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WEYL LAW FOR THE VOLUME SPECTRUM

YEVGENY LIOKUMOVICH, FERNANDO C. MARQUES, AND ANDRÉ NEVES

Abstract. Given M a Riemannian manifold with (possibly empty)
boundary, we show that its volume spectrum {ωp(M)}p∈N satisfies a
Weyl law that was conjectured by Gromov.

1. Introduction

Let (M,g) be a compact Riemannian manifold of dimension n + 1. It is
well known that the eigenvalues of the Laplacian have the following min-max
characterization:

λp = inf
p−planeQ⊂W1,2(M)

sup
f∈Q−{0}

∫

M |∇f |2dV
∫

M f2dV
, p ∈ N.

In 1911, Weyl ([22]) proved an asymptotic formula for the sequence of
eigenvalues {λp}p∈N that had a tremendous impact in Mathematics. The
celebrated Weyl law states that

lim
p→∞

λpp
− 2

n+1 = a(n)vol(M)−
2

n+1 ,

where a(n) = 4π2vol(B)−
2

n+1 and B is the unit ball in R
n+1.

Gromov ([5], [6, Section 8], [7, Section 5.2], [8]) proposed a very general
framework to study several non-linear analogs of the spectral problem onM .
In the case we are interested, the space W 1,2(M) is replaced by the space
Zn(M ;Z2) of mod 2 flat n-cycles in M (if M has no boundary) and the en-
ergy functional is replaced by the volume functional (see Section 2.1 for pre-
cise definitions). Almgren [1] showed there is a weak homotopy equivalence
between Zn(M ;Z2) and RP

∞ and thus its cohomology ring has a generator
λ̄ ∈ H1(Zn(M ;Z2);Z2). Instead of considering p-planes in W 1,2(M) one
considers p-sweepouts, i.e., subsets of Zn(M ;Z2) where the p-th cup power
λ̄p does not vanish (see Section 2.5 for precise definitions). The definition of
width is similar to the above min-max characterization of the eigenvalues.
The p-width ofM , denoted by ωp(M), is defined as the infimum over all real
numbers w, such that there exists a p-sweepout with every element having
volume at most w (see Section 2.6 for precise definitions or [9] for some
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motivation). In the same way that eigenvalues are realized by the energy
of eigenfunctions, Almgren–Pitts Min-max Theory says that the widths are
realized by the volume of minimal surfaces (with a possibly small singular
set). Similar considerations apply whenM has boundary but one has to use
the space Zn,rel(M,∂M ;Z2) of relative mod 2 flat cycles.

An insightful idea of Gromov was to understand that, using the cohomol-
ogy structure of Zn(M ;Z2), many properties of the energy spectrum {λp}p∈N
can be extended to the volume spectrum {ωp(M)}p∈N. For instance, Gro-
mov and later Guth ([6] or Guth [9]) showed the existence of a constant
C = C(M,g) for which

C−1vol(M)
n

n+1 p
1

n+1 ≤ ωp(B) ≤ Cvol(M)
n

n+1 p
1

n+1

for all p ∈ N.
The asymptotic behaviour of the volume spectrum has been studied in

the paper by Guth ([9]). It has been used by Marques and Neves to prove
existence of infinitely many minimal hypersurfaces in manifolds with positive
Ricci curvature [16].

Gromov conjectured ([6, 8.4]) that the volume spectrum {ωp(M)}p∈N sat-
isfies a Weyl’s asymptotic law. In this paper we confirm this and show

1.1. Weyl Law for the Volume Spectrum. There exists a constant
a(n) > 0 such that, for every compact Riemannian manifold (Mn+1, g) with
(possibly empty) boundary, we have

lim
p→∞

ωp(M)p−
1

n+1 = a(n)vol(M)
n

n+1 .

After our paper was completed, the Weyl Law for the Volume Spectrum
was used in a fundamental way in [12] to prove the following theorem:

Theorem (Irie, Marques, Neves, 2017): Let Mn+1 be a closed manifold
of dimension (n + 1), with 3 ≤ (n + 1) ≤ 7. Then for a C∞-generic Rie-
mannian metric g on M , the union of all closed, smooth, embedded minimal
hypersurfaces is dense.

This theorem settles the generic case of Yau’s Conjecture ([23]) about
the existence of infinitely many minimal surfaces by proving that a much
stronger property holds true: there are infinitely many closed embedded
minimal hypersurfaces intersecting any given ball in M .

1.2. Let Ω be a bounded open subset of Rn+1 with smooth boundary, or
more generally, a Lipschitz domain in the sense of [11, Definition 2.5] (this
is a weaker regularity condition for the boundary of Ω, see Section 2.1). For
such domains we have a more general Weyl law, which applies to the space
of cycles of dimension 0 < k ≤ n. Assume in addition that

(1) Hi(Ω, ∂Ω;Z2) is Z2 if i = n+ 1 and 0 if k < i < n+ 1.
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Similarly to the case of codimension 1 we can define the p-width of dimension
k, ωk

p(Ω), to be the min-max quantity corresponding to the p-th cup power

of the generator λ̄ ∈ Hn+1−k(Zk,rel(Ω, ∂Ω;Z2);Z2).

1.3. Weyl Law for Euclidean domains. There exists a constant a(n, k)
such that, for every Lipschitz domain Ω satisfying (1), we have

lim
p→∞

ωk
p(Ω)p

−n+1−k
n+1 = a(n, k)vol(Ω)

k
n+1 .

In this setting the inequalities proven by Gromov and Guth for the widths
[6, 9] become, for all 0 < k < n and p ∈ N,

(2) C(Ω)−1vol(Ω)
k

n+1p
n+1−k
n+1 ≤ ωk

p(Ω) ≤ C(Ω)vol(Ω)
k

n+1 p
n+1−k
n+1

for some constant C(Ω) > 0. For general Riemannian metrics on Ω and
k = n such inequalities do not hold with a constant that depends only on
the dimension. There are examples of metrics gi on the unit 3-ball B3 with
vol(B3, gi) = 1 and ω2

1(B
3, gi) → ∞ [19]. Upper bounds for the widths can

be obtained if the constant C is allowed to depend on the conformal class of
the manifold (see [4] and [14]), similarly to the upper bounds obtained by
Korevaar for the eigenvalues of the Laplacian [13].

1.4. Overview of proof. We start by describingWeyl law for Lipschitz do-
mains Ω. One of the main tools in the proofs is the Lusternick-Schnirelman
inequality, which relates the widths of Ω to the widths of its subsets (see [6,
8.3], [9, Section 3]). The idea behind this inequality is the following. Let U1

and U2 be two disjoint domains in Ω and let Vi ⊂ Zk,rel(Ω, ∂Ω;Z2) denote

the set of all cycles whose restriction to Ui has mass strictly less than ωk
1(Ui),

i = 1, 2. A sweepout of Ω restricts to a sweepout of Ui and therefore the gen-
erator λ̄ vanishes on Vi, i = 1, 2. If V1 and V2 are open, it follows that the cup
power λ̄2 vanishes on V1 ∪V2. Thus every 2-sweepout must have an element
that does not lie in V1 ∪ V2 and this means that ωk

2(Ω) ≥ ωk
1 (U1) + ωk

1 (U2).
Iterating this argument we obtain that for N disjoint domains {Ui}

N
i=1 in Ω

and any p ≥
∑N

i=1 pi we have

(3) ωk
p(Ω) ≥

N
∑

i=1

ωk
pi(Ui).

We first sketch how to prove the existence of the limit for the standard
Euclidean cube C of volume 1. To do this we exploit the fact that C admits
self-similar tilings.

Let ω̃k
p(C) = ωk

p(C)p−
n+1−k
n+1 . By the upper bound in (2) the sequence

{ω̃k
p(C)}p∈N is bounded. Choose pl and qj so that ω̃k

pl
(C) and ω̃k

qj(C) are,

respectively, very close to lim supp→∞ ω̃p(C) and lim infp→∞ ω̃p(C), and qj is
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much bigger than pl. Consider a maximal packing of C by squares {C∗
i }

N
i=1

of volume pl/qj . From (3) we have

ωk
qj(C) ≥

N
∑

i=1

ωk
pl
(C∗

i ) = N

(

pl
qj

)
k

n+1

ωk
pl
(C)

and thus

ω̃k
qj(C) ≥ N

pl
qj
ω̃k
pl
(C).

The maximal packing condition implies that, as qj → ∞, we have N pl
qj

→ 1

and so lim sup and lim inf must coincide. Thus we can denote this limit by
a constant a(n, k).

To prove that sequences {ω̃k
p(Ω)} converge to a(n, k) for unit volume

domains Ω in R
n+1 we use similar arguments but applied to efficient packings

of scaled copies of C in Ω and scaled copies of Ω in C.
For a Riemannian manifolds (M,g) a crucial difficulty arises because while

one can find efficient packings of cubes (or balls) in M , one cannot find
efficient packings of copies of M in a cube. The former implies that one can
repeat the same type of arguments and show that, with a(n) = a(n, n),

lim inf
p→∞

ωp(M)p−
1

n+1 ≥ a(n)vol(M)
n

n+1

but the latter implies that one needs another idea to prove the reverse in-
equality.

We do this by subdividing M into N small regions {Qi}
N
i=1, which are

(1 + ε)-bilipschitz diffeomorphic to domains in R
n+1. Mapping each Qi to

R
n+1 by the corresponding diffeomorphism and connecting the images of Qi

by tubes of small total volume we obtain a connected domain Ω ⊂ R
n+1. A p-

sweepout of Ω induces, via restriction, p-sweepouts of Qi, i = 1, . . . , N . The
elements in these restricted sweepouts have boundary in ∂Qi, i = 1, . . . , N
and so we cannot add them to make a sweepout of M . However, we show
that we can turn each restricted p-sweepout into a continuous family of
cycles in Qi if we add to each element some chain that is entirely contained
in ∂Qi, i = 1, . . . , N . Combining these N families of cycles we show that we
obtain a p-sweepout of M where the mass of each element, when compared
with the corresponding element in Zn,rel(Ω, ∂Ω;Z2), has increased at most

by the volume of ∪N
i=1∂Qi. As p → ∞ the volume of ∪N

i=1∂Qi is negligible

compared to p1/(n+1) yielding the desired upper bound. This is the only
part in the argument where we restrict to the codimension 1 case.

We now mention two technical issues that arise in the proof of (3). The
first issue is that the restriction of a cycle in Zk,rel(Ω, ∂Ω;Z2) to Ui may not
belong to Zk,rel(Ui, ∂Ui;Z2) because its boundary might have infinite mass
and so we can not conclude that a sweepout of Ω restricts to a sweepout of
Ui. To resolve this we use a perturbation argument and slicing theorem from
geometric measure theory (see Lemma 2.15). The second issue is that mass
is not a continuous function on the space of flat cycles and therefore the
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subsets V1 and V2 need not be open. To resolve this we follow the strategy
in [15] and consider the finer topology of the mass norm on the space of
relative cycles. We show that restricting to this finer topology does not
increase the value of the width (see Section 2.9) and thus there is no loss of
generality.

1.5. Some questions. We list some open questions.
The first question is to compute the constants a(n, k). This is unknown

even in the simplest case n = k = 1. Potential candidates for the asymptot-
ically optimal families of sweepouts include nodal sets of eigenfunctions on
the flat disc or the round sphere, or zero sets of harmonic polynomials on
the flat disc.

The second question is whether the argument for widths of Riemannian
manifolds can be extended to higher codimension. Namely, is it true that
for a compact Riemannian manifold

lim
p→∞

ωk
p(M)p−

n+1−k
n+1 = a(n, k)vol(M)

k
n+1

for k < n, where a(n, k) is the constant for the corresponding limit for
Euclidean domains? That the liminf of the sequence on the left side is
greater or equal than the right side is shown in Theorem 4.1.

In the case of higher codimension, the cohomology ring of the space of
relative cycles is richer (see [9]) and so another question would be to under-
stand the asymptotic limit for the widths associated with Steenrod powers.

The paper is organized as follows. In Section 2 we give necessary def-
initions and prove some technical results that we need for the proof of
Lusternick-Schnirelman inequality. In Section 3 we prove Lusternick-Schnirelman
inequality and Theorem 1.3. In Section 4 we prove Theorem 1.1.

2. Definitions and setup

2.1. Geometric Measure Theory. Given m ∈ N, Im denotes the m-
dimensional cube Im = [0, 1]m. For each j ∈ N, I(1, j) denotes the cube
complex on I1 whose 1-cells and 0-cells (those are sometimes called vertices)
are, respectively,

[0, 3−j ], [3−j , 2 · 3−j ], . . . , [1− 3−j , 1] and [0], [3−j ], . . . , [1 − 3−j ], [1].

We denote by I(m, j) the cell complex on Im:

I(m, j) = I(1, j) ⊗ . . .⊗ I(1, j) (m times).

Then α = α1⊗· · ·⊗αm is a q-cell of I(m, j) if and only if αi is a cell of I(1, j)
for each i, and

∑m
i=1 dim(αi) = q. We often abuse notation by identifying a

q-cell α with its support: α1 × · · · × αm ⊂ Im.
Given X a cubical subcomplex of Im, the cube complex X(j) is the union

of all cells of I(m, j) whose support is contained in some cell of X. We use
the notation X(j)q to denote the set of all q-cells in X(j).
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The ambient spaces considered in this paper are compact Riemannian
(n+1)-manifolds (Mn+1, g) with smooth and possibly empty boundary ∂M .
We can always assumeM is isometrically embedded in some Euclidean space
R
Q. We denote by Br(p) the Euclidean open ball of radius r centered at

p ∈ R
Q.

When M is a region of Rn+1 we allow for less regularity and require M
to be a compact region with finite perimeter with the extra property that
for all p ∈ ∂M there is a hyperplane H ⊂ R

n+1 containing p, r > 0, and
a Lipschitz function φ defined on H ∩ Br(p) such that, denoting by N a
normal vector to H,

M ∩Br(p) = Br(p) ∩ {x+ tN : x ∈ H, t ≥ φ(x)}.

We call these regions Lipschitz domains (see [11, Definition 2.5]).

For reasons to be explained in Section 2.5, with 0 ≤ k < n + 1 fixed, we
also assume that

(4) Hi(M,∂M ;Z2) is Z2 if i = n+ 1 and 0 if k < i < n+ 1.

When k = n, this amounts to require that M is connected.

The following definitions can be found in [2, Section 4.1]. For every 0 ≤
k ≤ n + 1, Rk(M ;Z2) (or Rk(∂M ;Z2)) denotes the set of k-dimensional
rectifiable mod 2 flat chains in R

Q whose support lies in M (or ∂M). The
Radon measure in M associated with T ∈ Rk(M ;Z2) (or Rk(∂M ;Z2)) is
denoted by ||T ||, and its support is denoted by supp(T ).

The mass M of T ∈ Rk(M ;Z2) is defined in [2, p. 358]. With S, T ∈
Rk(M ;Z2) the flat metric is given by

F(T, S) = inf{M(Q) +M(R) : T − S = R+ ∂Q,

R ∈ Rk(M ;Z2), Q ∈ Rk+1(M ;Z2)}.

Given a Lipschitz map F : M →M , the push-forward of T ∈ Rk(M ;Z2) is
denoted by F#(T ).

If k ≥ 1, Ik(M ;Z2) (or Ik(∂M ;Z2)) denotes those elements of Rk(M ;Z2)
whose boundary lies in Rk−1(M ;Z2). Finally, we also consider the spaces

Zk(M ;Z2) = {T ∈ Ik(M ;Z2) : ∂T = 0}

and

Zk(M,∂M ;Z2) = {T ∈ Ik(M ;Z2) : support(∂T ) ⊂ ∂M}.

2.2. Relative cycles. We now describe the space of relative cycles follow-
ing [1, Definition 1.20]. We say that T, S ∈ Zk(M,∂M ;Z2) are equivalent if
T − S ∈ Ik(∂M ;Z2) and the space of such equivalence classes is denoted by
Zk,rel(M,∂M ;Z2). There is a natural projection map

P : Zk(M,∂M ;Z2) → Zk,rel(M,∂M ;Z2).

If U ⊂ R
Q is an open set and P (T ) = P (S) then Tx(U \∂M) = Sx(U \∂M).

When ∂M = ∅ then Zk,rel(M,∂M ;Z2) is identical to Zk(M ;Z2).
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The flat metric and the mass norm in the space of relative cycles are
defined, respectively, as

F(P (S), P (T )) = inf{F(S +R,T ) : R ∈ Ik(∂M ;Z2)}

or
M(P (T )) = inf{M(T +R) : R ∈ Ik(∂M ;Z2)}.

These definitions do not depend on the choice of S, T ∈ Zk(M,∂M ;Z2).
The flat topology on either Zk(M,∂M ;Z2) or Zk,rel(M,∂M ;Z2) denotes the
topology induced by the flat metric. With the topology of the mass norm,
the spaces will be denoted by Zk(M,∂M ;M;Z2) or Zk,rel(M,∂M ;M;Z2).

To keep notation simple, we denote P (T ) ∈ Zk,rel(M,∂M ;Z2) by T .

2.3. Federer–Fleming Compactness Theorem. The set

{T ∈ Zk,rel(M,∂M ;Z2) : M(T ) ≤ L}

is compact in the flat topology for all L > 0.

Proof. There is an open neighborhood U ⊂ R
Q of ∂M and a Lipschitz map

F : U −→ M so that F (x) = x for all x ∈ ∂M . If ∂M is smooth this is
obvious while if M is a Lipschitz domain this follows from [11, (4.6.7)]. Set
Λr = {x ∈ R

Q : dist(x, ∂M) < r} and choose r0 so that Λr0 ⊂ U .
It suffices to consider a sequence {P (Ti)}i∈N ⊂ Zk,rel(M,∂M ;Z2) such

that the mass of Ti ∈ Zk(M,∂M ;Z2) is bounded by 2L. Slicing [21, Section
28] gives us, for all i ∈ N, 0 < ri < r0 so that

• Ci = TixΛri ∈ Ik(U ;Z2);
• M(∂Ci − ∂Ti) ≤ 2L/r0.

From the fact that F#(∂Ti) = ∂Ti we obtain that M(∂F#(Ci) − ∂Ti) is
uniformly bounded independently of i ∈ N. Moreover F#(Ci) ∈ Ik(∂M) for
all i ∈ N and so Si = Ti − F#(Ci) is a sequence in Zk(M,∂M ;Z2) with
bounded mass and bounded boundary mass. The result then follows from
the classical Federer-Fleming Compactness Theorem. �

The following proposition will also be needed.

2.4. Proposition. Given T ∈ Zk,rel(M,∂M ;Z2), M(T ) = ||T ||(M \ ∂M)
and the mass is lower semicontinuous with respect to the flat topology in
Zk,rel(M,∂M ;Z2) meaning that if U ⊂ R

Q is an open set and {Ti}i∈N a
sequence converging to T in the flat topology then

||T ||(U \ ∂M) ≤ lim inf
i→∞

||Ti||(U \ ∂M).

In particular, M(T ) ≤ lim inf i→∞M(Ti).

Proof. Consider the projection map F : U −→ M so that F (x) = x for all
x ∈ ∂M and U ⊂ R

Q is an open neighborhood of ∂M .
Let Ωr = {x ∈ R

Q : dist(x, ∂M) > r}. The current TxΩ0 is also rectifiable
[3, 3.8 (3)] and hence S = T − TxΩ0 is a rectifiable current with support
in ∂M . From the definition of rectifiable currents, this means there is a
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sequence of integral Lipschitz chains Si ∈ Ik(R
Q) with M(S − Si) → 0 as

i → ∞. The currents {Si}i∈N can be chosen to have support in U and
thus, because F#(S) = S, we obtain that F#(Si) ∈ Ik(∂M) is such that
M(S−F#(Si)) → 0 as i→ ∞. ThereforeM(T−F#(Si)) tends to M(TxΩ0)
and so

M(P (T )) ≤ M(TxΩ0) = ||T ||(M \ ∂M).

The opposite inequality is simple to check.
Without loss of generality we assume that the mass of {Ti}i∈N is uniformly

bounded in Ik(M ;Z2). From [1, Proposition 1.16] we can choose {rj}j∈N
converging to zero such that, for all j ∈ N, TixΩrj ∈ Ik(M ;Z2) tends to
TxΩrj ∈ Ik(M ;Z2) in the flat topology as i→ ∞. Thus lower semicontinuity
of the mass for integral currents implies that

||T ||(U ∩Ωrj) = ||TxΩrj ||(U) ≤ lim inf
i→∞

||TixΩrj ||(U) ≤ lim inf
i→∞

||Ti||(U \∂M).

Making j → ∞ implies the desired result. �

2.5. Almgren Isomorphism. We will be succinct and just describe the
main concepts. The reader can see [1, 16, 17, 18] for some background and
explicit constructions.

In [1] Almgren constructed, for each pair of integers 0 ≤ k ≤ n + 1 and
l ≥ 1, an isomorphism

Λl,rel : πl(Zk,rel(M,∂M ;Z2), {0}) → Hk+l(M,∂M ;Z2).

When ∂M = ∅, Hk+l(M,∂M ;Z2) is identical to Hk+l(M ;Z2).
The homological assumptions on M (see Section 2.1) and the Almgren

Isomorphism Theorem [1] imply that the homotopy groups of

(Zk,rel(M,∂M ;Z2), {0})

are all trivial except for the (n + 1 − k)-th one, i.e., Zk,rel(M,∂M ;Z2) is
an Eilenberg-MacLane space K(Z2, n + 1 − k). Thus from the Hurewicz
Theorem and Universal Coefficients Theorem one has

Hn+1−k(Zk,rel(M,∂M ;Z2);Z2) = Z2 = {0, λ̄k},

Hn+1−k(Zk,rel(M,∂M ;Z2);Z2) = Hom(Hn+1−k(Zk,rel(M,∂M ;Z2);Z2),Z2).

We now describe the map

λ̄k : Hn+1−k(Zk,rel(M,∂M ;Z2);Z2) → Z2.

An element σ in Hn+1−k(Zk,rel(M,∂M ;Z2);Z2) is represented by a con-
tinuous map Φ : Y → Zk,rel(M,∂M ;Z2) where Y is a (n + 1 − k)-cubical
decomposition of the sphere with ∂Y = 0.By Theorem 2.5 of [1], there exists
a constant νM,∂M > 0 such that for all l ∈ N with

(5) F(Φ(x),Φ(y)) ≤ νM,∂M for all adjacent vertices x, y ∈ Y (l)0,

there exists a chain map φ : Y (l) → I∗(M ;Z2) of degree k that extends Φ:

(i) φ coincides with Φ on Y (l)0;
(ii) φ(α) ∈ Ik+p(M ;Z2) if α is a p-cell in Y (l)p;
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(iii) ∂φ(α) = φ(∂α) in Zk+p,rel(M,∂M ;Z2) if α is a (p+1)-cell in Y (l)p+1.

Thus, for every α ∈ Y (l)n+1−k we obtain φ(α) ∈ In+1(M ;Z2). From ∂Y = 0
and (iii) we deduce that

(6) [φ] :=
∑

α∈Y (l)n+1−k

φ(α) ∈ Zn+1,rel(M,∂M ;Z2).

From the Constancy Theorem [21, Theorem 26.27], [φ] is either M or 0. In
the first case λ̄k(σ) = 1 and in the second case λ̄k(σ) = 0.

2.6. Widths. Let X denote a cubical subcomplex of the m-dimensional
cube Im. Given p ∈ N and an integer 0 ≤ k < n + 1, a continuous map in
the flat topology

Φ : X → Zk,rel(M,∂M ;Z2)

is called a p-sweepout if the p-th cup power of λk = Φ∗(λ̄k) is nonzero in

Hp(n+1−k)(X;Z2). The set of all p-sweepouts is closed under homotopies in
the flat topology.

We denote by Pk
p (M) the set of all p-sweepouts that are continuous in

the flat topology and have no concentration of mass, meaning that (see [16,
Section 3.7]) setting

m(Φ, r) = sup{||Φ(x)||(Br(p) \ ∂M) : x ∈ dmn(Φ), p ∈M}

we have limr→0m(Φ, r) = 0. The definition above is independent of the
representative chosen for the relative cycle Φ(x).

Note that two maps in Pk
p (M) can have different domains.

2.7. Lemma. Continuous maps in the mass topology have no concentration
of mass.

Proof. Consider Φ̄ : X −→ Zk,rel(M,∂M ;Z2) a continuous map in the mass
topology.

Choose δ > 0. From Proposition 2.4 we have that for all x ∈ X there is
Φ(x) ∈ Zk(M,∂M ;Z2) with P (Φ(x)) = Φ̄(x) and such that ||Φ(x)||(∂M) ≤
δ/4. Thus, for all x, y ∈ X,

M(Φ(x)− Φ(y)) ≤ M(Φ̄(x)− Φ̄(y)) + δ/2.

Given p ∈ M and x ∈ X, there is r = r(p, x) > 0 and Ux ⊂ X an open
neighborhood of x so that

||Φ(y)||(Br(p)) < δ for all y ∈ Ux.

By compactness, we can select a finite covering {Brk(pk) × Uxk
}Nk=1 of

M ×X, where rk = r(pk, xk)/2. If r̄ = min{rk}
N
k=1, then

||Φ(x)||(Br̄(p)) < δ for all (p, x) ∈M ×X

and the result follows. �
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The p-width of M of dimension k is

(7) ωk
p(M) = inf

Φ∈Pk
p (M)

sup{M(Φ(x)) : x ∈ dmn(Φ)},

where dmn(Φ) is the domain of Φ. We also set

ω̃k
p(M) = p−

n+1−k
n+1 ωk

p(M).

Gromov and Guth [5, 9] studied the asymptotic behaviour of ωk
p(M) as

p→ ∞ and showed:

2.8. Theorem. There is Ck,M > 0 such that

C−1
k,M ≤ ω̃k

p(M) ≤ Ck,M for all p ∈ N.

2.9. Approximation results. Given X a cubical subcomplex, l ∈ N, an
integer 0 ≤ k < n + 1, and a map φ : X(l)0 → Zk,rel(M,∂M ;Z2), we define
the fineness of φ to be

f(φ) = sup {M(φ(x) − φ(y)) : x, y adjacent vertices in X(l)0} .

2.10. Theorem. Let Φ : X → Zk,rel(M,∂M ;Z2) be a continuous map in
the flat topology that has no concentration of mass. There exist a sequence
of maps

φi : X(li)0 → Zk,rel(M,∂M ;Z2), i ∈ N

with li < li+1, and a sequence of positive numbers {δi}i∈N converging to zero
such that for all i ∈ N f(φi) < δi,

sup{F(φi(x)− Φ(x)) : x ∈ X(li)0} ≤ δi,

and
sup{M(φi(x)) : x ∈ X(li)0} ≤ sup{M(Φ(x)) : x ∈ X}+ δi.

When k = n and ∂M = ∅, the result was proven in Theorem 13.1 in [15].
We leave the proof of Theorem 2.10 to Appendix A.

The purpose of the next theorem is to construct a continuous map in the
mass norm out of a discrete map with small fineness.

2.11. Theorem. There exist positive constants C0 = C0(M,m) ≥ 1 and
δ0 = δ0(M) so that if Y is a cubical subcomplex of I(m, l) and

φ : Y0 → Zk,rel(M,∂M ;Z2)

has f(φ) < δ0, then there exists a map

Φ : Y → Zk,rel(M,∂M ;M;Z2)

continuous in the mass norm and satisfying

(i) Φ(x) = φ(x) for all x ∈ Y0;
(ii) if α is some j-cell in Yj, then Φ restricted to α depends only on the

values of φ assumed on the vertices of α;
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(iii)

sup{M(Φ(x)− Φ(y)) : x, y lie in a common cell of Y } ≤ C0f(φ).

The map Φ is called the Almgren extension of φ. We postpone its proof
to Appendix B because a similar result was proven in Theorem 14.1 of [15].

The proof of Proposition 3.5 of [16] can be extended in a straightforward
way to show that

2.12. Proposition. Let Y be a cubical subcomplex of I(m, l). There exists
η = η(M,m) > 0 with the following property:

If Φ1,Φ2 : Y → Zk,rel(M,∂M ;Z2) are continuous maps in the flat topol-
ogy such that

sup{F(Φ1(y),Φ2(y)) : y ∈ Y } < η,

then Φ1 is homotopic to Φ2 in the flat topology.

The previous results have the following corollary.

2.13. Corollary. Given Φ ∈ Pk
p (M) there is a sequence of positive num-

bers {δi}i∈N converging to zero and a sequence {Φi}i∈N ⊂ Pk
p (M) of maps

continuous in the mass topology such that, for all i ∈ N, dmn(Φ) = dmn(Φi)
and

sup
x∈dmn(Φ)

{M(Φi(x))} ≤ sup
x∈dmn(Φ)

{M(Φ(x))} + δi.

Thus, when computing ωk
p(M), we can consider only the maps in Pk

p (M)
that are continuous in the mass topology.

Proof. From Theorem 2.10 and Theorem 2.11 we obtain a sequence {Φi}i∈N
of maps continuous in the mass topology with dmn(Φ) = dmn(Φi) for all
i ∈ N and a sequence {δi}i∈N tending to zero such that

sup
x∈dmn(Φ)

{M(Φi(x))} ≤ sup
x∈dmn(Φ)

{M(Φ(x))} + δi

and

sup
x∈dmn(Φ)

{F(Φi(x)− Φ(x))} ≤ δi.

The corollary follows from Proposition 2.12. �

2.14. Restriction of currents. Let R ⊂ Ω be two Lipschitz domains.
Given T ∈ Zk,rel(Ω, ∂Ω;Z2) it is not necessarily true that TxR belongs to
Zk,rel(R, ∂R;Z2) because its boundary might have unbounded mass. Thus
the following lemma is needed. The proof is a bit technical and thus could
be skipped in a first reading.
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2.15. Lemma. Let R ⊂ Ω be two Lipschitz domains. Consider 0 ≤ k <
n + 1, p ∈ N, and Φ ∈ Pk

p (Ω) continuous in the mass topology with X :=
dmn(Φ).

(1) For any ε > 0 there is

Φ̂ : X → Zk,rel(R, ∂R;Z2)

continuous in the mass topology such that

M(Φ̂(x)) ≤ (1 + ε)kM(Φ(x)xR) for all x ∈ X

and Φ̂∗λ̄k = Φ∗λ̄k.
(2) For any ε̄ > 0 and integer 0 ≤ q ≤ p, the open set

{x ∈ X : M(Φ(x)xR) < ωk
q (R)− ε̄}

is contained in an open set U such that the pull back of λk = Φ∗λ̄k
by the inclusion map ι : U → X has its q-th cup power vanishing in
Hq(n+1−k)(U ;Z2).

Proof. We start with some discussion regarding the domain R. In Theorem
2.7 and Proposition 2.3 of [11] it is shown the existence of a smooth vector
field Y in R

n+1 with |Y | = 1 on ∂R and κ > 0 such that Y.ν ≥ κ a.e. on
∂R, where ν denotes the measure theoretic inward unit normal of ∂R.

Given t ∈ R set

Ft : R→ R
n+1 Ft(x) = x+ tY (x).

From [11, Proposition 4.15 and Theorem 4.19] we have the existence of t0
so that, for all 0 < t ≤ t0, Ft is a bi-Lipschitz map and Rt := Ft(R) is a
Lipschitz domain contained in the interior of R. From [11, (4.67)] it also
follows the existence of a Lipschitz function u defined on R

n+1 with Lipschitz
constant bounded by C such that Rt = {x : u(x) ≥ t} for all 0 ≤ t ≤ t0.
Furthermore, we can also assume that

|DF−1
t |(x) ≤ (1 + ε) for all x ∈ Ω.

Let L = supx∈X{M(Φ(x))}. For all l ∈ N we can find 0 < s(l) < t0 so
that (see [21, Section 28])

(a) Φ(x)xRs(l) ∈ Zk,rel(Rs(l), ∂Rs(l);Z2) for all x ∈ X(l)0;

(b) M(∂(Φ(x)xRs(l))) ≤ CLt−1
0 for all x ∈ X(l)0.

Set

φl : X(l)0 → Zk,rel(R, ∂R;Z2), φl(x) = (F−1
s(l))#(Φ(x)xRs(l)).

We have for all x, y ∈ X(l)0

M(φl(x)) ≤ (1 + ε)kM(Φ(x)xRs(l)) ≤ (1 + ε)kM(Φ(x)xR)

and

(8) M(φl(x)− φl(y)) ≤ (1 + ε)kM(Φ(x)− Φ(y)).
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Moreover

sup
x∈X

{M(φl(x)) +M(∂(φl(x)))} ≤ (1 + ε)k(L+ CLt−1
0 )

and so we can apply Federer-Fleming Compactness Theorem and a diag-
onalization argument to conclude the existence of a subsequence {φli}i∈N
such that φli(x) converges for all x ∈ X(l)0, l ∈ N. Using (8) we obtain a
continuous function in the mass topology

Φ̂ : X → Zk,rel(R, ∂R;Z2)

such that

M(Φ̂(x)) ≤ (1 + ε)kM(Φ(x)xR) for all x ∈ X.

For all i ∈ N large enough the Almgren extension Φi of φli is well defined

and homotopic in the flat topology to Φ̂. Choose such i ∈ N. To complete
the proof of Lemma 2.15 (1) we need to show that Φ∗

i λ̄k = Φ∗λ̄k.
An element inHn+1−k(X;Z2) is represented by a continuous map τ : Y →

X, where Y is a (n+ 1− k)-cubical subcomplex of I(m′, j) and ∂Y = 0.
Choose i ∈ N large enough so that for every x, y belonging to a common

cell of X(li) we have

(9) M(Φ(x)− Φ(y)) < min

{

νΩ,∂Ω,
δ0

(1 + ε)k
,

νR,∂R

C0(1 + ε)k
,

η

5C0(1 + ε)k

}

where νΩ,∂Ω, νR,∂R are given in (5), δ0 = δ0(R), C0 = C0(R,m
′) are given by

Theorem 2.11, and η = η(R,m′) is given by Proposition 2.12.
Choose t1 with s(li) < t1 < t0 and such that for all x ∈ X(li)0

(10) ||Φ(x)||(Rs(li) \Rt1) <
η

(1 + ε)k

and

(11) F
(

(F−1
s(li)

)#(Φ(x)xRs(li)), (F
−1
t )#(Φ(x)xRs(li))

)

<
η

5

for all s(li) ≤ t ≤ t1 . The choice in (10) is possible because for all x ∈ X(li)0
we have that ||Φ(x)||(∂Rs(li)) = 0, and the choice in (11) is possible due to
the homotopy formula [21, Section 26.22] .

Without loss of generality we can assume that for every cell α ∈ Y , τ(α)
is contained in a cell in X(li)0.

Set Ψ = Φ ◦ τ and Ψi = Φi ◦ τ . These maps represent elements σ and σ̂
in Hn+1−k(Zk,rel(Ω, ∂Ω;Z2);Z2) and Hn+1−k(Zk,rel(R, ∂R;Z2);Z2) respec-
tively.

From (9) we see that the map Ψ satisfies (5) (with l = 0) and so we obtain
a chain map of degree k given by ψ : Y → I∗(Ω;Z2). Using the slicing theory
of [21, Section 28] we find s(li) < t < t1 such that

• ψ(x)xRt ∈ Zk,rel(Rt, ∂Rt;Z2) for all x ∈ Y0;
• for every cell α ∈ Yp we have ψ(α)xRt ∈ Ip+k(Rt;Z2).
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We consider the chain map of degree k

ψ̄ : Y → I∗(R;Z2), ψ̄(α) = (F−1
t )#(ψ(α)xRt).

From (9) we see that ψ̄|Y0
satisfies the conditions of Theorem 2.11 and we

denote by Ψ̄ its Almgren extension.
From (9) we have that for all x ∈ Y , there are x′ ∈ X(li)0 and x′′ ∈ X

belonging to a common cell of X(li) and such that

F(Ψi(x), Ψ̄(x)) < F
(

(F−1
s(li)

)#(Φ(x
′)xRs(li)), (F

−1
t )#(Φ(x

′′)xRt)
)

+
2

5
η.

Hence we obtain from (9), (10), and (11) that

F(Ψ̃(x), Ψ̄(x)) < η for all x ∈ Y

and Proposition 2.12 implies that Ψi and Ψ̄ are homotopic in the flat topol-
ogy. Hence they represent the same element σ̂ in homology.

From (9) we see that the map Ψ̄ satisfies (5) (with l = 0). From (6) and
the definition of ψ̄ we have that [ψ]xR = [ψ̄] and so λ̄k(σ) = λ̄k(σ̂), which
is what we wanted to show.

We now prove Lemma 2.15 (2). Choose ε so that

(1 + ε)kωk
q (R) < ωk

q (R)− ε̄/2.

Considering Φ̂ given by Lemma 2.15 (1) we have that

{x ∈ X : M(Φ(x)xR) < ωk
q (R)− ε} ⊂ {x ∈ X : M(Φ̂(x)) < ωk

q (R)− ε̄/2}.

Denote the set on the right by U and we assume without loss of generality
that its closure Ū is a cubical complex. If Lemma 2.15 (2) did not hold then

Φ̂|Ū ∈ Pk
q (R) and this contradicts the definition of ωk

q (R). �

3. Weyl Law for domains

In what follows C denotes the unit cube in R
n+1. Two regions of Rn+1

are said to be similar if they differ by an isometry and scaling. Given a real
number, [x] denotes its integer part. Recall the definition of ω̃k

p in (7). All
domains considered are assumed to satisfy the topological condition (4).

3.1. Lusternick-Schnirelman Inequality. Fix 0 ≤ k < n + 1 and con-
sider Lipschitz domains Ω0, {Ωi}

N
i=1, {Ω

∗
i }

N
i=1 such that

• Ωi have unit volume for all i = 0, . . . , N ;
• Ω∗

i is similar to Ωi for all i = 1, . . . , N ;
• Ω∗

i ⊂ Ω0 for all i = 1, . . . , N and the interiors of {Ω∗
i }

N
i=1 are pair-

wise disjoint.

There is a constant c = c(Ω0, k, n) such that, with V = min{vol(Ω∗
i )}

N
i=1 and

pi = [pvol(Ω∗
i )], i = 1, . . . , N , we have for all p ∈ N

ω̃k
p(Ω0) ≥

N
∑

i=1

vol(Ω∗
i )ω̃

k
pi(Ωi)−

c

pV
.
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Proof. Set

p̄ =
N
∑

i=1

pi =
N
∑

i=1

[pvol(Ω∗
i )] ≤ pvol(Ω0) = p.

Given Φ ∈ Pk
p (Ω0) continuous in the mass topology (with X = dmn(Φ))

and ε > 0, for each i = 1, . . . , N consider the open set Ui given by Lemma
2.15 (2) that contains the open set

{x ∈ X : M(Φ(x)xΩ∗
i ) < ωk

pi(Ω
∗
i )− ε/N}.

Thus, denoting by ιi : Ui → X the inclusion maps, we have that (ι∗i λk)
pi = 0

in Hpi(n+1−k)(Ui;Z2) for all i = 1, . . . , N , where λk = Φ∗(λ̄k).
For all i = 1, . . . , N , the exact sequence

Hpi(n+1−k)(X,Ui;Z2)
j∗
→Hpi(n+1−k)(X;Z2)

ι∗i→Hpi(n+1−k)(Ui;Z2)

implies the existence of λi ∈ Hpi(n+1−k)(X,Ui;Z2) so that j∗(λi) = λpik .
Therefore

j∗(λ1)⌣ . . . ⌣ j∗(λN ) = λp1+...+pN
k 6= 0 in H p̄(n+1−k)(X;Z2),

because λpk 6= 0 and p̄ ≤ p.

We now claim that X 6= ∪N
i=1Ui. Indeed, if otherwise then

H p̄(n+1−k)(X,U1 ∪ · · · ∪ UN ;Z2) = H p̄(n+1−k)(X,X;Z2) = 0

and from the natural notion of relative cup product (see [10], p 209)

Hp1(n+1−k)(X,U1;Z2)⌣ · · ·⌣ HpN (n+1−k)(X,UN ;Z2)

→ H p̄(n+1−k)(X,U1 ∪ · · · ∪ UN ;Z2) = 0

we see that λ1 ⌣ . . . ⌣ λN = 0 which means that

λp̄ = j∗(λ1)⌣ . . . ⌣ j∗(λN ) = j∗(λ1 ⌣ . . . ⌣ λN ) = 0.

This proves the claim.

Thus there is x ∈ X \∪N
i=1Ui and so M(Φ(x)) ≥

∑N
i=1 ω

k
pi(Ω

∗
i )− ε. Using

Corollary 2.13 and then making ε tend to zero we obtain

(12) ωk
p(Ω0) ≥

N
∑

i=1

ωk
pi(Ω

∗
i ).
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As a result there is a constant b = b(n, k) such that, using Theorem 2.8,

ω̃k
p(Ω0) = p−

n+1−k
n+1 ωk

p(Ω0) ≥ p−
n+1−k
n+1

N
∑

i=1

ωk
pi(Ω

∗
i )

= p−
n+1−k
n+1

N
∑

i=1

vol(Ω∗
i )

k
n+1ωk

pi(Ωi)

=
N
∑

i=1

vol(Ω∗
i )

(

pi
pvol(Ω∗

i )

)
n+1−k
n+1

ω̃k
pi(Ωi)

≥
N
∑

i=1

vol(Ω∗
i )

(

1−
1

pvol(Ω∗
i )

)
n+1−k
n+1

ω̃k
pi(Ωi)

≥
N
∑

i=1

vol(Ω∗
i )ω̃

k
pi(Ωi)−

b

pV

N
∑

i=1

vol(Ω∗
i )ω̃

k
pi(Ωi)

≥
N
∑

i=1

vol(Ω∗
i )ω̃

k
pi(Ωi)−

bCk

pV

N
∑

i=1

vol(Ω∗
i )

≥
N
∑

i=1

vol(Ω∗
i )ω̃

k
pi(Ωi)−

bCk

pV
.

�

We can now prove the main theorem of this section

3.2. Weyl Law for domains. For all 0 ≤ k < n+1, there exists a constant
a(n, k) such that, for every Lipschitz domain Ω satisfying (4), we have

lim
p→∞

ωk
p(Ω)p

−n+1−k
n+1 = a(n, k)vol(Ω)

k
n+1 .

Proof. Without loss of generality we assume that Ω has unit volume. We
start with the following lemma:

3.3. Lemma. lim infp→∞ ω̃k
p(C) = lim supp→∞ ω̃k

p(C).

Proof. Choose {pl}l∈N, {qj}j∈N so that

lim sup
p→∞

ω̃k
p(C) = lim

l→∞
ω̃k
pl
(C) and lim inf

p→∞
ω̃k
p(C) = lim

j→∞
ω̃k
qj(C).

With l fixed and for all j large enough so that δj := pl/qj < 1, consider

Nj to be the maximum number of cubes {C∗
i }

Nj

i=1, vol(C
∗
i ) = δj for all i,

with pairwise disjoint interiors contained in C. We must have δjNj → 1 as
j → ∞.
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From the Lusternick-Schnirelman Inequality 3.1 we obtain

ω̃k
qj(C) ≥

Nj
∑

i=1

vol(C∗
i )ω̃

k
pl
(C) +O(p−1

l ) = δjNjω̃
k
pl
(C) +O(p−1

l ).

Making j → ∞ and then l → ∞ we obtain

lim inf
p→∞

ω̃k
p(C) ≥ lim sup

p→∞
ω̃k
p(C).

�

Set a(n, k) = limp→∞ ω̃k
p(C).

3.4. Lemma. lim infp→∞ ω̃k
p(Ω) ≥ a(n, k).

Proof. Given any ε > 0, one can find a family of cubes {C∗
i }

N
i=1 with pairwise

disjoint interiors contained in Ω, all with the same volume δi, and such that

N
∑

i=1

vol(C∗
i ) ≥ 1− ε.

From the Lusternick-Schnirelman Inequality 3.1 we obtain

ω̃k
p(Ω) ≥

N
∑

i=1

vol(C∗
i )ω̃

k
[pvol(C∗

i )]
(C)−

c

pδi

and thus making p→ ∞ we have

lim inf
p→∞

ω̃k
p(Ω) ≥ (1− ε) lim inf

p→∞
ω̃k
p(C) = (1− ε)a(n, k).

The result follows from the arbitrariness of ε. �

3.5. Lemma. There are regions {Ω∗
i }i∈N contained in C, with pairwise dis-

joint interior, all similar to Ω, and such that for all ε > 0 we can choose
N ∈ N so that

∑N
i=1 vol(Ω

∗
i ) ≥ 1− ε.

Proof. Choose Ω1 contained in the interior of C, similar to Ω, and de-
note its volume by v. Set R1 to be the closure C \ Ω1 and find cubes

{Ci,1}
Q1

i=1 contained in R1 with pairwise disjoint interiors, and such that
∑Q1

i=1 vol(Ci,1) ≥ vol(R1)/2. This is possible because R1 is a Lipschitz do-
main. For all i = 1, . . . , Q1, let Ωi,1 be a region similar to Ω1, contained in
the interior of Ci,1, and with volume vvol(Ci,1).

Next, set Ω2 = ∪Q1
i=1Ωi,1 and consider R2 to be the closure of C \(Ω1∪Ω2).

Again, find cubes {Ci,2}
Q2
i=1 contained in R2, with pairwise disjoint interiors,

and such that
∑Q2

i=1 vol(Ci,2) ≥ vol(R2)/2. For all i = 1, . . . , Q2, let Ωi,2 be
a region similar to Ω1, contained in the interior of Ci,2, and with volume

vvol(Ci,2). Define Ω3 = ∪Q2

i=1Ωi,2 and proceed inductively.
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It suffices to check that αN :=
∑N

j=1 vol(Ωj) tends to 1 as N tends to
infinity. Indeed from the construction we have

αN+1 ≥ αN (1−v/2)+v/2 =⇒ αN+1 ≥ v/2

N−1
∑

j=0

(1−v/2)j = 1−(1−v/2)N .

�

3.6. Lemma. a(n, k) ≥ lim supp→∞ ω̃k
p(Ω).

Proof. Given ε > 0, choose {ql}l∈N so that

βk := lim sup
p→∞

ω̃k
p(Ω) = lim

l→∞
ω̃k
ql
(Ω).

Consider the collection of regions {Ω∗
i }

N
i=1 given by the previous lemma.

With l fixed and p large, set δp = ql/(pvol(Ω
∗
1)) and let Qp be the maximum

number of cubes {C∗
j }

Qp

j=1 with pairwise disjoint interiors contained in C
where all have volume δp. We have δpQp approaching 1 as p→ ∞.

For each j = 1, . . . , Qp we have regions {Ωi,j}
N
i=1 inside Cj , with pairwise

disjoint interiors, all similar to Ω, and such that

vol(Ωi,j) = δpvol(Ω
∗
i ) i = 1, . . . , N

and thus, with v = min{vol(Ω∗
i )}

N
i=1,

min{vol(Ωi,j) : i = 1, . . . , N, j = 1, . . . , Qp} = δpv.

Set pi = [pδpvol(Ω
∗
i )], i = 1, . . . , N . From the Lusternick-Schnirelman In-

equality 3.1 we have

ω̃k
p(C) ≥

Qp
∑

j=1

vol(Ω1,j)ω̃
k
p1(Ω) +

∑

j≥1,i≥2

vol(Ωi,j)ω̃
k
pi(Ω) +O

(

1

pδpv

)

= Qpδp

(

vol(Ω∗
1)ω̃

k
ql
(Ω) +

N
∑

i=2

vol(Ω∗
i )ω̃

k
pi(Ω)

)

+O

(

1

pδpv

)

Making p tend to infinity we obtain

a(n, k) ≥ vol(Ω∗
1)ω̃

k
ql
(Ω) +

N
∑

i=2

vol(Ω∗
i )ω̃

k

[ql
vol(Ω∗

i
)

vol(Ω∗
1)

]
(Ω) +O

(

vol(Ω∗
1)

qlv

)

.

Making l → ∞ and using Lemma 3.4 we obtain that

a(n, k) ≥ vol(Ω∗
1)βk + a(n, k)

N
∑

i=2

vol(Ω∗
i ).

Lemma 3.5 implies then that

(vol(Ω∗
1) + ε)a(n, k) ≥ vol(Ω∗

1)βk = vol(Ω∗
1) lim sup

p→∞
ω̃k
p(Ω).

The result follows by making ε→ 0. �
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The desired result is a consequence of Lemma 3.4, Lemma 3.3, and Lemma
3.6. �

4. Weyl Law for compact manifolds

We consider a compact Riemannian (n+1)-manifold (Mn+1, g) isometri-
cally embedded in R

Q with smooth boundary ∂M and satisfying (4). Recall
the definition of ω̃k

p(M) in (7), that C denotes the unit cube in R
n+1, and

that, for every integer 0 ≤ k < n+ 1, we set

a(n, k) = lim
p→∞

ω̃k
p(C).

The geodesic ball in (M,g) of radius r centred at p ∈M is denoted by Br(p).

4.1. Theorem. For every integer 0 ≤ k < n+ 1 we have

lim inf
p→∞

ωk
p(M)p−

n+1−k
n+1 ≥ a(n, k)vol(M)

k
n+1 .

Proof. Without loss of generality we assume that vol(M) = 1.
Given ε > 0 there is r̄ > 0 so that for every Br(p) ⊂ M \ ∂M with

r ≤ r̄ and p ∈M , the Euclidean metric g0 induced on Br(p) via Riemannian

normal coordinates centered at p is such that (1+ε)−1/2g ≤ g0 ≤ (1+ε)1/2g.
Denoting by |Br(0)| the volume of the Euclidean ball Br(0) we have

(1 + ε)−(n+1)vol(Br(p)) ≤ |Br(0)| ≤ (1 + ε)n+1vol(Br(p))

and ωk
p(Br(p)) ≥ (1 + ε)−kωk

p(Br(0)) for all p ∈ N.
Choose a collection of pairwise disjoint geodesic balls Bi ⊂ M \ ∂M ,

i = 1, . . . , N , all with radius smaller than r̄, and such that
∑N

i=1 vol(Bi) ≥
(1 + ε)−1.

Let B denote the unit volume ball in R
n+1 and Bi denote a Euclidean

ball with the same radius as Bi, i = 1, . . . , N . Reasoning like in the proof of
(12) in Lusternick-Schnirelman Inequality 3.1 we have that

ωk
p(M) ≥

N
∑

i=1

ωk
[pvol(Bi)]

(Bi)

and so, with pi = [pvol(Bi)], i = 1, . . . , N ,

ω̃k
p(M) ≥ (1 + ε)−k

N
∑

i=1

|Bi|

(

pi
p|Bi|

)
n+1−k
n+1

ω̃k
pi(B)

≥ (1 + ε)−k
N
∑

i=1

|Bi|

(

vol(Bi)

|Bi|
−

1

p|Bi|

)
n+1−k
n+1

ω̃k
pi(B)

≥ (1 + ε)−(n+k+1)
N
∑

i=1

vol(Bi)

(

vol(Bi)

|Bi|
−

1

p|Bi|

)
n+1−k
n+1

ω̃k
pi(B).
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Making p→ ∞ and using Theorem 3.2 we obtain

lim inf
p→∞

ω̃k
p(M) ≥ (1 + ε)−2n−2a(n, k)

N
∑

i=1

vol(Bi) ≥ (1 + ε)−2n−3a(n, k).

The desired result follows by making ε tend to zero.
�

We focus on the case where k = n and set a(n) = a(n, n). We drop the
subscript or superscript k in the notation, which means that ωn

p (M) becomes
ωp(M), Pn

p (M) becomes Pp(M) and so on. Condition (4) means that M is
connected.

4.2. Weyl Law for compact manifolds. For every compact Riemannian
manifold (Mn+1, g) with (possibly empty) boundary, we have

lim
p→∞

ωp(M)p−
1

n+1 = a(n)vol(M)
n

n+1 .

Proof. Recalling the discussion in Section 1.4, we start by decomposing M
into regions that are almost Euclidean (denoted by {Ci}

N
i=1) and then use

those regions to construct a connected region Ω in Euclidean space.
Given ε > 0, consider r̄ so that for all p ∈ M the ball Br̄(p) is (1 + ε/2)-

bilipschitz diffeomorphic to some ball of radius r̄ in the closed upper half-

space R
n ×R+ with the Euclidean metric. Choose a covering {Bi}

Ñ
i=1 of M

by balls of radius r̄, so that balls of half the radius still cover M .
We now define a collection C = {Ci}

N
i=1 of domains with the following

properties for all i = 1, . . . , N :

• Each Ci is (1 + ε/2)-bilipschitz diffeomorphic to a Lipschitz domain
in R

n+1 with Euclidean metric;
• C is a covering of M ;
• Ci’s have mutually disjoint interiors.

We first define domains C̃i, i = 1, . . . , Ñ , inductively. We set C̃1 = B1.
For i > 1 we set B̃i to be a concentric ball in Bi of radius ri ∈ [ r̄2 , r̄], so that

the boundary of Bi intersects the boundaries of C̃1, ..., C̃i−1 transversally. We
define C̃i to be the closure of B̃i∩ (M \∪i−1

j=1C̃j). The transversality condition

ensures that C̃i is a Lipschitz domain for all i = 1, . . . , Ñ . The collection C is
formed by considering the connected components C1, . . . , CN of the domains
C̃1, . . . , C̃Ñ .

For each i = 1, . . . , N , let Ci ⊂ R
n+1 be a region (1 + ε/2)-bilipschitz

diffeomorphic to Ci. Consider a region Ω ⊂ R
n+1 that one obtains by con-

necting the N disjoint regions Ci ⊂ R
n+1, i = 1, . . . , N consecutively by

tubes of very small volume. The region Ω is connected and a Lipschitz do-
main. Moreover, making the volumes of the connecting tubes sufficiently
small we obtain
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(13) vol(Ω) ≤ (1 + ε)n+1vol(M).

Consider Φ ∈ Pp(Ω) continuous in the mass topology with X = dmn(Φ).
From Lemma 2.15 (i) we obtain, for all i = 1, . . . , N , Φi ∈ Pp(Ci) with
domain X,

(14) M(Φi(x)) ≤ (1 + ε)nM(Φ(x)xCi) for all x ∈ X,

and Φ∗
i λ̄ = λ, where λ = Φ∗λ̄.

Next, we describe in general terms how to use the maps {Φi}
N
i=1 to con-

struct a p-sweepout of M . The elements Φi(x) have boundary in ∂Ci and
so one can choose Zi(x) ∈ In+1(Ci;Z2) so that the cycle ∂Zi(x) coincides
with Φi(x) on the interior of Ci. Because the choice of Zi(x) is not unique
(Ci + Zi(x) would have also been a valid choice) it is not always possible
to construct a continuous map x 7→ ∂Zi(x). Nonetheless, we argue that a

choice of Z1 for a given x induces choices of Z2, . . . , ZN so that if Z̃i denotes
the image of Zi in Ci under the respective bilipschitz diffeomorphism, then
∂Z̃1 + . . .+ ∂Z̃N , as a relative cycle of M , does not depend on the choice of
Z1. Then we show that the map x 7→ (∂Z̃1 + . . .+ ∂Z̃N )(x) is a p-sweepout
of M whose elements have masses comparable with those of Φ.

For each i = 1, . . . , N set

SXi = {(x,Z) : x ∈ X,Φi(x)− ∂Z ∈ In(∂Ci;Z2)} ⊂ X × In+1(Ci;Z2).

It is straightforward to see that SXi does not depend on the choice of the
representative for Φi(x) in Zn,rel(Ci, ∂Ci;Z2). There is a natural projection
τi : SXi → X, i = 1, . . . , N .

4.3. Lemma. τi is a 2-cover of X for all i = 1, . . . , N .

Proof. Fix i = 1, . . . , N .
For every x ∈ X we have Φi(x) in the connected component of zero

and so from Proposition 1.23 of [1] one can find Zx ∈ In+1(Ci;Z2) so that
Φi(x)− ∂Zx ∈ In(∂Ci;Z2). Note that (x,Ci + Zx) belongs to SXi as well.

Given (x,Z ′) ∈ SXi, then ∂(Z ′ − Zx) ∈ In(∂Ci;Z2) and so we obtain
from the Constancy Theorem [21, page 141] that Z ′ = Zx or Z ′ = Ci + Zx.
As a result, τ−1

i (x) = {(x,Zx), (x,Ci + Zx)}.
The unique lifting property holds for πi because F(Zx, Ci + Zx) = |Ci|

for all x ∈ X and so for y near x there is a unique Zy that is close to Zx in
the flat topology. �

The isomorphism classes of double covers of X are in a bijective corre-
spondence with Hom(π1(X),Z2), which is homeomorphic to H1(X;Z2). We
claim that, for all i = 1, . . . , N , the element σi ∈ H1(X;Z2) that classifies
SXi is identical to λ. Indeed given γ : S1 → X nontrivial in π1(X), consider
a lift to SXi given by θ 7→ (γ(exp(iθ)), Zθ), 0 ≤ θ ≤ 2π. Then σi(γ) is 1 if
Z0 = Ci−Z2π and 0 if Z0 = Z2π. Thus σi(γ) is non-zero if and only if Φi ◦γ
is a sweepout.
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As a result we obtain that SX1 is isomorphic to SXi for all i = 1, . . . , N
and let Fi : SX1 → SXi be the corresponding isomorphism.

For each i = 1, . . . , N , there is a natural projection of SXi into In+1(Ci;Z2)
that is continuous in the flat topology. Furthermore Ci is bilipschitz diffeo-
morphic to Ci and so, composing the projection map with that diffeomor-
phism we obtain Ξi : SXi → In+1(Ci;Z2) continuous in the flat topology.

Set

Ψ̂ : SX1 → Zn,rel(M,∂M ;Z2), Ψ̂(y) =
N
∑

i=1

∂(Ξi ◦ Fi(y)).

The map is continuous in the flat topology.
If (x,Z) ∈ SX1, then Ξi ◦ Fi(x,C1 + Z) = Ci + Ξi ◦ Fi(x,Z) for all

i = 1, . . . , N , and so

Ψ̂(x,C1 + Z) =

N
∑

i=1

∂(Ci + Ξi ◦ Fi(x,Z)) =

N
∑

i=1

∂Ci + Ψ̂(x,Z)

= ∂M + Ψ̂(x,Z).

Thus Ψ̂(x,C1+Z) = Ψ̂(x,Z) in Zn,rel(M,∂M ;Z2), which means that Ψ̂ de-
scends to a continuous map in the flat topology Ψ : X → Zn,rel(M,∂M ;Z2).

4.4. Lemma. For all x ∈ X we have

M(Ψ(x)) ≤ (1 + ε)2nM(Φ(x)) + (1 + ε)n
N
∑

i=1

|∂Ci|.

Proof. Choose (x,Z) ∈ SX1. Then for all i = 1, . . . , N , we have that
Fi(x,Z) = (x,Zi) ∈ SXi for some Zi ∈ In+1(Ci;Z2) and so we deduce from
∂Zi − Φi(x) ∈ In(∂Ci,Z2) and (14) that

M(∂Zi) ≤ M(Φi(x)) + |∂Ci| ≤ (1 + ε)nM(Φ(x)xCi) + |∂Ci|.

Therefore
N
∑

i=1

M(∂Zi) ≤ (1 + ε)nM(Φ(x)) +
N
∑

i=1

|∂Ci|

and the result follows because M(Ψ(x)) ≤ (1 + ε)n
∑N

i=1 M(∂Zi).
�

Claim : Ψ is a p-sweepout and Ψ has no concentration of mass.

Proof. Choose γ : S1 → X nontrivial in π1(X) and denote by γ1 its lift
to SX1. Then γi = Fi ◦ γ1 gives a lift to SXi for all i = 1, . . . , N and we
consider the continuous map in the flat topology

B : [0, 2π] → In+1(M ;Z2), B(θ) =

N
∑

i=1

Ξi ◦ γi(θ).
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We have (Ψ ◦ γ)(θ) = ∂B(θ) for all 0 ≤ θ ≤ 2π.
Hence Ψ∗λ̄ = λ because, recalling that σi = λ for all i = 1, . . . , N ,

λ(γ) = 0 =⇒ σi(γ) = 0 for all i = 1, . . . , N

=⇒ Ξi ◦ γi(2π) = Ξi ◦ γi(0) for all i = 1, . . . , N

=⇒ B(2π) = B(0)

and

λ(γ) = 1 =⇒ σi(γ) = 1 for all i = 1, . . . , N

=⇒ Ξi ◦ γi(2π) = Ci + Ξi ◦ γi(0) for all i = 1, . . . , N

=⇒ B(2π) =M +B(0),

where in the last line we used the fact that {Ci}
N
i=1 are pairwise disjoint and

cover M .
This implies that Ψ is a p-sweepout because λp 6= 0. We leave to the

reader to check that Ψ has no concentration of mass. �

From Corollary 2.13, Lemma 4.4, and the previous claim we obtain

ωp(M) ≤ (1 + ε)2nωp(Ω) + (1 + ε)n
N
∑

i=1

|∂Ci|.

Dividing the inequality above by p1/(n+1), making p→ ∞, and using Theo-
rem 3.2 we have

lim sup
p→∞

ω̃p(M) ≤ a(n)(1 + ε)2n|Ω|n/(n+1).

Using (13) and making ε tend to zero in the two inequalities we obtain

lim sup
p→∞

ω̃p(M) ≤ a(n)(volM)n/(n+1).

This inequality and Theorem 4.1 imply the desired result. �

Appendix A

Proof of Theorem 2.10. Set a(q) = 2−4(q+2)2−2 where q ∈ N is fixed. We
use BF

r (T ) to denote the ball of radius r in the flat topology centred at
T ∈ Zk,rel(M,∂M ;Z2). Finally I0(m, l) denotes the cells of I(m, l) whose
support lie in ∂Im.

The key step consists in proving the following lemma below:
Given T ∈ Zk,rel(M,∂M ;Z2) with M(T ) ≤ L, l ∈ N, and m ≤ q + 1,

assume there is a sequence

φk : I0(m, l)0 → BF
εk
(T ) ∩ {S : M(S) ≤ 2L}

with εk < 1/k and m(φk, r) ≤ δ/4.
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A.1. Lemma. There exists N ∈ N, N ≥ l, such that for a subsequence
{φj} of {φk}k∈N we can find

ψj : I(1, N)0 × I0(m, l)0 → BF
εj (T )

satisfying

(i) f(ψj) ≤ δ if m = 1 and f(ψj) ≤ f(φj) + δ if m 6= 1;
(ii) ψj([0], x) = φj(x) and ψj([1], x) = T for all x ∈ I0(m, l)0;
(iii)

sup{M(ψj(y, x)) : (y, x) ∈ I(1, N)0 × I0(m, l)0}

≤ sup
x∈I0(m,l)0

{M(φj(x))} +
δ

n+ 1
;

(iv) m(ψj , r) ≤ 2(m(φj , r) + a(n)δ).

Once this result is proven, Theorem 2.10 follows exactly in the same way
that Theorem 13.1 in [15] followed from [15, Lemma 13.4].

Proof. From Proposition 2.4 we can assume that ||φk(x)||(∂M) ≤ 1/k for
all k ∈ N and x ∈ I0(m, l)0. Since the set of varifolds in Vk(M) with
mass bounded above by 2L is compact in the weak topology, we can find a
subsequence {φj} of {φk}k∈N and a map

V : I0(m, l)0 → Vk(M)

so that

lim
j→∞

|φj(x)| = V (x) as varifolds,

for each x ∈ I0(m, l)0.
Note that F(φj(x), T ) tends to 0 as j → ∞ (as relative cycles). Thus

from Proposition 2.4 and since m(φj , r) ≤ δ/4, we have

(15) ||T ||(Br(p) \ ∂M) ≤ m(φj , r) + a(n)δ <
δ

3

and

||V ||(Br(p)) ≤ m(φj , r) + a(n)δ <
δ

3
for all j sufficiently large, p ∈M, and x ∈ I0(m, l)0.

We can choose points {pi}
v
i=1, and positive real numbers {ri}

v
i=1, ri < r,

so that

Bri1
(pi1) ∩Bri2

(pi2) = ∅ if i1 6= i2,

and such that

(16) ||T ||(∂Bri(pi)) ≤ ||V (x)||(∂Bri(pi)) = 0,

(17) ||V (x)||(M \ ∪v
i=1Bri(pi)) <

δ

3
,
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and

(18) ||T ||(Bri(pi) \M) ≤ ||V (x)||(Bri(pi)) = lim
j→∞

||φj(x)||(Bri(pi)) <
δ

3
,

for all x ∈ I0(m, l)0 and i = 1, . . . , v. We can assume v = 3N − 1 for some
N ∈ N satisfying N ≥ l.

From [1, Proposition 1.23], we get that there exists Qj(x) ∈ Ik(M),
Rj(x) ∈ Ik(∂M) for all j sufficiently large and x ∈ I0(m, l)0, such that

∂Qj(x) = φj(x)− T +Rj(x), M(Qj(x)) = F(φj(x)− T ).

In particular we have M(Qj(x)) < εj < 1/j.
For each i = 1, . . . , v, consider the distance function di(x) = d(pi, x).

Using [21, Lemma 28.5], we find a decreasing subsequence {rji } converging

to ri with rji < r and such that the slices 〈Qj(x), di, r
j
i 〉 are in Ik(M) and

satisfy

(19) 〈Qj(x), di, r
j
i 〉 = ∂(Qj(x)xBrji

(pi))− (φj(x)− T +Rj(x))xBrji
(pi),

φj(x)xBrji
(pi), TxBrji

(pi) ∈ Ik(M), and Rj(x)xBrji
(pi) ∈ Ik(∂M)

for every x ∈ I0(m, l)0. Note that since limj→∞M(Qj(x)) = 0, by the

coarea formula we can choose {rji } such that

(20)
∑

x∈I0(m,l)0

v
∑

i=1

M(〈Qj(x), di, r
j
i 〉) ≤ a(n)δ <

δ

2(n+ 1)

for every sufficiently large j. Furthermore, using (16), (17), (18), and Propo-
sition 2.4, we get that

(21) ||φj(x)||(Brji
(pi)) <

δ

3
, ||T ||(B

rji
(pi) \M) <

δ

3
,

(22) ||φj(x)||(M \ ∪v
i=1Bri(pi)) <

δ

3
, ||T ||(M \ (∪v

i=1Bri(pi)∪ ∂M)) <
δ

3
,

and

(23) (||T || − ||φj(x)||)(Brji
(pi) \ ∂M) ≤

δ

2(n+ 1)v

for every sufficiently large j, i = 1, . . . , v, and x ∈ I0(m, l)0.
We consider the map given by

ψj

([

i

3N

]

, x

)

= φj(x)−
i
∑

a=1

∂(Qj(x)xBrja
(pa)) if 0 ≤ i ≤ 3N − 1,

ψj([1], x) = T,

defined on I(1, N)0 × I0(m, l)0.
Note that as relative cycles

ψj

([

i

3N

]

, x

)

− T = ∂(Qj(x)x(M \ ∪i
a=1Brja

(pa)),
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from which it follows that ψj

([

i
3N

]

, x
)

∈ BF
εj(T ). From (19), we also have

that as relative cycles

(24) ψj

([

i

3N

]

, x

)

= φj(x)x(M \ ∪i
a=1Brja

(pa)) +

i
∑

a=1

TxB
rja
(pa)

−
i
∑

a=1

〈Qj(x), da, r
j
a〉xBrja

(pa).

In what follows the masses of currents are always computed as relative
cycles, i..e, using Proposition 2.4. From (20), (21), (22), and (24) we have
that

M

(

ψj

([

i

3N

]

, x

)

− ψj

([

i− 1

3N

]

, x

))

≤
δ

3
+ ||φj(x)||(Brji

(pi)) + ||T ||(B
rji
(pi) \M) < δ

for 1 ≤ i ≤ v = 3N − 1, and

M

(

ψj

([

1−
1

3N

]

, x

)

− T

)

≤ ||φj(x)||(M \ ∪v
a=1Brja

(pa))

+ ||T ||(M \ (∪v
a=1Brja

(pa) ∪ ∂M)) +
δ

3
< δ.

If d(x, y) = 1, we also have

M

(

ψj

([

i

3N

]

, x

)

− ψj

([

i

3N

]

, y

))

≤ ||φj(x)− φj(y)||(M \M) +
δ

2
≤ f(φj) + δ.

Hence f(ψj) ≤ f(φj) + δ.
To prove Lemma A.1(iii) we use (20), (23), and (24), to conclude

M

(

ψj

([

i

3N

]

, x

))

≤ ||φj(x)||(M \ (∪i
a=1Brja

(pa) ∪ ∂M))

+

i
∑

a=1

||T ||(B
rja
(pa) \ ∂M) +

δ

2(n + 1)

≤ ||φj(x)||(M \M)

+

i
∑

a=1

(||T || − ||φj(x)||)(Brja
(pa) \M) +

δ

2(n + 1)

≤ ||φj(x)||(M \M) +
δ

n+ 1
= M(φj(x)) +

δ

n+ 1
.
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Finally, Lemma A.1(iv) follows from (15), (20), and (24):

∣

∣

∣

∣

∣

∣

∣

∣

ψj

([

i

3N

]

, x

)
∣

∣

∣

∣

∣

∣

∣

∣

(Br(p) \ ∂M) ≤

||φj(x)||(Br(p) \ ∂M) + ||T ||(Br(p) \ ∂M) + a(n)δ

≤ 2m(φk, r) + 2a(n)δ.

�

�

Appendix B

Proof of Theorem 2.11. The analogous result for continuous functions in the
flat topology was proven by Almgren in Theorem 6.6 [1]. For continuous
functions in the mass topology this result was proven in Theorem 14.1 in
[15] when k = n and ∂M = ∅ by adapting the proof of [1, Theorem 6.6]. We
now explain which further adaptations need to be made in order to prove
Theorem 2.11.

The constant δ0 is chosen so that Theorem 2.5 in [1] can be applied
and thus we obtain a chain map (defined in [1, Definition 2.3]) φM : Y →
I∗(M ;Z2) of degree k so that φM = φ on Y0 and

M(φM (α)) ≤ 2f(φ) for all α ∈ Yp, p ≥ 1.

Consider a differentiable triangulation of M , the deformation map D given
in [20, Theorem 4.5] that is continuous in the mass topology, and the cutting
function given by [1, Theorem 5.8]. For every α ∈ Yp, p ≥ 1, one has now
all the necessary ingredients to consider the function

hα : α→ Zk(M,∂M ;Z2)

given by [1, Interpolation Formula 6.3] (with A = M , B = ∂M , φA = φM ,
and φB = 0). The projection

h̃α : α→ Zk,rel(M,∂M ;M;Z2)

is continuous in the mass topology (see [1, page 297]).

Using the maps {h̃α}α∈Y and the construction described in [1, Section
6.5] one obtains the map Φ satisfying (i) and (ii). Property (iii) also follows
because Theorem 6.6 2 (b) of [1] (see also [15, Lemma 14.4]) translates into
the fact that if x, y lie in a common cell of Y then for some C = C(M,m)
we have

M(Φ(x)− Φ(y)) ≤ C sup{M(φM (α)) : α ∈ Yp, p ≥ 1} ≤ 2Cf(φ).

�
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