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Weyl semimetal is a new topological state of matter, characterized by the presence of nondegenerate band-
touching nodes, separated in momentum space, in its band structure. Here we discuss a particular realization
of a Weyl semimetal: a superlattice heterostructure, made of alternating layers of topological insulator and
normal insulator material, introduced by one of us before. The Weyl node splitting is achieved most easily in
this system by breaking time reversal symmetry, for example by magnetic doping. If, however, spatial inversion
(I) symmetry remains, the Weyl nodes will occur at the same energy, making it possible to align the Fermi
energy simultaneously with both nodes. The goal of this work is to explore the consequences of breaking the I
symmetry in this system. We demonstrate that, while this generally moves the Weyl nodes to different energies,
thus eliminating nodal semimetal and producing a state with electron and hole Fermi surfaces, the topological
properties of the Weyl semimetal state, i.e., the chiral edge states and the corresponding Hall conductivity, survive
for moderate I symmetry breaking. Moreover, we demonstrate that a new topological phenomenon arises in this
case, if an external magnetic field along the growth direction of the heterostructure is applied. Namely, this leads
to an equilibrium dissipationless current, flowing along the direction of the field, whose magnitude is proportional
to the energy difference between the Weyl nodes and to the magnetic field, with a universal coefficient, given by
a combination of fundamental constants.
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I. INTRODUCTION

An interesting recent development in the study of topolog-
ical phases in condensed matter is the realization that such
phases can exist in gapless semimetals.1–10 This goes against
the common wisdom that a bulk spectral gap is a necessary
ingredient in any topological phase, eliminating the sensitivity
to small perturbations that any gapless phase would naively
exhibit. Such topological semimetals are characterized by
the presence of two or more nondegenerate accidental band-
touching points in their band structure. As first understood
by Volovik,11–13 these points are characterized by a nontrivial
topology, and can be thought of as hedgehog-like topological
defects and point sources of Berry flux in momentum space,
characterized by an integer (±1) topological charge. The k · p
Hamiltonian near such band-touching points takes the form of
2 × 2 Hamiltonian of a chiral Weyl fermion, hence the name
Weyl semimetal.

In the presence of both time reversal (TR) and inversion (I)
symmetries, all bands are doubly degenerate at all momenta in
the Brillouin zone (BZ), as follows from the Kramers theorem.
This means that Weyl semimetals require breaking of either
TR or I symmetries,14 which makes a contact between only
two bands possible, separating the individual Weyl nodes
in momentum space. When Weyl nodes are separated from
each other in momentum space, they cannot be hybridized,
which makes them indestructible, as they can only disappear
by mutual annihilation of pairs with opposite topological
charges. This is the mechanism of topological stability of a
Weyl semimetal state, which is distinct from the spectral-gap
protection in insulating topological phases.15

Perhaps the most interesting variety of Weyl semimetals
is obtained when TR is broken. As first shown in Ref. 4,
the simplest kind of a Weyl semimetal can be realized in
this case, with only two, the minimal number required by the
fermion-doubling theorem,16 Weyl band-touching nodes. This

is achieved in a magnetically doped multilayer heterostructure,
consisting of thin layers of topological insulator (TI) material,
with normal insulator (NI) spacer layers in between. This
particular realization of a Weyl semimetal is characterized by
a semiquantized anomalous Hall (AH) conductivity, propor-
tional to the separation between the Weyl nodes in momentum
space, and chiral surface states, and can be thought of as
the closest three-dimensional (3D) analog of a 2D integer
quantum Hall state. We will limit our discussion to this system
henceforth.

While the broken TR is necessary to separate the Weyl
nodes in momentum space and create a topologically stable
phase, the remaining I symmetry also plays an important
role. This symmetry guarantees that the two Weyl nodes,
separated along the growth direction of the TI-NI multilayer
in momentum space, occur at the same energy. This makes
it possible for the Fermi energy to coincide with both Weyl
nodes simultaneously and thus realize a true nodal semimetal
phase. The goal of this paper is to explore the consequences of
breaking the inversion symmetry in the TI-NI multilayer Weyl
semimetal, in addition to breaking TR. As we demonstrate, a
moderate breaking of inversion symmetry does not destroy the
topological nature of the state, even though it generally moves
Weyl nodes to different energies, thus destroying the nodal
semimetal and producing a state with electron and hole Fermi
surfaces. However, topological properties survive, as long as
the I breaking is not too strong. Moreover, we demonstrate
that a new topological phenomenon arises in the case when
the Weyl nodes are separated in both energy and momentum.
Namely, an external magnetic field, applied along the growth
direction of the heterostructure, produces a nondissipative
ground state current. This current is associated exclusively
with the zero-mode Landau levels (LLs) of the system
and has a topological character, in the sense made precise
below.
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The rest of paper is organized as follows. In Sec. II we
present a general Chern-Simons-like description of a Weyl
semimetal, which demonstrates that in addition to the anoma-
lous Hall effect, there exists another topological effect, namely
the magnetic field driven equilibrium current, which arises
when the Weyl nodes are separated not only in momentum
space but also in energy. In Sec. III we present a model
of a TI-NI multilayer heterostructure with broken TR and
inversion symmetries and discuss the general phase diagram
of this system. In Sec. IV we present an explicit linear-response
calculation of the magnetic field driven equilibrium current in
the TI-NI multilayer. We conclude in Sec. V with a discussion
of the experimental observability of the proposed effect.

II. CHERN-SIMONS-LIKE DESCRIPTION OF THE
WEYL SEMIMETAL

We will start with a general discussion of the topological
response in Weyl semimetals, based on (3 + 1)-dimensional
Chern-Simons-like theory, which nicely unifies both the
semiquantized AH response, discussed before,4,5 and the new
topological magnetic field induced current effect, proposed
in this paper. The fact that chiral Weyl fermions, separated in
momentum and energy, induce a Chern-Simons-like term in
the action of the electromagnetic field is well known in the
particle physics literature,17–20 where it arises in the context of
CPT and Lorentz-violating extensions of the standard model.
The action, written in the real-time representation, has the
following form:

SCS = 1
2

∫
d4x bµεµαβγAα∂βA

γ , (1)

where Aµ is the electromagnetic gauge potential and µ =
0,1,2,3. Here we use the standard notation for the four-
vectors xµ = (x0,x), xµ = (x0, − x), where x0 is the temporal
component. The four-vector bµ selects a direction in the
4-dimensional space-time, thus violating Lorentz invariance.
Its temporal component b0 is proportional to the energy
difference between the Weyl nodes (we restrict ourselves to the
case of only two Weyl nodes), while its spatial component b
is proportional to the momentum-space separation between
them.18–20 Let us first assume that bµ has no temporal
component. By a spatial rotation we can then bring it to
the form bµ = (0,0,0,b), which corresponds to Weyl nodes,
separated along the z direction in momentum space. As shown
in Ref. 4, such a state is characterized by a nonzero Hall
conductivity, given by

σxy = e2k0

πh
, (2)

where 2k0 is the separation between the Weyl nodes in
momentum space. This result can be obtained from the
Chern-Simons action Eq. (1). Indeed the current density can
be calculated as

jα = δSCS

δAα
= bµεµαβγ ∂βA

γ , (3)

which gives

jx = −b

(
∂ϕ

∂y
+ 1

c

∂Ay

∂t

)
= bEy, (4)

where ϕ = A0. Thus in this case b = σxy .

Now let us take bµ to be purely timelike; i.e., bµ =
(b,0,0,0). Taking a functional derivative of the Chern-Simons-
like action with respect to the vector potential, as above, we
obtain

jα = bε0αβγ ∂βA
γ . (5)

Taking α = 3, we then obtain

jz = −j3 = −bε03βγ ∂βA
γ = −bBz, (6)

where B = ∇ × A is the magnetic field. The physical meaning
of this result is that a magnetic field, applied to a Weyl
semimetal with an energy separation between the nodes, will
induce a current in the direction of the applied field. This
current exists in equilibrium and is thus nondissipative. This
result is known in the particle physics literature,21,22 in the
context of parity-violating models of massless chiral particles,
as chiral magnetic effect. As we will demonstrate below, it is
realized in a simple model of a Weyl semimetal with broken
TR and I symmetries.

A couple of comments are in order here. First, it may
appear from the above discussion that energy separation
between the Weyl nodes is enough in order to obtain the
dissipationless current and no momentum space separation
is needed. While this is true in an abstract phenomenological
model, in which Weyl fermions of opposite chirality are simply
introduced by hand, it is certainly not true in our microscopic
model, where Weyl fermions appear only when separated in
momentum space, except at a single point in parameter space,
corresponding to the TI-NI transition in the absence of TR
and I breaking. Correspondingly, as will be shown below,
the timelike parameter b in the Chern-Simons theory is only
nonzero when the Weyl nodes are separated in momentum
space, except if the multilayer system is fine-tuned to the TI-NI
transition point in the absence of TR breaking [see Eq. (53)
below]. Second, Eq. (5) is explicitly isotropic in space; i.e., the
magnetic field and the corresponding dissipationless current
can have any direction. Our microscopic model, on the other
hand, is anisotropic (there is a preferred direction—the growth
direction of the multilayer) and only becomes effectively
isotropic at low energies, long distances, and weak applied
fields. Thus, in all our calculations below we assume that the
magnetic field is applied along the growth direction of the
multilayer, since in this case all the calculations can be done
exactly, without making any additional assumptions of weak
fields and low energies. The dissipationless current, however,
will exist if the magnetic field is applied along any other
direction, in accordance with Eq. (5).

III. TI-NI MULTILAYER WITH BROKEN TIME
REVERSAL AND INVERSION SYMMETRIES

We consider a realization of a Weyl semimetal, based
on a magnetically doped TI-NI multilayer heterostructure,
introduced by one of us in Ref. 4:

H =
∑

k⊥,ij

[
vF τ

z(ẑ × σ ) · k⊥δi,j + mσ zδi,j + +Sτ
xδi,j

+ 1
2
+Dτ+δj,i+1 + 1

2
+Dτ

−δj,i−1

]
c
†
k⊥ick⊥j . (7)
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The first term in Eq. (7) describes the two (top and bottom)
surface states of an individual TI layer. vF is the Fermi velocity,
characterizing the surface Dirac fermion, which we take to be
the same on the top and bottom surfaces of each layer. k⊥ is
the momentum in the 2D surface BZ (we use h̄ = 1 units), σ
is the triplet of Pauli matrices, acting on the real spin degree of
freedom, and τ are Pauli matrices, acting on the which surface
pseudospin degree of freedom. The indices i,j label distinct
TI layers. The second term describes exchange spin splitting
of the surface states, which can be induced, for example,
by doping each TI layer with magnetic impurities.23,24 The
remaining terms in Eq. (7) describe tunneling between top and
bottom surfaces within the same TI layer (the term proportional
to+S), and between top and bottom surfaces of neighboring TI
layers (the terms proportional to +D). Longer range tunneling
is assumed to be negligible. Partially diagonalizing Eq. (7) by
Fourier transform, we obtain a momentum-space Hamiltonian:

H(k) = vF τ
z(ẑ × σ ) · k + mσ z + +̂(kz), (8)

where +̂(kz) = +Sτ
x + 1

2 (+Dτ
+eikzd + H.c.).

The TI-NI multilayer, described by Eq. (8), possesses
inversion symmetry with respect to an inversion center placed
midway between the top and bottom surfaces in any TI or NI
layer. Explicitly, the inversion operation changes the sign of
the momentum and interchanges the top and bottom surfaces
in each TI layer (spin σ is a pseudovector and is thus invariant
under inversion):

I : H(k) → τ xH(−k)τ x. (9)

It is easy to see that Eq. (8) is indeed invariant under I.
We now relax the assumption that the multilayer is

inversion symmetric, which is perhaps more realistic, as some
degree of structural inversion asymmetry will be inevitably
introduced during growth. Note that inversion-asymmetric
TI-NI multilayer model (but with preserved TR symmetry)
was considered before in Ref. 8.

We thus need to add terms to the multilayer Hamiltonian
Eq. (8) which violate inversion symmetry. There are of course
infinitely many such terms one can write down and we will
restrict ourselves only to terms independent of momentum
(i.e., leading-order terms, arising in the expansion of a general
I-breaking term with respect to the momentum). A simple
analysis shows that there are only two such terms: V τ z and
λτ yσ z, which break inversion but respect all other symmetries
of the multilayer, in particular rotation around the z axis. The
first term corresponds to an electrostatic potential difference
between the top and bottom surface of a TI layer in each
unit cell (note that the total electric field in each unit cell
vanishes). The second term is a momentum-independent
spin-orbit interaction term, which is allowed by the broken
inversion symmetry. This term is closely analogous to the
Dresselhaus spin-orbit interaction terms in semiconductors
lacking inversion symmetry.25 It is simpler than, say, the
well-known Dresselhaus terms in semiconductors with zinc-
blende structure due to the fact that our system has a uniaxial
anisotropy.

To understand the effect of the I-breaking terms on the
physical properties of the multilayer, it is useful to start from
the case when neither TR nor I is violated. In this case,
diagonalizing Eq. (8) gives four bands, which are pairwise

degenerate at every momentum, as required by the Kramers
theorem:

ε±(k) = ±
√

v2
F

(
k2
x + k2

y

)
+ +2(kz), (10)

where +(kz) =
√
+2

S + +2
D + 2+S+D cos(kzd) and d is the

superlattice period. Let us now break I without breaking TR,
i.e., add the V τ z and λτ yσ z terms to the Hamiltonian, but
keep m = 0. In this case the band dispersion can still be found
analytically and one obtains

ε2
±(k) = v2

F

(
k2
x + k2

y

)
+ V 2 + λ2 + +2(kz)

± 2
√
v2

F (V 2 + λ2)
(
k2
x + k2

y

)
+ 1

2λ
2+2

D[1− cos(2kzd)].

(11)

Thus the double degeneracy at every momentum is lifted, as
it should be, except at the I- and TR-invariant momenta kx =
ky = 0 and kz = 0,π/d. The role of the V τ z term is to split
the degeneracy for kx,ky %= 0, while the role of the λτ yσ z term
is to split the degeneracy at kx = ky = 0 and kz %= 0,π/d. In
other words, in the absence of the λτ yσ z term, the double
degeneracy remains everywhere along the line kx = ky = 0 in
momentum space.

Let us now also break the TR symmetry and add the spin-
splitting term mσ z. In general, it is now impossible to find the
energy eigenvalues of the multilayer Hamiltonian analytically,
except in a few special cases, which we will now discuss,
before considering the most general situation. The first special
case we will consider is λ = 0. The band dispersion in this
case is given by

ε2
±(k) = v2

F

(
k2
x + k2

y

)
+ V 2 + m2 + +2(kz)

± 2
√

v2
F V 2

(
k2
x + k2

y

)
+ m2V 2 + m2+2(kz). (12)

The ε−(k) pair of bands exhibits band-touching nodes, which
are solutions of the equation
[
v2

F

(
k2
x + k2

y

)
+ m2 + +2(kz) − V 2]2 = 4(m2 − V 2)+2(kz).

(13)

Clearly, two cases must be considered: m > V and m < V . In
the latter case, a solution exists only when +(kz) = 0, which
happens when +S/+D = ±1 at kz = π/d,0 correspondingly.
Equation (13) simplifies to

v2
F

(
k2
x + k2

y

)
= V 2 − m2. (14)

This describes a circular nodal line in the xy plane, which,
however, exists only at the TI-NI critical point +S/+D = ±1
(a stable Weyl semimetal phase can be obtained in this case,
if one includes momentum dependence of the +S,D tunneling
amplitudes, breaking the z-axis rotational symmetry; we will
not pursue this direction here, as it has been investigated in
detail in Ref. 8).

In the m > V case, Eq. (13) simplifies to

v2
F

(
k2
x + k2

y

)
+ [

√
m2 − V 2 − +(kz)]2 = 0. (15)

The solution is

kx = ky = 0, +(kz) =
√

m2 − V 2. (16)
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This corresponds to the point-node Weyl semimetal, consid-
ered in Ref. 4. The effect of the V τ z term in this case is only
to reduce the distance between the Weyl nodes in momentum
space. Henceforth, we will assume that m > V and, keeping
the above analysis in mind, neglect the V τ z term entirely.

Now let us analyze the effect of the I-breaking spin-orbit
interaction term λτ yσ z in the presence of the broken TR
symmetry due to the mσ z term. In this case, the band
dispersion cannot be found analytically in general, except at
the kx = ky = 0 point. At this point we obtain

εs±(kz) = ms ±
√
λ2 + +2(kz) − 2sλ+D sin(kzd), (17)

where s = ±. The Weyl nodes are given by the solution of the
equation

ε+−(kz) = ε−+(kz) (18)

or, explicitly,

2m =
√
λ2 + +2(kz) − 2λ+D sin(kzd)

+
√
λ2 + +2(kz) + 2λ+D sin(kzd). (19)

It is obvious already from the form of Eq. (19) that the
nodes no longer occur at zero energy. Equation (19) cannot
be solved analytically in its general form, but we can solve it
perturbatively in λ. To first order in λ, the position of the nodes
along the z axis in momentum space is unchanged and is given
by the equation

m = +(kz). (20)

Assuming for concreteness that the tunneling amplitudes +S,D

are both positive, the nodes are then located at k±
z = π/d ± k0,

where4

k0 = 1
d

arccos
(
+2

S + +2
D − m2

2+S+D

)
. (21)

The shift of the Weyl nodes from the zero energy can then be
obtained from Eq. (17) by expanding it to first order in λ. We
obtain

+ε± = λ+D sin(kzd)
+(kz)

∣∣∣∣
k±
z =π/d±k0

= ∓ λ

2+Sm

√(
m2

c2 − m2
)(

m2 − m2
c1

)
, (22)

where mc1 = |+S − +D| and mc2 = +S + +D are, corre-
spondingly, the lower and upper critical values of the spin
splitting m, between which the Weyl semimetal phase exists.4

Thus, in the presence of the λτ yσ z term, the two Weyl
nodes are shifted in the opposite directions in energy, as seen
in Fig. 1. It is no longer possible to align the Fermi energy
with both nodes simultaneously and the semimetal at charge
neutrality will have equal-volume electron and hole Fermi
surfaces. The Weyl nodes exist as long as the electron and hole
Fermi surfaces are separated. Upon increasing the magnitude
of λ, the momentum-space separation between the nodes
and between the electron and hole Fermi surfaces decreases.
Eventually, at a critical value λc1 =

√
m2 − m2

c1, the Fermi
surfaces touch and the Weyl nodes disappear; see Fig. 2. The
Fermi surfaces still exist, however, until, at a still larger value

of λc2 =
√

(m + +D)2 − +2
S , a fully gapped state is produced;

1 2 3 4 5 6 kzd

2
1

1
2

Ε kz

FIG. 1. (Color online) A plot of the band dispersion along the
kx = ky = 0 line for a moderate magnitude of the inversion symmetry
breaking, corresponding to λ/+S = 0.3. The Weyl band-touching
nodes are visibly shifted in opposite directions in energy, but are
otherwise intact. At charge neutrality the Fermi energy is pinned at
εF = 0, and there are equal-volume electron and hole Fermi surfaces.

see Fig. 3. In fact, the phase diagram of the system in the m-λ
plane is somewhat more involved, and we will explore it in
more detail below.

An important question which arises in this context is
whether the topological properties of the Weyl semimetal, such
as the chiral edge states and the anomalous Hall conductivity,
proportional to the momentum-space separation between the
Weyl nodes, survive when the nodes move away from the zero
energy and the electron and hole Fermi surfaces appear. We
will demonstrate below that this is indeed the case: The system
retains its topological properties as long as it is gapless, in fact
even after the Weyl nodes disappear above λ = λc1.

To see this we start from the momentum-space Hamiltonian
of the multilayer, which, after a canonical transformation

σ± → τ zσ±, τ± → σ zτ±, (23)

takes the following form:

H(k) = vF (ẑ × σ ) · k + [m + +̂(kz)]σ z + λτ y. (24)

We now add a small external magnetic field B along the z
direction (i.e., the growth direction of the multilayer), which
we will set back to zero at the end. The Hamiltonian becomes

H(kz) = vF (ẑ × σ ) ·
(
−i∇ + e

c
A

)
+ [m + +̂(kz)]σ z + λτ y,

(25)

where A = xBŷ in the Landau gauge. To find the Landau
levels, we introduce LL ladder operators in terms of the

1 2 3 4 5 6 kzd

3
2
1

1
2
3
Ε kz

FIG. 2. (Color online) Band dispersion along the kx = ky = 0
line for λ = λc1 =

√
m2 − (+S − +D)2. The electron and hole Fermi

surfaces touch and the Weyl nodes disappear.
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1 2 3 4 5 6 kzd

3
2
1

1
2
3
Ε kz

FIG. 3. (Color online) Band dispersion along the kx = ky = 0
line for λ = λc2 =

√
(m + +D)2 − +2

S . The Fermi surfaces disappear
entirely and the semimetallic state gives way to a fully gapped
insulator.

components of the kinetic momentum π = −i∇ + e
c
A in the

standard way (assuming B > 0 for concreteness):

a = -B√
2

(πx − iπy), a† = -B√
2

(πx + iπy), (26)

where -B =
√

c/eB is the magnetic length. In terms of the
ladder operators, the Hamiltonian takes the form

H(kz) = iωB√
2

(σ+a − σ−a†) + [m + +̂(kz)]σ z + λτ y, (27)

whereωB = vF /-B . It is clear from Eq. (27) that its eigenstates
have the following general form:

|n〉 = zn+↑|n − 1, + , ↑〉 + zn+↓|n, + , ↓〉
+ zn−↑|n − 1, − , ↑〉 + zn−↓|n, − , ↓〉, (28)

where |n, ± , ↑↓〉 is the nth LL eigenstate on the top ( + ) or
bottom (−) surface with spin up or down, and z are complex
amplitudes. We have omitted all the additional eigenstate
labels on the left-hand side for brevity, leaving only the LL
index n. In the presence of theλτ y term, the above Hamiltonian
cannot be diagonalized analytically in general. However, we
can find the n = 0 LL dispersions analytically, and this is in
fact all that is needed for our purposes. Indeed, from Eq. (28)
it is immediately clear that the n = 0 pair of LLs are polarized
downward; i.e., we can replace σ z = −1 and then the n = 0
LL dispersion is given by the eigenvalues of

Hn=0(kz) = −m − +̂(kz) + λτ y. (29)

Diagonalizing Eq. (29), we then find the n = 0 LL dispersions:

ε0±(kz) = −m ±
√
λ2 + +2(kz) + 2λ+D sin(kzd). (30)

The ε0−(kz) level is below the Fermi energy εF = 0 for all
values of kz. The ε0+(kz) LL, on the other hand, crosses the
Fermi energy twice at the following momenta:

k±
z = π

d
± 1

d
arccos

[
f∓

2+D

(
+2

S + λ2
)
]

, (31)

where

f± = +S

(
+2

S + +2
D + λ2 − m2)

± λ

√[
+2

S + λ2 − (m − +D)2
][

(m + +D)2 − +2
S − λ2

]
.

(32)

m

λ

mc1 mc2

INS

INS

FSSM 1

FSSM 1

FSSM 2

FSSM 2

λc1

λc2

λc3NSM

QAH

FIG. 4. Phase diagram of the multilayer structure in the m-λ plane
for +S > +D . There are five distinct phases: (1) Insulator (INS),
outside of theλc2 line. (2) Nodal semimetal (NSM), which exists along
the interval λ = 0, mc1 < m < mc2. (3) Semimetal with electron
and hole pockets, but with Weyl nodes preserved (FSSM 1). This
is bounded by the λc1 = ±√

m2−m2
c1 and λc3 = ±

√
(m − +D)2 − +2

S

lines. (4) Semimetal without Weyl nodes (FSSM 2). This is bounded
by the λc2 = ±

√
(m + +D)2 − +2

S and the λc1 lines. (5) QAH
insulator phase, enclosed by the λc3 line. The anomalous Hall
conductivity is nonzero in all semimetallic phases and the QAH phase.

This reduces to the already known result k±
z = π/d ± k0,4

where k0 is given by Eq. (21) in the limit λ = 0. As λ increases,
k−
z becomes equal to π/d at the lower critical value λc1 =√
m2−(+S−+D )2, at which the electron and hole Fermi surfaces

touch. At the upper critical value λc2 =√
(m++D )2−+2

S , the Fermi
surfaces disappear entirely, giving rise to a fully gapped state,
and the n = 0 LL no longer crosses the Fermi energy.

There is a subtlety associated with the λc2(m) critical line.
Two cases need to be considered separately. When +S > +D ,
i.e., when the multilayer in the presence of both TR and I
is an ordinary insulator, the λc2(m) line starts at m = mc1
and separates a semimetal from an ordinary insulator, as
shown in Fig. 4. When +D > +S , however, the system is a
topological insulator when TR and I are unbroken. If TR is
preserved, but I is broken by increasing the magnitude of λ,
there is eventually a TI to NI transition at a critical value of
λ =√

+2
D−+2

S . Correspondingly, the λc2(m) line has a different
shape, shown in Fig. 5.

Finally, a third critical line λc3 =√
(m−+D )2−+2

S exists,
separating 3D quantum anomalous Hall (QAH) insulator4

from the semimetallic phase with Weyl nodes and Fermi
surfaces.

The most important consequence of the above analysis is
that the anomalous Hall conductivity,

σxy =
∫ k+

z

k−
z

dkz

2π
e2

h
=

e2(k+
z − k−

z )
2πh

, (33)

is nonzero beyond λ = λc1, when the Weyl nodes disappear,
persisting all the way to the λ = λc2 point, when a fully gapped
insulating state emerges (chiral surface states disappear when
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m

λ

mc1
mc2

INS

INS

FSSM 1

FSSM 1

FSSM 2

FSSM 2

λc1

λc2

λc3NSM

QAH

FIG. 5. Same as in Fig. 4, but for +D > +S . There is a additional
transition in this case, which occurs as λ is increased along the m = 0
line. The |λ| < |λc2| phase is a TI, while the |λ| > |λc2| phase is an
ordinary insulator.

the Weyl nodes disappear at λ = λ1). This follows simply from
the fact that one of the two n = 0 LLs always dips below the
Fermi energy in the interval k−

z < kz < k+
z (the second n = 0

LL is always below the Fermi energy) in all gapless phases,
thus giving rise to a nonzero Hall conductivity (relative to
the insulating state at m < mc1, where there is one zero-mode
LL above and one zero-mode LL below the Fermi energy
and the Hall conductivity is zero).4 The connection between
the nonzero anomalous Hall conductivity and the zero-mode
LL crossing of the Fermi energy can be seen most easily by
referring to the Středa formula for the quantized nonclassical
part of the anomalous Hall conductivity:26,27

σxy = −c
∂δN

∂B

∣∣∣∣
B=0

, (34)

where δN is the extra charge density, corresponding to the
filled zero-mode LL, when k−

z < kz < k+
z :

δN = − e

2π-2
B

∫ k+
z

k−
z

dkz

2π
= −

e2(k+
z − k−

z )B
2πhc

. (35)

The nonquantized part of the anomalous Hall conductivity, on
the other hand, is always zero due to charge neutrality as long
as the Fermi level remains pinned at εF = 0. The full phase
diagram of the multilayer in the m-λ plane is shown in Figs. 4
and 5.

IV. MAGNETIC FIELD DRIVEN EQUILIBRIUM CURRENT

In this section we will demonstrate that in addition to the
semiquantized AH conductivity and chiral “Fermi-arc” surface
state, the TI-NI multilayer with broken TR and inversion is
characterized by another topological phenomenon, namely the
external magnetic field driven persistent current, which we
have introduced in Sec. II using general arguments, based on
a Chern-Simons-like description of the Weyl semimetal. Here
we will limit our analysis to small values of λ, in which case

all calculations can be done analytically, and which is perhaps
the most relevant regime experimentally.

We will calculate the equilibrium current in linear response
with respect to the λτ yσ z term. In this case, the energy
separation between the Weyl modes,

+ε = |+ε− − +ε+| = λ

+S |m|

√(
m2

c2 − m2
)(

m2 − m2
c1

)
,

(36)

can be thought of as an “electrochemical potential difference”
between them. We thus want to calculate an electrical current
that arises in response to this “electrochemical potential
difference.” Note that we have defined +ε as the energy shift
of the node of positive chirality (which is at k−

z for m > 0 but
at k+

z for m < 0) minus the energy shift of the node of negative
chirality: Defined this way, +ε is independent of the sign of m.
We also assume that an external magnetic field of magnitude
B is applied along the growth direction of the multilayer,
which we take to be the z direction (note that the spin
magnetization m does not contribute to the total internal orbital
magnetic field for a sample of an infinite slab geometry, due
to perfect cancellation with the corresponding demagnetizing
field). We will ignore the Zeeman contribution of the external
field, assuming it to give only a small correction to m. The
unperturbed Hamiltonian, after the canonical transformation
of Eq. (23), is given then by

H(kz) = vF (ẑ × σ ) ·
(
−i∇ + e

c
A

)
+ [m + +̂(kz)]σ z. (37)

Diagonalizing +̂(kz), which is a constant of motion, brings the
Hamiltonian to a block-diagonal form, with two independent
2 × 2 blocks:

H±(kz) = vF (ẑ × σ ) ·
(
−i∇ + e

c
A

)
+ m±(kz)σ z, (38)

where m±(kz) = m ± +(kz). Using Landau gauge A = xBŷ
(for convenience, we will implicitly assume B > 0 in all
calculations, but the final result does depend on the sign of
B) and introducing LL ladder operators as in Sec. III, we
obtain

Hα(kz) = iωB√
2

(σ+a − σ−a†) + mα(kz)σ z, (39)

where α = ±. It is clear that the eigenstates of each 2 × 2
block of Eq. (39) have the following general form:

|vnsα〉 = vnsα
↑ |n − 1, ↑〉 + vnsα

↓ |n, ↓〉. (40)

Here n = 0,1,2, . . . is the LL index and s = ± labels the
electron-like and hole-like LLs correspondingly. The eigen-
values of Eq. (39) are easily found and are given by

εnsα(kz) = s

√
2ω2

Bn + m2
α(kz), n ! 1,

(41)
ε0α = −mα(kz).

The corresponding eigenvectors are

∣∣vsα
n

〉
= 1√

2

(√

1 + mα(kz)
εnsα

,is

√

1 − mα(kz)
εnsα

)

, n ! 1,

(42)
vα

0 = (0,1).
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We note the following symmetry properties of the eigenfunc-
tions Eq. (42), which will play an important role in our analysis:

〈
v+α

n

∣∣v−α′

n

〉
= −

〈
v+α′

n

∣∣v−α
n

〉
, n ! 1, (43)

while
〈
v+α

n |σ z
∣∣v−α′

n

〉
=

〈
v+α′

n

∣∣σ z
∣∣v−α

n

〉
, n ! 1. (44)

The total four-component spinor eigenfunctions of Eq. (39),
which we will denote simply by |nsα〉, are given by the tensor
product of |vsα

n 〉 and the eigenfunctions of the +̂(kz) operator:

|uα〉 = 1√
2

(
1,α

+S + +De−ikzd

+(kz)

)
; (45)

i.e.,

|nsα〉 = |uα〉 ⊗
∣∣vsα

n

〉
. (46)

Let us point out the following matrix elements of the
eigenstates of the tunneling operator, which will be important
in the calculation below:

〈u+|τ x |u−〉 = i
+D sin(kzd)

+(kz)
,

(47)
〈u+|τ y |u−〉 = i

+S + +D cos(kzd)
+(kz)

.

We evaluate the electrical current in the z direction in linear
response with respect to the inversion symmetry violating term
λτ yσ z. The standard expression is

jz = λ

2π-2
BLz

∑

n,n′,s,s ′,α,α′,kz

〈nsα|ĵz|n′s ′α′〉

× 〈n′s ′α′|τ y |nsα〉nF (εnsα) − nF (εn′s ′α′ )
εnsα − εn′s ′α′

, (48)

where Lz is the size of the system in the growth direction,
we have suppressed explicit dependence on kz everywhere for
brevity, and we are using the momentum-space Hamiltonian
Eq. (37), i.e., after the canonical transformation of Eq. (23).
The current operator ĵz is given by

ĵz = −e
∂H(kz)
∂kz

= e+Ddσ z[τ x sin(kzd) + τ y cos(kzd)].

(49)

To evaluate Eq. (48), we first note that both ĵz and τ y operators
are diagonal in the spin indices, which means, taking into
account Eq. (40), that the matrix elements of these operators,
appearing in Eq. (48), are diagonal in the LL index n.
Furthermore, if the Fermi level is pinned by charge neutrality
at zero energy εF = 0, only the terms with s %= s ′ contribute
to Eq. (48) due to the difference of the Fermi distribution
functions in the numerator (we assume the temperature to be
lower than all other energy scales in the problem). Then we
obtain

jz = λ

2π-2
BLz

∑

n,s %=s ′,α,α′,kz

〈nsα|ĵz|ns ′α′〉

× 〈ns ′α′|τ y |nsα〉nF (εnsα) − nF (εns ′α′)
εnsα − εns ′α′

. (50)

To simplify this further we use Eqs. (43), (44), and (47).
According to these, the product of the matrix elements of
ĵz and τ y , appearing in Eq. (50), is antisymmetric with respect
to the interchange of the α and α′ indices for all n ! 1. This
means that the contribution of all n ! 1 LLs cancels out and
only the two n = 0 LLs contribute to the expectation value of
the current. Then we obtain

jz = λ

2π-2
BLz

∑

α %=α′,kz

〈0α|ĵz|0α′〉〈0α′|τ y |0α〉

× nF (ε0α) − nF (ε0α′ )
ε0α − ε0α′

. (51)

Since ε0+(kz) = −m+(kz) = −m − +(kz) is always negative,
while ε0−(kz) = −m−(kz) = −m + +(kz) changes sign at the
locations of the Weyl nodes, only the subset of the 1D BZ, in
which m+(kz) and m−(kz) have opposite signs, contributes to
Eq. (51). Evaluating the matrix elements in Eq. (51), we then
obtain

jz = e+Dd

2π-2
B

∫ π/d+k0

π/d−k0

dkz

2π
+2(kz) cos(kzd) + +S+D sin2(kzd)

+3(kz)
,

(52)

where we have used the fact that the above integral, evaluated
over the whole BZ, vanishes. Evaluating the integral over the
interval between the locations of the Weyl nodes in Eq. (53),
we obtain

jz = − e2Bλ

4π2|m|+Sc

√(
m2

c2 − m2
)(

m2 − m2
c1

)
. (53)

Using Eq. (36) for the energy difference between the Weyl
nodes, induced by the inversion-breaking term λτ yσ z, we
finally obtain

jz = − e2+ε

4π2h̄2c
B, (54)

where we have restored explicit h̄. Note that B in Eq. (54)
can have both signs, and the current correctly changes sign
under TR, since +ε is TR invariant. There is thus indeed
a purely equilibrium nondissipative current, as predicted by
the Chern-Simons theory analysis of Sec. II. The current
is proportional to both the applied external field and to
energy separation (for small separation) between the Weyl
nodes. The remaining coefficient is a universal combination of
fundamental constants.

The above result can be understood physically by appealing
to the well-known Adler-Bell-Jackiw anomaly.28–30 Following
the argument by Nielsen and Ninomiya,22,30 let us imagine that
there is an electric field E applied in the same direction as the
magnetic field B. In the presence of the magnetic field, the
electric field will lead to transfer of particles between the two
Weyl nodes through the zero-mode LL, which has a definite
chirality near each of the Weyl nodes, reflecting the chirality
of the nodes. The rate of the particle transfer between the left
(−) and right (+) node per unit volume is given by30

d(N− − N+)
dt

= 2
eE

2πh̄

1
2π-2

B

= e2

2π2h̄2c
EB. (55)

Since the Weyl nodes have an energy difference +ε, this
particle transfer process has an associated power cost per unit

165110-7



A. A. ZYUZIN, SI WU, AND A. A. BURKOV PHYSICAL REVIEW B 85, 165110 (2012)

volume:

P = +ε
d(N− − N+)/2

dt
. (56)

This power is provided by the current of magnitude j , so that
P = jE. Thus we obtain

jE = +ε
e2

4π2h̄2c
EB. (57)

Canceling E on both sides of this equation and sending it to
zero, we obtain

j = e2+ε

4π2h̄2c
B, (58)

which is identical to Eq. (54) (the sign of the current is not
determined by the above energy balance argument).

V. DISCUSSION AND CONCLUSIONS

Let us now address the experimental observability of the
proposed magnetic field driven persistent current. First let us
estimate possible current density magnitudes. We take the
energy separation between the Weyl nodes +ε ∼ 1 meV and
the magnetic field B ∼ 1 T. This gives jz ∼ 0.1A/cm2. This is
certainly an easily measurable current.

The effect itself will of course exist only at low enough
temperatures and in clean enough samples, so that, in par-
ticular, the temperature and the impurity scattering rate are
smaller than +ε, the energy separation between the Weyl
nodes. This implies temperatures less than about 10 K, if

we take +ε ∼ 1 meV. Thus the proposed effect may be
observable. The biggest unknown here is of course the value
of the spin-orbit interaction parameter λ. In the above estimate
we have assumed it to be of order ∼1 meV. It may, however,
turn out to be much smaller, in which case the effect we have
described may turn out to be unobservable.

In conclusion, we have studied Weyl semimetal, realized
in a TI-NI multilayer heterostructure, in which both TR and
I symmetries are violated. Breaking TR symmetry moves the
Weyl nodes to different points in momentum space, while
breaking inversion shifts them to different energies, thus
producing a state with equal-volume electron and hole pockets
at charge neutrality. We have demonstrated that if an external
magnetic field is applied to this system along the direction
of the vector, connecting the Weyl nodes, an equilibrium
nondissipative current flows in this system. The current is
proportional to both the applied magnetic field and the energy
difference between the Weyl nodes, with a coefficient that
is a universal combination of fundamental constants. This
current may be measurable under experimentally achievable
conditions. In a sample not connected to external leads, a
voltage in response to an applied magnetic field will instead
be measured. This effect can potentially be useful for magnetic
field detection.
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