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Abstract 

The spontaneous capillary-driven filling of microchannels is important for a wide range of 

applications. These channels are often rectangular in cross-section, can be closed or open, and 

horizontal or vertically orientated. In this work, we develop the theory for capillary imbibition and 

rise in channels of rectangular cross-section, taking into account rigidified and non-rigidified 

boundary conditions for the liquid-air interfaces and the effects of surface topography assuming 

Wenzel or Cassie-Baxter states. We provide simple interpolation formulae for the viscous friction 

associated with flow through rectangular cross-section channels as a function of aspect ratio. We 

derive a dimensionless cross-over time, Tc, below which the exact numerical solution can be 

approximated by the Bousanquet solution and above which by the visco-gravitational solution. For 

capillary rise heights significantly below the equilibrium height, this cross-over time is Tc 

(3Xe/2)2/3 and has an associated dimensionless crossover rise height Xc (3Xe/2)1/3, where Xe=1/G is 

the dimensionless equilibrium rise height and G is a dimensionless form of the acceleration due to 

gravity. We also show from wetting considerations that for rectangular channels, fingers of a 

wetting liquid can be expected to imbibe in advance of the main meniscus along the corners of the 

channel walls. We test the theory via capillary rise experiments using polydimethylsiloxane oils of 

viscosity 96.0, 48.0, 19.2 and 4.8 mPa s within a range of closed square tubes and open rectangular 

cross-section channels with SU-8 walls. We show that the capillary rise heights can be fitted using 

the exact numerical solution and that these are similar to fits using the analytical visco-gravitational 

solution. The viscous friction contribution was found to be slightly higher than predicted by theory 

assuming a non-rigidified liquid-air boundary, but far below that for a rigidified boundary, which 

was recently reported for imbibition into horizontally mounted open microchannels. In these 

experiments we also observed fingers of liquid spreading along the internal edges of the channels in 

advance of the main body of liquid consistent with wetting expectations. We briefly discuss the 

implications of these observations for the design of microfluidic systems. 

 

Keywords: Lucas-Washburn, capillary rise, microfluidic channel. 
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1. Introduction 

The capillary-driven imbibition of liquids into tubes, channels and porous media is 

fundamental to a diverse range of applications, such as printing (Schoelkopf J et al., 2002), lab-on-

chip (Brody et al., 1996; Squires and Quake, 2005), porous media (e.g. Marmur and Cohen, 1997; 

Siebold, 2000) and soil water repellency (Shirtcliffe et al, 2006). The fundamental principles 

governing these types of problems are based on balancing the inertial forces, viscous forces, 

hydrostatic pressure and the capillary forces. Effective use and control of capillary imbibition 

requires an understanding of the different layers of subtlety that a problem may provide. Thus, 

there are different time regimes from the very early stage inertia dominated stage, described by 

Quéré (1997), to the late stage viscous regime of Lucas (1918) and Washburn (1921); the transition 

between these regimes for capillary rise is discussed by Fries and Dreyer (2008a). For horizontally 

mounted channels where gravity can be neglected and these regimes are described by the exact 

analytical Bousanquet solution (Bousanquet, 1923), whose form is valid whether the channel is 

closed or open (e.g. Bouaidet et al., 2005; Jokinen and Franssila, 2008); the Lucas-Washburn 

solution is the long time limit of the Bousanquet solution. We define a closed-channel as one 

whereby all walls are solid and an open-channel as one with a liquid-air interface as the effective 

wall. Due to its importance in microfluidics, capillary imbibition has previously been considered 

for a wide range of cross-sectional shape channels, such as circular (e.g. Strage et al., 2003), 

rectangular (e.g. Ichikawa et al., 2004; Jong et al., 2007; Zhu and Petkovic-Duran, 2010) and 

grooved/triangular (Yost and Holm, 1995; Romero and Yost, 2006; Baret et al., 2007). Moreover, 

the same approach has been taken for channels defined by hydrophilic paths on a hydrophobic 

substrate (Darhuber et al., 2001) and by the space between two parallel plates (Rosendahl et al., 

2004) under the assumption of flow with low Reynolds number and liquid imbibing in a tube/slab-

like manner. When channels are mounted vertically gravity becomes important and exact analytical 

solutions for capillary imbibition are no longer possible in general. However, a visco-gravitational 

solution for time as a function of meniscus position does exist for the equivalent of the Lucas-

Washburn regime (e.g. Krotov and Rusanov, 1999; Hamraoui et al. 2000, Hamraoui and Nylander, 

2002), including for liquid-liquid systems (Mumley et al, 1986).  In these problems, the role of the 

shape and wetting state of the walls are critical.  

 

Advances in lithographic fabrication techniques are increasing the range of studies in which 

capillary aspects of imbibition and rise are critical. These advances are leading to studies with 

microfluidic (e.g. Yang et al, 2011) and nanofluidic capillaries widths of a few tens of nm (Han et 

al., 2006) or with depths as small as 6 nm (Oh et al, 2009). Whilst non-constant channel cross 

sections have been a focus of study experimentally and theoretically (Legait, 1983; Staples and 

Shaffer, 2002, Reysatt et al, 2008; Liou et al, 2009), increased solid-liquid contact area, and hence 

increased capillary pull can be achieved using a range of in-channel structures. In a series of 

studies, Bico and co-workers studied imbibition using hemi-wicking, which amplifies the capillary 

pull using wall roughness (Bico 2000, Bico et al., 2002; Bico and Quéré, 2003; Ishino et al, 2007); 

ideas recently applied to rough Cu6Sn5/Cu intermetallic surfaces (Liu et al, 2011). Their work used 
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average parameters to characterize the capillary effect of roughness and topographic structures. 

This has been complemented by modelling studies by Kusumaatmaja et al. (2008) and Mognetti 

and Yeomans (2009) focused on feature shape and channel filling patterns, finite element 

modelling and experiments incorporating both capillary and viscous effects of flow through 

micropost (Srivastava et al., 2010; Byon and Kim 2011), and experimental studies using, e.g. stars, 

octagons and squares (Chen et al., 2009).  

 

In hemi-wicking, the simplest viewpoint remains a capillary-driven penetration with a 

leading edge meniscus advancing in a tube/slab-like manner. However, the actual solid-liquid-

vapor interface at the leading meniscus can be far more complicated as is known for capillary rise 

in square cross-section tubes, where the rise of a central meniscus is preceded by liquid fingers 

rising up the four internal edges. This reduces the equilibrium meniscus height by a factor of (2+ 

1/2)/4 (Dong and Chatzis, 1995; Bico and Quéré, 2002). These effects are due to the wetting 

effects in corners and edges (Concus and Finn, 1969; Ransohoff and Radke, 1988           
Weislogel, 2009, Girardo et al., 2009, 2012; Weislogel at al., 2011). Most recently, Ponomarenko 

et al. (2011) have studied the capillary rise of wetting liquids in the corners of different geometries 

and shown that in the viscous dominated regime the meniscus of these fingers rises without limit 

following a universal time1/3 law, in contrast to the Lucas-Washburn time1/2 law which eventually 

saturates at an equilibrium height. These geometry induced wetting effects can be expected to 

impact both on capillary rise and imbibition in microfluidic channels with non-circular cross-

sections. There is therefore a need to study capillary-driven imbibition and rise within rectangular 

cross-section channels and with open and closed boundaries. 

 

 In this paper, we first provide in section 2.1 an overview of the theoretical basis of capillary 

driven rise and imbibition. We do so in a form that brings out the coherence of the equations and 

their solutions for different channel shapes in different orientations. We develop simple 

interpolation formulae for the viscous friction associated with open and closed rectangular channels 

of different aspect ratio. We show how within this formulation different contact angles on the 

various channel walls can be incorporated using surface free energy changes, including 

considerations of surface roughness or topography as required for hemi-wicking. Subsequently, in 

section 2.2 we compare the exact numerical solution for capillary-driven imbibition to the various 

analytical solutions of the approximate equations with and without gravity. We obtain a condition 

for the cross-over time and rise height below which the Bousanquet solution is the best 

approximation and above which the visco-gravitational solution is a more accurate description. In 

section 2.3, we discuss the sensitivity of imbibition for open rectangular channels to the value of 

contact angle and the limitations of this approach when corner filling along edges between walls 

due to wetting is taken into account.  

 

In sections 3 and 4 we present experiments on the capillary rise of polydimethylsiloxane 

(PDMS) oils in closed square tubes of glass and in open rectangular channels of SU-8. We observe 

that capillary rise in rectangular channels using PDMS oils involves a rising central meniscus, but 

with thin fingers spreading in advance of this main rise along the inside corner edges qualitatively 
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consistent with the type of behaviour described in Ponomarenko et al. (2011). The extent of 

advance of the fingers is sufficient to completely exit our channels.  We find that fits to the 

numerical solution of the exact differential equation describing capillary rise, neglecting the 

fingers, up to the point where the fingers reach the ends of the channels can describe the rise of the 

central meniscus of the liquid in both of these cases. We also find that the friction in the open-

channel case is consistent with a non-rigidified liquid-air interface rather than for a rigidified 

boundary as recently reported for imbibition into horizontally mounted open microchannels (Yang 

et al., 2011).  

2. Theoretical approach 

2.1 Model formulation 

In this section we review the standard analytical approach to describing capillary driven imbibition 

to provide a common notation and clarity on the assumptions used, particularly with regards the 

wetting of the surfaces. Our aim is to consider the structure of the equations for uniform cross-

section open and closed channels, but independent of precise geometry. 

  

2.1.1 Momentum and gravity terms 

 We consider a tube (or “sl b”) of liquid of density , constant cross-sectional area Ac and 

length x(t) advancing along a channel displacing a gas phase. The rate of change of momentum is 

then, 
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2
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dt

dx
A

dt

xd
xA

dt

dx
x

dt

d
A ccc   (1) 

 

where t is time. The force driving the imbibition (or rise) is the capillary one and those resisting the 

imbibition are gravity and viscous forces. For a vertically mounted channel the gravitational force 

is, 

xAgf cgrav  sin  (2) 

 

where g=9.81 m s-2 is the acceleration due to gravity and  is the angle of orientation of the channel 

to the horizontal. 

 

 

2.1.2 Capillary terms 

The capillary terms arise from the interchange or creation of solid-vapor, solid-liquid and 

liquid-vapor interfaces as the front of the tube of liquid advances. In this simplified model the 

profile of the solid-liquid-vapor interface is assumed to remain the same as a small advance 

forward, x, occurs.  The surface free energy change F as the liquid advances is then caused by 

changes in the various interfacial areas (Fig. 1), 
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where the  iSL and  i
SV are the interfacial energies per unit area relating to the ith solid wall element, 

 
LV is the surface tension of the liquid, Li

SVSL is the perimeter length of the ith
 solid wall element on 

which contact with vapour is replaced by contact with the liquid, and Li
LV

 is the perimeter length of 

any liquid-vapor interface created. Si ce the You g’s l w co t ct   gle is cosie=( i
SV- i

SL)/ i
LV 

and the capillary force, fcap, is  (-F/x) in the limit of x0, we obtain, 

 

 







  

i

oLV
i

i
e

i

SLSV
iLVcap LLf 180coscos  (4) 

 

where cos(180o)= -1 has been used to show the similarity in the terms when the interface between a 

liquid and vapour is regarded as a perfectly hydrophobic surface.  

 

 
Figure 1. Surface free energy changes as a tube/slab of liquid penetrates into a 

channel resulting in new solid-liquid and liquid-vapor interfaces. 

 

Figure 2 shows three specific channel geometries: a) circular cross-section tube of radius R, 

b) closed and c) open rectangular channel of width W and depth H. In each case, it is assumed that 

the solid surfaces can have different surface chemistries (i.e. contact angles). In the simplest case of 

a tube, only the first term contributes and the perimeter length is 2R so that eq. (4) becomes, 

 

eLV
tube

cap Rf  cos2  (5) 

  

In the case of the closed and open rectangular channels, eq. (4) becomes, 

 

  R
e

L
e

T
e

B
eLV

rect
cap Wf  coscoscoscos   (6) 

 

where =H/W and (B, T, L, R) label the contact angles for the bottom, top and left and right hand 

side surfaces; for the open channel e=180o is used in eq. (6). 
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Figure 2. Solid-liquid and liquid-vapor interfaces associated with, a) circular cross-section tube, b) closed 

rectangular channel, and c) open rectangular channel. 

 

Other shaped channels, such as a tube of elliptical cross-section and V-shaped grooves or 

triangular channels, can be assessed in the same manner from eq. (4). For example, an open or 

closed V-shaped channel of width W and depth H gives, 

 

 



  R

e
L
e

T
eLV

groove
cap Wf  coscos41

2

1
cos 2  (7) 

 

where Te=180o gives the open groove result. For the case of flow between two parallel plates with 

open sides along a path defined by a hydrophilic stripe on the plates, eq. (6) with Le=180o and 

Re=180o can be used.  

 

2.1.3 Capillary terms and surface roughness 

 A slightly more complex situation is when one or more of the surfaces are rough or 

topographically structured at the small scale. In the Wenzel case the liquid fully penetrates into the 

surface features whereas in the Cassie-Baxter state the liquid bridges between surface features 

(Quéré, 2008; Shirtcliffe et al., 2010). When the contact angle is well below 90o, surface roughness 

can drive enhanced spreading (e.g. McHale et al., 2004). Using the surface free energy argument, 

eq. (4) becomes, 
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SLSV
iLVcap LLf 180coscos  (8) 

 

where the You g’s l w  co t ct   gle, ie, is replaced by the Wenzel or Cassie-Baxter contact 

angle, iT with iT=iW or iT=iCB, and Li
SVSL is the planar projection of the perimeter length of 

the ith
 solid wall element across which the liquid advances. The Wenzel and Cassie-Baxter contact 

angles are defined by, 

 

esW r  coscos   (9) 

and 

 

 sesCB   1coscos  (10) 

 

where rs is the roughness at the contact line and  s is the solid surface fraction. More generally, a 

mixed partially penetrating state may exist and iT then takes on the appropriate value taking into 

account both surface roughness and solid surface fraction (Shirtcliffe at al., 2010). Thus, eq. (5)-(7) 

attempt to take into account the effect of roughness or topography on the capillary drive for 

imbibition simply by the replacement of the contact angle by the appropriate Wenzel, Cassie-Baxter 

or mixed state one involving both the surface chemistry and surface structure. This approach based 

on minimizing surface free energy changes does not take into account contact line pinning and 

hysteresis. 

 

2.1.4 Viscous terms and interpolation formulae 

The viscous force for flow down a tube or a channel can be deduced from the flow velocity 

profile assuming incompressible, Newtonian liquid with a laminar flow, and solving the continuity 

and Navier-Stokes equations. For the closed rectangular channel geometry Brody et al. (1996) give 

the general approach and solution for the flow (see also Ichikawa et al., 2004). The non-zero 

component of the equations relates the flow velocity, u(y,z), in the x-direction to the pressure 

gradient, 
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2

2

2

2

 (11) 

 

where  is the viscosity and p(x) is the pressure profile which only depends upon x. This equation 

can be solved for a channel of arbitrary aspect ratio =H/W using a Fourier series approach to obtain 

a general solution for u(y,z) to which non-slip boundary conditions can then be applied for the upper 

and lower channel surfaces. To work out the viscous force we first evaluate the depth and width 

averaged value of the flow velocity of the closed channel, uc
ave, 
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This allows us to write the pressure gradient in terms of the average flow velocity so that the flow 

profile is, 
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The viscous force on the top, bottom and two walls of the rectangular channel is then, 
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which gives, 
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c
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visc
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f

12
  (16) 

 

This form makes obvious the relationship between flow in a closed rectangular channel of arbitrary 

aspect ratio and the one-dimensional result because in the limit of a shallow and infinitely wide 

channel, i.e. W, the aspect ratio function c()1. 

 

Repeating the previous approach for an open channel gives, 

 

 
  

 


























0
44

2

1
12

12tanh

12

18

l

o
ave

l

l

l

GW
u





 (17) 

 

 

which allows the pressure gradient to be written in terms of the average flow velocity so that the 

flow profile is, 
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where   12  l
o
l  and we have defined an aspect ratio function, o(), as 
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The viscous force on the bottom (but not top) and two walls of the rectangular channel is then, 
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which gives, 

 

 


o

o
aveo

visc

xu
f

3
  (21) 

 

In a similar manner to the closed rectangular channel result, eq. (16), this form makes obvious the 

relationship between flow in an open rectangular channel of arbitrary aspect ratio and the one-

dimensional result because in the limit of a shallow and infinitely wide channel, i.e. W, the 

aspect ratio function o()1. It should be noted that alternative, but equivalent Fourier series 

solutions for the flow in an open rectangular exist, such as that in Baret et al. (2007) and Yang et al. 

(2011). 

 

 Whilst eq. (14) and eq. (19) are exact, it is useful for fitting to experimental data to have 

simple interpolation formulae.  For channels with aspect ratios in the range =0.0 to 2.0, we find 

suitable interpolations with limits of unity as  0 are given by, 

 

  21 020980.1362374.01  
c  (22) 

and 

  21 169711.4671004.01  
o  (23) 

 

Figure 3 shows the exact summations given by eq. (14) and eq. (19) and the interpolations from eq. 

(22) and eq. (23). Below aspect ratios of 0.60, the agreement is good to around 3% or better and 

above this aspect ratio up to =2.0 is better than 1% (as shown in the inset of fig 3). A similar 

approach could also be adopted for flow in other shapes of channels, such as triangular grooves 

(Ayyaswamy et al, 1974). 
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Figure 3. Geometric factors in the viscous force for flow in open and closed 

rectangular channels with aspect ratio =H/W between 0 and 2.0. The symbols are 

the exact results and the solid lines are the interpolation formulae. The inset shows 

the corresponding % error between the two. 

 

For completeness, we note the standard expression for viscous force for flow in a circular 

cross-section tube, 

 

tube
ave

tube
visc xuf 8  (24) 

 

2.1.5 Defining equation and its assumptions 

The equation describing capillary-driven imbibition is given by combining eqs. (1), (2) and 

(8) with eqs. (16), (21) or (24) as appropriate for the channel or tube and assuming uave=dx/dt can be 

used, 
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In this equation, the viscous coefficient a has dimensions of inverse time (s-1) and is defined for the 

tube, closed rectangular channel and open rectangular channel as, 
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and the capillary coefficient term b  has dimensions of speed2 ( m2s-2) and is defined in these three 

cases as, 
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 (27) 

For closed channels with smooth surfaces and the same contact angle on all surfaces e, 

  Hb eLV   1cos2 . For open rectangular channels, the free surface vapor boundary acts as a 

perfect hydrophobic surface (i.e e
T=180o), and if all other contact angles are the same, 

   Hb eLV  121cos  . The capillary coefficient b (eq. (27)) can thus be written for the three 

cases as:  
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R
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eLV
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eLV






121cos

1cos2
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  (28) 

 

Equation (25) is well-known in the theory of capillary driven imbibition, but is written here 

in a form that emphasizes the similarities between circular cross-section tubes, closed and open 

rectangular channels of arbitrary aspect ratio. Moreover, it allows the key assumptions to be easily 

identified and their influence on the structure of eq. (25) to be assessed. For example, using the open 

form for viscous dissipation in an open rectangular channel assumes that momentum can be 

transferred across the liquid-vapor interface as liquid flows up the tube of liquid to extend itself. 

However, as indicated by Yang et al. (2011) in their study on the capillary flow in horizontally 

oriented shallow open rectangular channels (H=19 m and W=15, 25, 50 and 75 m) a rigidified 

liquid-vapor interface can occur due to contaminants or surfactants on the liquid-vapor interface. 

Their fitting therefore used the viscous parameter a from eq. (26) for a closed rectangular channel 

with the capillary b parameter from eq. (27) for an open rectangular channel.  

 

The assumptions in the approach in sections 2.1.2 and 2.1.3 taken to derive the capillary 

terms is that they include a quasi-equilibrium advancing state and this leads to the You g’s l w 
equilibrium contact angle, e. Many authors have questioned this and replaced the contact angle by 

either the advancing contact angle or the velocity dependent dynamic contact angle Hoff   ’s 
formula (Siebold et al., 2000; Chebbi, 2007) or molecular-kinetic theory (Hamraoui et al, 2000; 

Hamraoui and Nylander, 2002; Blake and de Coninck, 2004) or have considered a range of possible 

dynamic contact angle relationships (e.g. Popescu et al., 2008). It is also possible that a quasi-

equilibrium meniscus shape may be achieved, but only after an initial capillary penetration. Even 

after the initial penetration, a further assumption is that the profile of the liquid meniscus advances 

in a tube/slab-like manner without change and this we examine further in section 2.3 using wetting 

concepts commonly used for corner filling problems. Possibly one of the most limiting aspects in 

complex shape channels is that a given wetting state, such as a Cassie-Baxter, Wenzel or mixed 
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state arising from minimum surface free energy change considerations, is not known a priori. 

Moreover, the extent of hysteresis and asymmetric imbibition properties can be linked to complex 

topographies (e.g. Kusumaatmaja et al., 2008). Thus for capillary filling in channels of complex 

shapes alternatives to a purely analytical (with numerical solution) approach that have been 

considered include the Lattice Boltzmann approach (e.g. Kusumaatmaja et al., 2008; Clime et  al., 

2012), numerical simulation using diffuse interface models  (e.g. Mehrabian et al., 2011), smoothed  

particle hydrodynamics (e.g. Tartakovsky & Meaking, 2005) and molecular-dynamics (e.g. Ahadian 

et al., 2009; Stukan et al., 2010). 

 

2.2 Exact and approximate solutions 

Equation (25) predicts that experiments on capillary-driven imbibition/rise into channels of 

different cross-sectional shapes and with open and closed surfaces will show the same type of 

behaviour, but each will have its own length and timescales determined by the appropriate form of 

the two parameters a and b. Whilst it cannot be solved exactly, approximate solutions can be 

obtained for the different characteristic length and time scales. Fries and Dreyer (2009) discuss a 

systematic approach to obtaining dimensionless scaling for the case of a cylindrical tube and porous 

media using the Buckingham  theorem. 

 

2.2.1 Bousanquet solution for a horizontal capillary 

To obtain a dimensionless form of eq. (25) we scale the position and time coordinates as 

T=at and X=ax/(2b)1/2, 
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where we have defined a dimensionless constant G=g(2/b)1/2/a. Using eq. (26) and eq. (28) the tube, 

closed and open channel cases are, 
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The dimensionless form given in eq. (29) corresponds to the Fries and Dreyer (2009) case 3 where 

the basic parameter is gravity and the scaling parameters are inertia and viscosity. Our definitions of 
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X and T are not identical to their scaled variables in the case of a tube, but our controlling parameter 

G is simply related to their  by G=21/2/.  When Gsin0 so that the capillary is horizontally 

oriented, the solution to eq. (29) is the Bousanquet solution (1923), 

 

    TTTX  exp12  (31) 

 

At long timescales when T>>1 (i.e. t>>1/a), eq. (31) gives X(T)T
1/2 or x(t)=(2b/a)1/2

t
1/2, which is 

the Lucas-Washburn solution when the viscous term dominates; effectively the first term in eq. (29) 

can be ignored. At short timescales when T<<1 (i.e. t<<1/a), eq. (31) gives X(T)T/2 or x(t)=b
1/2

t, 

which is the inertial solution of Quéré (1997) with a linear imbibition with time; effectively the last 

term in eq. (29) can be ignored.  

 

 In fitting experimental data for imbibition into horizontal channels, the full Bousanquet 

solution (eq. (31)) can be used provided data is captured across both the long and short timescales as 

determined by 1/a. If data for only short or only long timescales is captured then either the Quéré 

(Inertial) or Lucas-Washburn (Viscous) solutions should be used. 

 

2.2.2 Viscous solution for a vertical capillary 

When T>>1 and the inertial term can be ignored, but gravity cannot be neglected, eq. (29) 

becomes, 
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As shown by Washburn (1921), and discussed by Fries and Deyer (2008b) (see also Mumley et al., 

1986 and Krotov and Rusanov, 1999), this has an analytical solution, but for time as function of 

position rather than for position as a function of time. By rearranging eq. (32) to, 
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an exact integration can be performed to get the visco-gravitational solution,  
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  (34) 

 

where X=0 at T=0 has been assumed. When GsinX0, the log(1-GsinX) can be expanded and 

this gives TX
2, which is the Lucas-Washburn solution. As GsinX1, the logarithm diverges so 

that T and so at equilibrium the capillary rise height is Xe=1/(Gsin), i.e. xe=b/(gsin). Fries and 

Dreyer (2008b) discuss the problems of inverting eq. (34) and also provide an analytic solution in 
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terms of the Lambert W(x) function defined by w=W(w)exp(W(x)). Eq. (34) can be rewritten in terms 

of x and t as 
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In fitting experimental data for imbibition into vertical channels (=90o) the viscous-

gravitational solution (eq. (34) or eq. (35)) can be used provided data is captured including both the 

early Lucas-Washburn stage TX
2 and the approach to equilibrium as determined by xb/g. The 

fact eq. (35) is an analytical solution with time as a function of position, which cannot be easily 

inverted, does not prevent fitting of experimental data since time can be fitted as a function of 

measured position as easily as position as a function of measured time. 

 

2.2.3 Inertial solution for a vertical capillary 

When T>>1 and the viscous term can be ignored, but gravity cannot be neglected, eq. (29) 

becomes, 
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There is no obvious closed form solution to eq. (36), but a perturbation solution can be constructed 

for X as a power series in Gsin  (Quéré, 1997). When Gsin=0 the zeroth order solution is 

Xo
2(T)=T

2/2. We then write X(T)Xo+ GsinX1 and substitute into eq. (36) and keep first order terms 

in Gsin, 
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This has a solution X1(T)=-T2/12, which gives a gravity modified inertial solution of, 
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or in non-scaled quantities, 
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Equation (38) can also be inverted to give, 
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2.2.4 Cross-over between Bousanquet and visco-gravitational solutions 

Equation (29) can be solved numerically for any value of Gsin using the inertial 

approximation for the initial boundary conditions X(0)=0 and (dX
2/dT)T=0=0. Figure 4 shows the 

behavior of X(T) as a fraction of the equilibrium height, Xe, for G=0.1 and =90o together with the, 

Bousanquet, Lucas-Washburn and inertial approximations. Perhaps surprisingly even at capillary 

rise heights up to 20% of the equilibrium height both the Lucas-Washburn and the viscous-

gravitational approximations show substantial differences from the exact solution. Moreover, this is 

not significantly improved using the first order gravitational correction to the inertial approximation. 

Numerically the initial rise height is best described by the Bousanquet solution (eq. (31)) until it 

crosses over with the visco-gravitational solution (eq. (34)) at around (T,X/Xe)=(6.5,0.22). Above 

this cross-over the visco-gravitational solution ever more closely agrees with the exact numerical 

solution as the rise height tends to its equilibrium value; however, it always lies above the exact 

numerical solution. Since the curve exponentially approaches equilibrium as (X-Xe)/ Xe exp(-

G
2
T/2), fitting experimental data taken in the long time limit using eq. (34) could force better 

agreement by overestimating G. 

 

 

Figure 4. Comparison of approximate analytical solutions for Bousanquet (ooo), 

visco-gravitational (+++), Lucas-Washburn (), inertial () and inertial with 

gravity correction (- - -) to the exact numerical solution (solid line) for G=0.1 and 

=90o. The capillary rise height X is shown as a fraction of the equilibrium rise 

height, Xe. The inset shows the long time behaviour for the exact solution and the 

Bousanquet solution. On this scale the visco-inertial cannot be distinguished from 

the exact solution and the Lucas-Washburn approximation cannot be 

distinguished from the Bousanquet solution on the longer time scale. 
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The derivative dX/dT can be calculated for each of eq. (31) and eq. (34) and this shows that 

in the Bousanquet case the initial slope of X(T) is 1/2 whereas in the visco-gravitational case the 

initial slope tends to infinity as 1/2X. Since in both cases the slopes are positive at all positive T and 

in the visco-gravitational case XXe=1/(Gsin) whereas in the Bousanquet case X, there is one 

and only one cross-over point (Tc,Xc).at which the two curves meet. The cross-over time, Tc, can be 

calculated numerically as a function of Gsin by equating the Bousanquet solution (eq. (31)) to the 

visco-gravitational solution (eq. (34)). For a vertical channel with =90o this is shown in fig. 5 (ooo 

symbols and left hand y-axis) as a function of G=1/Xe.  A numerical interpolation of this function 

accurate to 3.7% in Tc over the range G=1×10-7 to 1.0 is given by a 2/3rds power law, 
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3/2
341.1

341.1
ec X

G
GT   (41) 

 

The validity of the 2/3rds power law can be shown analytically for small G although the pre-factor in 

eq. (41) is found to be (3/2)2/3=1.3104. Numerically, using 1.3104 is accurate to 4% in the range of 

G up to 0.1, to 1% in the range of G up to 0.01, and 5.8% in the range of G up to up to 1.32.  A best 

fit interpolation for the numerically calculated rise height at which the crossover, Xc, occurs over the 

range up to G=0.25 is given by 1.07025/G1/3; the exact numerical calculation is shown in fig. 5 by 

the  symbols (right hand y-axis) and the interpolation is the dotted line. An improved estimate 

is given by using the interpolation for Tc in the Bousanquet solution (eq. (31)) and this is shown as 

the solid line passing through the  symbols. 

 

To derive the 2/3rds power law for Tc we expand the log term in the visco-gravitational 

approximation (eq. (34)) to 3rd order and regroup terms to get, 
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From the Bousanquet solution (eq. (31)), we then note that, 
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which defines a function f(T). Combining eq. (42) and eq. (43) at (T, X)=(Tc,Xc) then gives, 
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when the cross-over time is large f(Tc)1 and when it is small f(Tc)0.5Tc
1/3 so that the power law 

changes from 2/3 to 1/2 as Tc becomes small. Since large Tc corresponds to small Gsin (i.e. large 

Xe) we obtain the numerically observed 2/3rd power law with the pre-factor of (3/2)2/3= 1.3104. This 

also suggests that the fractional crossover rise height for small Gsin will be, 
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  (45) 

 

and this is shown in fig. 5 as the dashed line (referenced to the right hand side y-axis). 
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Figure 5. Cross-over time, Tc, at which the visco-inertial solution better 

approximates the exact numerical solution than the Bousanquet solution (ooo 

symbols and left hand y-axis); the solid line is the interpolation Tc1.3534Xe
2/3 

optimized for G up to 0.25 with =90o (left hand y-axis). Capillary rise height 

Xc/Xe at the cross-over calculated numerically ( symbols) and an 

interpolation using Xc1.07025/G1/3 (dotted line). Using the interpolation of Tc in 

the Bousanquet equation gives an improved estimate of Xc (solid line through 

 symbols); the dashed line shows the analytical approximation 

Xc(3/2)1/3
Xe

1/3. 

 

 The Bousanquet and visco-gravitational solutions can be combined to provide an overall 

approximate solution by using the former solution when T<Tc and the latter solution when T>Tc (i.e. 

the solution predicting the lower capillary rise X(T)). This provides a broad time range approximate 

solution as shown in fig. 6 for G=0.1. Figure 6 also illustrates the percentage error between the 

exact solution and this approximate solution for a vertical capillary with =90o, which has a 

maximum error of 6.7% at T=6.3 when Xc/Xe=0.216. For G=0.0283, corresponding to a cross-over 

at Xc/Xe=0.1, the maximum error is 3.2% and for G=0.814, corresponding to a cross-over at 

Xc/Xe=0.7, maximum error is around 17%. 
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Figure 6 The exact solution for G=0.1 and =90o (solid curve and left hand y-axis) 

and the approximation obtained using the lower value for X taken from the 

Bousanquet and the visco-gravitational solutions (xxx and left hand y-axis). The 

percentage error using the approximation peaks at Tc (ooo and right hand y-axis). 

 

2.3 Filling conditions and capillary fingers 

According to the approach in section 2.2, for capillary-driven imbibition to commence it has 

to be energetically favourable for the liquid to enter the channel, i.e. the surface free energy change 

in eq. (3) must satisfy F<0, or equivalently the capillary force in eq. (4) must satisfy fc>0 and the b 

parameter in eq. (27) must be positive. Thus, for an open or closed rectangular channel, 
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For a closed channel with smooth surfaces and the same contact angle on all surfaces this simply 

means the contact angle must be less than 90o. However, for an open rectangular channel e
T=180o 

and so the condition becomes, 
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1
cos


e  (47) 

 

as noted by previous authors. Therefore as the aspect ratio of a rectangular channel reduces 

imbibition becomes increasingly difficult and lower contact angles corresponding to more wetting 

liquids are required. For example, aspect ratios of =10, 0.6, 0.3 and 0.2 require contact angles 

below 78.5o, 63.0 o, 51.3 o and 44.4 o.  Effectively the capillary pull required is principally from the 

wall area which becomes relatively less as the width of channel increases.  

 

 From an experimental perspective the accuracy of quantitative estimates of the capillary 

coefficient b parameter in both the inertial (Quéré) and viscous (Lucas-Washburn) regimes from the 



 20 

initial imbibition data become more difficult for open rectangular channels. In these cases data is 

typically analyzed using plots of (x,t) and (x2,t), respectively, and in these cases the slopes, k, will be 

proportional to b
1/2 and b. Indeed, examining the exact Bousanquet solution for capillary-driven 

imbibition, eq. (31), which describes horizontal channels over all times, T, and approximately 

vertical channels at times T<Tc, shows that the contact angle dependence in x
2(t) arises from an 

overall factor proportional to b. Thus, if we write x
2(t)=bf(a,t) where f(a,t) is a function not 

involving the contact angle, a plot of x2(t) versus f(a,t) will have a slope of k=b. The sensitivity of 

the slope, k, to small changes in the contact angle can be evaluated as a fractional error in the slope 

on these plots. For the case of closed and open channels with the same contact angle on each 

surface, the error in the slope for the Lucas-Washburn and Bousanquet plots is, 
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 (48) 

 

As shown by fig. 7, the error given by eq. (48) as a percentage change in slope per degree is 

large and changes rapidly for contact angles close to the transition to imbibition; a small uncertainty 

in contact angle results in large changes in the slope and hence estimates of b from experimental 

data. Experimentally, for open channels there is therefore an incentive to work with liquids that wet 

the surfaces effectively and therefore have contact angles below that determined by the critical angle 

for imbibition arising from the aspect ratio. However, this then leads to increasing risks that the 

assumption that imbibition occurs in a tube like manner with a meniscus of constant profile will not 

be accurate as discussed below. 

 

 

Figure 7 The sensitivity of the fractional change in slope per degree in the Lucas-

Washburn equation to small changes in contact angle for closed and open 

rectangular channels; aspect ratios of =0.1, 0.25 and 0.5 are shown. 
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Figure 8. Surface free energy changes as a tube/slab of liquid penetrates 

into a channel resulting in new solid-liquid and liquid-vapor interfaces. a) 

Two-dimensional corner viewpoint, and b) an edge viewed as a sequence of 

two dimensional corners. 

 

 Rectangular and many other cross-sectional shape channels differ in their wetting properties 

from flat and smoothly circular surfaces, precisely because two walls meet at an angle. This effect, 

the corner filling condition, can be understood by a simple two-dimensional model. Consider two 

walls joining at an angle 2 with a liquid initially partially filling the corner to a depth h (fig. 8a). 

When the corner fills with liquid by an additional amount h, the surface free energy change is 

given by, 
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  (49) 

 

where You g’s l w h s bee  use  to repl ce the co bi  tio  of i terf ci l te sio s by cose. Thus, 

the change in surface free energy is zero or negative whenever cosesin, which gives, 

 

(+e)90o  (50) 

 

as the corner filling condition. In the case of a flat surface, =90o and a surface wets when the 

contact angle vanishes, and. in the case of parallel plates, =0o and the surface wets between the 

plates whenever e90o. Thus, eq. (46), which is the condition for imbibition assuming a tube of 

liquid advancing in a channel, must be considered alongside eq. (50).  

 

Whilst this was a two-dimensional argument, an edge can be viewed as a sequence of two-

dimensional corners (fig. 8b) and so the same condition, eq. (50), will apply. For example, for the 

open rectangular channel the side walls meet the bottom surface at 90o so that the corner filling 

condition is e45o, whereas eq. (47) suggests imbibition will only occur for channel aspect ratios, 

, larger than 0.207. Thus, fingers of liquid can imbibe into open channels at aspect ratios lower 

than might otherwise be expected. Bico and Quéré (2002) have shown that corner filling leads in 

square cross-section capillary tubes to fingers of liquid rising along the internal edges against 

gravity in advance of the central meniscus, which itself rises to an equilibrium height which is a 

factor (2+1/2)/4 less than would be the case without the fingers. Moreover, Ponomarenko et al. 

(2011) have recently used scaling arguments to show that in the viscous regime of capillary rise 
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against gravity and independent of specifics of the geometry the fingers spread faster than the main 

meniscus which follows a Lucas-Washburn law.  

 

Thus, for good capillary-driven imbibition in open and closed rectangular channels with 

reduced sensitivity to the precise value of contact angle, eq. (46) implies it is better to use low 

contact angle liquids. However, doing so is likely to lead to increasingly stronger effects from liquid 

fingers spreading along the edges between walls at lower contact angles and higher intrusion rates. 

From the point of view of microfluidics and lab-on-a-chip, the consequences of this are potentially 

serious with fingers of liquid spontaneously spreading in advance of the bulk liquid and potentially 

causing contamination. An interesting question is whether the capillary-drive imbibition/rise in open 

and closed rectangular channels of the main meniscus can still be accurately described by eq. (31) 

and (34). The experimental consideration of this is given in section 4. 

 

3. Experimental methods 

To test the theory on the influence of capillary shape experiments were conducted on the 

capillary rise of polydimethylsiloxane (PDMS) oils in three cross-sectional geometries, circular 

glass capillary tubes, square glass capillary tubes, and SU8 open rectangular cross section channels. 

The liquid-air interface in open-channels is essentially completely hydrophobic/oleophobic and so a 

strongly wetting liquid, such as PDMS with its low equilibrium contact angle (e=0) is needed to 

ensure complete wetting. This choice also eliminates any sensitivity to the precise value of e for 

liquid penetration into open channels discussed in section 2.3. For each geometry, four PDMS oils 

(Dow Corning Xiameter PMX-200) of viscosities =96.0, 48.0, 19.2 and 4.8 mPa s (±5%) and 

corresponding densities of 960, 950, 930 and 913 kg m-3 were investigated. The surface tension of 

these oils is constant at 19.8 mN m-1. The details of the tubes/channels used are given in table 1. 

 

Table 1.  Physical dimensions of  channels and experimental parameters. 

 
 

The open SU8 channels were fabricated on glass slides using photolithography. After a slide 

was cleaned, a 20 µm thick SU8 base layer (SU8-10 MicroChem) was spin coated, pre-baked (65ºC 

for 2 min then at  95ºC for 2 min), UV exposed through a mask, and then post-baked at 65ºC for 30 

min. A second SU8 layer (SU8-50 MicroChem), of a nominal thickness of 135 m, was then spin 

coated, pre-baked, UV exposed and then post-baked (65 ºC for 30 min then at 95º C for 30 min) to 
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form the side walls of the channels; this ensured that all three faces of the channels were constructed 

of SU8. The photoresist was then developed to leave open rectangular channels. The depths of the 

channels were measured with a stylus profilometer. Variability in the depths of the channels was 

observed between samples. The data presented in this report are for channels with depths in the 

range 130-140 m, and for each channel the measured depth value is used when comparing the data 

with theory. Commercially available square glass capillary tubes of sides 400 m and 600 m were 

also used in the experiments together with a 650 m radius circular glass capillary tube for 

calibration and comparison. SEM characterisations found the internal wall surfaces of the circular 

and square glass capillaries to be smooth and free from striations. 

 

Each tube/channel was cleaned in isopropylalcohol (IPA) and dried at 100C for one hour 

prior to measurements. A small amount of blue dye was used to increase contrast; control 

experiments without the dye did not show any differences in the dynamics of capillary rise. The 

sample was mounted vertically next to a rectangular grid which provided a length calibration. 

PDMS oil from a large reservoir was brought up into contact with the tube/channel very slowly until 

spontaneous filling started. A high speed camera (NAC Hotshot 512SC) was used to capture videos 

of the rise of the liquid at 50 frames per second. The videos were analysed after the experiment and 

the position of the central meniscus measured in ImageJ from the corresponding frames at a set of 

predetermined time intervals. The initial time t = 0 was defined as the time the liquid first appeared 

to enter the tube/channel; this was determined to within one frame (i.e. 20 ms). The spatial 

resolution can be estimated from the field of view of the camera and the pixel resolution and is 

around 0.02 mm. Each sample/tube was used once only, but measurements were repeated on 

samples with the same physical dimensions several times and under the same conditions to check 

for reproducibility.  

 

4. Results and discussions 

 

As discussed in section 2.3, flow in non-circular channels can be expected to be 

accompanied by advancing liquid fingers that develop with time, increase in prominence and 

progress ahead of the main meniscus of the liquid. These fingers were visible in the closed square 

glass tubes (with aspect ratio ε=1) along all four of the internal edges defined by were two walls 

meet at 90o. These liquid fingers were very thin and confined to the edges where the walls of the 

tubes meet making them difficult to clearly image in our experimental set up (fig. 9a). These 

observations are consistent with those of Girardo et al. (2009) for similar aspect ratio, but in open 

channels. In contrast, the fingers in our open rectangular SU8 channels with aspect ratios ε=0.225 

and 0.338, which propagated along the internal edges defined by where the bottom of the channel 

and a side wall meet, were very prominent and extended far beyond the main meniscus of the liquid 

(fig. 9b). They were found to progress much faster than the main front of the liquid, to such an 

extent as to eventually exit from the end of the channels completely. The dependence of the shape of 

the fingers on  is consistent with the measurements of Seemann et al. (2005) of static liquids in 

open rectangular channels, who found that their shape was determined by contact angle and aspect 

ratio, and that, for completely wetting liquids (e =0), thick and extended fingers occurred when the 
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height of channels was sufficiently small compared to their width for ε <0.5, whereas thin fingers, 

restricted to the corners of the channels, were observed for ε >0.5.  
 

 

 

 

 

 

Figure 9.  .Micrographs of the shapes of the meniscus of the liquid in rectangular 

channels/tubes. The arrows show liquid fingers which develop with time and 

advance ahead of the main meniscus. a) Closed square tubes:  fingers are thin 

and are confined to the four edges where the walls of the tube meet. b) Open 

rectangul r ch   els with ε=0.225 (also 0.338): fingers are thick and extended 

and propagate along the internal edges defined by where the bottom of the 

channel and a side wall meet. 

 

In our experimental conditions, the cross over time for the imbibition of the main body of 

liquid above which the visco-gravitational solution is a better approximation than the Bousanquet 

solution (discussed in section 2.2) occurs within the first 25 ms after liquids enter the tubes/channels 

for all viscosities, which, in all our measurements, takes place within the first measurement time 

interval. The viscous-gravitational solution is, therefore, the best analytical approximation for our 

experiments. For each measurement, the variation of the position of the meniscus with time was 

fitted to both the exact numerical solution (eq. (25)) and analytical solution (eq. (35) with =90o). 

Both fits were performed within Mathematica (Wolfram research) using three fitting parameters, a, 

b and t0, where the viscous coefficient (a) and capillary coefficient (b) are defined by eq. (26) and 

eq. (28), respectively. Fitting at the very early stages of imbibition was found to be sensitive to the 

initial time offset parameter t0  which was, in practice, found to be less than one to, occasionally, 

two  measurement time intervals. In all fits, a constant contact angle value of e= 0 was assumed, 

and for the open rectangular channels data analysis was restricted to the part of the experiment 

during which the wetting fingers remained in the channels.  

 

The solid symbols in fig. 10 show  the variation with time (t) of the capillary rise height (x) 

of the 19.2 mPaS oil in a) 650 µm radius glass tube, b) 400 µm square tube, c) 600 µm square tube, 

d) 400 µm open microchannel, and e) 600 µm open microchannel. The data show good 

reproducibility in circular and square tubes. However, some variability between samples (up to 

10%) was observed for open channels. The most likely reason for this is the variation in depth of the 

channels between samples. The solid lines in fig. 10 are the numerical solutions (eq. (25)), whilst 

the dashed lines are the fits obtained using the approximate visco-gravitational solution (eq. (35)). 

The data can be fitted accurately (to within 5%) using both solutions, albeit a discrepancy at the very 

early stage of imbibition (seen in figs 10c, 10d and 10 e). This is, perhaps, not surprising since our 

analysis assumes a constant contact angle and does not take into account of any dynamic contact 
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angle changes during the initial entry into the tubes/channels. Moreover, the parameters obtained 

from fitting using the exact numerical solution and the approximate analytical visco-gravitational 

solution agree to within 10% for the viscous coefficient a and 3% for the capillary coefficient b. 

Thus, either the numerical or the visco-gravitational solution can be used to fit the position of the 

meniscus for our closed tubes and open channels. Moreover, the existence of liquid fingers 

advancing ahead of the main meniscus of liquid do not seem to prevent the theory from describing 

the advance of the meniscus for the main body of liquid for values of channel aspect ratio ε 
considered in our work.  

 

 
 

Figure 10.  The variation of the rise height with time of the 19.2 mPaS oil in: a) 650 µm 

radius glass tube, b) 400 µm square tube, c) 600 µm square tube, d) 400 µm open channel 

and e) 600 µm open channel. The solid symbols represent the experimental data and the 

solid and dashed lines the numerical and analytical fits respectively. The dotted lines give 

the expected rise using the nominal device parameters.  

 



 26 

In our experiments, we found that the equilibrium capillary rise height was broadly 

consistent with expectations using the nominal device parameters. The value of the capillary 

parameter b obtained from the fits agrees very well (to within 2% for circular cross-section tubes) 

with the experimental observations of the equilibrium height rise xe (b=xeg). However, the rate at 

which the liquid approached this equilibrium was always slower than predicted by theory, as is 

illustrated by the dotted curves in Fig. 10, which represent the expected rise. The value of the 

viscous coefficient a is larger than predicted by theory for all viscosities and most all tubes and 

channels except for the 400 µm open channels. We found this parameter to be around 4.2 (0.2) 

times larger than the theoretical value for circular tubes and around 1.5 (0.1) and 1.3 (0.1) times 

larger than the theoretical value for 600 m and 400 µm closed square capillaries, respectively. For 

the 600 m and 400 µm wide open channels the fitted values of the viscous coefficient a is around 

1.5 (0.2) and 0.9 (0.1) times the value predicted from the theory. Preliminary measurements on 

smaller radius circular cross-section capillary tubes suggests there is a better agreement between 

fitted and predicted values as the radius reduces to less than a tenth of the capillary length of the 

liquid. The data for the square tubes and rectangular channels also indicate a better agreement for 

smaller dimensions with a reasonable agreement for the 400 m wide open channels.  

 

Retardation of liquid rise in capillaries and tubes has previously been reported by other 

authors who have suggested a range of possible reasons. These include a possible dynamic contact 

angle effect during flow (Siebold et al., 2000; Hamdaoui and Nylander; 2002 Chebbi 2007; Xiao et 

al., 2006; Xue et al 2006), and a possible retardation coefficient arising from an increased frictional 

dissipation of the moving liquid front (Hamdaoui and Nylander, 2002). A number of different 

models for how cose in the capillary term b in eq. (28), hence in eq.(25), might be replaced by a 

dynamic cos  and how that would relate to dissipation were considered in detail by Popescu et al. 

(2008). They considered four models for a dynamic contact angle including both hydrodynamic 

(Hoffman, 1975; de Gennes, 1985; Cox, 1986) and molecular-kinetic theory (Blake & Haynes, 

1969). In the Hoffman-de Gennes (HdG) approach, the dynamic contact angle, (t), edge speed, 

dx/dt, relationship is, 

    ttkv
dt

dx
e  coscos* 








 (51a) 

where k is a constant determined by viscous dissipation and v*=LV/ is  characteristic velocity 

determined by the ratio of surface tension to viscosity. For the linearized form of the molecular-

kinetic theory (MKT) model the analogous relationship is, 

  tv
dt

dx
e  coscos*1 






   (51b) 

 

where the combination -1
v* is a coefficient related to wetting line friction, which depends on both 

fluid viscosity and solid-liquid  interaction (Bertrand et al., 2009; Stukan et al., 2010 ). If we focus 

on cylindrical tubes and use cost) from eq. (51a), (51b) in eq. (28) rather than cose to obtain a 

parameter bd using the dynamic contact angle, i.e. 
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there then arises an additional velocity dependent term. Interestingly, when the dynamic parameter 

bd is used in eq. (25) rather than the equilibrium parameter b, the effect can be viewed as retaining 

the original equilibrium b parameter, but replacing the a parameter by a dynamic ad parameter, 

 (HdG model)      
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The additional term in eq. (53a), (53b) is time dependent and vanishes as the imbibition progresses 

and the dynamic contact angle relaxes to its equilibrium value. This type of term can be expected to 

cause a slower approach to equilibrium than might be expected from eq. (25) using only a constant 

contact angle approximated by the equilibrium contact angle. This is consistent with the numerical 

investigation of Popescu et al. (2008) and  with physical expectations that when a vertical tube first 

comes into contact with the horizontal meniscus of the reservoir the instantaneous contact angle is 

likely to be 90o and must relax towards the equilibrium value as imbibition commences. This is also 

consistent with our preliminary observations that agreement of the fitted a parameter with 

theoretical expectations improves as the radius of the tube decreases. A similar argument should 

apply to square capillaries and open channels. 

 

In our case, it is also possible that some of the increased viscous dissipation in the 

rectangular channels could be induced by the wetting fingers and that their contributions may be 

dependent on the size and/or aspect ratio  of the channels. However, Girardo et al. (2012) found 

that fingers do not seem to induce appreciable extra dissipation in the early stage of microcapillary 

imbibitions in horizontally mounted smooth microchannels. It is also of note that the fitted values of 

the viscous coefficient a for the open channels are a factor 2 and 3 lower (for the 400 µm and 600 

µm wide open channels) than would be expected for a rigidified liquid-air boundary, as required by 

Yang et al (2011) to explain the dynamics of capillary flow in their horizontally mounted open 

narrow microchannels. This indicates that a non-rigidified liquid-air interface best represents the 

flow in our lower aspect ratio channels. A further detailed quantitative investigation would be 

needed to clarify the dependence of the viscous coefficient on channel size and aspect ratio on 

dissipation, but this is beyond the scope of our report. 

 

Whilst the measured equilibrium rise height values are to within 2% of the predicted 

theoretical value for the circular cross-section tubes, they are around 5% smaller than theoretical 

predictions for square tubes. We attribute this reduction to the wetting fingers, which are predicted 
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to reduce the equilibrium height by a value of (2+π½)/4 = 0.943 in square geometries (Bico and 

Quéré, 2002). The equilibrium height is however a factor of 0.83 (±0.03) times smaller than theory 

for the open channels, although confidence in the exact factor requires some caution since the data 

has considerable scatter. This is, perhaps, not surprising since the fingers are more prominent, and 

so may induce a larger reduction in the equilibrium height (Bico and Quéré , 2002). 

 

 
Figure 11.   The effect of viscosity on capillary rise for the 600 µm square 

tube. The dashed lines are the expected rise obtained by taking the fitted 

value of a for the 96.0 mPa s sample and scaling it according to the ratio of 

viscosities. The inset shows the data scaled for viscosity. The scaled time t* = 

96t/. 

 

Figure 11 shows the effect of viscosity on the capillary rise in a square tube with sides of 

600 µm. As expected, the rise is faster for the lower viscosity oils, but the equilibrium rise height 

xe=b/g remains constant as it is independent of viscosity. For the same physical geometry, the visco-

gravitational solution predicts that, at a given rise height x,  bat  (eq. (35), and eqs. (26) and 

(28)). It should, therefore, be possible to scale from one viscosity value to another provided the 

density and surface tension of the liquid are independent of viscosity, which is the case for our 

liquids to within 5%. To verify this experimentally, the data in fig. 11 are re-plotted with the time 

for each viscosity data scaled to that of the 96.0 mPa s sample by multiplying it by a factor equal to 

96/ (t*= t×96/); the results are shown in the inset to fig 11. It can be seen that the data scale with 

viscosity, supporting the above argument. Moreover, this indicates that liquid rise can be predicted 

for any viscosity value from the experimental data of one given viscosity (taken here to be the 96 

mPa s) by scaling the value of a, obtained from the fit to the analytical visco-gravitational solution, 

according to the ratio of viscosities (dashed lines in fig. 11). Similar results were obtained for 400 

m square tubes (fig. 12a) and round capillaries (fig. 12b). However, our data for the open 

rectangular channels do not scale as well with viscosity (fig. 12c and fig. 12d). We believe this is 

due to the variations in the height of channels (130 - 140 (5) m) from one sample to another that 

were difficult to prevent during their fabrication. An improved scaling is obtained (as shown in the 
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insets of fig. 12c and 12d) if we account for the variations in channel depths between samples at a 

given channel width as explained in the next paragraph. 

 

 
Figure 12.  Capillary rise scaled for viscosity in: a) 400 m square tube, b) R=650 m 

circular tube, c) 600 m open channel and d) 400 m open channel. The insets to fig 12 c) 

and fig 12 d) show the data scaled to account for depth variations between samples. 

 

The inset of fig. 13 shows the data from figs 10b and 10c re-plotted to show the effect of the 

tube dimension on the liquid rise in square tubes (H=W) for the 96 mPa.s oil. As expected the 

equilibrium rise height xe=b/g scales inversely proportional to H (eq. (28)). For a given x/xe, the 

visco-gravitational solution (eq. 35) predicts   33 )(/  HηεζHηabt c , where c(ε)= c(1) is 

independent of dimension for square tubes. It should, therefore, be possible to scale liquid rise of 

any sample of dimension H relative to any other given dimension (say 400 µm) both for rise height 

and time by multiplying x by H/400 and time by (H/400)3. Moreover, time can also be scaled for 

viscosity in the same way as performed above (fig. 11 and 12a). The results are shown in fig. 13. It 

is evident that the data cannot be fully scaled for sample dimensions. The reason for this is that 

theory underestimates viscous dissipation by an amount that is dependent on sample dimension as 

discussed above. For open channels of varying depths and with e=0, 

   )(/)(/ 23  oo WHHabt  , where o(ε) can be determined using eq. 23. So it should 

also be possible, in principle, to scale the liquid rise for any sample of known width W, height H 

(hence ) and viscosity  relative any other sample with given dimensions and viscosity following 

the same procedure as for square capillaries. Whilst the data can be scaled for viscosity and small 

variations in channel depths at fixed channel widths (insets of fig.12c and fig. 12d), it cannot also be 
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fully scaled for channel width, in the same way as for closed square capillaries, because of the 

dimension dependent retardation discussed above. 

 

 
Figure 13. The capillary rise in square tubes scaled for tube dimension and 

viscosity for 400 m (empty symbols) and 600 m (filled symbols). The scaled rise 

height x*=(Hx/400) and scaled time t*= (H/400)3
t. The inset shows the effect of the 

dimension of square tube on the capillary rise for the 96.0 mPa s oil. 

 

5. Conclusions 

 

In this work, we have presented the theory for capillary driven imbibition into tubes of 

circular and square cross-sections and into open and closed rectangular channels in a common 

formalism. The theory can describe tubes and channels at any angle to the horizontal from 

horizontal to vertical. We have shown that there is a cross-over time and imbibition length below 

which the exact numerical solution of the equations is best described by the analytical Bousanquet 

solution and above which by the analytical visco-gravitational solution. We have also highlighted 

that corner filling wetting ideas lead to the expectation of liquid fingers advancing in square and 

rectangular tubes and channels in advance of the main meniscus and we have observed this to be the 

case experimentally. Nonetheless, the theory accurately describes the form of the observed 

imbibition for capillary rise of PDMS oils in closed square and open rectangular channels of 

different width cross-sections. We found that the analytical viscous-gravitational solution as an 

approximation of the exact differential equation for capillary imbibition can be adequately used to 

fit capillary rise in the systems we studied.  From these fits, we found that the viscous friction 

coefficient is larger than predicted by theory, but that agreement improves for smaller dimension 

samples, and we attribute this to dynamic contact angle effects. The data indicate that the shapes of 

the wetting fingers are dependent on the aspect ratio of the samples. For our completely wetting 

liquids (e=0), the liquid fingers are thin and form near the corner edges for square tubes with aspect 

ratio =1, whereas they are prominent for open channels with low values of  (0.225, 0.338), in 
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agreement with observations on static fluids. These fingers may have important implications for the 

design and performance of microfluidic devices based on liquid imbibition of wetting liquids with 

contact angles e  45 in rectangular microchannels. It is possible that they may affect the amount 

and dynamics of liquid flow, cause contamination between micro-compartments or connect what 

would otherwise be separate area of liquids.  
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