fossil fuels, biofuels, industry, agriculture and other
sources to near zero.

2. Prevent the climate and land-use mediated release of ad-
ditional GHGs (CO2, CH4, N2O) from wetlands, includ-
ing wetlands underlain by permafrost, from deforestation

Fig. 2 Global methane (CH4)

budget (Ciais et al. 2013).
Average annual anthropogenic
emissions of methane from fossil
fuels, ruminants, landfills and
waste and rice cultivation
between 2000 and 2009 total
between 272-329 Tgy-1. For
comparison, natural wetlands and
freshwaters are estimated to re-
lease between 185-357 Tgy-1.
CH4 is removed at a rate of 492-
785 Tgy-1 mostly by atmospheric
chemistry with small contribu-
tions by soil oxidation.
Black arrows represent natural
emissions, red arrows repre-
sent anthropogenic emis-
sions since 1750, and the
brown arrow represents emissions
from both natural fires and an-
thropogenic biomass burning. 1
Teragram equals1012 grams
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and forest degradation, and from all soils including de-
graded grassland and agricultural soils.

3. Increase the capacity of natural systems including wet-
lands to actively remove CO2 from the atmosphere and
sequester the C for the long-term.

Carbon Accumulation and GHG Emissions
from Freshwater Wetlands (Including Permafrost) In
a Changing Climate

Wetland conservation has important implications for atmospher-
ic C cycles, since a substantial portion of the soil C pool is stored
in wetlands. Northern high latitude and tropical peatlands store
more than 600 PgC (Gorham 1991; Hugelius et al. 2014), which
is among the largest reserves in the world (Köchy et al. 2015).
This amount is more than two-thirds as much as is stored in the
atmosphere and comparable to the amount stored in global for-
est biomass (Pan et al. 2011). Wetland conditions are critical for
C accumulation and storage since decomposition in these sys-
tems is limited by a lack of oxygen due to water saturation
(Brinson et al. 1981). Therefore, when plant productivity exceeds
decomposition there is a net accumulation of soil C. This process
eventually develops deep peat deposits, which may accumulate
for thousands of years. In high latitudes of the Northern
Hemisphere, the accumulation process is further intensified by
the presence of permafrost, which can have contrasting effects on
hydrology, leading to either wetland formation or loss (Sannel
andKuhry 2008). The negative climate feedback (i.e. net cooling
effect) that results from increased plant productivity and the long-
termC accumulation and storage bywetlands is, in part, offset by
CH4 emissions from freshwater wetlands (Turetsky et al. 2014).
Freshwater wetlands represent the largest natural source of CH4,
releasing approximately 180 – 220 Pg CH4 yr-1 (Mikaloff
Fletcher et al. 2004, Kirschke et al. 2013). However, wetlands
that accumulate peat account for less than a quarter of all wetland
CH4 emissions (Turetsky et al. 2014 and references therein).

The influence of future climate on wetland soils C will de-
pend upon the same factors that facilitated C accumulation in
these systems: water saturated soils and minimal modification of
wetlands through land-use change, and in the case of high lati-
tude peatlands, low temperature. Globally, temperature, low ox-
ygen (due to soil saturation), and the chemical and physical form
of the organic matter, are the primary factors limiting decompo-
sition in wetlands. Changes in precipitation and evapotranspira-
tion patterns, which alter the water balance of wetland ecosys-
tems, will substantially influence wetland C cycling. However,
the magnitude, directionality, and seasonality of projected hy-
drologic changes are regionally variable (Collins et al. 2013),
and therefore, the fate of soil C stored inwetlandswill depend on
local conditions. In contrast, changes in the global energy bal-
ance, usually manifested by an increase in temperature, are most
likely to accelerate the decomposition rate of wetland organic C

stored at the soil surface. Deeper C pools may be unaffected
unless there are associated changes in hydrology (van
Groenigen et al 2016). These potential losses of belowground
Cmay also be partially offset by increased primary productivity.

The greenhouse gas dynamics of permafrost regions differ in
important ways from liquid water wetlands. The microbial me-
tabolism of soil carbon is greatly reduced when the soils are
frozen for long periods. Thawing changes the availability of ox-
ygen and liquid water, and activates bacterial metabolism, which
leads to a relatively abrupt increase in emissions of either or both
carbon dioxide and methane. In addition, the low solubility of
methane in water causes the accumulation of this gas in bubbles
under the permafrost layer. Thawing releases these bubbles,
which substantially contributes to this abrupt emission increase.
In permafrost regions, increased temperature will have both direct
and indirect effects on wetland C storage; permafrost thaw can
dramatically affect hydrology in the Arctic, but the C conse-
quences of that change are dependent upon landscape conditions
(Olefeldt et al. 2016). Permafrost thaw can lead to wetland drain-
age because permafrost restricts vertical water flow. As the per-
mafrost thaws to deeper soil layers or is completely thawed, the
perched water table may be lowered, resulting in drier surface
soils. Permafrost-mediated wetland drainage can lead to substan-
tial C losses because of higher rates of aerobic bacterial metabo-
lism.However, permafrost thaw can also result in ground collapse
that can cause wetland formation and substantially increase CH4

emissions from permafrost ecosystems (Christensen et al. 2004;
Natali et al. 2015; Schuur et al. 2015).

The effects of climate changes on wetland C storage will be
determined largely by the extent to which the wetlands have
been modified through land-use change (Petrescu. et al 2015).
Altering wetlands can increase the vulnerability of the organic
C pool by weakening the self-regulating feedbacks that exist
in many peatland systems (Frolking et al. 2010). Land use
change that affects wetland hydrology has had substantial im-
pacts on wetland structure and function. Draining wetlands
decreases CO2 uptake and increases rates of microbial decom-
position and CO2 release (Mietten et al 2017). Soil C is also
lost by peat extraction, drainage and other disturbance (Laıne
et al. 2014; Evans et al. 2015; Page and Baird 2016). The
hydrologic changes can be so large that they result in massive
losses of C to the atmosphere, such as occurred during the
fires in tropical peatlands in Southeast Asia (Page et al. 2002).

While the drainage of natural wetlands for conversion to
agricultural land results in net losses of soil organic C, radia-
tive forcing from wetland conversion depends on relative
changes in the direction and magnitude of two major GHGs:
CO2 and CH4 (Petrescu et al. 2015). Despite a decline in CH4

emissions following wetland drainage, wetland conversion to
cropland results in a significant net increase in atmospheric
radiative forcing (heat trapping) (Petrescu et al. 2015). On the
other hand, land use changes that cause flooding and creation
of wetlands can alter C pools through the saturation and burial
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of organic C (Knoll et al. 2014). Despite the potential for C
sequestration, reservoir formation leads to increased GHG
emissions, primarily because of CH4 emissions from ponded
water and highly fluctuating water levels in reservoirs com-
pared to natural lakes (Deemer et al. 2016; Hayes et al. 2017).

Increased atmospheric CO2 is projected to almost double
current freshwater wetland CH4 emissions, primarily due to
warmer temperatures as well as enhanced precipitation
(Shindell et al. 2004). The increase in CH4 emissions under
high CO2 concentrations will primarily result from increased
emission rates from tropical wetlands and from wetland ex-
pansion in northern high latitudes (Shindell et al. 2004; van
Groenigen et al. 2011). The response of wetlands to future
climate scenarios will also vary across wetland systems. For
example, Wu and Roulet (2014) suggest that ombrotrophic
(rain-fed) peatlands will maintain structure and function, but
fen-like systems that rely on terrestrial water inputs are much
more vulnerable to climate change. Land use and climate-
mediated changes in CH4 emissions from freshwater wetlands
can produce a large increase in radiative forcing (heat trap-
ping) in decades to several centuries, but in the long-term
(century-millennia), C sequestration by wetlands represents,
at present, a net cooling effect (Frolking and Roulet 2007;
Neubauer and Megonigal 2015). However, land use, land
use change, and fire can cause abrupt changes in soil C storage
in wetlands, switching these long-term C sinks to sources of C
to the atmosphere (Joosten et al. 2016).

Ecological Consequences for Freshwater Wetlands
in a Changing Climate

Freshwater wetlands may be altered by climate change in all
geographic regions of the world (Junk et al. 2013). A changed
climate will alter hydrology, and functionality may be im-
paired by increased temperatures, drought or flooding events,
CO2 increases, and/or salinity intrusion (Junk et al. 2013).
These changes will affect critical functions and ecosystem
services such as carbon storage, biodiversity support, wildlife
habitat and water quality (Junk et al. 2013). Negative impacts
related to climate change will be compounded by synergies
with other stressors, such as invasive species and land use
change, thereby potentially increasing both the difficulties in
managing and restoring wetlands, and the risk of endemic
species extinctions (Erwin 2009).

Despite these challenges, some freshwater wetlands may be
relatively resilient to climate change (Baron et al. 2002;
MiddletonandSouter2016)within certainboundariesof temper-
ature, precipitation, water level, salinity intrusion, and storm ac-
tivity (Poff et al. 2002; Bernstein et al. 2007). At the same time,
salinity intrusion poses specific threats to coastal freshwater wet-
lands becausemany species in these ecosystems are intolerant of
salinity (Keddy2010).Also, these speciesoftenhave lower levels
of production if salinity levels become toohigh (Middleton1999;

Sutter et al. 2014; Middleton and Souter 2016). A recent review
synthesizes the state of our knowledge on how salinization asso-
ciated with climate change will impact these wetlands (Herbert
et al. 2015).

Climate change poses threats to non-coastal freshwater
wetlands as well; hydrology is shifting as many local water
regimes have become wetter or drier in recent decades (Fig. 3)
(Mallakpour and Villarini 2015). In particular, megadroughts
predicted by climate models (Cook et al. 2015) may dry
Midwestern and Southwestern wetlands in North America
with severe consequences for both wetlands and society.
Severe droughts could impair the ability of these wetlands to
maintain services including water quality, water supply, flood
control, storm protection, and direct harvests of fish, animals,
and plants, ultimately with severe negative impacts on ecosys-
tem function and biodiversity (Baron et al. 2002; Middleton
and Souter 2016). In addition, reduced winter snowpack and
earlier snowmelt are impacting northern freshwater wetlands
by altering the timing and magnitude of stream flows (Lawler
2009). In northern areas with permafrost, vegetation structure
completely changes after permafrost melts (Malhotra and
Roulet 2015). In fact, climate change is already changing
community composition, species distribution, phenology,
physiology and invasive species presence (Lawler 2009).

Unfortunately, many of the world’s freshwater wetlands are
already stressed by increased land-use pressure, so that addition-
al hydrological alteration can contribute to an overall decrease in
resilience to climate change (Baron 2002; Middleton and Souter
2016). Human alteration is commonplace throughout river cor-
ridors, challenging management as the impacts of upstream al-
terations accumulate along the waterway (See Fig. 4). (DuBowy
2013; Tockner and Stanford 2002). As demands for river re-
sources increase, such problems are expected to worsen
(Baron et al. 2002). Flowing water is compromised by river
re-engineering practices, even though moving water generally
improves oxygenation and plant health (Middleton 1999). Also,
upriver freshwater extraction in tidal freshwater wetlands
coupled with sea level rise can cause the salinification of surface
and ground water, with accompanying stress and even the col-
lapse of tidal vegetation in the freshwater reaches of estuaries
(Perry and Atkinson 2009; Middleton and Souter 2016).

Fortunately, emerging research suggests that vegetation
collapse sometimes can be avoided by hydrologic remediation
(Souter et al. 2010). Freshwater remediation can reduce salin-
ity and revive freshwater forests stressed by salinity intrusion,
if the vegetation is not fatally damaged (Middleton et al. 2015;
Middleton and Souter 2016). Such techniques could become
critical for maintaining future ecosystem health and services
(Baron et al. 2002; Middleton and Souter 2016). To date, there
is no report of long-term monitoring of the survival of vege-
tation following remediation, so any long-term benefits are
untested (Middleton and Souter 2016). Managers may need
to carefully monitor the effects of traditional techniques and
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adjust the timing and/or intensity of management actions ac-
cordingly (Jackson and Hobbs 2009; Middleton et al. 2017).

One harbinger of ecosystem change is that the early life
history stages of foundation species (species with a strong role
in structuring communities) are increasingly unsuccessful at
the hot or dry edges of their ranges, noting that juveniles are
more sensitive to environmental extremes than adult plants
(Jackson and Hobbs 2009). Without regeneration, vegetation
enters a relict state (Williams et al. 1999). Worldwide exam-
ples of relict foundation species are growing, and such vege-
tation may be poised for abrupt decline if disturbance removes
adult vegetation (Middleton et al. 2017). There are several
indicators that some freshwater wetlands are poised for col-
lapse at the edges of their ranges, and the loss of all but relict
species is a key indicator of that problem (Middleton et al
2017). Thus, freshwater wetlands face a myriad of challenges
in the face of climate change.

Salt Marsh and Mangrove Response to a Changing
Climate and Associated Sea Level Rise

Saltwater coastal wetlands are generally found in sheltered wa-
ters and include mangrove forests, seagrass meadows, and tidal
salt marshes. These wetlands host incredibly productive plant
communities, which take up substantial amounts of C via pho-
tosynthesis, and store a significant fraction of that C in their wet,
anaerobic soils (Chmura et al. 2003; Donato et al. 2011;
Fourqurean et al. 2012). This C has been termed Bcoastal wet-
land blue carbon.^ These vegetated saltwater coastal ecosystems
represent an estimated 0.2% of the area of the ocean, but have C
stocks equivalent to 50% of the C buried in ocean sediments
(Duarte et al. 2013). As such, saltwater coastal blue C wetlands
are some of the most C rich ecosystems on the planet (See Fig. 3
McLeod et al. 2011). Thus, there are growing efforts to include
saltwater wetlands in international climate protection activities
and policy frameworks (Wylie et al. 2016; Howard et al. 2017).

Salt marshes and mangrove swamps have accumulated C-
rich soil for centuries to millennia as sea levels have slowly
risen increasing levels of plant production (See Fig. 3 in

McLeod et al. 2011). These wetland soils accumulate vertically
through three synergistic processes (See Fig. 7 in Fitzgerald
et al. 2008). The belowground growth adds volume to the soil
and the aboveground portion helps trap inorganic sediment
carried in tidal waters that regularly flood the soil. Extended
saturation of the soil reduces the rate of decomposition of soil
organic matter, thereby enabling the persistence of the effective
blue C sink. Increasing soil volume results in raised surface
elevation of the wetland, so that on decadal scales its elevation
roughly tracks sea level rise (e.g. Chmura et al. 2001; Ellison
2008). This increase in elevation is accompanied by lateral
expansion of the marsh or mangrove swamp over tidal flats
in the lower intertidal zone and inland over adjacent terrestrial
ecosystems. The vegetation that occupies intertidal niches has
evolved a suite of mechanisms to tolerate flooding by saline
water, but at a greater expenditure of energy (e.g. Mendelssohn
et al. 1982). There is a limit to this tolerance.

Saltwater wetlands provide significant ecosystem services.
Mangroves and salt marshes help to slow and attenuate waves
and storm surge, reducing the flooding and erosion of ocean
coastal communities (Shepard et al. 2011; Arkema et al.
2013). One study suggests that U.S. marine saltwater wetlands
provide $23.2 billion dollars of storm protection every year
(Costanza et al. 2008) while another study estimates that every
hectare of salt marsh provides US $8,234 dollars, or US
$3,334 per acre, in storm protection, on average, per year
(Barbier et al. 2011). Since a warmer climate contributes to
increased storm intensity (Trenberth et al. 2015), enhancing
these protective measures is seen as a cost-effective way to
protect coastal communities and infrastructure. The storm pro-
tection qualities of wetlands are leading many policy and de-
cision makers to consider more investments in protecting or
restoring coastal wetlands and other ecosystems to provide the
climate adaptation benefits of natural storm and erosion reduc-
tion (Barbier 2014; Sutton-Grier et al. 2015).

The impact of climate warming, its associated sea level rise
and changes in precipitation patterns will vary considerably
within and among tidal marshes. Few studies have looked at
combined effects of sea level rise and other aspects of climate

Fig. 3 The magnitude and

frequency of flood events in the

Midwestern United States from

1962−2011. Triangles show
trends of flooding at U.S.G.S.
gage stations with trends
(positive, negative, neutral; blue
triangle, red triangle, and gray
circle, respectively; from
Mallakpour and Villarini 2015)
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change. Feher et al. (2017) reviewed the literature on the in-
fluence of changing temperature and precipitation regimes on
tidal saline wetlands. They found that for several ecosystem
properties and many regions there was still insufficient evi-
dence to make generalized predictions.

Research, however, has demonstrated differences due to
climate zones and vegetation. For instance, where growing
seasons are limited by cold temperatures, such as the coast
of the northern Northwest Atlantic, studies have shown that
a warmer climate would marginally increase decomposition,

Fig. 4 The hydrologic changes in theMississippi River and tributaries for
navigation and development include straightening, deepening, levee
construction and damming. These engineering practices influence

ecosystem processes across the floodplain and channel of this big river
system (DuBowy 2013)
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but will increase plant production and soil carbon storage
(Charles and Dukes 2009; Gedan and Bertness 2010;
Kirwan et al. 2014), although the effect of a rise of sea level
was not addressed. On the Mediterranean coast, experimen-
tally increased temperature, decreased precipitation and in-
creased inundation period caused vegetation to shift from a
perennial grass to an annual succulent (Strain et al. 2017).

There are two major ways that climate change is expected
to impact all saltwater wetlands. Climate warming is expected
to increase rates of sea level rise, resulting in loss of wetland
area through Bcoastal squeeze,^ particularly in areas
surrounded by urbanized uplands (e.g. Torio and Chmura
2013). This has been identified as the largest climate change
threat for mangroves (Gilman et al. 2008). Secondly, warmer
temperatures will allow poleward shifts in flora and fauna that
can result in significant changes in the saltwater tidal habitat,
thereby altering its ecosystem services, including ability to
store blue C, and in some cases causing the release of CO2

from the blue C sink as described below.
Modification of estuarine hydrology or increased rates of sea

level rise can increase the hydroperiod (duration of flooding)
beyond the thresholds tolerated by intertidal vegetation. Climate
warming will increase rates of sea level rise primarily from
continued melting of the world’s ice sheets and glaciers and
the thermal expansion of a warming ocean (Church et al.
2013). As the magnitude and rate of ice sheet melting is difficult
to model, predicted rates of sea level rise vary, but it is accepted
that increasing rates of sea level rise and its impact will be felt
on all coastlines, most severely on those already subject to sub-
sidence (sinking). One modest projection, a 0.6 m (2 ft) rise in
global (eustatic) sea level by 2100, would translate to an in-
crease of 0.61 m (2.3 ft) at New York City and 1.07 m (3.5 ft)
in Galveston Texas. The greatest uncertainty is the rate of melt-
ing of ice sheets covering Antarctica and Greenland. There is
nothing magical about the year 2100, and it is certain that sea
levels will continue to rise for centuries under all current sce-
narios. A recent report considers six possible outcomes for glob-
al mean sea level rise by 2100 ranging from 0.3 meters with a
100% probability to an intermediate projection of 1.0 m with a
17% probability. If recent estimates for Antarctica ice melt are
included there is a 0.1% probability that the rise could reach 2.5
m (NOAA 2017). See Fig. 5.

Within tidal wetlands the effects of increased rates of sea
level rise will be most strongly felt at the lower elevations
where vegetation will most rapidly succumb and soil accretion
will cease (e.g. Kirwan et al. 2010). Without living vegetation,
the submerged wetland soil and its C stock can be exposed to
erosion and possibly to oxidation of the organic matter,
returning centuries of stored CO2 back to the atmosphere.
The fate of soil organic matter eroded from wetlands is an
increasingly important science question that is not yet re-
solved (e.g. DeLaune and White 2012). If the upland adjacent
to the tidal wetland is not developed and slopes are gentle,
then the wetland can migrate inland, limiting the loss of area
(but not necessarily blue carbon stocks). However, if this land
is developed or if natural topography is steep, the structures or
grade will prevent migration, putting the marsh or mangrove
in a coastal squeeze (Torio and Chmura 2013). The potential
for coastal squeeze is high on many of the world’s coastlines,
particularly on the highly urbanized bays and estuaries of the
U.S., such as San Francisco Bay in California and the shore of
New York City on Jamaica Bay (Hopper and Meixler 2016).
The loss of wetland area due to coastal squeeze means loss of
all its ecosystem services including essential habitat for fish
and wildlife, loss of the ability of the system to store additional
C and loss of its capacity to buffer inland development from
the impacts of storms. One opportunity to decrease the amount
of salt marsh loss that is likely to occur with sea level rise is to
actively plan for future inland marsh migration now. There
have been a few innovative studies considering how to plan
for marsh migration including one that examined which wet-
lands along the Gulf coast of the U.S. are most threatened by
projected future urban development. This information can be
used to identify migration corridors for these wetlands and set
priorities for current protection to prevent future coastal
squeeze (Enwright et al. 2016). Another study examined
two conditions to determine which marshes along the
U.S. Northeast and Mid-Atlantic coast are likely to be
resilient to sea level rise by examining the current
health of the marsh as well as its potential to migrate
inland (Anderson and Barnett 2017).

Climate warming has a direct impact on salt marshes and
mangrove swamps by increasing poleward migration of their
flora and fauna. Such changes are most observable where

Fig. 5 Past and projected

changes in global mean sea level

rise. (NOAA 2017a). Mean sea
level rise and projections to 2100
under alternative IPCC scenarios.
The lowest rise is 0.30 meters
(100% probability), the
intermediate is 1.0 meters (17%
probability) and the highest is to
2.5 meters (0.1% probability)

Wetlands (2018) 38:183–205 191



species’ populations occur near the edge of their biogeographic
ranges. In fact, globally, mangroves are expanding their range
from tropical and subtropical climes, to invade salt marshes on
adjacent warm temperate coasts (e.g. Godoy and DeLacerda
2015). Studies are finding that climate-changed-induced move-
ment of mangroves into saltmarsh with warming temperatures
is resulting in increases in the carbon stored in biomass and
soils in marine and estuarine mangroves. This is because man-
grove forests have some of the highest average C storage per
land area in unmanaged terrestrial ecosystems (Doughty et al.
2015, Kelleway et al. 2015). As mangroves replace salt marsh
vegetation, soil C may increase (Bianchi et al. 2013). However,
such invasions significantly change habitat structure and we
know little about impacts on biotic interactions, potential lags
for co-evolved species to shift, or challenges to mosquito con-
trol management (Dale et al. 2013). While SLR is expected to
enable mangroves to migrate inland where other obstacles do
not occur, the example of mangrove dieback in northern
Australia (Duke et al. 2017) shows that the impact of climate
is more complex, with changes in the regional climate patterns
resulting in lower rainfall and tidal depression during the hot
part of the year being suggested as the cause of the dieback.

Several studies have documented that increasing salinity in
upstream reaches of an estuary will decrease biomass accumula-
tion of foundation freshwater plant species (Sutter et al. 2014,
2015; Neubauer et al. 2005). In microcosm studies, Sutter et al.
(2015) found that even smooth cordgrass (Spartina alterniflora),
a salt marsh foundation species on the western Atlantic, had re-
ducedgrowthwhenexposed to increased salinityandgrownwith
the invasive strain of tall common reed (Phragmites australis).

An example of range extension of benthic fauna is found in
the herbaceous salt marsh fiddler crab (Uca pugnax) that bur-
rows in marsh soil. Historically, the range of the fiddler crab
has been limited along the northwestern Atlantic coast to wa-
ters south of Cape Cod, Massachusetts. Its range recently has
expanded northward where it has been observed on the coast
of NewHampshire (Johnson 2014). The effect of fiddler crabs
on C storage has been studied in Virginia salt marshes where
Thomas and Blum (2010) found that 74% more root material
was decomposed inmarshes with fiddler crab burrows. Unless
potential predators and competitors accompany crab migra-
tion, this range extension could lead to significant release of
CO2 to the atmosphere from northern salt marsh C sinks.

Saltwater wetlands are effective natural C sinks until they
are disturbed, degraded, or destroyed by draining them for
urban development, agriculture, aquaculture or by other
means. Rising sea levels will also degrade these ecosystems.
Disturbing wetland hydrology can enable oxygen to oxidize
stored soil organic matter. Drying wetland soils increases mi-
crobial decomposition of stored organic C causing these nat-
ural sinks to become sources of CO2 emissions (Pendleton
et al. 2012). Preventing loss of these ecosystems is a priority
to avoid additional GHG emissions. Restoring degraded or

lost saltwater wetlands can regenerate their ability to remove
and sequester CO2 from the atmosphere.

Part 2: Emerging Policies and Management
Strategies for Protection of Wetlands
and Their Ecosystem Services in the Context
of a Changing Climate

At all levels of government, policies and management strate-
gies that reference the relationship between wetlands and cli-
mate change may be found both in entities and policies that
primarily focus on wetlands and in those that primarily focus
on climate change. While wetlands are not mentioned explic-
itly in any of the formal climate change treaties, their rele-
vance may be inferred under the definitions of Bsources, sinks
and reservoirs^ for GHGs. More recently, they have been
mentioned explicitly in a North American agreement among
three heads of state. Wetland scientists, policy makers and
managers can therefore utilize both wetlands and climate
change policies and management strategies.

Recommendations for policy and management address
both the role of wetlands in climate regulation, such as con-
serving and sustainably managing stored carbon (Nahlik and
Fennessy 2016), and the role of wetlands in provision of eco-
logical and human community climate adaptation and resil-
iency ecosystem services. Resiliency functions and services
include flood storage, buffering of storm damage, protecting
water quality by filtering pollutants and sediment out of runoff
generated by severe storm events, groundwater recharge and
provision of water supply during drought, provision of wild-
life refuges and corridors and maintenance of biodiversity
(Junk et al. 2013; Association of State Wetland Managers
2015a; Narayan et al. 2016), regulating microclimate (Zhang
et al. 2016) and physically buffering coasts from sea level rise
and increases in storm surges (Millennium Ecosystem
Assessment 2005), as well as others enumerated elsewhere
in this article. Anderson et al. (2016a) state, BProtecting wet-
lands and riparian corridors has been suggested as one of the
single best actions in promoting resilience and in sustaining
biodiversity (Naiman et al. 1993, Fremier et al. 2015)^.

International Wetland and Climate Policy

In the following sections, we explore several examples of how
international policy can influence the management and pro-
tection of wetlands, including their climate mitigation and
adaptation/resiliency benefits, with examples from the cli-
mate policy setting (IPCC Wetlands Supplement, UN
Framework Convention on Climate Change, Paris
Climate Agreement, Secretariat of the Pacific Regional
Environment Programme, (SPREP), The European Union
Water Framework Directive and North American Action
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plan, and one from the wetlands policy setting, Ramsar).
Wetlands sit at the intersection of three Sustainable
Development Goals: Number 13, Climate Change; number 14,
Life Below Water; and number 15 Life on Land (Sustainable
development goals 2015).

Climate Treaties: Greenhouse Gas Inventories
and Related Mechanisms

Initial steps to incorporate wetlands into international climate
policies are now in place. In 2013, the Intergovernmental
Panel on Climate Change, which provides guidance to coun-
tries on how to compile their national GHG inventories, re-
leased a Wetlands Supplement (IPCC Wetlands Supplement
2014). Previous IPCC guidance did not include comprehen-
sive information on accounting for wetlands as sources and
sinks because it was determined that the science of these eco-
systems was not sufficient to provide Tier I (basic) methodol-
ogies for how to include them in national inventories. The
Wetlands Supplement provides guidance on how countries
are to include explicitly the emissions from land use change
in freshwater wetlands, including peatlands and saltwater wet-
lands, in their national inventories. At least 8 countries iden-
tified peatlands as playing a role in their intended Nationally
Determined Contributions (NDCs): Belarus, Colombia,
France, Indonesia, Malaysia, Mongolia, Peru, and Republic
of Congo (NDC Registry 2016).

Although countries are not required to use the Wetlands
Supplement, they were encouraged to do so and in the 2017
submissions, a few countries, including the U.S. (USEPA
2017), did include wetland emissions in their national GHG
inventories. While not requiring C accounting from wetlands,
the Wetlands Supplement is a step forward in terms of en-
abling countries to account for the C fluxes associated with
wetland ecosystems and moves the world closer to requiring
countries to account for the substantial emissions from these
ecosystems when they are disturbed or destroyed (for more
details see Sutton-Grier and Moore 2016).

There are additional mechanisms within the United
Nations Framework on Climate Change (UNFCCC) re-
gime where coastal blue carbon ecosystems, and other wet-
lands might be included in climate policies: Reduced
Emissions from Deforestation and Degradation (REDD+),
Clean Development Mechanism (CDM), and Nationally
Appropriate Mitigation Actions (NAMAs) (Gordon et al.
2011; Herr et al. 2012). Traditionally, these mechanisms have
focused more on terrestrial forest projects, but could include
saltwater and freshwater wetlands if projects can be developed
that demonstrate the effectiveness of wetlands for emissions
reductions.

Reduced emissions from deforestation and forest degrada-
tion (REDD+) provide payments to restore and protect forest
C reservoirs in developing countries to avoid CO2 emissions

(REDD 2016). The wetlands that meet the requirements
would be wetland forests and mangroves. The CDM develops
projects in developing countries that reduce emissions and
enable those countries to sell emission reduction credits to
markets like the European Trading System (CDM 2017);
these projects could include coastal wetland restoration or
protection projects that would help a country reduce emis-
sions. NAMAs refer to any action that reduces emissions in
developing countries and must also be part of a national gov-
ernmental initiative (http://unfccc.int/focus/mitigation/items/
7172.php) and therefore have government approval. As
such, NAMAs provide a flexible framework that can permit
developing countries to meet their nationally determined
contributions under the Paris Climate Agreement to reduce
GHG emissions as part of their development strategy. This
provision has the potential to include emissions reductions
from saltwater wetlands, since each country is free to define
what appropriate NAMA projects are and how they are funded
(NAMA 2017). There is one blue carbon NAMA project be-
ing developed in the Dominican Republic (Sutton-Grier et al.
2018). Further demonstration projects are needed to show
which of these mechanisms are feasible and most effective
for saltwater wetlands.

Secretariat of the Pacific Regional Environment Programme

The Secretariat of the Pacific Regional Environment
Programme (SPREP) has positioned climate change as a pri-
ority under the Strategic Action Plan 2017-2026 (SPREP
2017). It is further seen as a crosscutting issue and comprises
programs on adaptation, mitigation, policy and science.
Addressing climate change is seen as a priority as it is already
disproportionally affecting the islands of the Pacific, including
impacting mangroves and freshwater wetlands (Ellison 2011;
Nurse et al. 2014). Engagement with the Ramsar Convention
has been renewed given the importance of wetlands in the
Pacific islands and their role in climate change and disaster
risk reduction.

European Union

The European Union has a robust suite of environmental leg-
islation and policies with increased efforts towards the incor-
poration of climate change and coherence with other sectors.
However, there are gaps in implementation and some work is
still needed to ensure the resilience and sustainability of water
resources (Francés et al. 2017). The European Union has con-
sidered the ecological condition of all water bodies, including
wetlands, through the Water Framework Directive with an
emphasis on the future protection and improvement of the
water environment as essential for sustainable development.
While the Directive did not specifically include climate
change there have been many investigations into how climate
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change will alter aquatic ecosystems, including numerous ac-
tions, strategies and policy instruments, as well as monitoring,
reporting and evaluation systems, that could significantly con-
tribute to a broader and more comprehensive view of climate
change impacts and adaptation in the water sector (Finlayson
et al 2018). As the Directive will be revised in 2019, it is
anticipated that climate change will be implicitly addressed
as an anthropogenic pressure, and supported with common
guidelines and approaches for considering resource costs
and adaptation measures (Francés et al 2017). The vote by
the European Parliament in January 2018 on the Renewable
Energy directive called for increases in forest bioenergy and
biofuels with few limitations on the consequences for wetland
forests and ecosystems despite letters from scientists urging
constraints (European Parliament 2018, Scientists letter 2018,
Duffy et al. 2018).

North American Climate, Clean Energy, and Environment

Partnership Action Plan

In June, 2016 Prime Minister Justin Trudeau of Canada,
President Barack Obama of the United States and
President Enrique Peña Nieto of Mexico announced the
North American Climate, Clean Energy, and Environment
Partnership Action Plan which explicitly identifies blue
carbon preservation and restoration as mitigation actions,
and the value of wetlands for climate resiliency ecosystem
services, stating the intention to, Benhance the conservation
and restoration of wetlands, which increase mitigation actions
(blue carbon), preserve coastal ecosystems services, and re-
duce the potential impacts of more frequent or intense severe
weather events under climate change projections^ (North
American Climate, Clean Energy, and Environment
Partnership Action Plan 2016).

Ramsar Convention

Since 1975, the Ramsar Convention on Wetlands has provid-
ed an international policy framework for wetlandmanagement
(Gardner and Davidson 2011). It comprises 169 Contracting
Parties (national governments) that generally meet every 3
years to consider the state of the world’s wetlands and agree
on priority actions in support of the Convention’s mission
which is to act for the Bconservation and wise use of all wet-
lands through local and national actions and international co-
operation, as a contribution towards achieving sustainable de-
velopment throughout the world.^ As outlined by Davidson
(2016), the Convention is implemented through three
Bpillars^: the wise use of all wetlands; the designation and
management of Wetlands of International Importance
(Ramsar sites), including reporting on adverse change; and
international cooperation, including for shared wetlands.

Each contracting party commits to designate and manage a
coherent and comprehensive national network of Ramsar
sites. As of 25 February 2018, the global network of 2301
Ramsar sites covers a surface area of 2.25 million km2 or
18.6% of the most recent and reliable estimate of global wet-
land area (Davidson et al. 2017). This achievement represents
one of the major successes of the Convention. However, ef-
forts to maintain other wetlands have not been as successful
with high rates of loss and degradation recorded throughout
the 20th Century up to the present time (Davidson 2014;
Gardner et al. 2015). These general outcomes show that the
Contracting Parties have had mixed success in meeting their
commitments which is not surprising when fewer than half
have reported activities that demonstrated how they were ad-
dressing the goals and strategies in the Convention’s Strategic
Plan (Finlayson 2012). The consequences of climate change
for wetlands is expected to place further pressure on the ability
of Contracting Parties and wetland managers to meet such
goals and strategies in the future.

The Convention has recognized the significance of wetlands
in managing global GHG emissions and in providing climate
resiliency in addition to traditionally acknowledged ecosys-
tem services. In 2012 and 2015, the Conference of Parties
recommended a number of actions by the Parties, including:

& recognizing significant peatlands as Wetlands of
International Importance in recognition of their role
in C sequestration and storage,

& recognizing the significance of coastal blue carbon,
& recognizing the role of wetlands in providing climate re-

siliency services,
& recognizing theuniquevulnerabilityofwetlands tochanges in

climate (Ramsar COP12 (2015) Resolution XII.11; Ramsar
COP11 (2012) ResolutionXI.14; Barthelmes et al. 2015).

Finlayson et al. (2017) built on the recognition that wet-
lands were vulnerable to climate change and examined how
climate change would influence international policy-making
for wetland management, and identified potential adaptation
responses that may assist Contracting Parties to better meet
their commitments under the Convention.

The Convention, though, has not provided specific guid-
ance on how to meet these requirements in the context of
climate change, such as how to identify appropriate reference
conditions (Finlayson et al. 2016; Gell et al. 2016) and wheth-
er past reference conditions were indeed suitable under the
changing conditions of the Anthropocene (Kopf et al. 2015).
This lack of guidance has left important gaps in wetland pol-
icy concerning:

& how objectives and targets for wetland conservation and
management could be set and revised in the light of cli-
mate change,
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& how wetland management could best address the uncer-
tainties due to climate change,

& how managers could best monitor and evaluate the condi-
tion of wetlands that are responding to climate change,

& whether adverse change in ecological character due to
climate change should be subject to the same reporting
requirements.

The Australian Government has decided that it would not
use the existing formal mechanisms for reporting adverse
change in Ramsar sites when it was caused by climate change.
This policy raises unanswered questions about the usefulness
of the formal reporting mechanisms under the Convention for
dealing with adverse change when caused by global pressures
such as climate change. This position creates a paradox for the
Convention whereby it recognizes the vulnerability of wet-
lands to climate change, but has not addressed the implica-
tions for its reporting mechanisms nor provided wider guid-
ance for management given the pervasiveness of climate
change as a driver of change in wetlands.

Addressing these issues will close a major gap in the guid-
ance provided by the Convention and provide wetland man-
agers with advice on how to respond to the deteriorating con-
dition of wetlands worldwide (Gardner et al. 2015). Without
active intervention a changed climate is expected to exacer-
bate the deterioration (Finlayson et al. 2006). These principles
further provide support for wetland managers seeking to de-
termine the significance of ecological change in the face of
climate change, given that the Ramsar Convention has not
provided guidance to address what is becoming an overarch-
ing driver of adverse change in wetlands. While international
policy, such as that provided by the Ramsar Convention, can
guide countries towards effective management choices, the
policy responses and management itself are required at nation-
al and sub-national levels. Policies determined at the interna-
tional level require national and sub-national implementation.

National Policy Setting

National policies, whether wetland or climate change, can
have important impacts on wetland conservation or destruc-
tion and therefore on the ability of a country’s wetlands to
either contribute to climate change mitigation, adaptation
and resiliency, or become additional sources of GHGs to the
atmosphere. National policies also determine the effectiveness
of international policy, such as those instituted by the Ramsar
Convention (Finlayson 2012). Contracting Parties to the
Ramsar Convention have been encouraged to develop nation-
al wetland policies; however, in 2012, fewer than 50% report-
ed that they had developed such policies (Finlayson 2012).
The relative lack of national wetland policies limits opportu-
nities for climate change to be addressed at the national level,
as it relates to wetlands. Furthermore, there is limited evidence

that climate change has been specifically addressed in national
wetlands laws and policies that do exist. Pittock et al. (2010)
point to gaps and inconsistencies in managing wetlands under
climate change with the example of the Murray-Darling Basin
in Australia where climate change has not (yet) been included
in water planning instruments despite a large financial invest-
ment in riverine restoration focused on water reallocations and
steps to return water to the rivers and wetlands (Pittock 2013).
Wetland and climate scientists, managers, and policy makers
could work together to fill this gap, while in the meantime,
finding opportunities within existing wetlands and climate
change laws at all levels of government (from international
to local) tomanage and protect wetlands in a climate-informed
manner.

In the United States, BRecommendations for a National
Wetlands and Climate Change Initiative^ (Christie and
Kusler 2009) provides specific recommendations for the de-
velopment of climate change policy within wetlands programs
at the national, sub-national/state, and local levels. Although
written for the U.S. policy setting, many of the recommenda-
tions could be implemented in other countries as well. U.S.
federal agencies included wetlands and other ecosystems into
climate change planning and policies in October 2014. The
White House’s interagency Council on Climate Preparedness
and Resilience (Resilience Council) Climate and Natural
Resources Working Group (CNRWG) released their BPriority
Agenda for Enhancing the Climate Resilience of America’s
Natural Resources (Priority Agenda)^. The Priority Agenda
identifies a suite of actions the federal government planned to
take to enhance the resilience of America’s natural resources to
the impacts of climate change and promote their ability to
absorb CO2. Wetlands were incorporated into the Priority
Agenda, including specific actions related to coastal blue car-
bon requiring the National Oceanic and Atmospheric
Administration (NOAA) to lead a baseline study on carbon
in saltwater wetlands. This baseline study became the founda-
tion for the U.S. to include saltwater wetlands in the national
GHG inventory in April 2017 (USEPA 2017). This represents
important progress in tracking and managing saltwater wet-
lands and GHG emissions because every subsequent U.S. in-
ventory will include saltwater wetlands each year (Sutton-
Grier and Moore 2016).

Sub-National and Regional Policies, Strategies
and Management Tools

We now provide examples of policies, strategies, and manage-
ment tools being developed at the sub-national level to address
the challenge of climate change. Reflecting an understanding
of the climate mitigation functions of wetlands and other eco-
systems, the Government of Ontario, with the passage in 2010
of the Ontario Far North Act (Ontario Laws 2010) became the
world’s first political jurisdiction to enact legislation (as
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opposed to policy/guidance) that recognizes the explicit role
of wetlands and other ecosystems in the global C cycle by
stating as the third of four objectives that land-use planning
ensure Bthe maintenance of biological diversity, ecological
processes and ecological functions, including the storage and
sequestration of C in the Far North^. This sets a good example
of regional leadership on wetland management and climate
mitigation.

In the United States, the Association of State Wetland
Managers survey of state wetland programs (Zollitsch and
Christie 2015) indicates that 17 states report working within
the wetlands programs formally to address climate change, 13
states report working informally to address climate change, 17
states report no climate change work, and data was unavail-
able or unknown for 3 states. Some of the states with no
designated climate related projects within state wetlands pro-
grams reported that such activity is occurring at the regional
and/or local level, and that Bnon-climate change^ work aimed
at addressing natural hazards and extreme precipitation events
is occurring at the state level (Association of State Wetland
Managers 2015b). Two examples of states that have
established climate policies or plans that proactively address
wetlands are discussed below.

A Massachusetts Executive Order (Massachusetts
Executive Order #569 2016), establishes a process for a state-
wide integrated climate change strategy and requires a frame-
work and technical assistance for every town and city in the
state to complete climate vulnerability assessments, identify
adaptation strategies and begin implementing these strategies.
Although wetlands and ecosystems are not specifically men-
tioned in the Executive Order, it is being implemented with a
focus on nature-based solutions that encompass wetlands. The
lesson here is that opportunities for wetland protection and
restoration exist within broader climate resiliency and GHG
reduction programs. A cross-disciplinary process and collab-
oration integrates wetlands into broader responses to the cli-
mate challenge. Such cross-disciplinary collaborations require
that a broad spectrum of policy makers and managers become
educated about the importance of wetlands in our response to
climate change.

Massachusetts laid the groundwork for current responses
by initially addressing wetland and community vulnerability
to changes in climate by identifying climate impact reduction
strategies in the Massachusetts Climate Change Adaptation
Report (Massachusetts Office of Energy and Environmental
Affairs and the Adaptation Advisory Committee 2011). The
ensuing climate change strategic planning process now also
requires updated coastal floodplain regulations.

The state of Michigan has developed a Climate Change
Adaptation Plan for Coastal and Inland Wetlands in the State
of Michigan (Christie and Bostwick 2012), which identifies
climate impacts to wetlands, surveys similar efforts in other
states, discusses the role of wetlands in climate mitigation and

adaptation, suggests approaches for integrating wetlands into
the broader Michigan Climate Action Council Climate Action
Plan that establishes the framework for Michigan’s compre-
hensive response to climate change, and provides recommen-
dations for managing wetlands in the context of climate
change.

Within the context of conventional wetland regulations in
the U.S., protection of wetlands is in part dependent upon
delineation of wetland boundaries, which can shift during pe-
riods of drought due to die-off of wetland vegetation. As cli-
mate changes, the incidence of drought is increasing in some
regions, thus putting at risk areas that typically would be
protected by wetland regulation. The US Army Corps of
Engineers (USACE) North Central and Northeast Region rec-
ognizes this by allowing for modification of wetland delinea-
tion criteria during drought (i.e. less reliance on vegetation
present during drought) (USACE 2012). Similar provisions
could be developed in other jurisdictions elsewhere around
the world, so that land that functions as a wetland under reg-
ular climate conditions is not excluded from protection or
regulation during a temporary drought. This applies to ephem-
eral wetlands especially those that may already experience
long periods of drought that may be extended as the climate
changes.

Science-based wetland and natural resource management
decision-making can be adjusted to incorporate the effects of
climate change on ecosystems. The Nature Conservancy
(2017) has created a GIS-based mapping tool, through their
Resilient and Connected Landscapes project, that maps eco-
logically climate-resilient and connected land in regions of the
U.S. and Canada (Anderson et al. 2016a, b). Users can iden-
tify land with relatively high levels of geodiversity (i.e. diver-
sity of bedrock, soils, and elevations), landform diversity (i.e.
topographic diversity and density of wetlands), and connect-
edness. When combined with mapping of ecological integrity/
biological condition, this tool identifies land most likely to
maintain high ecological function as climate changes (Open
Space Institute and North Atlantic Conservation Cooperative
2016), and thus allows the user to prioritize conservation in-
vestments in the context of a changing climate. Because wet-
lands create temperature and humidity gradients on the land-
scape, TNC prioritizes landscapes with a high density of wet-
lands as being more resilient, other factors being equal.
Additionally, these maps allow wetland scientists to under-
stand the likely long-term ecological viability of wetlands in
a larger landscape context.

Local and Project-level Strategies and Best
Management Practices: Application of Carbon
Management and Climate Resiliency Science

Many authors have assessed the amount of C that can be
accumulated in wetland soils to address climate change.
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Some, such as Page andBaird (2016) have carefully considered
the evidence and pointed to the uncertainties as well as the
strengths of such evidence for particular peatland ecosystems.

Conserving, restoring, and halting disturbance of wetlands,
and creating saltwater wetlands, are essential for maintaining
the existing terrestrial C sink and supporting natural processes
that sequester C from the atmosphere into wetland soil and
biomass. Increasing wetland productivity would also help if
means for doing so across large areas could be found. If a goal
is to increase the amount CO2 sequestrated by wetlands, it is
worth considering how much wetland restoration or creation
would be needed to make a significant difference. The annual
amount of CO2 sequestered by wetlands can be estimated
using the data provided by Bridgham et al. (2006) for the
annual average rate of C sequestration by wetlands (~23
gCm-2y-1), and the most recent estimate of the global wetland
area (12,100,000 km2) provided by Davidson et al. (2017).
Using these values, the annual amount of CO2 sequestrated
is equivalent to 278 TgCy-1. This equals 6% of the current 4.4
PgCy-1 net annual increase in atmospheric CO2. Hence, the
area of new wetlands needed to remove one percent of the
current annual increase in atmospheric CO2 is about
2,000,000 km2; an increase of about 17%. This is only a very
approximate estimate as the rate of sequestration is not equal
across all wetlands, and it does not take into account the time
period for restored or created wetlands to reach this rate.
While these calculations make simplifying assumptions about
C content and rates of sequestration, they demonstrate the
importance of retaining existing wetlands, particularly vulner-
able high-C sequestering wetland types such as saltwater wet-
lands, forested wetlands, peatlands, and permafrost, as carbon
sinks, and curbing temperature rise to avoid releasing GHGs
as wetlands warm.

Moving forward, it is important to examine new ap-
proaches to wetland management and governance. There is a
strong potential to generate new private investment in saltwa-
ter wetland restoration and management efforts by linking
these projects to the voluntary and compliance C markets.
For example, a BMethodology for Tidal Wetland and
Seagrass Restoration^ (VM0033) was approved in 2015 by
the Verified Carbon Standard (VCS). This methodology pro-
vides a means for managers and voluntary carbon market pro-
ject developers anywhere in the world to initiate tidal saltwater
wetland restoration projects for GHG credits. The methodol-
ogy includes project eligibility criteria for receiving voluntary
carbon credits and accounting procedures within voluntary
markets, and is available for use for carbon crediting by pro-
jects that have net benefits when compared to the baseline
scenario (e.g. CO2, CH4, and N2O). This methodology can
be used globally by project developers to generate GHG
(carbon) credits for tidal wetland and seagrass restoration ac-
tivities and used by the saltwater coastal restoration and man-
agement community to begin to design projects.

The American Carbon Registry (American Carbon
Registry 2017) has approved a few C credit methodologies
for wetlands in the Gulf of Mexico, and California’s GHG
cap-and-trade program incorporates C credits from rice culti-
vation activities (California GHG cap and trade California
Cap and Trade 2017). The development of these voluntary
carbon market methodologies is a critical step toward facili-
tating C credits in support of saltwater coastal restoration. At
current voluntary carbon market prices, revenue generated
from the voluntary carbon market is likely not enough to
pay for the full costs of saltwater coastal restoration projects;
however, C financing can act as an incentive for additional
investment in, or joint funding of, saltwater coastal restora-
tion, and can provide key support for long-term project mon-
itoring. Further details are provided by Sutton-Grier and
Moore (2016).

Thinking globally and acting locally, wetland managers
can incorporate carbon management and climate resiliency
science into project-level work (including developing a body
of climate-related Best Management Practices), whether or
not governing policies and regulations exist. As noted earlier
in this article, avoidance of impacts to wetlands, and associat-
ed carbon stocks and processes, is likely to be the most effec-
tive management practice for preventing increases in GHG
emissions from wetlands, protecting climate resiliency func-
tions, and protecting traditional wetland ecosystem services,
and it is therefore important for managers to understand the
underlying science. The vast majority of wetlands store more
carbon than they release to the atmosphere on an annual basis,
and thus are net C sequesterers. Recently created freshwater
wetlands may, in many cases, have a net warming effect be-
cause the cumulative radiative forcing from increased CH4

emissions exceeds the reduction of radiative forcing from se-
questered CO2 until there is a Bswitchover point.^ Once the
radiative forcing (now a reduced value) of sequestered CO2

exceeds the radiative forcing by emissions from CH4 and
N2O, the created freshwater wetland has a cooling effect on
climate. It may take decades to thousands of years to reach the
switchover point (Bridgham et al. 2014; Neubauer 2014;
Neubauer and Megonigal 2015). The findings in these studies
highlight the impact of time on soil structure, microbial com-
munities and rooting, and associated GHG emissions from
wetlands. This reinforces the importance of protecting
existing wetlands wherever possible to maintain their climate
mitigation (and other) functions. On the other hand, because
the biogeochemistry of saltwater wetlands is different from
that of freshwater systems, restored or created saltwater wet-
lands become C sinks that reestablish their climate mitigation
benefits rapidly.

It is important to find Best Management Practices that can
minimize GHG emissions during freshwater wetland restora-
tion and creation projects at the local level. Common practice
in freshwater wetland creation is for soils to be composed of

Wetlands (2018) 38:183–205 197



composite mixes or from soils that have been removed from
wetland impact areas and are then stockpiled, re-applied to the
created wetland, and planted with nursery stock and seed.
Typically, these soils are structurally and functionally
disrupted by heavy machinery and stockpiling, which pro-
vides an opportunity to oxidize SOC and cause loss of soil
structure and microbial communities. The disruption of soil
structure and microbial communities resets the ecological
clock, thus reducing or eliminating the beneficial effects of
time on soil biogeochemical processes (Janzen 2016).
Several studies indicate that transplanting intact wetland soil
and/or vegetation to wetland restoration or creation sites re-
duces GHG emissions, compared to common practices noted
above (Wilhelm et al. 2015; Murray et al. 2017; Cagampan
and Waddington 2008; Waddington et al. 2009). Brown and
Bedford (1997) found that transplanting intact blocks of wet-
land soil results in more successful establishment of wetland
species, while reducing the presence of invasive plants during
restoration of drained wetlands. In cases where wetland im-
pacts are unavoidable, transplanting intact impact area O and
A horizons (i.e. the upper soil layers with high SOC content)
that contain intact herbaceous and shrub vegetation to the
wetland creation site may facilitate C storage, climate resilien-
cy, and traditional ecosystem services by transplanting soil
structure, microbial communities, and rooted vegetation.
Where the wetland restoration or creation site is in relative
proximity to the wetland impact area, costs are likely to be
reduced compared to traditional wetland construction costs by
moving impact area soil only once, avoiding costs associated
with stockpile sedimentation and erosion control, and
avoiding or reducing nursery stock and seed purchases.

More research on the scale of potential GHG benefits as-
sociated with transplanting relatively intact O and A soil ho-
rizons and relatively intact surface vegetation is needed. The
USArmyCorps of Engineers (USACE) New EnglandDistrict
mitigation guidance document refers to Bblock transplanting^
(USACE 2010), but does not identify the importance of
protecting the complete O and A soil horizons, or the role in
C protection and GHG emission minimization. Wetland sci-
entists and managers could include incorporation of climate
resiliency and GHG management strategies into specific pro-
jects, as well as provide education on ecological climate resil-
iency, ecological C management, and climate change commu-
nication to a broader audience.

Conclusions and Recommendations

This article documents recent research that demonstrates the
important role that wetlands play in moderating climate
change and protecting communities from the impacts of a
changed climate system. At the same time, these wetland eco-
systems are particularly vulnerable to changes in climate.

Meeting the Paris Climate Agreement temperature goals can
only be achieved in practice by greatly reducing emissions of
GHGs into the atmosphere and simultaneously, actively re-
moving CO2 from the atmosphere. Yet many wetland scien-
tists, ecosystem managers and natural resource policy-makers
are unaware of the important C storage role of wetlands, and
how to incorporate C-cycle considerations into wetland man-
agement and policy. Meanwhile, many climate scientists, as
well as national and international policy makers, undervalue
the role that wetland management might play in the future
trajectory of climate change on the global scale and do not
require reporting of wetland emissions or removal of GHGs
(IPCC Wetlands Supplement 2014).

To play a more effective role in climate change mitigation
and adaptation/resiliency, wetland scientists need to clearly
communicate the significance of wetlands to the wellbeing
of society and the economy. Communicating with policy
makers and the public requires aligning wetland science and
specific climate mitigation and adaptation/resiliency ecosys-
tem services with the concerns and mindset of the audience
(Leiserowitz et al. 2015, 2017; Roser Renouf et al. 2016; Yale
Program onClimate Change Communication (YPCCC 2017);
Center for Research on Environmental Decisions 2009).
Studies by Cook et al. (2013, 2016) document that 97% of
climate scientists agree that anthropogenic climate change is
occurring. The near universal agreement among climate sci-
entists can create confidence in the public to support action,
but in addition, it is essential to make clear the science that is
behind the consensus. Similar findings are documented by
several other studies (Doran and Zimmerman 2009;
Anderegg 2010; IPCC Wetland Supplements 2014). While
TNC resiliency mapping, referred to earlier, and YPCCC re-
search is specific to the U.S.A. and Canada, the concepts
underlying their work can be applied around the world to
develop wetland-related ecological climate resiliency map-
ping, and communicate effectively about climate change and
wetlands.

The important role that wetlands play in sequestering C
from the atmosphere needs to be better appreciated bywetland
and climate scientists as well as by policy makers. Climate is a
global issue, and the policy section of this paper illustrates the
importance of incorporating both wetlands and climate change
into international agreements. On the other hand, all wetlands
are local and require protection or restoration at appropriate
regional and local scales. We identify examples of policies
that direct management practices at those scales, thus creating
a multilayered management structure for maximum effective-
ness (Moomaw et al. 2016). This coordinated approach can
provide resilient wetland ecosystem services and protect com-
munities using policies that buffer wetlands from climate im-
pacts while addressing global climate change itself.
Transdisciplinary research that integrates local wetland con-
servation with global climate change provides an important
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tool for stabilizing Bgreenhouse gas concentrations in the at-
mosphere at a level that would prevent dangerous anthropo-
genic interference with the climate system^ (UNFCCC 1992).
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