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Abstract: The wettability of reactively sputtered Y2O3, thermally oxidized Y-Y2O3 and 

Cd-CdO template assisted Y2O3 coatings has been studied. The wettability of as-deposited 

Y2O3 coatings was determined by contact angle measurements. The water contact angles 

for reactively sputtered, thermally oxidized and template assisted Y2O3 nanostructured 

coatings were 99°, 117° and 155°, respectively. The average surface roughness values of 

reactively sputtered, thermally oxidized and template assisted Y2O3 coatings were 

determined by using atomic force microscopy and the corresponding values were 3, 11 and 

180 nm, respectively. The low contact angle of the sputter deposited Y2O3 and thermally 

oxidized Y-Y2O3 coatings is attributed to a densely packed nano-grain like microstructure 

without any void space, leading to low surface roughness. A water droplet on such surfaces 

is mostly in contact with a solid surface relative to a void space, leading to a hydrophobic 

surface (low contact angle). Surface roughness is a crucial factor for the fabrication of a 

superhydrophobic surface. For Y2O3 coatings, the surface roughness was improved by 

depositing a thin film of Y2O3 on the Cd-CdO template (average roughness = 178 nm), 

which resulted in a contact angle greater than 150°. The work of adhesion of water was 

very high for the reactively sputtered Y2O3 (54 mJ/m2) and thermally oxidized Y-Y2O3 

coatings (43 mJ/m2) compared to the Cd-CdO template assisted Y2O3 coating (7 mJ/m2). 
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1. Introduction 

The wettability property of a solid surface is important scientifically and technologically. The 

surface morphological structure and surface chemistry mainly control the wetting or repellant behavior 

of the solid surface. Contact angle measurement commonly determines the wettability of a solid 

surface. For a liquid on a flat solid surface the contact angle is measured as the combined result of 

three different types of interface tension at the solid, liquid and gas interfaces given by the classical 

Young’s equation:  

LV

SLSV

γ
γγθ −

=cos , (1)  

where γSV, γSL, and γLV are the interfacial free energies per unit area of solid-vapor, solid-liquid, and 

liquid-vapor interfaces. Young's equation tells us that hydrophobicity refers to a contact angle greater 

than 90° while a contact angle less than 90° implies hydrophilicity. Solid surfaces are usually not 

perfectly flat but are somewhat rough, so the effect of surface roughness has to be considered for 

surface wettability. The Wenzel and Cassie-Baxter models describe the effect of morphological 

parameters such as surface roughness on the wettability of solid surfaces [1,2]. The Wenzel model 

assumes that the liquid can enter completely and contact the concave regions on the solid surface. 

Young’s equation was modified by Wenzel by including a roughness factor and the modified  

equation is: 

,coscos θθ rW =  (2)  

where θW is the apparent contact angle on a rough surface and r is the ratio of the actual to the 

projected area. If air can be trapped by the liquid to give a composite surface, the latter belongs to 

Cassie’s case and the apparent contact angle is described as the modified equation: 

,coscos 21 ffW −= θθ  (3)  

where, f1 and f2 are the fractional interfacial areas of solid and air trapped between the solid surface and 

the water droplet, respectively and 121 =+ ff . This model clearly demonstrates that the larger the 

vapor fraction (f2) the more hydrophobic is the surface.  

A great deal of attention is now being placed on inorganic nanomaterials because of their various 

potential applications in the production of electronic devices, sensors, biochips and energy storage 

media [3–12]. Inorganic materials have also been used to form superhydrophobic surfaces [13–15]. 

Recently, with the development of smart devices, such as the intelligent microfluidic switch [16], 

reversibly controlling the surface wettability has aroused great interest and has been realized by using 

external stimuli such as heating/cooling, light irradiation and temperature [17–19]. Several  

stimuli-responsive, smart, interfacial materials that can be switched between superhydrophilicity and 

superhydrophobicity by combining the geometrical morphology of the surface with a change of surface 

chemistry have been reported [20–22]. With a high dielectric constant (10–17), high melting point 

(2439 °C), high refractive index (1.7–1.9) and large optical band gap (5.5 eV) yttrium oxide (Y2O3) is 

a very promising material for the potential applications mentioned above [23,24]. Combining the 

properties listed above with superhydrophobicity opens up new possibilities for the use of Y2O3 in 
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diverse fields. The ability of yttrium oxide to be a host material for the rare earth atoms europium or 

thulium makes it an important material for optical applications [25–29]. The Eu3+ doped Y2O3 is a 

well-known red phosphor [25]. The Y2O3 thin films have been deposited by several deposition 

techniques: radio frequency (RF) magnetron sputtering, pulsed laser ablation, ion-beam sputtering, 

solvothermal process, hydrothermal reaction, wet-chemical method, physical vapor deposition (PVD) 

methods and reactive sputtering [26,30–36]. Yttrium oxide through synthesis has enabled the creation 

of structures such as nanoparticles, nanotubes, nanorods, nanospheres, nanoflowers, etc. [25,37,38]. To 

the best of our knowledge superhydrophobicity for yttrium oxide based coatings has not been reported 

so far. 

In this paper three different types of yttrium oxide based coatings: sputter deposited Y2O3, 

thermally oxidized Y-Y2O3 and template assisted Y2O3 were prepared and the effect of surface 

morphology on the wettability was studied. A contact angle goniometer was used to investigate the 

static contact angle (CA) of the coatings. The structural and chemical properties of these coatings have 

been studied using X-ray diffraction (XRD), atomic force microscopy (AFM), micro-Raman 

spectroscopy and field emission scanning electron microscopy (FESEM). 

2. Experimental Details 

The Y2O3 coatings were prepared on borosilicate glass substrates by using three different 

approaches. The first set of Y2O3 coatings were deposited by sputtering a high purity (99.99%) yttrium 

target (0.076 m diameter and 0.006 m thickness) in Ar + O2 plasma using an RF generator  

(f = 13.56 MHz, hereafter called as Sample 1). The sputtering process parameters were optimized by 

preparing Y2O3 coatings at different power levels, substrate temperatures and O2 flow rates. The 

optimized process parameters were: Ar flow rate = 25 sccm (standard cubic centimeter per minute), O2 

flow rate = 2 sccm, target power = 350 W and duration = 60 min. The substrates were chemically 

cleaned in an ultrasonic agitator by isopropyl alcohol and acetone before placing them in the vacuum 

chamber. The vacuum chamber was pumped down to a base pressure of 5.0 × 10–4 Pa. The second set 

of Y2O3 coatings was prepared by thermal oxidation of sputter deposited yttrium. The Y-Y2O3 coatings 

were prepared by depositing yttrium using 85 W of direct current (DC) power for 11 min followed by 

oxidation (O2 flow rate = 75 sccm) at 350 °C for 2 h. Hereafter, this coating is referred to as Sample 2. 

In the third set, coatings were prepared by depositing Y2O3 on the Cd-CdO template. The preparation 

of the Cd-CdO template is reported elsewhere [39]. In brief, the cadmium coating was deposited  

using 85 W of RF power for 4 min and subsequently oxidized in an oxygen atmosphere (O2 flow  

rate = 85 sccm) at 225 °C for 2 h, thus forming a Cd-CdO template. The Cd-CdO coatings prepared 

under these conditions were superhydrophobic in nature [39]. The thin films of Y2O3 were deposited 

on a Cd-CdO template by the reactive sputtering technique. Y2O3 thin films were deposited under the 

following optimized conditions: Ar flow rate = 25 sccm, O2 flow rate = 2 sccm, target power = 350 W 

and duration = 10 min. The thickness of the Y2O3 film on the glass substrate was found to be about  

60 nm for a 10 min deposition at 350 °C (hereafter called Sample 3). The Y2O3 samples were prepared 

with a thickness of 10–80 nm on Cd-CdO templates. 

The static contact angle was measured according to the sessile-drop method using a contact angle 

analyzer (Phoenix 300 Goniometer, Surface Electro Optics Co., Suwan City, Gyunggido, Korea) with 
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three different liquids (water, formamide and glycerol). The system consists mainly of a CCD video 

camera with a resolution of 768 × 576 pixels. The drop image was stored by a video camera and an 

image analysis system was used to calculate the left and right angles from the shape of the drop with 

an accuracy of ±0.1°. The droplet size of the fluid was about 5 µL, therefore, the gravitational effect 

can be neglected. The contact angle of the samples was measured at three different places and the 

values reported herein are the average of three measurements. The dynamic contact angle 

measurements were also carried out using a Rame-Hart contact angle goniometer (model 100-00) 

equipped with a CCD camera. For these measurements, we took a 8 micro-liter droplet on the substrate 

and then again added 4 micro-liter of water to the same droplet. 

The chemical structure of the coatings was studied using micro-Raman spectroscopy. A  

DILOR-Jobin-Yvon-SPEX integrated micro-Raman spectrometer was used for the present study. 

Three-dimensional surface imaging of the coatings was measured by atomic force microscopy (Surface 

Imaging System) in the contact mode. A Si based tip (Nanosensors) with a radius of less than 5 nm 

was used for the AFM measurements. The microstructure of the coatings was studied using field 

emission scanning electron microscopy (Supra 40VP, Carl Zeiss, Oberkochen, Germany). The X-ray 

diffraction patterns of the coatings were recorded in a X-ray diffractometer system (JEOL, JDX-8030) 

with thin film attachment (α = 3°). The X-ray source was CuKα radiation (λ = 0.15418 nm), which was 

operated at 35 kV and 20 mA.  

3. Results and Discussion 

3.1. Structure and Morphology 

3.1.1. X-ray Diffraction 

Figure 1(a–c) shows the XRD plots of sputter deposited Y2O3, thermally oxidized Y-Y2O3 and  

Cd-CdO template assisted Y2O3 coatings. Reactively sputtered coatings (Figure 1(a)) showed 

reflections corresponding to (211), (222) and (620) of cubic Y2O3 (JCPDS card no. 025–1200).  

Figure 1(b) shows XRD pattern for thermally oxidized Y-Y2O3 coating. Two peaks are observed at  

2θ = 30.7° and 55.3°, which correspond to (222) and (620) planes of cubic Y2O3, respectively (JCPDS 

card no. 025–1200). The peak centered at 2θ = 30.7° corresponds to (002) plane of hexagonal yttrium 

(JCPDS card no. 12–702). The presence of diffraction peaks from Y and Y2O3 show that only the top 

surface layer of the coating is oxidized. The XRD plot for Cd-CdO template assisted Y2O3 coating is 

shown in Figure 1(c). The peak observed at 2θ = 55.3° corresponds to the (620) plane of Y2O3. Two 

additional peaks are also observed at 2θ = 32.9° and 38.1°, which are attributed to the (111) and (200) 

planes of cubic CdO, respectively (JCPDS card no. 5–0640). The peak centered at 2θ = 38.1° 

corresponds to (101) plane of metallic hexagonal Cd (JCPDS card no. 5–0674). The diffraction peaks 

for Cd and CdO are from the template. Here we observed diffraction peaks for both Cd and CdO, 

which indicates that only the uppermost surface layer of the coating is oxidized, as the Cd-CdO 

template is prepared by sputtering followed by thermal oxidation. The average grain size of Y2O3 

coatings was calculated from the prominent peaks using Scherrer’s formula. The average grain sizes 

for sputtered deposited Y2O3, thermally oxidized Y-Y2O3 and template assisted Y2O3 coatings were 

15.0 nm, 15.5 nm and 19.5 nm, respectively. 
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Figure 1. X-ray diffraction plots of: (a) sputter deposited Y
2
O

3 
coating, (b) thermally 

oxidized Y-Y
2
O

3
coating, and (c) template assisted Y

2
O

3 
coating.  

 

3.1.2. Micro-Raman Spectroscopy 

The chemical structure of the coating was studied by micro-Raman spectroscopy (Figure 2). 

Yttrium sesquioxide crystallizes in the cubic system and is a body centered cubic with space group  

Ia3 (Z = 16). The structure is related to the structure of fluorite, with each yttrium ion located at the 

center of the cube from which two of the eight neighboring oxygens of the fluoride have been 

removed. As the structure is body centered, the unit cell contains the primitive cell twice. The latter 

cells, containing eight formula units, were used for the theoretical numbering of vibration. The 

irreducible representations for optical and acoustical modes are [40,41]:  

Гop = 4 Ag + 4 Eg+ 14 Fg+ 5 A2u + 5 Eu+ 16 Fu 

Гac = Fu, 

where Ag, Eg and Fg are Raman active, Fu is infrared (IR) active and A2u and Eu are inactive. Twenty 

two Raman lines of Ag, Eg and Fg modes and sixteen Fu IR bonds are then predicted. Figure 2(a–c) 

shows the Raman spectra of Samples 1–3. The frequencies of various Raman bands were determined 

using deconvolution of the Raman data by Gaussian fit as shown in Figure 2. The assignment of the 

Raman spectrum of cubic Y2O3 for Samples 1–3 is given in Table 1. The Raman spectrum of Sample 1 

(Figure 2(a)) showed six peaks at 151.9, 187.3, 328.9, 399.7, 470.6 and 559.1 cm−1 [40,41]. The peaks 

observed at 187.3, 328.9 and 559.1 cm−1 are attributed to the Fg+ Eg mode of Y2O3 [40,41]. The peak 

centered at 399.7 cm−1 corresponds to Fg and at 151.9, 470.6 cm−1 correspond to Fg + Ag modes of 

Y2O3 [40,41]. For Sample 2, the Raman peaks observed at 134.2 and 399.7 cm−1 are attributed to Fg, 

187.3, 328.9 and 559.0 cm−1 are attributed to Fg + Eg, and 470.6 cm−1 is attributed to Fg + Ag modes of 

cubic Y2O3 (Figure 2(b)) [40,41]. The Raman spectrum of template assisted Y2O3 coating (Sample 3) 

is shown in Figure 2(c). In addition to the above modes we observed a few additional peaks at 115.6, 

440.0 and 559.8 cm−1. The peaks centered at 115.6 and 396.9 cm−1 are attributed to Fg + Ag and Fg 

modes of Y2O3, respectively. The peaks observed at 440.0 and 559.8 cm−1 correspond to Fg+ Eg mode 

of Y2O3 [40,41]. For Sample 3 an additional peak is observed at 259.0 cm−1, which corresponds to 

CdO. This peak is from the Cd-CdO template. 



Nanomaterials 2012, 2            

 

 

70

Figure 2. Deconvoluted Raman spectra of: (a) sputter deposited Y2O3 coating, (b) 

thermally oxidized Y-Y2O3 coating, and (c) template assisted Y2O3 coating. 

 

Table 1. The assignment of Raman spectra of for reactively sputtered Y2O3, thermally 

oxidized Y-Y2O3 and template assisted Y2O3 coatings. 

Sample 1 Sample 2 Sample 3 
Peak position (cm−1) Symmetry Peak position (cm−1) Symmetry Peak position (cm−1) Symmetry

151.9 Fg+ Ag 134.2 Fg 115.6 Fg 
187.3 Fg+ Eg 187.3 Fg+ Eg 151.7 Fg+ Ag 
328.9 Fg+ Eg 328.9 Fg+ Eg 330.9 Fg+ Eg 
399.7 Fg 399.7 Fg 396.9 Fg 
470.6 Fg+ Ag 470.5 Fg+ Ag 440.0 Fg+ Eg 
559.1 Fg+ Eg 559.0 Fg+ Eg 559.8 Fg+ Eg 

3.1.3. Wettability of Y2O3 Coatings  

Sputter deposited Y2O3, thermally oxidized Y-Y2O3 and template assisted Y2O3 coatings show 

different surface morphologies. The surface morphologies of Samples 1–3 were examined by FESEM 

and are shown in Figure 3(a–f) at two different magnifications. The water contact angles for  

Samples 1, 2 and 3 were 99°, 117° and 155°, respectively as shown in the insets in Figure 3(a–c). The 

dynamic contact angle measurements for Sample 3 showed an advancing water contact angle of 154° 

and a receding water contact angle of 144° with a contact angle hysteresis of 8° (data not shown). The 

relatively low contact angle of the sputter deposited Y2O3 and thermally oxidized Y-Y2O3 coatings 

compared to the template assisted Y2O3 coating is attributed to a densely packed nano-grain like 

microstructure without any void space (shown in Figure 3(a,b) and Figure 3(d,e) at lower and higher 

magnifications, respectively). The sputter deposited and thermally oxidized Y2O3 coatings show 

hydrophobicity with an ultralow surface roughness (discussed later). It is well known that, improving 

the surface roughness is a crucial factor for the fabrication of a superhydrophobic surface [42]. To 

improve the surface roughness a new process was applied. The Cd-CdO template was prepared with a 

high average surface roughness (Ra = approximately 178 nm, data not presented) and shows 

superhydrophobic nature (water contact angle > 150°). A thin film of Y2O3 is deposited on the Cd-CdO 

template which enhanced the surface roughness, resulting in the superhydrophobicity. The surface 

morphology of the template assisted Y2O3 coating is shown in Figure 3(c,f) at low and high 

magnifications, respectively.  
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Figure 3. Field emission scanning electron microscopy images of: (a) sputter deposited 

Y2O3 coating, (b) thermally oxidized Y-Y2O3 coating, and (c) template assisted Y2O3 

coating at low magnification with the corresponding optical photographs of water droplet 

contact angle shown in the inset. High magnification images are shown in (d–f), 

respectively. 

 

In order to further confirm the microstructure of these samples the FESEM data was also recorded 

at higher magnification, which showed a nanograin-like microstructure for sputtered deposited Y2O3 

(Figure 3(d)), thermally oxidized Y-Y2O3 (Figure 3(e)) and non-uniform nanostructures for the 

template assisted Y2O3 coating (Figure 3(f)). The low resolution image (Figure 3(c)) shows the 

presence of solid components (i.e., whitish regions) and air pockets (i.e., darker regions). This 

combination of air gaps and solid regions behaves as the first or higher scale roughness of the coating 

as shown in the roughness profile presented later. Even though the air pockets are in sub-micron range, 

the roughness (that is, average height of hills and valleys) was in the nanometric scale. The high 

magnification (Figure 3(f)) showed the solid surface to consist of fused individual structures which 

generated a textured or a patterned surface. The textured surface acts as the second or lower scale 

roughness (believed to be a few tens of nanometers). This texturing gives rise to a multi-scale 

roughness in the Y2O3 coating deposited on the Cd-CdO template, which was responsible for the 

observed superhydrophobicity. According to the Cassie-Baxter model, the surface fraction of the solid 

(f1) and air pockets (f2) impacts the water contact angle for a composite surface which can be 

calculated by Equation 3. The air fractions for Samples 2 and 3 were 0.32 and 0.91, respectively 

(assuming Sample 1 with an average roughness 3 nm as a smooth surface and contact angle for Sample 

1 = 99°). The surface roughness of as-deposited Y2O3 coatings was measured by AFM. Figure 4(a–c) 

shows the AFM images of sputter deposited Y2O3, thermally oxidized Y-Y2O3 coating and template 

assisted Y2O3 coating and the corresponding 2D roughness profiles are shown in Figure 5(a–c). The 

values of average surface roughness of sputter deposited Y2O3, thermally oxidized Y2O3 and template 

assisted Y2O3 coatings are: 3, 11 and 180 nm, respectively. The AFM data confirms the presence of 

nanoscale surface roughness. The presence of air-pockets in Sample 3 was confirmed by FESEM as 

shown in Figure 3(c), which contributes to the higher scale of roughness. The variation of the water 
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contact angle with the template assisted Y2O3 coating thickness is shown in Figure 6. It is clearly seen 

that irrespective of the change in the thickness of the coating, the contact angle always remains greater 

than 150°. To cross check this observation, the surface roughness of the coatings was measured by 

AFM. The AFM images of the template assisted Y2O3 coating for different thicknesses are shown in 

Figure 7(a–c). The average surface roughness values for 30, 60 and 80 nm thickness of template 

assisted Y2O3 coatings are approximately 180, 185 and 188 nm, respectively. The Y2O3 coating 

follows the template/substrate morphology. It can be concluded that for coatings with different 

thicknesses of Y2O3, the change in the average surface roughness was negligible, which is responsible 

for superhydrophobicity for all thicknesses.  

Figure 4. 3D atomic force microscopy (AFM) images of: (a) sputter deposited Y2O3 

coating, (b) thermally oxidized Y-Y2O3 coating, and (c) template assisted Y2O3 coating. 

 

Figure 5. Surface roughness profiles of: (a) sputter deposited Y2O3 coating, (b) thermally 

oxidized Y-Y2O3 coating, and (c) template assisted Y2O3 coating. 
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Figure 6. Variation of contact angle of Cd-CdO template assisted Y2O3 coating with 

thickness of Y2O3 layer. 

 

Figure 7. AFM images of template assisted Y2O3 coating at different thicknesses of Y2O3 

layer: (a) 30 nm, (b) 60 nm, and (c) 80 nm. 

 

The contact angle and work of adhesion of the polar liquids for Samples 1–3 are shown in  

Figure 8(a,b), respectively as per the procedure described elsewhere [43]. Ideally the static CAs of the 

sample should be found experimentally using a series of probe liquids, with a balanced composition of 

polar and non-polar components. A suggested series of probe liquids that are easily available and cover 

the whole range of surface tension values are, polar protic–water, glycerol, formamide and aniline, and 

non-polar aprotic–diiodomethane, dodecane, hexadecane, ethylene glycol and benzene. In the present 

work we chose only three liquids for the initial estimate of the free surface energy of the samples. The 

dispersive and polar components of glycerol, formamide and water are reported in Reference 44. The 

static contact angles for Samples 1–3 for different probe liquids are presented in Table 2. Compared to 

non-polar liquids, the polar liquids interact differently with Y2O3 coatings because they exhibit a large 

dipole moment and have a strong tendency for hydrogen bonding. The contact angle of liquids (water, 

formamide and glycerol) for Samples 1–3 increased in the following order: θformamide < θglycerol < θwater. 

The free energies of the liquid-solid, solid-vapor and liquid-vapor interfaces are dependent on the work 

of adhesion at the solid-liquid interface. The work of adhesion for Samples 1–3 is calculated, without 

taking into account the polar/apolar interactions by the Young-Dupre Equation [45]: 

).cos1( θγ += LSLW  (4)  
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The work of adhesion of water for Samples 1–3 were 54, 43 and 7 mJ/m2, respectively. It can be 

clearly seen that the work of adhesion for Sample 3 was very low compared to Samples 1 and 2. This 

is because the template assisted Y2O3 coating demonstrated a composite surface (Cassie Baxter state), 

which contains a void space filled with air combined with nonuniform nanostructures (shown in  

Figure 3(c)). This composite interface decreases the solid-liquid contact area and therefore decreases 

the work of adhesion. These results show that the presence of a micron scale void space combined with 

non-uniform nanostructures like morphology is responsible for superhydrophobicity in Sample 3. 

Figure 8. Variations of: (a) contact angle and (b) work of adhesion of the polar liquids for 

Samples 1–3. 

 

Table 2. Static contact angles of the probe liquids for reactively sputtered Y2O3, thermally 

oxidized Y-Y2O3 and Cd-CdO template assisted Y2O3 coatings. 

Sample 
Static contact angle (degree)

Water Glycerol Formamide 

Sample 1 99 98 85

Sample 2 117 101 95

Sample 3 155 145 139

4. Conclusions 

The water contact angles were 99°, 117° and 155° respectively for reactively sputtered Y2O3, 

thermally oxidized Y-Y2O3 and the Cd-CdO template assisted Y2O3 coating. Superhydrophobicity was 

demonstrated by the template assisted Y2O3 coating and it was attributed to an optimum combination 

of non-uniform nanostructures and a void space which gives rise to a high surface roughness. The 

work of adhesion was calculated for different probe liquids (water, glycerol and formamide). The work 

of adhesion for all three liquids was very low for the Cd-CdO template assisted Y2O3 coating when 

compared to the reactively sputtered Y2O3 coating and the thermally oxidized Y-Y2O3 coating. The 

superhydrophobic properties of the the Cd-CdO template assisted Y2O3 coating are attributed to a  

non-uniform nanostructure like morphology combined with a micron scale void space filled with air. 

The water droplet on such a coating is in contact with a comparatively higher fraction of air gaps, than 

the rough surface which results in a higher contact angle. The surface roughness of reactively sputtered 

Y2O3 (3 nm), thermally oxidized Y-Y2O3 (11 nm) and the Cd-CdO template assisted Y2O3 coating  
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(180 nm) was determined by AFM. The reactively sputtered Y2O3 and thermally oxidized Y-Y2O3 

coatings demonstrate hydrophobicity with a very low surface roughness. The surface roughness of the 

Y2O3 coating was improved by using a Cd-CdO template, which resulted in superhydrophobicity.  
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