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Abstract. Let V be the 7-dimensional irreducible representations of G2. We
decompose the tensor power V ⊗n into irreducible representations of G2 and
obtain all irreducible representations of G2 in the decomposition. This gen-
eralizes Weyl’s work on the construction of irreducible representations and
decomposition of tensor products for classical groups to the exceptional group
G2.

1. Introduction

In his book [W] H. Weyl studied two fundamental problems for classical groups:
first, the polynomial invariants for an arbitrary number of variables for a standard
classical group action; second, the decomposition of the tensor powers for such an
action. We refer the study of the first problem as the invariant theory and the
second as the decomposition of tensor powers. There remain the same problems for
exceptional groups G2, F4, E6, E7 and E8. G. Schwarz [S] has found an invariant
theory for G2. The aim of this paper is to find the decomposition of the tensor
powers and Weyl’s construction for G2.

The exceptional group G2 can be realized as the group of automorphism of Cayley
numbers. The minimal possible nontrivial representation V of G2 is 7-dimensional
and can be realized to be G2-action on the trace zero Cayley numbers. Based
on the invariant theory for G2 due to Schwarz, we define a family of contraction
and expansion operators. They are certain homomorphisms between various V ⊗n’s
which correspond to the G2-invariants. We prove that the commutator algebra of
G2 action on the tensor power V ⊗n is generated by some compositions of contraction
and expansion operators together with the permutation group Sn. We denote
by V [n] the intersection of kernels of all genuine contraction operators; then the
commutator algebra of G2 action on the space V [n] is just Sn. Denote by Sλ the
Schur functor for a Young diagram λ. We prove that any irreducible representation
of G2 can be realized as the intersection S[λ](V ) = Sλ(V ) ∩ V [n]. We show that
S[λ]V is non-zero if and only if λ is a partition of n into at most 2 parts. We also
prove that the multiplicity of S[λ](V ) occurring in V [n] is equal to the dimension of
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926 JING-SONG HUANG AND CHEN-BO ZHU

Vλ, where Vλ is the irreducible representation of Sn corresponding to the partition
λ. More precisely, as a G2 × Sn-module, V [n] is decomposed as follows:

V [n] ∼=
⊕

S[λ](V )⊗ Vλ,

where the sum is over all partitions λ = (λ1 ≥ λ2 ≥ 0) of n into at most two parts.
The approach in this paper is in the same spirit of Weyl’s original work [W] and

was explained in a much easier way in Fulton and Harris’ book [FH]. By explicitly
making use of Schwarz’s invariant theory for G2, we extend Weyl’s method of
construction and tensor power decomposition to the exceptional group G2. We
remark that although the invariant theory for the 8-dimensional spin representation
of Spin(7) is closely related to the G2 case we used here, the decomposition of the
spin representation of Spin(n) should be done in a completely different fashion.
One may use Howe’s theory of dual pairs [H, §4.3.5] to decompose all even powers,
and then to describe the odd power by decomposing the tensor product of the spin
representation with an even power.

In his Yale dissertation [Wo] Y.-K. Wong obtained the “First Fundamental The-
orem for Covariants” for the 7-dimensional representation of G2 (and for the 8-
dimensional representation of Spin(7) as well). In other words, he considered the
decomposition of the whole polynomial algebra, as opposed to the individual tensor
space which we investigate in this paper (Wong did the Spin(7) case as well).

2. Invariant theory of G2

In this section we recall the invariant theory of G2. These results presented here
are due to G. Schwarz [S].

It is well-known that up to isomorphism there is only one non-commutative, non-
associative alternative algebra over C, the 8-dimensional Cayley algebra. It can be
constructed as follows. Let AR denote the set of ordered pairs of quaternions with
coordinatewise addition and the following multiplication:

(a, b)(c, d) = (ac− d̄b, da + bc̄),

where a 7→ ā is the usual conjugation of quaternions. Then AR is a central simple
non-associate, non-commutative alternative algebra of dimension 8 over R. If x =
(a, b) ∈ AR, we define x̄ = (ā,−b) and tr(x) = Re a, the real part of a. We denote
by A the complexification of AR.

The connected component of the automorphism group of A is isomorphic to the
complex exceptional group G2. Denote by V the subspace of A which consists of
trace zero elements. The group G2 acts irreducibly and faithfully on V .

We now describe invariants. Let m ∈ N and denote by mV = V ⊕m =
⊕m

i=1 V
the direct sum of m-copies of V and let (x1, · · · , xm) ∈ mV be arbitrary. We define
the following three series of polynomial functions in C[mV ]G2 :

αij = −tr(xixj), 1 ≤ i, j ≤ m;

βijk = −tr(xi(xjxk)), 1 ≤ i, j, k ≤ m;

γijkl = skew tr(xi(xj(xkxl))), 1 ≤ i, j, k, l ≤ m.

(2.1)

Here the last function is skew symmetrized with respect to its arguments. We can
identify above invariants as elements in (V ∗)⊗d, for d = 2, 3, 4, where V ∗ denotes
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WEYL’S CONSTRUCTION AND TENSOR POWER DECOMPOSITION 927

the dual space of V . We write α, β and γ for the corresponding elements. We have

α ∈ Sym2(V ∗), β ∈ ∧3(V ∗) and γ ∈ ∧4(V ∗).(2.2)

Through the bilinear form α, we may identify V ∗ with V . Thus we may also
view these three invariants as elements in V ⊗d, for d = 2, 3, 4. We shall use this
identification if no confusion will arise.

The following is a theorem due to G. Schwarz [S].

Theorem 2.1. The G2-invariants C[mV ]G2 are generated by αij, βijk and γijkl.

3. Decomposition of tensor powers for GL(V )

Let Sn denote the symmetric group of n objects and CSn the group algebra of
Sn. To a partition λ = (λ1, · · · , λk) of n with λ1 ≥ · · · ≥ λk ≥ 1, we associate a
Young diagram with λi boxes in the ith row, the rows of boxes lined up on the left.
A Young tableau is a Young diagram with a numbering of boxes by 1, · · · , n, such
that the numbers are increased along each row and each column.

Given a Young tableau λ, let cλ ∈ CSn be the Young symmetrizer corresponding
to λ. Then some scalar multiple of cλ is idempotent and the image of cλ by right
multiplication on CSn is an irreducible representation Vλ of Sn. Every irreducible
representation of Sn can be obtained in this way for a unique partition. See for
example [FH, Theorem 4.3].

Let V be a finite dimensional vector space. We consider the actions of GL(V )
and Sn on V ⊗n. The action of GL(V ) is the diagonal action and Sn action is the
permutations on the components of the tensor products.

We denote the image of a Young symmetrizer cλ by Sλ(V ):

Sλ(V ) = Im (cλ : V ⊗n → V ⊗n).

The functor V  Sλ(V ) is called the Schur functor.

Theorem 3.1. As GL(V )× Sn modules, we have the following canonical isomor-
phism:

V ⊗n ∼=
⊕

Sλ(V )⊗ Vλ,

where the sum is over all partitions λ of n into at most dim V parts.

For a proof of this theorem, see §6.2 of [FH].

4. Contractions, expansions and commutator algebra

From now on the vector space V is the 7-dimensional irreducible representation
of G2. We will use the three kinds of generators of G2-invariants described in
Section 2 to define the corresponding contraction and expansion operators.

Suppose that we are given φ ∈ (V ∗)⊗d, a d-multilinear functional on V that is
either symmetric or skew-symmetric. Suppose further we are given an identification
V ∗ ∼= V . For any integer k such that 0 ≤ k ≤ d, we define the operator CEk(φ) as
follows:

CEk(φ) : V ⊗(d−k) → V ⊗k,

v1 ⊗ v2 ⊗ ...⊗ vd−k 7→ φ((v1, v2, ..., vd−k, ∗, ..., ∗︸ ︷︷ ︸
k

)) ∈ (V ∗)⊗k ∼= V ⊗k.(4.1)
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928 JING-SONG HUANG AND CHEN-BO ZHU

We say that CEk(φ) contracts at {1, 2, ..., d − k} and then inserts at {d − k + 1,
d− k + 2, ..., d}.

We shall call CEk(φ) a contraction operator if 0 ≤ k ≤ d
2 , and an expansion

operator if [d
2 ] < k ≤ d. Furthermore a contraction operator CEk(φ) is termed

genuine if k < d
2 .

For each pair of tuples I = {i1 < i2 < ... < id−k}, J = {j1 < j2 < ... < jk}
of integers between 1 and n, the operator CEk(φ) induces in an obvious way an
operator CEk(φ)I,J which contracts at I and then inserts at J :

CEk(φ)I,J : V ⊗n → V ⊗(n−d+2k).

Recall the G2-invariants α ∈ Sym2(V ∗), β ∈ ∧3(V ∗) and γ ∈ ∧4(V ∗). We also
identify V ∗ with V , as before. We then have the following contraction operators of
the first kind:

AI = CE0(α)I,∅ : V ⊗n → V ⊗(n−2), |I| = 2,

BJ = CE0(β)J,∅ : V ⊗n → V ⊗(n−3), |J | = 3,

CK = CE0(γ)K,∅ : V ⊗n → V ⊗(n−4), |K| = 4,

and the second kind

B′
J = CE1(β)J : V ⊗n → V ⊗(n−1), J = {J1, J2}, |J1| = 2, |J2| = 1,

C ′
K = CE1(γ)K : V ⊗n → V ⊗(n−2), K = {K1, K2}, |K1| = 3, |K2| = 1,

and finally the third kind

C ′′
K = CE2(γ)K : V ⊗n → V ⊗n, K = {K1, K2}, |K1| = 2, |K2| = 2.

Note that strictly speaking, we also have the contraction operator

A′
I = CE1(α)I : V ⊗n → V ⊗n, I = {I1, I2}, |I1| = 2, |I2| = 2.

But since it happens to be the identity operator, we shall not include it here.
We also have the following expansion operators of the first kind:

ΦI = CE2(α)∅,I : V ⊗(n−2) → V ⊗n, |I| = 2,

ΨJ = CE3(β)∅,J : V ⊗(n−3) → V ⊗n, |J | = 3,

ΘK = CE4(γ)∅,K : V ⊗(n−4) → V ⊗n, |K| = 4,

and the second kind

Ψ′
J = CE2(β)J : V ⊗(n−1) → V ⊗n, J = {J1, J2}, |J1| = 1, |J2| = 2,

Θ′
K = CE3(γ)K : V ⊗(n−2) → V ⊗n, K = {K1, K2}, |K1| = 1, |K2| = 3.
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We summarize the contraction and expansion operators in the following table:

Contractions Expansions

First Kind A : V ⊗2 → C Φ : C → V ⊗2

B : V ⊗3 → C Ψ : C → V ⊗3

C : V ⊗4 → C Θ : C → V ⊗4

Second Kind B′ : V ⊗2 → V Ψ′ : V → V ⊗2

C′ : V ⊗3 → V Θ′ : V → V ⊗3

Third Kind C ′′ : V ⊗2 → V ⊗2

Note that all expansion operators of the first and second kinds are injective. The
contraction operators of the first and second kind are surjective. The contraction
operator of third kind is neither surjective nor injective. Its kernel and image will
be computed in the next section.

Define the commutator algebra

B = HomG2(V
⊗n, V ⊗n)

= {φ : V ⊗n → V ⊗n | φ(g · v) = g · φ(v), ∀v ∈ V ⊗n, g ∈ G2},
where g acts diagonally on V ⊗n.

Theorem 4.1. The commutator algebra B is generated by all permutations in Sn,
the contraction operators and expansion operators.

Proof. The proof of this theorem follows the same line as the proof of Theorem 17.19
[FH, Appendix F.2] We denote by Symd the homogeneous polynomial functions of
degree d on V , i.e. Symd = Symd(V ∗). For an m-tuple d = (d1, · · · , dm) of
non-negative integers, we denote by Symd = Symd1(V ∗) ⊗ · · · ⊗ Symdm(V ∗) the
polynomials on V ⊕m which are homogeneous of degree di in i-th variable. We note
that

Symk(V ⊕m)∗ =
⊕
d

Symd,

where the sum is over all m-tuples d with d1 + · · ·+dm = k. By the standard tech-
nique of full polarization, we only need to examine the G2-invariants in Symd, where
d = (1, · · · , 1), namely G2-invariants in (V ∗)⊗m. Now applying Schwarz’s Theorem
(Theorem 2.1), we see that they are all polynomials in α(x(i), x(j)), β(x(i), x(j), x(k))
and γ(x(i), x(j), x(k), x(l)), and are all linear combinations of products such as

α(xσ(1), xσ(2)) · · ·β(xσ(k+1) , xσ(k+2), xσ(k+3))

· · · γ(xσ(l+1), xσ(l+2), xσ(l+3), xσ(l+4)) · · · ,

for some permutation σ of (1, · · · , m). It is clear that 2 times the number of α’s
plus 3 times the number of β’s plus 4 times the number of γ’s is equal to m.

We need to reinterpret these invariants by means of the canonical isomorphism

(V ∗)⊗2n ∼= (V ∗)⊗n ⊗ V ⊗n ∼= Hom(V ⊗n, V ⊗n) = End(V ⊗n).(4.2)

We claim that an invariant of the above form in (V ∗)⊗2n is taken by the isomorphism
(4.2) to a composition of a permutation in Sn with some contractions, and then
with some expansions and at last with another permutation in Sn. To unravel the
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definitions and make things easier to see we will treat it pictorially rather than
notationally. Suppose we are dealing with the case n = 7; after a permutation σ for
the 7 places and a permutation τ of last 7 places, a G2-invariant is β1,8,9 · γ2,3,4,10 ·
β5,11,12 · α6,7 · α13,14. In a picture it looks as follows:

◦1 ◦2 — ◦3 — ◦4 ◦5 ◦6 — ◦7

| | |
◦8 — ◦9 ◦10 ◦11 — ◦12 ◦13 — ◦14 ,

where the the positions connected by wedges represent invariants. Then the corre-
sponding endomorphism is τ ◦Ψ′

{1,8<9}◦Ψ′
{5,11<12}◦Φ{13<14}◦A{6<7}◦C′

{2<3<4,10}◦
σ.

Remark 4.2. It follows from the proof of Theorem 4.1 that each element in B is
a composition of following operations: first, a permutation; second, a composition
of some contractions; and then a composition of some expansions; finally, another
permutation.

5. Tensor power decomposition and Weyl’s construction

We put the standard Hermitian metric ( , ) on V . This extends to give a
Hermitian metric on V ⊗n. Note that this Hermitian metric is not G2-invariant. The
purpose of using this metric is for the convenience of using orthogonal complements
for decompositions.

Lemma 5.1. Among all contraction operators defined in the previous section, we
have the following relations:

(a) KerB′
J ⊆ KerBJ and KerB′ |V ⊗2∼= Sym2V ⊕ g. Here g denotes the adjoint

representation of G2.
(b) KerC ′

K ⊆ KerCK and KerC ′′
K ⊆ KerC′

K .
(c) KerC ′′ |V ⊗2= Sym2V and C ′′ |∧2V is an isomorphism.

Remark. Note that B′ : V ⊗2 → V and B : V ⊗3 → C. The formula KerB′
J ⊆ KerBJ

should be understood as follows: we regard B′ as a map V ⊗2 ⊗ V → V ⊗ V such
that it is identity on the second factor V .

Proof. The inclusions given in (a) and (b) are obvious. We need only to prove
KerB′ |V ⊗2∼= Sym2V ⊕ g and formulae in (c). It follows from the fact that β is in
∧3V that Sym2V is in the kernel of B′. We know that V ⊗ V = Sym2V ⊕ ∧2V
and ∧2V ∼= g⊕ V . Note that B′ : V ⊗ V → V is a non-zero G2-equivariant map,
since β is a G2-invariant. Hence KerB′ = Sym2V ⊕ g. Since γ is in ∧4V , Sym2V
is clearly contained in KerC ′′.

It remains to prove that C′′ is an isomorphism when it is restricted to ∧2V .
Following the notations in [FH], we decompose

V = W ⊕W ∗ ⊕ C

as SU(3)-modules. Here W is the 3-dimensional natural representation of SU(3)
and W ∗ is the contragredient of W , C denotes the trivial representation of SU(3).
Now we fix a basis e1, e2, e3 for W and u a basis for C. Let e∗1, e

∗
2, e

∗
3 be the dual

basis for W ∗. Then G2-invariant β can be written as [FH, p. 359]∑
i=1
3

ei ∧ u ∧ e∗i + 2(e1 ∧ e2 ∧ e3 + e∗1 ∧ e∗2 ∧ e∗3).
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Note that for an arbitrary n-dimensional vector space U with a nondegenerate
quadratic form, there is a linear transformation (called star map) ∗ : ∧(U) → ∧(U),
which satisfies

∗ : ∧k(U) → ∧n−k(U), and ∗ ∗ = (−1)k(n−k) on ∧k (U).

Since γ ∈ ∧4V , we have ∗γ ∈ ∧3V . Note that since G2 fixes the quadratic form α on
V , the action of G2 commutes with the star map. Hence ∗γ is also a G2-invariant.
We have ∗γ = cβ for some constant c. The map C ′′ becomes

C ′′ : v ∧ w 7→ ∗[(v ∧ w) ∧ (cβ)], for any v, w ∈ V.

An easy computation shows that C ′′ is injective on ∧2V and hence it is an isomor-
phism on ∧2V .

We define V [n] (n ≥ 4) to be the intersection of all kernels of operators generated
by first and second kind contractions:

V ⊗n → V ⊗(n−d) for d = 1, 2, 3, 4.

It follows from Lemma 5.1 that KerB ⊃ KerB′, KerC ⊃ KerC′ and C′′ is an
isomorphism on ∧2V ⊃ KerB′. Thus V [n] is actually intersection of the kernels
of the contraction operators generated by A, B′ and C ′. We make the convention
that V [0] = C, V [1] = V and V [2] = KerA ∩ KerB′. For n = 3, V [n] is defined as
the intersection of KerA, KerB′ and KerC′, where A and B′ are applied to any two
factors of V ⊗3.

Clearly the actions of G2 and Sn both preserve V [n].

Lemma 5.2. For n ≥ 4, the tensor power V ⊗n can be decomposed as follows:

V ⊗n = V [n] ⊕ {Σ[(ΦI(V ⊗(n−2)) + Ψ′
J(V ⊗(n−1)) + Θ′

K(V ⊗(n−3))]},
the sum is over all pairs I = {i < j}, triples J = {i, j < k} and quadruplets
K = {i, j < k < l} between 1 and n.

Proof. Let α ∈ Sym2V be the G2-invariant defined in §2. Let v, w ∈ V be any two
vectors; then (α, v ⊗ w) = α(v, w). It follows that

Ker(AI) = Im(ΦI)⊥.(5.1)

Similarly, we have

Ker(B′
J ) = Im(Ψ′

J)⊥ and Ker(C′
K) = Im(Θ′

K)⊥.(5.2)

Hence the lemma follows from Lemma 5.1 and the formulae in (5.1) and (5.2).

We denote by S[λ](V ) the intersection of Sλ(V ) and V [n]. In other words, we
have

S[λ](V ) = Im(cλ : V [n] → V [n]).

Let µ1, µ2 be the fundamental weights of G2. More precisely, µ1 is the highest
weight of the 7-dimensional irreducible representation, and µ2 is the highest weight
of the adjoint representation. We write Γa,b for the irreducible representation of G2

with highest weight aµ1 + bµ2. In this notation, Γ0,0 = C, Γ1,0 = V and Γ0,1 = g.

Proposition 5.3. The space S[λ](V ) is nonzero if and only if the number of rows
of the Young diagram of λ is at most 2.
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Proof. It is enough to show that if n ≥ 3, then ∧3V ⊗ V ⊗(n−3) is contained in the
image of expansion operators on V ⊗(n−d) for d = 1, 2, 3. Note that as G2-module,
∧3V ∼= Γ2,0 ⊕ V ⊕ C. Let us show Γ2,0 ⊗ V ⊗(n−3) is contained in Ψ′

1,1<2(V
⊗(n−1))

for example. Note that Ψ′ maps V into ∧2V and V ⊗ V contains Γ2,0. It follows
Ψ′

1,1<2(V
⊗(n−1)) = Ψ′(V )⊗V ⊗V ⊗(n−3). Hence Lemma 5.2 implies that S[λ](V ) =

0 provided λ3 > 0.
Now for λ = (a + b, b) a partition of n, we show that the highest weight vector

with weight equal to aµ1 + bµ2 cannot be in the image of the expansion operators
into V ⊗n. This can be done by a mathematical induction on n. We show that for
any pair I = {i < j}, triple J = {i, j < k} and quadruplet K = {i, j < k < l}
between 1 and n a weight vector contained in

ΦI(V ⊗(n−2)) + Ψ′
J(V ⊗(n−1)) + Θ′

K(V ⊗(n−3))

has a weight equal to aµ1 + bµ2 such that a + 2b < n. In other words, a highest
weight vector of Γa,b with a+2b = n cannot be in the image of expansion operators.
Assume that this is true for any positive integer smaller than n. Now we show this
is also true for n. We may assume W is an irreducible G2-module contained in
Ψ′

J(V ⊗(n−1)); the same argument will also work for ΦI(V ⊗(n−2)) and Θ′
K(V ⊗(n−3)).

We have Ψ′
J(V ⊗(n−1)) ∼= Ψ′(V )⊗V ⊗(n−2)) and Ψ′(V ) ∼= V is contained in ∧2V . So

W is contained in Ψ′(V )⊗ V ⊗(n−2). In particular it is contained in Ψ′(V )⊗ Γa′,b′

for some non-negative integers a′, b′ such that a′ + 2b′ = n− 2. For simplicity, we
denote by (a, b) the weight aµ1 + bµ2. Note that the weight vectors of Ψ′(V ) ∼= V
have weights equal to

(1, 0), (−1, 1), (1,−1), (−1, 1), (2,−1), (−2, 1).

So a highest weight of an irreducible representation contained in Ψ(V )⊗ Γa′,b′ has
weight (a1, b1) equal to one of the following:

(a′ + 1, b′), (a′ − 1, b′), (a′ + 1, b′ − 1),

(a′ − 1, b′ + 1), (a′ + 2, b′ − 1), (a′ − 2, b′ + 1).

Then we have a1 + 2b1 ≤ a′ + 1 + 2b′ = n − 1. It follows that the highest weight
vector of Γa,b with a+2b = n cannot be in the image of expansion operators. Hence
the proposition is proved.

We denote by A the algebra of all endomorphisms of the space V ⊗n which are
C-linear combinations of the operators of the form g ⊗ · · · ⊗ g, for g ∈ G2.

Proposition 5.4. The algebra A|V [n] is precisely the algebra of all endomorphisms
of V [n] commuting with all permutations in Sn.

Proof. First, by the simplicity of the group G2 we know that A is semisimple. In
Theorem 4.1 we computed that the ring B of the commutators of A is the ring
generated by permutations, contractions and expansions. By the general theory of
semisimple algebras, A must be the commutator algebra of B.

Secondly, if E is an endomorphism of V [n] commuting with all permutations of
factors, then the endomorphism Ẽ of V ⊗n which is E on the factor V [n] and zero on
the complementary summand is an endomorphism that commutes with all elements
in the algebra B. It follows that Ẽ is in A, and so E is in A|V [n] .

Theorem 5.5. If λ = (λ1, λ2) is a Young diagram, where λ1 = a + b, λ2 = b, then
S[λ](V ) is the irreducible representation Γa,b of G2 with highest weight aµ1 + bµ2.
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Proof. The algebra A|V [n] is the commutator algebra to the group algebra CSn

which acts on the space V [n]. It follows S[λ](V ) is an irreducible A|V [n]-module.
Hence it is an irreducible G2-module. The highest weight of S[λ](V ) can be deter-
mined as follows: since the highest weight vector with weight equal to aµ1 + bµ2 is
contained in S[λ](V ) as shown in the proof of Proposition 5.3, S[λ](V ) has to be the
irreducible representation Γa,b.

Theorem 5.6. We have the following spectral decomposition of V [n] as G2 × Sn

modules:

V [n] ∼=
⊕

S[λ](V )⊗ Vλ,

where the sum is over all partitions λ = (λ1 ≥ λ2 ≥ 0) of n into at most two parts.
Therefore, the multiplicity of S[λ](V ) occurring in V [n] is equal to the dimension
mλ of the corresponding representation Vλ of Sn.

Proof. This follows from Proposition 5.3 and Theorem 5.5 and from the correspond-
ing result for the general linear group GL(V ) (Theorem 3.1).

Here is the decomposition of V [n] for n = 2, 3 and 4:

V [2] = Γ2,0 ⊕ Γ0,1; V [3] = Γ3,0 ⊕ 2Γ1,1; V [4] = Γ4,0 ⊕ 3Γ2,1 ⊕ 2Γ0,2.

For d = 0, 1, · · · , n, let V
[n]
n−d be the subspace of V ⊗n consisting of images of all

expansion operators of V [d] → V ⊗n. More precisely,

V
[n]
n−d = ΣΦI ◦ · · ·Ψ′

J ◦ · · · ◦Θ′
K(V [d]),

where the sum is over all possible compositions of expansion operators generated
by Φ, Ψ′ and Θ′ such that the image is in V ⊗n. Since these expansion operators are
all injective, V

[n]
n−d is isomorphic to the direct sum of several copies of V [d]. Hence

the irreducible G2-module occurring in V
[n]
n−d as a summand is exactly the same as

those occurring in V [d]. It is clear that in the case d = n we have V
[n]
0 = V

[n]
n−n is

V [n].

Theorem 5.7. The tensor power V ⊗n decomposes into a direct sum

V ⊗n = V
[n]
0 ⊕ V

[n]
1 ⊕ · · · ⊕ V [n]

n .

Proof. It follows from Lemma 5.2 and by induction on n that V ⊗n is equal to the
sum of all V

[n]
n−d for d = 0, 1, · · · , n. We need to show it is a direct sum. This follows

from Theorem 5.5 and Theorem 5.6 that V
[n]
i and V

[n]
j contain different irreducible

G2-modules for i 6= j. Hence the intersection of V
[n]
i and V

[n]
j is {0} when i 6= j.

Remark. Recall that we have convention: V [0] = V ⊗0 = C and V [1] = V ⊗1 = V .
Then it is clear that

V ⊗2 = V ⊗ V ∼= V [2] ⊕ V ⊕ C,

which is exactly what Theorem 5.7 says for n = 2.

Acknowledgments

We would like to thank W.-Y. Hsiang for initiating this project.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



934 JING-SONG HUANG AND CHEN-BO ZHU

References

[H] R. Howe, Perspectives on invariant theory: Schur duality, multiplicity-free actions and
beyond, Israel Math. Conf. Proc. 8 (1995), 1-182. MR 96e:13006

[FH] W. Fulton and J. Harris, Representation Theory, GTM 129, Springer-Verlag, 1991. MR
93a:20069

[MP] W. G. McKay and J. Patera, Tables of Dimensions, Indices and Branching Rules for Repre-
sentations of Simple Lie Algebras, Marcel Dekker, New York – Basel, 1981. MR 82i:17008

[S] G. Schwarz, Invariant theory of G2 and Spin7, Comment. Math. Helvetici 63 (1988), 624-
663. MR 89k:14080

[W] H. Weyl, The classical groups, Princeton Mathematical Series, Princeton University Press,
1939; second edition, 1946; third edition, 1966. MR 1:42c

[Wo] Y.-K. Wong, The First Fundamental Theorem of Covariants for G2 and Spin7, Yale thesis,
Yale University, 1995.

Department of Mathematics, The Hong Kong University of Science and Technology,

Clear Water Bay, Kowloon, Hong Kong

E-mail address: mahuang@uxmail.ust.hk

Department of Mathematics, National University of Singapore, Kent ridge, Singa-

pore 0511

E-mail address: matzhucb@leonis.nus.sg

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


