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and continued fractions

Michael Cuntz and István Heckenberger

We present a relationship between continued fractions and Weyl groupoids of

Cartan schemes of rank two. This allows one to decide easily if a given Cartan

scheme of rank two admits a finite root system. We obtain obstructions and sharp

bounds for the entries of the Cartan matrices.

1. Introduction

Root systems and crystallographic Coxeter groups are key tools in the study of

semisimple Lie algebras [Bourbaki 1968]. In the structure theory of pointed Hopf

algebras [Montgomery 1993] a similar role is expected to be played by Weyl

groupoids and their root systems. Let us give some hints towards this claim.

The most striking results on pointed Hopf algebras rely on the lifting method of

Andruskiewitsch and Schneider [1998]. Based on it, many new examples of finite-

dimensional pointed Hopf algebras have been detected, and fairly general classifi-

cation results were achieved [Andruskiewitsch and Schneider 2005; Heckenberger

2009]. The first step in the lifting method is the determination of finite-dimensional

Nichols algebras of finite group type. The upper triangular part of a small quantum

group, also called Frobenius–Lusztig kernel, is a prominent example. A very natu-

ral symmetry object of Nichols algebras of finite group type is the Weyl groupoid.

This was observed first in [Heckenberger 2006] for Nichols algebras of diagonal

type, and then in [Andruskiewitsch et al. 2008] in a very general setting.

An axiomatic approach to Weyl groupoids and their root systems, without re-

ferring to Nichols algebras, was initiated in [Heckenberger and Yamane 2008].

The theory includes and extends the theory of crystallographic Coxeter groups,

but contains even such examples which do not seem to be related to Nichols alge-

bras of diagonal type. In this paper we use the language and some structural and

classification results achieved in [Cuntz and Heckenberger 2008]; see Section 2 for

the most essential definitions and facts.
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For the classification of Nichols algebras of diagonal type it is crucial to be able

to decide whether a given Cartan scheme (a categorical generalization of the notion

of a generalized Cartan matrix; see Definition 2.1) admits a finite root system.

Because of the large variety of examples, this seems to be a difficult task. In our

paper, we present a very efficient method for Cartan schemes of rank two. It relies

on a relationship between Cartan schemes of rank two and continued fractions

[Perron 1929]. Instead of giving a complete list of Cartan schemes of rank two

admitting a finite root system (which is then unique by a result in [Cuntz and

Heckenberger 2008]), we present an algorithm in Theorem 6.19. It works with

very elementary operations on sequences of positive integers and transforms any

Cartan scheme into another one, for which the answer is known. The algorithm

is based on various observations: on the introduction and study of coverings of

Cartan schemes in Section 3, on an old theorem of Stern, Pringsheim, and Tietze,

and a variation of a transformation formula for continued fractions (Section 4 and

Lemma 5.2) on the characterization of simple connected Cartan schemes admitting

a finite root system in terms of certain sequences of positive integers (Proposition

6.5 and Theorem 6.6), and on the description of Cartan schemes with object change

diagram a cycle using characteristic sequences (Definition 6.9). As an application,

in Section 7 we give obstructions for the entries of the Cartan matrices in a Cartan

scheme admitting a finite root system. We present the power of our method on a

small example at the end of Section 6.

We are confident that a suitable generalization of our method to Cartan schemes

and Weyl groupoids of higher rank would have a deep impact on the classification

of Nichols algebras, and consider it as a great challenge for the future.

2. Cartan schemes, root systems, and their Weyl groupoids

If not stated otherwise, we follow the notation in [Cuntz and Heckenberger 2008].

Let us start by recalling the main definitions.

Let I be a nonempty finite set and {αi | i ∈ I } the standard basis of Z
I . By [Kac

1990, §1.1] a generalized Cartan matrix C = (ci j )i, j∈I is a matrix in Z
I×I such

that

(M1) ci i = 2 and c jk ≤ 0 for all i, j, k ∈ I with j 6= k,

(M2) if i, j ∈ I and ci j = 0, then c j i = 0.

Definition 2.1. Let A be a nonempty set, ρi : A → A a map for all i ∈ I , and

Ca = (ca
jk) j,k∈I a generalized Cartan matrix in Z

I×I for all a ∈ A. The quadruple

C = C(I, A, (ρi )i∈I , (C
a)a∈A)

is called a Cartan scheme if
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(C1) ρ2
i = id for all i ∈ I ,

(C2) ca
i j = c

ρi (a)
i j for all a ∈ A and i, j ∈ I .

Remark 2.2. The preceding definition of a Cartan scheme has the striking advan-

tage to be very simple, but sufficiently powerful to admit the definition of a Weyl

groupoid, as we will see below. For some investigations it can be of advantage

to consider more general axioms (for example by allowing the maps ρi to be par-

tially defined) or to impose additional restrictions (like (C3) below, or other for

example to exclude the existence of associated roots which are neither positive nor

negative). We will mostly consider Cartan schemes admitting a root system. This

restriction still gives many more examples than those coming from contragredient

Lie superalgebras and Nichols algebras of diagonal type with finite root system.

Nevertheless, up to now no further axioms on Cartan schemes are known which

keep this property.

Two Cartan schemes

C = C(I, A, (ρi )i∈I , (C
a)a∈A) and C

′ = C
′(I ′, A′, (ρ ′

i )i∈I ′, (C ′a)a∈A′)

are termed equivalent if there are bijections ϕ0 : I → I ′ and ϕ1 : A → A′ such that

ϕ1(ρi (a)) = ρ ′
ϕ0(i)

(ϕ1(a)), c
ϕ1(a)
ϕ0(i)ϕ0( j) = ca

i j (2-1)

for all i, j ∈ I and a ∈ A.

Let C = C(I, A, (ρi )i∈I , (C
a)a∈A) be a Cartan scheme. For all i ∈ I and a ∈ A

define σ a
i ∈ Aut(ZI ) by

σ a
i (α j ) = α j − ca

i jαi for all j ∈ I . (2-2)

The Weyl groupoid of C is the category W(C) such that Ob(W(C)) = A and the

morphisms are generated by the maps σ a
i ∈ Hom(a, ρi (a)) with i ∈ I , a ∈ A. In this

paper, we will always denote the set of all morphisms of W(C) by Hom(W(C)).

Formally, for a, b ∈ A the set Hom(a, b) consists of the triples (b, f, a), where

f = σ
ρin−1

···ρi1
(a)

in
· · · σ

ρi1
(a)

i2
σ a

i1

and b = ρin
· · · ρi2

ρi1
(a) for some n ∈ N0 and i1, . . . , in ∈ I . The composition is

induced by the group structure of Aut(ZI ):

(a3, f2, a2) ◦ (a2, f1, a1) = (a3, f2 f1, a1)

for all (a3, f2, a2), (a2, f1, a1) ∈ Hom(W(C)). By abuse of notation we will write

f ∈ Hom(a, b) instead of (b, f, a) ∈ Hom(a, b).

The cardinality of I is termed the rank of W(C). A Cartan scheme is called

connected if its Weyl groupoid is connected, that is, if for all a, b ∈ A there exists

w ∈ Hom(a, b).
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In many cases it will be natural to assume that a Cartan scheme satisfies the

following additional property.

(C3) If a, b ∈ A and (b, id, a) ∈ Hom(a, b), then a = b.

Definition 2.3. Let C = C(I, A, (ρi )i∈I , (C
a)a∈A) be a Cartan scheme. For all

a ∈ A let Ra ⊂ Z
I , and define ma

i, j = |Ra ∩ (N0αi + N0α j )| for all i, j ∈ I and

a ∈ A. We say that

R = R(C, (Ra)a∈A)

is a root system of type C if it satisfies the following axioms.

(R1) Ra = Ra
+ ∪ −Ra

+, where Ra
+ = Ra ∩ N

I
0, for all a ∈ A.

(R2) Ra ∩ Zαi = {αi , −αi } for all i ∈ I , a ∈ A.

(R3) σ a
i (Ra) = Rρi (a) for all i ∈ I , a ∈ A.

(R4) If i, j ∈ I and a ∈ A such that i 6= j and ma
i, j is finite, then (ρiρ j )

ma
i, j (a) = a.

If R is a root system of type C, then we say that W(R) = W(C) is the Weyl

groupoid of R. Further, R is called connected if C is a connected Cartan scheme.

If R = R(C, (Ra)a∈A) is a root system of type C and R
′ = R

′(C′, (R′a)a∈A′) is a

root system of type C
′, then we say that R and R

′ are equivalent if C and C
′ are

equivalent Cartan schemes given by maps ϕ0 : I → I ′, ϕ1 : A → A′ as in Definition

2.1, and if the map ϕ∗
0 :Z

I →Z
I ′

given by ϕ∗
0(αi )=αϕ0(i) satisfies ϕ∗

0(Ra)= R′ϕ1(a)

for all a ∈ A.

There exist many interesting examples of root systems of type C related to

semisimple Lie algebras, Lie superalgebras and Nichols algebras of diagonal type,

respectively. For further details and results we refer to [Heckenberger and Yamane

2008] and [Cuntz and Heckenberger 2008].

Convention 2.4. In connection with Cartan schemes, upper indices usually refer to

elements of A. Often, these indices will be omitted if they are uniquely determined

by the context.

Remark 2.5. If C is a Cartan scheme and there exists a root system of type C,

then C satisfies (C3) by [Heckenberger and Yamane 2008, Lemma 8(iii)].

Definition 4.3 of [Cuntz and Heckenberger 2008] introduced the concept of an

irreducible root system of type C. By Proposition 4.6 of the same paper, if C

is a connected Cartan scheme and R is a finite root system of type C, then R is

irreducible if and only if the generalized Cartan matrix Ca is indecomposable for

one (equivalently, for all) a ∈ A.
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Here is a fundamental result about Weyl groupoids.

Theorem 2.6 [Heckenberger and Yamane 2008, Theorem 1]. Let C = C(I, A,

(ρi )i∈I , (C
a)a∈A) be a Cartan scheme and R = R(C, (Ra)a∈A) a root system of

type C. Let W be the abstract groupoid with Ob(W) = A such that Hom(W) is

generated by abstract morphisms sa
i ∈ Hom(a, ρi (a)), where i ∈ I and a ∈ A,

satisfying the relations

si si 1a = 1a, (s j sk)
ma

j,k 1a = 1a, a ∈ A, i, j, k ∈ I, j 6= k

(see Convention 2.4). Here 1a is the identity of the object a, and (s j sk)
∞1a is

understood to be 1a . The functor W → W(R), which is the identity on the objects,

and on the set of morphisms is given by sa
i 7→ σ a

i for all i ∈ I , a ∈ A, is an

isomorphism of groupoids.

Definition 2.7. Let C = C(I, A, (ρi )i∈I , (C
a)a∈A) be a Cartan scheme. Let Ŵ be

a nondirected graph such that the vertices of Ŵ correspond to the elements of A.

Assume that for all i ∈ I and a ∈ A with ρi (a) 6= a there is precisely one edge

between the vertices a and ρi (a) with label i , and all edges of Ŵ are given in this

way. The graph Ŵ is called the object change diagram of C. If R = R(C, (Ra)a∈A)

is a root system of type C, then we also say that Ŵ is the object change diagram

of R.

3. Coverings of Cartan schemes, Weyl groupoids, and root systems

Two Cartan schemes can be related to each other in different ways. In this sec-

tion we analyze coverings of Cartan schemes. The definition is motivated by the

corresponding notion in topology.

Definition 3.1. Let

C = C(I, A, (ρi )i∈I , (C
a)a∈A) and C

′ = C
′(I, A′, (ρ ′

i )i∈I , (C
′a)a∈A′)

be connected Cartan schemes. Let π : A′ → A be a map such that Cπ(a) = C ′a for

all a ∈ A′ and the diagrams

A′
ρ′

i
−−−→ A′

π



y



yπ

A −−−→
ρi

A

(3-1)

commute for all i ∈ I . We say that π : C
′ → C is a covering, and that C

′ is a

covering of C.
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The composition of two coverings is again one. For any covering π : C
′ → C

of Cartan schemes C
′, C, the map π : A′ → A is surjective by (3-1), since A′ is

nonempty and C is connected.

Remark 3.2. Many of the following results can be formulated without assuming

that C and/or C
′ in Definition 3.1 are connected Cartan schemes. In that case one

should assume that π is a surjective map. However, in the applications we are

interested in, all Cartan schemes are connected, and hence we prefer the above

definition in order to simplify the terminology.

Any covering π : C
′ → C of Cartan schemes C

′, C induces a covariant functor

Fπ : W(C′) → W(C) by letting

Fπ (a′) = π(a′), Fπ (σ a′

i ) = σ
π(a′)
i for all i ∈ I , a′ ∈ A′.

In this case the Weyl groupoid W(C′) is termed a covering of W(C), and the functor

Fπ a covering of Weyl groupoids.

First we need a technical result.

Lemma 3.3. Let π :C
′ →C be a covering, and assume that C

′ satisfies Axiom (C3).

(1) C satisfies (C3).

(2) Let a ∈ A and a′, a′′ ∈ A′ such that π(a′) = π(a′′) = a. If there exists w′ ∈

Hom(a′, a′′) such that Fπ (w′) ∈ Fπ (End(a′)), then a′ = a′′.

Proof. (1) Let a ∈ A. If k ∈ N0 and i1, . . . , ik ∈ I , then Definition 3.1 gives that

σi1
· · · σik−1

σ a
ik

= σi1
· · · σik−1

σ a′

ik
in Aut(ZI ) for all a′ ∈ A′ with π(a′) = a. Assume

now that σi1
· · · σik−1

σ a
ik

= id. Then ρ ′
i1

· · · ρ ′
ik
(a′)= a′ for all a′ ∈ A′ with π(a′)= a,

since C
′ satisfies (C3). Hence ρi1

· · · ρik
(a) = a by (3-1). This yields the claim.

(2) Let w′′ ∈ End(a′) with Fπ (w′′) = Fπ (w′). Then Fπ (w′w′′−1) = ida , and hence

w′w′′−1 = id in Aut(ZI ). Since C
′ satisfies (C3), it follows that w′w′′−1 = ida′ , and

hence a′ = a′′. �

Let C = C(I, A, (ρi )i∈I , (C
a)a∈A) be a connected Cartan scheme, W(C) its

Weyl groupoid, and a ∈ A. Coverings of C can be parametrized by subgroups of

End(a) ⊂ Hom(W(C)) (up to conjugation).

Proposition 3.4. (1) Let C
′ be a connected Cartan scheme and assume that π :

C
′ → C is a covering. Let a′ ∈ A′ with π(a′) = a.

(a) The group homomorphism Fπ : End(a′) → End(a) is injective.

(b) For each b′ ∈ A′ with π(b′) = a the subgroup Fπ (End(b′)) of End(a) is

conjugate to Fπ (End(a′)).

(c) If U ′ is a subgroup of End(a) conjugate to Fπ (End(a′)), then there exists

b′ ∈ A′ with π(b′) = a and Fπ (End(b′)) = U ′.
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(2) Suppose that U ⊂ End(a) is a subgroup. There exists a covering π : C
′ → C

and b′ ∈ A′ such that

Fπ (End(b′)) = U, (3-2)

|π−1(b)| = [End(a) : U ] for all b ∈ A. (3-3)

If C satisfies Axiom (C3), then up to equivalence there is a unique covering C
′

satisfying (3-2) and Axiom (C3). For this covering (3-3) holds.

Proof. (1A) Each element w′ ∈ End(a′) is a product of σ b′

i for some i ∈ I and

b′ ∈ A′. Moreover, w′ can be naturally regarded as an element in Aut(ZI ). The

same is true for w ∈ End(a). Since C ′b′

= Cπ(b′) for all b′ ∈ A′, Fπ (w′) identifies

with the same element of Aut(ZI ) as w′.

(1B) Let b′ ∈ A′. Since C
′ is connected, there exists w′ ∈ Hom(a′, b′). Then

End(b′) = w′ End(a′)w′−1. Since Fπ is a functor,

Fπ (End(b′)) = Fπ (w′)Fπ (End(a′))Fπ (w′)−1.

(1C) Assume that w ∈ End(a) such that U ′ = wFπ (End(a′))w−1. Then w =

σi1
· · · σik−1

σ a
ik

for some k ∈ N0 and i1, . . . , ik ∈ I . Let w′ = σi1
· · · σik−1

σ a′

ik
and

b′ = ρ ′
i1

· · · ρ ′
ik
(a′). Then End(b′) = w′ End(a′)w′−1, and hence Fπ (End(b′)) =

wFπ (End(a′))w−1 = U ′.

(2) We construct C
′ explicitly. Let

A′ = Hom(W(C))/U =
{

gU ⊂ Hom(a, b) | b ∈ A, g ∈ Hom(a, b)
}

be the set of left cosets. For all i ∈ I and gU ∈ A′ with g ∈ Hom(a, b), where b ∈ A,

define C ′gU = Cb and ρ ′
i (gU ) = σ b

i gU . Then ρ ′
i : A′ → A′ satisfies (C1) since

σ
ρi (b)
i σ b

i = id and ρ2
i = id, and C

′ fulfills (C3), since C does. Since C is connected,

C
′ =C

′(I, A′, (ρ ′
i )i∈I , (C

′a′

)a′∈A′) is a connected Cartan scheme. Define π : A′ → A

by π(gU ) = b for all b ∈ A, g ∈ Hom(a, b). Then Fπ (End(1aU )) = U and

|π−1(a)| = [End(a) : U ]. Since C
′ is connected, |π−1(b)| = |π−1(a)| for all b ∈ A.

Assume that C satisfies (C3). We show that C
′ satisfies (C3). For l ∈ {1, 2}

let al ∈ A and gl ∈ Hom(a, al) such that (g1U, id, g2U ) ∈ Hom(W(C′)). Then

there exist k ∈ N0 and i1, . . . , ik ∈ I such that σi1
· · · σik−1

σ
a2

ik
g2U = g1U and that

σi1
· · · σik−1

σ
a2

ik
= id in Aut(ZI ). Since C fulfills (C3), we obtain that a1 = a2, and

hence g2U = g1U . Therefore C
′ satisfies (C3).

Finally, let π : C
′ → C and π ′′ : C

′′ → C be coverings of C satisfying (C3),

and assume that there exist b′ ∈ A′, b′′ ∈ A′′ such that π(b′) = π ′′(b′′) = a and

Fπ (End(b′)) = Fπ ′′(End(b′′)) = U . We have to show that C
′ and C

′′ are equivalent

Cartan schemes. Define φ : A′ → A′′ by

φ(ρ ′
i1

· · · ρ ′
ik
(b′)) = ρ ′′

i1
· · · ρ ′′

ik
(b′′) for all k ∈ N0, i1, . . . , ik ∈ I .
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Then φ is well-defined: Assume that ρ ′
i1

· · · ρ ′
ik
(b′)= b′. Then σi1

· · · σ b′

ik
∈ End(b′),

and hence an application of π and Fπ gives ρi1
· · · ρik

(a) = a, σi1
· · · σ a

ik
∈ U .

Thus Fπ ′′(σi1
· · · σ b′′

ik
) ∈ U , and hence Lemma 3.3(2) gives that ρ ′′

i1
· · · ρ ′′

ik
(b′′) = b′′.

The compatibility of φ with ρ ′, ρ ′′, C ′b′

, C ′′b′′

is fulfilled by Definition 3.1 and by

definition of φ. Further, φ : A′ → A′′ is a bijection, the construction of φ−1 being

analogous. Hence φ gives rise to an equivalence of the Cartan schemes C
′ and

C
′′. �

Definition 3.5. We say that a Cartan scheme C is simply connected if End(a) is

the trivial group for all a ∈ A.

Corollary 3.6. Let C be a connected Cartan scheme satisfying (C3). Then up to

equivalence there exists a unique covering C
′ of C which is simply connected and

satisfies (C3).

As usual, this simply connected covering of C is called the universal covering.

Proof. The claim follows from Proposition 3.4(2) by setting U = {1}. �

Proposition 3.7. Let C, C
′ be connected Cartan schemes and π : C

′ → C a cover-

ing.

(1) If there exists a root system R
′ of type C

′, then the equations

Ra =
⋂

a′∈A′

π(a′)=a

R′a′

for all a ∈ A (3-4)

define a root system R of type C.

(2) If there exists a root system R of type C, and C
′ satisfies (C3), then the equa-

tions

R′a′

= Rπ(a′) for all a′ ∈ A′ (3-5)

define a root system R
′ of type C

′.

Proof. (1) By Definition 3.1 and Axioms (R1)–(R4) for R
′, the Axioms (R1)–(R4)

are fulfilled for R.

(2) Since Axioms (R1)–(R3) hold for R, they also hold for R
′. Suppose that i, j ∈ I

and a′ ∈ A′ such that i 6= j and that ma′

i, j = ma
i, j is finite, where a = π(a′). Then

(σiσ j )
ma

i, j 1a = ida by Theorem 2.6. Hence (σiσ j )
ma

i, j 1a′ = id, and (C3) for C
′

implies that (ρ ′
iρ

′
j )

ma′

i, j (a′) = a′. Thus (R4) holds for R
′ and hence R

′ is a root

system of type C
′. �
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4. Continued fractions

Continued fractions are related to Weyl groupoids of Cartan schemes of rank two.

We recall some basic facts about continued fractions and formulate the facts we

will use in our study.

A continued fraction is a sequence of indeterminates a1, a2, a3, . . ., b0, b1, . . .

written in the form

b0 +
a1|

|b1

+
a2|

|b2

+ · · · = b0 +
a1

b1 +
a2

b2 + . . .

(4-1)

(see [Perron 1929] for an introduction). We assume the ai and bi are integers. The

convergents of (4-1) are the numbers

Aν

Bν

= b0 +
a1|

|b1

+
a2|

|b2

+ · · · +
aν |

|bν

,

for ν ∈ N, also given by the recursion

(

B0 A0

B−1 A−1

)

=

(

1 b0

0 1

)

,

(

bν aν

1 0

) (

Bν−1 Aν−1

Bν−2 Aν−2

)

=

(

Bν Aν

Bν−1 Aν−1

)

. (4-2)

One says that the continued fraction (4-1) is convergent if, for some ν0 ∈ N, the

sequence (Aν/Bν)ν≥ν0
is well-defined and converges in R.

The case where all aν are 1 is the most important one and well understood.

However, we will be interested in a different case: From now on, let aν = −1,

bν ∈ N for all ν and assume that the sequence b1, b2, . . . is periodic. For any

i ∈ Z, let

η(i) =

(

i −1

1 0

)

∈ SL(2, Z). (4-3)

We will often need the following equations, which hold for all i, j, k ∈ Z.

η(i)−1 =

(

0 1

−1 i

)

, (4-4)

η(i)η( j) =

(

i j − 1 −i

j −1

)

, (4-5)

η(i)η( j)η(k) =

(

(i j−1)k − i −(i j−1)

jk − 1 − j

)

, (4-6)

τη(i)τ = η(i)−1, τη(i)−1τ = η(i), (4-7)

where

τ =

(

0 1

1 0

)

. (4-8)
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By (4-2),
(

Bn

Bn−1

)

= η(bn) · · · η(b1)

(

B0

B−1

)

.

The product η(bn) · · · η(b1) will appear in the study of Weyl groupoids of rank two.

In particular, we will need to know for which sequences bn, . . . , b1 this product

has finite order. If it has finite order, then, since B−1 = 0, there exists ν ∈ N such

that Bν = 0.

The following fact is well-known. Variations of it were considered for example

by Stern, Pringsheim, and Tietze; see respectively Satz 15 (§51), Satz 24 (§53),

and Satz 1 (§35) in [Perron 1929].

Theorem 4.1. If aν = −1 and bν ≥ 2 for all ν ∈ N, then the continued fraction
a1|
|b1

+
a2|
|b2

+ · · · is convergent.

Thus we get:

Corollary 4.2. Let n ∈ N and b1, . . . , bn ∈ Z. If bi ≥ 2 for all i ∈ {1, . . . , n}, then

η(b1) · · · η(bn) does not have finite order.

Proof. Assume bi ≥ 2 for all i ∈ {1, . . . , n}. If η(b1) · · · η(bn) had finite order, then

the periodic continued fraction

−1|

|bn

+
−1|

|bn−1

+ · · · +
−1|

|b1

+
−1|

|bn

+
−1|

|bn−1

+ · · · +
−1|

|b1

+
−1|

|bn

+ · · ·

would have infinitely many convergents with denominator 0. This is a contradiction

to Theorem 4.1. �

One can also prove Corollary 4.2 without Theorem 4.1, using for example

[Heckenberger 2008, Lemma 9].

5. Distinguished finite sequences of integers

We now study a special class of finite sequences of positive integers. They corre-

spond to a class of continued fractions which are not convergent. Later we will use

these sequences to classify finite root systems of type C and rank two. Recall the

definition of the map η : Z → SL(2, Z) from (4-3).

Definition 5.1. Let A denote the set of finite sequences (c1, . . . , cn) of integers

such that n ≥ 1 and η(c1) · · · η(cn) = −id. Let A
+ be the subset of A formed by

those (c1, . . . , cn) ∈ A, for which ci ≥ 1 for all i ∈ {1, . . . , n} and the entries in the

first column of η(c1) · · · η(ci ) are nonnegative for all i < n.

The following lemma will be crucial for our analysis of A
+. It is related to

a well-known transformation formula for continued fractions [Perron 1929, §37,

Equations (1), (2)].
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Lemma 5.2. Let n ≥ 3 and c = (c1, 1, c3, c4, . . . , cn) such that ci ∈ Z for all

i ∈ {1, . . . , n}. Let c′ = (c1 − 1, c3 − 1, c4, . . . , cn).

(1) c′ ∈ A if and only if c ∈ A.

(2) c′ ∈ A
+ if and only if c ∈ A

+, c1, c3 ≥ 2.

(3) If c ∈ A
+, then either n = 3, c1 = c3 = 1 or n > 3, c1, c3 ≥ 2.

Proof. If i, k ∈ Z, then

η(i)η(1)η(k) =

(

ik − i − k 1 − i

k − 1 −1

)

= η(i − 1)η(k − 1)

by (4-5) and (4-6). This gives (1). By (4-5), the first column of η(c1)η(1) contains

only nonnegative integers if and only if c1 ≥ 1. Thus (2) holds. Let c ∈ A
+ such

that c1 = 1 or c3 = 1. Then (4-6) gives that the upper left entry of η(c1)η(1)η(c3) is

−1, and hence n = 3. Then c ∈ A implies that c1 = c3 = 1. Hence (3) is proven. �

Proposition 5.3. Let n ∈ N and (c1, . . . , cn) ∈ A
+.

(1) Let i, j ∈ {1, . . . , n} with i ≤ j and (i, j) 6= (1, n). Then

η(ci )η(ci+1) · · · η(c j ) ∈ SL(2, Z)

such that the first column contains only nonnegative and the second only non-

positive integers.

(2) Let i ∈ {1, . . . , n}. Then (ci , ci+1, . . . , cn, c1, . . . , ci−1) ∈ A
+.

(3) (cn, cn−1, . . . , c2, c1) ∈ A
+.

(4) If n ≤ 3 then (c1, . . . , cn) = (1, 1, 1).

Proof. (1) We proceed by induction on the lexicographically ordered pairs (i, j).

If i = j then we are done, since the matrix η(ci ) satisfies the claim.

Let i, j ∈ {1, . . . , n} with i < j and (i, j) 6= (1, n). Assume that the claim holds

for all pairs (i ′, j ′) ∈ {1, . . . , n} such that i ′ ≤ j ′ and either i ′ < i or i ′ = i , j ′ < j .

Let

η(ci ) · · · η(c j ) =

(

a −b

c −d

)

with a, b, c, d ∈ Z. Clearly, −ad + bc = 1 since η(k) ∈ SL(2, Z) for all k ∈ Z.

Moreover, (4-4) gives that

η(ci ) · · · η(c j−1) =

(

a −b

c −d

) (

0 1

−1 c j

)

=

(

b −(bc j − a)

d −(dc j − c)

)

.

Hence b, d ≥ 0 by induction hypothesis.
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If i = 1, then a, c ≥ 0 by definition of A
+ and the assumption (i, j) 6= (1, n),

and hence we are done. Otherwise

η(ci−1) · · · η(c j ) =

(

ci−1 −1

1 0

) (

a −b

c −d

)

=

(

ci−1a − c d − ci−1b

a −b

)

,

and hence a > 0 by induction hypothesis. Since a, b, d ≥ 0, we get bc = 1+ad ≥ 1,

and hence c > 0, which proves the claim.

(2) It suffices to prove the claim for i = 2. If η(c1) · · · η(cn) = −id, then clearly

η(c2) · · · η(cn)η(c1) = −id. Let j ∈ {2, . . . , n}. Then the entries in the first column

of η(c2) · · · η(c j ) are nonnegative by part (1) of the proposition. This gives (2).

(3) Recall the definition of τ in (4-8). Then (4-7) gives that

η(cn)η(cn−1) · · · η(c1) = τη(cn)
−1η(cn−1)

−1 · · · η(c1)
−1τ = −id

since η(c1) · · · η(cn) = −id. Therefore (cn, cn−1, . . . , c1) ∈ A.

Let 2 ≤ i ≤ n and assume that

η(ci )η(ci+1) · · · η(cn) =

(

a −b

c −d

)

for some a, b, c, d ∈ Z. Then a, b, c, d ≥ 0 and bc − ad = 1 by part (1) of the

proposition. We obtain that

η(cn) · · · η(ci ) = τη(cn)
−1 · · · η(ci )

−1τ

=

(

0 1

1 0

) (

−d b

−c a

) (

0 1

1 0

)

=

(

a −c

b −d

)

.

Thus (cn, cn−1, . . . , c1) ∈ A
+.

(4) Equations η(c1) = −id, η(c1)η(c2) = −id have no solutions with c1, c2 ∈ N by

(4-3), (4-5). Let now n = 3 and c1, c2, c3 ∈ N. If c1, c2, c3 ≥ 2, then (c1, c2, c3) /∈ A

by Corollary 4.2. Otherwise c1 = c2 = c3 = 1 by Lemma 5.2(3) and part (2) of the

proposition. Relation (1, 1, 1) ∈ A
+ holds by (4-5) with i = j = 1. �

By Proposition 5.3(2) and (3), the dihedral group Dn of 2n elements, where

n ∈ N, acts on sequences of length n in A
+ by cyclic permutation of the entries

and by reflections. This action gives rise to an equivalence relation ∼ on A
+ by

taking the orbits of the action as equivalence classes. For brevity we will usually

not distinguish between elements of A
+ and A

+/∼. By Proposition 5.3(4) there

is precisely one element of A
+/∼ of length 3.

Lemma 5.2 suggests to introduce a further equivalence relation ≈ on A
+. Let

n, m ∈ N with m ≥ n, and let c = (c1, . . . , cn), d = (d1, . . . , dm) ∈ A
+. We write

c ≈′ d if and only if m = n, c ∼ d or m = n+1, d = (c1+1, 1, c2+1, c3, c4, . . . , cn).
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t t · · · t?
t t · · · t

t t · · · t

1

1

2 ?

Figure 1. Left: chain diagram. Right: cycle diagram.

Definition 5.4. Let c, d ∈ A
+. Write c ≈ d if and only if there exists k ∈ N and a

sequence c = e1, e2, . . . , ek =d of elements of A
+, such that ei ≈′ ei+1 or ei+1 ≈′ ei

for all i ∈ {1, 2, . . . , k − 1}.

Clearly, ≈ is an equivalence relation on A
+. We are interested in the equivalence

classes of A
+/≈.

Theorem 5.5. The only element of A
+/≈ is (1, 1, 1).

Proof. Let n ≥ 1 and c = (c1, . . . , cn) ∈ A
+. By Proposition 5.3(4) it suffices to

prove that if n ≥ 4, then c ≈ c′ for some c′ = (c′
1, c′

2, . . . , c′
n−1) ∈ A

+.

Assume that n ≥ 4. By Corollary 4.2 there exists i ∈ {1, . . . , n} such that ci = 1.

By Proposition 5.3(2) and the definition of ≈ we may assume that c2 = 1. Now

apply Lemma 5.2(2) and (3) to obtain the desired c′ ∈ A
+. �

Corollary 5.6. If n ∈ N, (c1, . . . , cn) ∈ A
+, then

∑n
i=1 ci = 3(n − 2).

Proof. The expression
∑n

i=1 ci −3(n−2) is zero for c = (1, 1, 1) and is an invariant

of ≈. �

6. Connected root systems of rank two

Throughout this section I will denote a two-element set, A a finite set, and C =

C(I, A, (ρi )i∈I , (C
a)a∈A) a connected Cartan scheme. Since ρ2

i = id for all i ∈ I ,

and C is connected, the object change diagram of C is either a chain (if ρi has a

fixed point for some i ∈ I ) or a cycle; see Figure 1.

Recall that an element w ∈ Hom(W(C)) is called even if det(w) = 1.

Lemma 6.1. The object change diagram of C is a cycle if and only if End(a)

contains only even elements (for all a ∈ A).

Proof. If the object change diagram of C is a cycle, then for all a ∈ A, End(a)

consists of the elements (σiσ j )
k|A|/21a , where k ∈ Z and I = {i, j}. These are all

even. Otherwise the object change diagram of C is a chain, and there exists a ∈ A

and i ∈ I such that ρi (a) = a. Then End(a) is generated by σ a
i and (σ jσi )

|A|−1σ a
j

which are odd. �

Assume that C admits a finite root system. The next proposition explains the

relationship between the ma
i, j and the number |A| of objects. For this, we need the

following standard lemma.
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Lemma 6.2. Let M ∈ GL(2, Z). If the order e of M is finite, then

−2 ≤ tr(M) ≤ 2, e ∈ {1, 2, 3, 4, 6}.

Proposition 6.3. Assume that I = {i, j} and that C admits a finite root system.

Then ma
i, j = ma

j,i = |Ra
+| for all objects a. If the object change diagram is a cycle,

then ma
i, j = 1

2
m |A| for some m ∈ {1, 2, 3, 4, 6}. If it is a chain, then ma

i, j = m |A|

with the same possibilities for m.

Proof. We have ma
i, j = ma

j,i = |Ra
+| by Definition 2.3 for all objects a. Axiom (R3)

from the same definition implies that ma
i, j does not depend on a. Let d = |A| if the

object change diagram is a chain and d = |A|/2 if it is a cycle. Then (σ jσi )
k1a ∈

End(a), k ∈ N0, if and only if k ∈ N0d. Theorem 2.6 and Lemma 6.2 give that

md = ma
i, j for some m ∈ {1, 2, 3, 4, 6}. �

We are going to give a characterization of finite connected irreducible root

systems of type C. First we analyze root systems with simply connected Cartan

schemes.

Lemma 6.4. Assume that C is simply connected and that R is a finite root system

of type C. Then the object change diagram of C is a cycle with |Ra| vertices, where

a ∈ A.

Proof. Since C is simply connected, End(a) = {1} for all a ∈ A. By Lemma 6.1

the object change diagram of C is a cycle. Now
∣
∣Hom(W(C))1a

∣
∣ = |A| ·

∣
∣End(a)

∣
∣

since C is connected. Again, C is simply connected, hence |A| =
∣
∣Hom(W(C))1a

∣
∣.

This is equal to 2|Ra
+| by Theorem 2.6, since |I | = 2. �

Proposition 6.5. Assume that I = {i, j} and that R is a finite irreducible root sys-

tem of type C. Let a ∈ A and n =|Ra
+|. Let a1, a2, . . . , a2n ∈ A and c1, c2, . . . , c2n ∈

Z such that

a2r−1 = (ρ jρi )
r−1(a), a2r = ρi (ρ jρi )

r−1(a),

c2r−1 = −c
a2r−1

i j , c2r = −c
a2r

j i

(6-1)

for all r ∈ {1, 2, . . . , n}. Then (c1, c2, . . . , cn) ∈ A
+, cn+r = cr for all r ∈

{1, 2, . . . , n}, and ρ j (a2n) = a.

Proof. For all r ∈ Z let ir ∈ I such that ir = i for r odd and ir = j for r even. Let

θ2r−1 = σ
a2r−1

i τ , θ2r = τσ
a2r

j ∈ SL(2, Z) for all r ∈ {1, . . . , n}. Then θr = η(cr ) for

all r ∈ {1, . . . , 2n}. Since R is irreducible, cr > 0 for all r . By Lemmas 4 and 7 of

[Heckenberger and Yamane 2008], ℓ(σ
an

in
· · · σ

a2

i2
σ a

i1
) = n. Hence

σ
an

in
· · · σ

a2

i2
σ a

i1
({α1, α2}) = {−α1, −α2}
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by Lemma 8(iii) of the same work. Thus θn · · · θ2θ1({α1, α2}) = {−α1, −α2}, and

since det θr =1 for all r , we conclude that θn · · · θ2θ1 =−id. Hence (cn, . . . , c2, c1)

lies in A.

Clearly, if 2 ≤ r ≤ n, then the first column of θn · · · θr+1θr has nonnegative

entries if and only if σin
· · · σir+1

σ
ar

ir
(αir−1

) is a positive root. The latter is true by

[Heckenberger and Yamane 2008, Lemma 4], and hence (cn, . . . , c2, c1) ∈ A
+.

Then (c1, c2, . . . , cn) ∈ A
+ by Proposition 5.3(3).

Replacing in the construction a by a2 and i by j , we find that (c2, . . . , cn, cn+1)

lies in A
+. Then η(c1)

−1 = −η(c2) · · · η(cn) = η(cn+1)
−1, and hence c1 = cn+1.

Thus cn+r = cr for all r ∈ {1, 2, . . . , n} by induction on r . Finally, ρ j (a2n) =

(ρ jρi )
n(a) = a by (R4). �

The construction in Proposition 6.5 associates to any pair (i, a) ∈ I × A a se-

quence (c1, c2, . . . , cn) ∈ A
+. This defines a map

8 : I × A → A
+.

Proposition 6.5 gives immediately, that

8( j, a) = (cn, cn−1, . . . , c1), 8( j, ρi (a)) = (c2, c3, . . . , cn, c1). (6-2)

Thus, by definition of ∼, the induced map 8 : I × A → A
+/∼ is constant. But we

can say more.

Theorem 6.6. Let n ∈ N and c = (c1, c2, . . . , cn) ∈ A
+. Then there is a unique (up

to equivalence) finite connected irreducible root system R with simply connected

Cartan scheme of rank two such that c ∈ Im 8.

Proof. Assume that c ∈ A
+, R is a connected irreducible root system of rank two,

i ∈ I , and a ∈ A such that 8(i, a) = c. If the Cartan scheme of R is simply

connected, then by Lemma 6.4 and Proposition 6.5 the object change diagram of

R is a cycle and |A| = 2n. The Cartan matrices Ca and the sets Ra , where a ∈ A,

are then uniquely determined by the construction in Proposition 6.5. Thus R is

uniquely determined. We describe R explicitly.

Let I = {i, j} and let A = {a1, . . . , a2n} be a set with 2n elements. Define

ρi , ρ j : A → A such that

ρi (a2r−1) = a2r , ρi (a2r ) = a2r−1,

ρ j (a2r ) = a2r+1, ρ j (a2r+1) = a2r

(6-3)

for all r ∈ {1, 2, . . . , n}, where a2n+1 = a1. Then ρ2
i = ρ2

j = id. Let cln+r = cr for

all r ∈ {1, 2, . . . , n} and l ∈ Z, and define

Ca2r−1 =

(

2 −c2r−1

−c2r−2 2

)

, Ca2r =

(

2 −c2r−1

−c2r 2

)

(6-4)
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for all r ∈{1, 2, . . . , n}. Since cr ∈N for all r ∈{1, 2, . . . , 2n}, the matrices Car sat-

isfy (M1) and (M2). Since also (C1) and (C3) hold, C = C(I, A, (ρi , ρ j ), (C
a)a∈A)

is a connected Cartan scheme.

Now define

Ra2r−1 =
{

±η(c2r−1)η(c2r ) · · · η(c2r−2+l)
(

1
0

) ∣
∣ 0 ≤ l ≤ n − 1

}

,

Ra2r =
{

±τη(c2r )η(c2r+1) · · · η(c2r+l−1)
(

1
0

) ∣
∣ 0 ≤ l ≤ n − 1

}

,

for all r ∈ {1, 2, . . . , n}. Note that |Ra
+| = n for all a ∈ A. Indeed, otherwise

η(cr )η(cr+1) · · · η(cr+l−1)
(

1
0

)

=
(

1
0

)

for some r ∈ {1, . . . , 2n} and l ∈ {1, . . . , n−1}.

Then

η(cr+1)η(cr+2) · · · η(cr+l−1)
(

1
0

)

= η(cr )
−1

(
1
0

)

=
(

0
−1

)

,

a contradiction to Proposition 5.3(1) and (2).

Axiom (R1) is fulfilled by Proposition 5.3(2). Let r ∈ {1, 2, . . . , 2n}. Equation

η(cr )η(cr+1) · · · η(cr+n−1) = −id implies that

η(cr )η(cr+1) · · · η(cr+n−2) = −η(cr+n−1)
−1,

and hence ±α1, ±α2 ∈ Rar . Since τ, η(l) ∈ SL(2, Z) for all l ∈ Z, we get (R2).

(R4) holds by (6-3), since |Ra
+| = n for all a ∈ A.

Now we prove (R3). Let r ∈{1, 2, . . . , 2n}. Then σ
ar

i =η(−c
ar

i j )τ = τη(−c
ar

i j )
−1

by (6-4), (4-7). If r is odd, then

σ
ar

i (Rar ) = τη(cr )
−1

({

±η(cr )η(cr+1) · · · η(cr+l−1)
(

1
0

) ∣
∣ 0 ≤ l ≤ n − 1

})

⊂ Rar+1 = Rρi (ar ),

and if r is even, then

σ
ar

i (Rar ) = η(cr−1)τ
({

±τη(cr )η(cr+1) · · · η(cr+l−1)
(

1
0

) ∣
∣ 0 ≤ l ≤ n − 1

})

⊂ Rar−1 = Rρi (ar ).

Similarly, σ
ar

j = τη(cr−1) for odd r and σ
ar

j = η(cr )
−1τ for even r . Hence

σ
ar

j (Rar ) ⊂ Rρ j (ar ), (R3) holds, and R is a finite irreducible root system of type

C. The Cartan scheme C is simply connected, since
∣
∣Hom(W(C))1a1

∣
∣ = 2n = |A|

and (c1, . . . , cn) ∈ A. Finally, 8(i, a1) = (c1, . . . , cn) because of (6-1), (6-3), and

(6-4). �

Corollary 6.7. Assume that there is a finite root system R of type C. Then there

are a ∈ A and i, j ∈ I with i 6= j such that ca
i j = 0 or ca

i j = −1.

Proof. If R is not irreducible, then Ca
i j = 0 for all a ∈ A and i, j ∈ I with i 6= j ;

see the end of Section 2. Otherwise Proposition 6.5 gives that the negatives of the
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entries of the Cartan matrices of C give rise to a sequence (c1, . . . , cn) ∈ A
+. By

Corollary 4.2, this sequence has an entry 1, and the corollary is proven. �

Remark 6.8. The assumption in Corollary 6.7 can be weakened for example by

requiring only that W(C) is finite. We don’t work out the details, since we are

mainly interested in Cartan schemes admitting (finite) root systems.

We are going to give a very effective algorithm to decide if our given con-

nected Cartan scheme C admits a finite irreducible root system. The central notions

towards this will be the characteristic sequences and centrally symmetric Cartan

schemes. Our algorithm can also be used to get a more precise classification of

root systems of rank two, for example in form of explicit lists for a given number

of objects.

Definition 6.9. Assume that the object change diagram of C is a cycle. Let i ∈ I ,

a ∈ A, and define a1, . . . , a|A| ∈ A and c1, . . . , c|A| ∈ N0 by

a2k−1 = (ρ jρi )
k−1(a), a2k = (ρiρ j )

k−1ρi (a),

c2k−1 = −c
a2k−1

i j , c2k = −c
a2k

j i

for all k ∈ {1, 2, . . . , |A|/2}, where I = {i, j}. Then (c1, c2, . . . , c|A|) is called

the characteristic sequence of C with respect to i and a. The Cartan scheme C is

termed centrally symmetric if ck = ck+|A|/2 for all k ∈ {1, 2, . . . , |A|/2}. In this

case we write also (c1, c2, . . . , c|A|/2)
2 for (c1, c2, . . . , c|A|).

Remark 6.10. Let (c1, c2, . . . , c|A|) be the characteristic sequence of C with re-

spect to i and a. Then the characteristic sequences with respect to j and a and i

and ρi (a), respectively, are (c|A|, c|A|−1, . . . , c1) and (c1, c|A|, c|A|−1, . . . , c3, c2),

respectively. Thus if C is centrally symmetric with respect to i and a, it is also

centrally symmetric with respect to j and a and i and ρi (a), respectively. Since

C is connected, this means that C being centrally symmetric is independent of the

choice of i ∈ I and a ∈ A.

Remark 6.11. Characteristic sequences must not be confused with elements of A

or A
+. Their precise relationship will not be needed in the sequel, so we don’t

work it out in detail.

Remark 6.12. Let n ∈ N and let c = (c1, c2, . . . , c2n) be a sequence of positive

integers. By axioms (M1) and (C3) there is a unique (up to equivalence) connected

Cartan scheme C with object change diagram a cycle, such that the characteristic

sequence of C (with respect to some i ∈ I and a ∈ A) is c.

Remark 6.13. Assume that C is simply connected, and that there exists a finite

irreducible root system of type C. Then C is centrally symmetric by Lemma 6.4

and Proposition 6.5.



334 Michael Cuntz and István Heckenberger

Remark 6.14. Assume that the object change diagram of C is a cycle. By Lemma

6.1 and Proposition 3.4 the object change diagram of an n-fold covering C
′ of

C, where n ∈ N, is a cycle. The characteristic sequence of C
′ is just the n-fold

repetition of the characteristic sequence of C. Thus an n-fold covering of C is

centrally symmetric if and only if C is centrally symmetric or n is even.

Lemma 6.15. Assume that there exists a finite irreducible root system of type C.

Suppose that the object change diagram of C is a chain. Then there is a unique

double covering C
′ of C and a finite irreducible root system of type C

′ such that the

object change diagram of C
′ is a cycle.

Proof. By assumption there exists a ∈ A and i ∈ I such that ρi (a)=a. Then End(a)

is generated by σ a
i and τ a = (σ jσi )

|A|−1σ a
j , where I = {i, j}. Since σ a

i , τ a are

reflections, for the subgroup U =〈σ a
i τ a〉⊂ End(a) we obtain that [End(a) :U ]= 2,

and U consists of even elements. By Proposition 3.4(2) there exists a unique double

covering C
′ of C satisfying Axiom (C3) such that End(a′) ≃ U for all a′ ∈ A′. By

Lemma 6.1 the object change diagram of C
′ is a cycle. The uniqueness of C

′

holds, since U is the unique subgroup of End(a) consisting of even elements and

satisfying [End(a) : U ] = 2. The existence of a finite irreducible root system of

type C
′ follows from Proposition 3.7(2). �

Remark 6.16. If C
′ is a Cartan scheme with object change diagram a cycle, then

C
′ is the double covering of a Cartan scheme with object change diagram a chain

if and only if there exist i ∈ I ′, a ∈ A′, such that the characteristic sequence of

C
′ with respect to i and a is of the form (c1, . . . , cn, cn+1, cn, cn−1, . . . , c2) with

n = |A′|/2 and c1, . . . , cn+1 ∈ N0.

Lemma 6.17. Assume that there exists a finite irreducible root system of type C.

Suppose that the object change diagram of C is a cycle, and that C is not centrally

symmetric. Then there is a unique double covering C
′ of C which admits a (finite

irreducible) root system. The Cartan scheme C
′ is centrally symmetric.

Proof. Since the object change diagram of C is a cycle, End(a) is cyclic for all

a ∈ A. The universal covering of C is centrally symmetric by Remark 6.13. Since

C is not centrally symmetric, |End(a)| is even by Remark 6.14 and Proposition

3.4(2). By Proposition 3.4(2) there is a unique double covering C
′ of C satisfying

(C3). It admits a finite irreducible root system of type C
′ by Proposition 3.7(2). All

coverings of C admitting a root system fulfill (C3). Hence C
′ is the only double

covering of C admitting a root system. This C
′ is centrally symmetric by Remark

6.14. �

Remark 6.18. Let C
′ be a Cartan scheme with object change diagram a centrally

symmetric cycle, and n = |A′|. Then C
′ is the double covering of a Cartan scheme

with object change diagram a not centrally symmetric cycle if and only if n ∈ 4N,
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and with respect to one (equivalently, all) pair (i ′, a′) ∈ I ′ × A′ the characteristic

sequence of C
′ is not of the form

(c1, c2, . . . , cn/4, c1, c2, . . . , cn/4)
2,

where c1, . . . , cn/4 ∈ N0.

In order to decide if a given connected Cartan scheme admits a finite root sys-

tem, Lemmas 6.15 and 6.17 allow us to concentrate on centrally symmetric Cartan

schemes. Further, since the classification of finite root systems with at most three

objects is known [Cuntz and Heckenberger 2008], we may assume that the Cartan

scheme has at least 4 objects.

For any matrix C , let C t denote the transpose of C .

Theorem 6.19. Let C = C(I, A, (ρi )i∈I , (C
a)a∈A) be a connected centrally sym-

metric Cartan scheme with |A| ≥ 4.

(1) Assume that the characteristic sequence of C contains 0. Then ca
i j = 0 for all

a ∈ A and i, j ∈ I with i 6= j . Moreover, C admits a finite root system if and

only if |A| = 4.

(2) If all entries of the characteristic sequence of C are at least two, then C does

not admit a finite root system.

(3) Assume that the characteristic sequence of C is of the form

c = (c1, 1, c3, c4, . . . , c|A|/2)
2.

(Thus 0 /∈ {c1, . . . , c|A|/2} by (1).) If c1 = 1 or c3 = 1, then there is a finite root

system of type C if and only if |A| = 6 and c1 = c3 = 1. If c1 > 1 and |A| = 4,

then there is a finite root system of type C if and only if c1 ∈ {2, 3}. If c1 > 1,

c3 > 1, and |A| ≥ 6, then there is a finite root system of type C if and only if

the Cartan scheme with object change diagram a cycle with |A|−2 edges and

with characteristic sequence

(c1 − 1, c3 − 1, c4, . . . , c|A|/2)
2 (6-5)

admits a finite root system.

Proof. (1) follows from (M2), (C3), and (R4), and (2) from Corollary 6.7.

(3) If c1 = 1 or c3 = 1, then there exists a ∈ A such that ca
i j = ca

ji = −1, where

I = {i, j}. Then Lemma 4.8 of [Cuntz and Heckenberger 2008] gives that ma
i, j = 3

and cr = 1 for all r ∈ {1, 3, 4, . . . , |A|/2}. By (R4) we get |A| = 6.

Assume next that c1 > 1 and |A| = 4. Then Ca = Cb for all a, b ∈ A, and hence

C admits a finite root system if and only if Ca is of finite type and (R4) holds (see

Theorem 3.3 of the same reference), that is, c1 ∈ {2, 3}.
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Finally, assume that c1 > 1, c3 > 1, |A| ≥ 6, and C admits a finite root system.

By Proposition 3.7, the universal covering C
′ of C admits a finite root system.

Hence A′ is finite by (C1) and (R4). Therefore End(a) ⊂ Hom(W(C)) is finite for

all a ∈ A by (3-3). Let m = |End(a)|. Remark 6.14 and Lemma 6.4 tell that the

object change diagram of C
′ is a centrally symmetric cycle, and the characteristic

sequence of C
′ is an m-fold repetition of c. Let

c̃ = (c1, 1, c3, c4, . . . , c|A|/2).

By Proposition 6.5 the m-fold repetition of c̃ is an element of A
+. Since |A| ≥ 6,

Lemma 5.2(2) gives that the m-fold repetition of

c̃′ = (c1 − 1, c3 − 1, c4, . . . , c|A|/2)

is in A
+. Let C

′′ be the connected simply connected Cartan scheme which cor-

responds to the m-fold repetition of c̃′ via Theorem 6.6. It admits a finite root

system. Now C
′′ is the m-fold covering of a Cartan scheme C

′′′ with characteristic

sequence given in (6-5). Hence Proposition 3.7 gives that C
′′′ admits a finite root

system.

We have shown that if C admits a finite root system, then also C
′′′. The proof

of the converse goes in the same way, and we are done. �

Example 6.20. Consider the connected Cartan scheme C of rank two with 4 ob-

jects, object change diagram a cycle and characteristic sequence (5, 1, 2, 2). To

check that C admits a finite root system, consider the double covering C
′ corre-

sponding to the characteristic sequence (5, 1, 2, 2)2. By Proposition 3.7, C admits

a finite root system if and only if C
′ does. Theorem 6.19(3) allows one to replace

C
′ by the Cartan scheme with characteristic sequence (4, 1, 2)2 and then (3, 1)2.

Thus C admits a finite root system.

If we start with the characteristic sequence (5, 1, 2, 3) for C, then the analogous

arguments produce the characteristic sequences (5, 1, 2, 3)2, (4, 1, 3)2 and (3, 2)2,

and then C does not admit a finite root system by Theorem 6.19(2).

Example 6.21. Theorem 6.19 also enables us to list all connected centrally sym-

metric Cartan schemes which admit a finite root system to a fixed number of ob-

jects. For example if |A| = 4, then there are 3 such schemes and they belong to the

characteristic sequences (0, 0)2, (1, 2)2, (1, 3)2. Therefore by Theorem 6.19(2) and

(3), the only connected centrally symmetric Cartan schemes (up to equivalence)

which have 6 objects and admit a finite root system are those that correspond to

the characteristic sequences (1, 1, 1)2, (2, 1, 3)2 and (2, 1, 4)2, and, if |A| = 8,

then we obtain (2, 1, 2, 1)2, (3, 1, 2, 3)2, (2, 2, 1, 4)2, (3, 1, 4, 1)2, (3, 1, 2, 4)2,

(2, 2, 1, 5)2 and (3, 1, 5, 1)2. Similarly, we have 15, 47, 136 connected centrally
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symmetric Cartan schemes up to equivalence with 10, 12, 14 objects, respectively,

admitting a finite root system.

According to Lemma 6.17 and the above lists for |A| = 4 and |A| = 8, the

complete list of all characteristic sequences to irreducible Cartan schemes which

admit a finite root system, with object change diagram a cycle and 4 objects is thus:

(1, 2, 1, 2), (1, 3, 1, 3), (3, 1, 2, 3), (2, 2, 1, 4), (3, 1, 4, 1), (3, 1, 2, 4), (2, 2, 1, 5),

(3, 1, 5, 1).

Remark 6.16 and the list for |A| = 8 also supports us with Cartan schemes

with 4 objects which admit a finite root system and have a chain as object change

diagram. The symmetry property mentioned in Remark 6.16 is fulfilled for the

sequences (2, 1, 2, 1)2 (also in the form (1, 2, 1, 2)2), (3, 1, 4, 1)2 (also in the form

(4, 1, 3, 1)2), and (3, 1, 5, 1)2 (also in the form (5, 1, 3, 1)2). This yields the fol-

lowing 6 Cartan schemes with 4 objects (the Cartan matrices represent the objects).

(

2 −2

−1 2

)

2
—–

(

2 −2

−1 2

)

1
—–

(

2 −2

−1 2

)

2
—–

(

2 −2

−1 2

)

(

2 −1

−2 2

)

2
—–

(

2 −1

−2 2

)

1
—–

(

2 −1

−2 2

)

2
—–

(

2 −1

−2 2

)

(

2 −3

−1 2

)

2
—–

(

2 −4

−1 2

)

1
—–

(

2 −4

−1 2

)

2
—–

(

2 −3

−1 2

)

(

2 −4

−1 2

)

2
—–

(

2 −3

−1 2

)

1
—–

(

2 −3

−1 2

)

2
—–

(

2 −4

−1 2

)

(

2 −3

−1 2

)

2
—–

(

2 −5

−1 2

)

1
—–

(

2 −5

−1 2

)

2
—–

(

2 −3

−1 2

)

(

2 −5

−1 2

)

2
—–

(

2 −3

−1 2

)

1
—–

(

2 −3

−1 2

)

2
—–

(

2 −5

−1 2

)

To complete the classification of all connected Cartan schemes with finite root sys-

tem and 4 objects, it remains to calculate all connected Cartan schemes with finite

root system and 8 objects with object change diagram a not centrally symmetric

cycle, and then to apply Remark 6.16 to them, as indicated above, to get all chains

with 4 objects. This is certainly an easy task for a computer but there are too many

such Cartan schemes to list them here.

7. Bounds

Let C = C(I, A, (ρi )i∈I , (C
a)a∈A) be a connected Cartan scheme of rank two ad-

mitting a finite irreducible root system of type C. Then A is finite by (C1) and

(R4). Let −q = −q(C) denote the sum of all nondiagonal entries of the Cartan
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matrices of C, and h = |End(a)| for an a ∈ A. Then |End(b)| = h for all b ∈ A,

since C is connected.

Theorem 7.1. We have h(6|A| − q) = 24 and

|Ra
+| =

h|A|

2
=

12|A|

6|A| − q
.

Proof. The universal covering C
′ of C has h|A| objects by (3-3), and q(C′)/4 =

3(h|A|/2 − 2) by Proposition 6.5 and Corollary 5.6. Since q(C′) = hq(C), we

obtain that hq = 6(h|A| − 4). Hence h(6|A| − q) = 24. Lemma 6.4 tells that

|Ra
+| = h|A|/2. This yields the claim. �

Remark 7.2. Proposition 6.3 and Theorem 7.1 give that h ∈ {1, 2, 3, 4, 6} if the

object change diagram of C is a cycle, and h/2 ∈ {1, 2, 3, 4, 6} if it is a chain.

But this result could have been obtained much easier. Nevertheless, Theorem 7.1

gives a restriction for q = 6|A| − 24/h for given number |A| of objects in a finite

irreducible root system.

Next we give sharp bounds for the entries of the Cartan matrices.

Proposition 7.3. Assume that |A| ≥ 2. Let c ≤ 0 be an entry of Ca for some a ∈ A.

If the object change diagram is a cycle (chain), then |c| ≤ |A|+ 1 (|c| ≤ 2|A|+ 1).

Proof. Assume first that the object change diagram of C is a cycle. If |A| ≥ 4 and

C is centrally symmetric, then Theorem 6.19(2) and (3) yields by induction on |A|,

that |c| ≤ |A|/2 + 1. If C is not centrally symmetric, then by Lemma 6.17 there

exists a double covering of C which is centrally symmetric. Hence |c| ≤ |A| + 1.

If the object change diagram of C is a chain, then by Lemma 6.15 there exists

a double covering of C which has a cycle as object change diagram. Hence |c| ≤

2|A| + 1. �

Proposition 7.4. For all n ≥ 1 there exist finite connected irreducible root systems

R of rank two with |A| = 2n and object change diagram a cycle or |A| = n and

object change diagram a chain such that −(2n + 1) is an entry in a Cartan matrix

Ca , a ∈ A.

Proof. For n = 1 the claim follows from [Cuntz and Heckenberger 2008, Proposi-

tion 5.2].

Theorem 6.19 tells that for all n ≥ 2 the Cartan scheme Cn with 4n objects,

object change diagram a cycle, and characteristic sequence

(3, 2, 2, . . . , 2
︸ ︷︷ ︸

n−2 times

, 1, 2n + 1, 1, 2, 2, . . . , 2
︸ ︷︷ ︸

n−2 times

)2 (7-1)

admits a finite irreducible root system with |A| = 4n. Indeed, if n = 2, then using

Theorem 6.19(3) we can transform the sequence (3, 1, 5, 1)2 first to (2, 4, 1)2. By
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changing the reference object, the latter is equivalent to (4, 1, 2)2, and using the

same result we may reduce it to (3, 1)2. If n > 2, then using Theorem 6.19(3) we

may transform the sequence in (7-1) in two steps, first to

(3, 2, 2, . . . , 2
︸ ︷︷ ︸

n−3 times

, 1, 2n, 1, 2, 2, . . . , 2
︸ ︷︷ ︸

n−2 times

)2,

and then to

(3, 2, 2, . . . , 2
︸ ︷︷ ︸

n−3 times

, 1, 2n − 1, 1, 2, 2, . . . , 2
︸ ︷︷ ︸

n−3 times

)2.

By induction on n we obtain that Cn admits a finite irreducible root system. By

Remark 6.18, Cn is the double covering of a Cartan scheme C
′
n with 2n objects,

object change diagram a cycle, and characteristic sequence

(3, 2, 2, . . . , 2
︸ ︷︷ ︸

n−2 times

, 1, 2n + 1, 1, 2, 2, . . . , 2
︸ ︷︷ ︸

n−2 times

).

By Proposition 3.7, C
′
n admits a finite irreducible root system R

′, and R
′ is such

a root system we are looking for. By Remark 6.16, C
′
n is the double covering

of a Cartan scheme C
′′
n with n objects and object change diagram a chain. By

Proposition 3.7, C
′′
n admits a finite irreducible root system R

′′, and the proposition

is proven. �

Corollary 7.5. Any c ∈ N occurs as the negative of an entry of a Cartan matrix of

a finite connected irreducible root system of rank two.

Proof. For even c use the appropriate intermediate step in the proof of Proposition

7.4. �

Corollary 7.6. For r, n ∈ N, there are only finitely many finite root systems R of

rank r with n objects.

Proof. Let I , A be finite sets with |I | = r and |A| = n, and let R be a finite root

system of rank r with object set A. For all i, j ∈ I with i 6= j the restriction R|{i, j}

(see [Cuntz and Heckenberger 2008, Definition 4.1]) is a finite root system of rank

two. Hence the entries of the Cartan matrices of R are bounded by 2|A| + 1 by

Proposition 7.3. Since for all i ∈ I , ρi is one of finitely many permutations of A,

and since finite root systems are uniquely determined by their Cartan scheme, the

claim is proven. �

References

[Andruskiewitsch and Schneider 1998] N. Andruskiewitsch and H.-J. Schneider, “Lifting of quan-

tum linear spaces and pointed Hopf algebras of order p3”, J. Algebra 209:2 (1998), 658–691.

MR 99k:16075 Zbl 55.0262.09



340 Michael Cuntz and István Heckenberger

[Andruskiewitsch and Schneider 2005] N. Andruskiewitsch and H.-J. Schneider, “On the classi-

fication of finite-dimensional pointed Hopf algebras”, Preprint, 2005. To appear in Ann. Math.

arXiv math.QA/0502157

[Andruskiewitsch et al. 2008] N. Andruskiewitsch, I. Heckenberger, and H.-J. Schneider, “The

Nichols algebra of a semisimple Yetter–Drinfeld module”, Preprint, 2008. arXiv 0803.2430

[Bourbaki 1968] N. Bourbaki, Groupes et algèbres de Lie. ch. 4, 5 et 6, Actualités Scientifiques et

Industrielles 1337, Hermann, Paris, 1968. MR 39 #1590 Zbl 0186.33001

[Cuntz and Heckenberger 2008] M. Cuntz and I. Heckenberger, “Weyl groupoids with at most three

objects”, Preprint, 2008. arXiv 0805.1810

[Heckenberger 2006] I. Heckenberger, “The Weyl groupoid of a Nichols algebra of diagonal type”,

Invent. Math. 164:1 (2006), 175–188. MR 2007e:16047 Zbl 05027328

[Heckenberger 2008] I. Heckenberger, “Rank 2 Nichols algebras with finite arithmetic root system”,

Algebr. Represent. Theory 11:2 (2008), 115–132. MR 2009a:16080 Zbl 05250098

[Heckenberger 2009] I. Heckenberger, “Classification of arithmetic root systems”, Adv. Math. 220:1

(2009), 59–124. MR 2462836 Zbl 05376870

[Heckenberger and Yamane 2008] I. Heckenberger and H. Yamane, “A generalization of Coxeter

groups, root systems, and Matsumoto’s theorem”, Math. Z. 259 (2008), 255–276. MR 2009e:20087

Zbl 05267026

[Kac 1990] V. G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, 1990.

MR 92k:17038 Zbl 0716.17022

[Montgomery 1993] S. Montgomery, Hopf algebras and their actions on rings, CBMS Regional

Conference Series in Mathematics 82, Amer. Math. Soc., 1993. MR 94i:16019 Zbl 0793.16029

[Perron 1929] O. Perron, Die Lehre von den Kettenbrüchen, Teubner, Leipzig, 1929.

Communicated by Susan Montgomery

Received 2008-07-01 Revised 2009-01-19 Accepted 2009-03-06

cuntz@mathematik.uni-kl.de Fachbereich Mathematik, Universität Kaiserslautern,

Postfach 3049, D-67653 Kaiserslautern, Germany

http://www.mathematik.uni-kl.de/~cuntz/en/index.html

i.heckenberger@googlemail.com Mathematisches Institut, Ludwig-Maximilians-Universität

München, Theresienstr. 39, D-80333 München, Germany

http://www.mi.uni-koeln.de/~iheckenb/istvane.html


