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1. Introduction. Recall that an element T ∈ G of a complex Banach algebra G,
with identity I and invertible group G−1, is simply polar ([1, 3, 4, Definition 7.3.5]) iff
there is S ∈ G for which

T − TST = 0 = TS − ST ; (1)

the products

T• = TS = ST, T× = STS (2)

are uniquely determined and double commute with T . More generally T ∈ G is polar
iff Tn is simply polar for some n ∈ N, and quasi-polar iff ([3, 4, Definition 7.5.2]; cf. [8])
there is E = E2 = I − E′ ∈ G for which

TE = ET ; TE′ ∈ (E′GE′)−1; TE ∈ QN(EGE). (3)

Here

QN(G) = {T ∈ G : ‖Tn‖1/n → 0 (n → ∞)} = {T ∈ G : I − CT ⊆ G−1} (4)

are the quasi-nilpotent elements of G, and necessary and sufficient for T ∈ G to be
quasi-polar is that zero is at worst an isolated point of spectrum:

0 	∈ acc σ (T) ⊆ C. (5)
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We recall [1, 6] ‘isoloid’ and ‘polaroid’ elements:

DEFINITION 1. T ∈ G is said to be left (resp. right) isoloid if there is implication,
for arbitrary ν ∈ C,

T − νI quasi-polar =⇒ T − νI left (resp. right) zero divisor, (6)

and polaroid if

T − νI quasi-polar =⇒ T − νI polar, (7)

In this paper we show that whenever a ∈ A and b ∈ B are polaroid then so is T =
a ⊗ b ∈ G = A ⊗ B, a uniformly cross-normed tensor product algebra, and hence also
T = LaRb ∈ G = B(M), induced ‘elementary operators’ on ‘ultraprime’ bimodules.
We recall ([2, 4, Theorems 11.7.6 and 11.6.8]) a little bit of spectral theory,

σ (a ⊗ b) = σ (a)σ (b) = σ (LaRb), (8)

with an accompanying fragment of topology: if K, H are compact subsets of C there
is ([6, Theorem 6]) inclusion

iso(K · H) \ {0} ⊆ iso(K) · iso(H) ⊆ iso (K · H) ∪ {0} (9)

and

iso(K · H) ⊆ iso(K) · H ∪ K · iso(H); (10)

conversely,

acc(K) · acc(H) ⊆ acc(K · H) ⊆ acc(K) · H ∪ K · acc(H) ⊆ acc(K · H) ∪ {0}. (11)

As a supplement to (2.4) and (2.5),

THEOREM 2. If K, H are compact subsets of C there is implication

0 ∈ (iso K · H) \ H =⇒ 0 ∈ iso K, (12)

and

0 ∈ (iso K · H) ∩ acc H =⇒ K = {0}. (13)

Proof. If 0 is an isolated point of K · H then 0 = λμ with μ ∈ H and λ ∈ K , and if
0 	∈ H then necessarily λ = 0. Now if 0 ∈ acc K then there is (λn) in K with 0 	= λn → 0
in which case μ ∈ H =⇒ 0 	= λnμ → 0, contradicting the fact that 0 is isolated in
K · H. This gives (12); towards (13) suppose that 0 	= λ ∈ K and 0 	= μn → μ in H:
then 0 	= λμn → 0 in K · H, again contradicting the status of 0 as an isolated point of
K · H �

If a ∈ A and b ∈ B are left, or right, isoloid then so is a ⊗ b ∈ A ⊗ B: this follows
from Theorem 7 of [6], cf. [10], applied to the operators La and Rb. The polaroid
property also transfers:

THEOREM 3. If a ∈ A and b ∈ B are polaroid then so is T = a ⊗ b ∈ G = A ⊗ B.
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Proof. If 0 	= ν ∈ iso σ (a ⊗ b) then by (9) there is (λ,μ) ∈ C2 for which

λ ∈ iso σ (a), μ ∈ iso σ (b), λμ = ν: (14)

then with p = p2 ∈ A obtained from the analogue of (3) with a − λ ∈ A in place of
T ∈ G, and q = q2 ∈ B doing the same job for b − μ ∈ B we have, with p′ = 1 − p,
q′ = 1 − q and ν = λμ,

T = a ⊗ b − ν(1 ⊗ 1) = (a ⊗ b − ν(1 ⊗ 1))(p′ ⊗ q′)

+ ((a − λ) ⊗ (b − μ) + λ ⊗ (b − μ) + (a − λ) ⊗ μ)(p ⊗ q + p′ ⊗ q + p ⊗ q′)

= ((a − λ) ⊗ (b − μ) + λ ⊗ (b − μ) + (a − λ) ⊗ μ)(p ⊗ q)

+ ((a − λ) ⊗ b + λ ⊗ (b − μ))(p ⊗ q′) + (a ⊗ (b − μ) + (a − λ) ⊗ μ)(p′ ⊗ q)

+ (a ⊗ b − ν(1 ⊗ 1))(p′ ⊗ q′).

Now T(p ⊗ q) is the sum of three commuting nilpotents in (p ⊗ q)G(p ⊗ q), each of
T(p ⊗ q′) and T(p′ ⊗ q) is the commuting sum of an invertible and a nilpotent, while
finally the invertibility of T(p′ ⊗ q′) in (p′ ⊗ q′)G(p′ ⊗ q′) is (8), and T ∈ G is therefore
polar.

It remains to consider the case

ν = 0 ∈ iso σ (a ⊗ b) ⊆ (iso σ (a))σ (b) ∪ σ (a)(iso σ (b)): (15)

necessarily 0 ∈ σ (a) ∪ σ (b) and there are several possibilities. Note that there is
implication

a ∈ A polar, b ∈ B polar =⇒ a ⊗ b ∈ A ⊗ B polar. (16)

If 0 ∈ (iso σ (a ⊗ b)) \ σ (b) then b ∈ B−1 and hence, by (12), 0 ∈ iso σ (a). Thus 0 is
a pole for a ∈ A and an (honorary!) pole of b ∈ B. If 0 ∈ (iso σ (a)) ∩ (acc σ (b)) then
necessarily, by (13), σ (a) = {0} and hence also σ (a ⊗ b) = {0}. Since a ∈ A is polar
and quasi-nilpotent it is also nilpotent, and hence also a ⊗ b. If 0 ∈ (iso σ (a ⊗ b)) ∩
(iso σ (b)) then we again consider cases: either 0 	∈ σ (a) in which case a is invertible and
b is polar, or 0 ∈ acc σ (a), in which case b and hence also a ⊗ b are nilpotent, or finally
0 ∈ iso σ (a), in which case both a and b are polar �

The extension to multiplication operators is almost automatic:

COROLLARY 4. If a ∈ A and b ∈ B are left isoloid, or polaroid, then so is T = LaRb ∈
G = B(M), for an ultraprime Banach (A, B) bimodule M.

Proof. The prime condition [5],

LaRb = 0 ∈ B(M) =⇒ 0 ∈ {a, b} ⊆ A ∪ B, (17)

says that the ‘elementary operators’ induced by A and B on M are just the tensor
product of the algebras LA ⊆ B(M) and RB ⊆ B(M), and hence of the algebras A and
Bop, obtained by reversing the multiplication in B, while the ultraprime condition,

‖LaRb‖ = ‖a‖ ‖b‖, (18)
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ensures that the operator norm of B(M) induces a uniform cross-norm on the tensor
product �

The Browder spectrum is given, with a little help from the punctured
neighbourhood theorem, by

βess(T) = σess(T) ∪ acc σ (T) = ωess(T) ∪ acc σ (T) : (19)

in [6] this was written as ωcomm
ess (T). It is clear from (6) and the inclusion ([6, Theorem

3])

σess(a ⊗ b) ⊆ σess(a)σ (b) ∪ σ (a)σess(b) (20)

that

βess(a ⊗ b) ⊆ βess(a)σ (b) ∪ σ (a)βess(b) ⊆ βess(a ⊗ b) ∪ {0}. (21)

The obstacle to the transfer of Browder’s theorem lies in the slightly complicated form
([6, equation (6.6)]) of the Weyl spectrum of a tensor product. We begin by simplifying
(21):

THEOREM 5. If a ∈ A = B(X) and b ∈ B = B(Y ) then

βess(a ⊗ b) = βess(a)σ (b) ∪ σ (a)βess(b). (22)

Proof. We recall ([6, Theorem 4]) the inclusion

(a−1(0) ⊗ Y ) ∪ (X ⊗ b−1(0)) ⊆ (a ⊗ b)−1(0 ⊗ 0), (23)

which ensures that, if both X and Y are infinite-dimensional, the operator a ⊗ b cannot
have a non-trivial finite-dimensional null space: hence

0 ∈ σ (a ⊗ b) =⇒ 0 ∈ ωess(a ⊗ b) ⊆ βess(a ⊗ b); (24)

this with (20) gives (22) �

If we also look at dual operators we can improve (6.3) to

0 ∈ σ (a ⊗ b) =⇒ 0 ∈ σess(a ⊗ b). (25)

Our observation now is that for any operators a ∈ A and b ∈ B for which ‘Browder’s
theorem holds’ simultaneously for a, b and a ⊗ b, the Weyl spectrum of a ⊗ b is
comparatively simple:

THEOREM 6. If Browder’s theorem holds for a ∈ A = B(X) and b ∈ B = B(Y ) then
the following are equivalent:

ωess(a ⊗ b) = ωess(a)σ (b) ∪ σ (a)ωess(b). (26)

βess(a ⊗ b) = ωess(a ⊗ b). (27)

Proof. If (26) holds then (cf. [10]) (27) follows from (24) and Browder’s theorem
for a and b; conversely (27) and (22) give (26) �
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Theorem 6 has been obtained for Hilbert spaces by Kubrusly and Duggal ([9,
Proposition 7]). Kitson et al. [7] has a specific example in which the equivalent
conditions of Theorem 6 both fail: with the forward and backward shifts u and v

on Y = �2, for which

vu = 1 	= uv ∈ 1 + {c ∈ B(Y ) : dim c(Y ) < ∞}, (28)

take

A = B(X), X = Y ⊕ Y, a = (1 − uv) ⊕ ( 1
2 u − 1

)
, b = −(1 − uv) ⊕ ( 1

2v + 1
)
.

(29)
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