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Abstract

We present the analysis of the simultaneous high-resolution images from the Hubble Space Telescope and Keck
adaptive optics system of the planetary event OGLE-2012-BLG-0950 that determine that the system consists of a
0.58±0.04M host star orbited by a 39±8MÅ planet at a projected separation of 2.54±0.23 au. The planetary
system is located at a distance of 2.19±0.23 kpc from Earth. This is the second microlens planet beyond the snow
line with a mass measured to be in the mass range 20–80MÅ. The runaway gas accretion process of the core
accretion model predicts fewer planets in this mass range. This is because giant planets are thought to be growing
rapidly at these masses, and they rarely complete growth at this mass. So this result suggests that the core accretion
theory may need revision. This analysis also demonstrates the techniques that will be used to measure the masses
of planets and their host stars by the WFIRST exoplanet microlensing survey: one-dimensional microlensing
parallax combined with the separation and brightness measurement of the unresolved source and host stars to yield
multiple redundant constraints on the masses and distance of the planetary system.

Key words: gravitational lensing: micro – planetary systems

1. Introduction

Gravitational microlensing is currently the only technique to
detect planets just outside the snow line (Gould & Loeb 1992)
with masses as low as that of the Earth (Bennett & Rhie 1996).
This method has so far discovered about 70 planets. For most
events, the light-curve modeling of these microlensing exopla-
nets provides the planet–star mass ratio, but it does not provide
the masses for either the planet or the host star. Bennett et al.
(2007) showed theoretically that we can detect the foreground
lens (host star and planet) and background source separately with
high angular resolution follow-up observations taken a few years
after the peak magnification, and these observations can
determine the host star mass and distance. The planet mass is
then determined from the microlensing light-curve determination
of the planet–star mass ratio. High angular resolution follow-up
observations of the planetary microlensing event OGLE-2005-
BLG-169 using the Hubble Space Telescope (HST; Bennett et al.
2015) and Keck adaptive optics (AO) system (Batista et al.
2015) demonstrated this method and measured the masses and
distance of this planetary system. These observations also
confirmed the planetary interpretation of the microlensing light
curve because the lens–source relative proper motion predicted
from the planetary signal was consistent with the one measured
by the follow-up observations. Earlier observations of microlens

stars in the Galactic disk toward the Large Magellanic Cloud
(LMC; Alcock et al. 2001; Gould et al. 2004) and the Galactic
bulge (Kozlowski et al. 2007) provided earlier direct detections
and mass measurements of microlens stars.
In addition to this event, there are a number of planetary

microlensing events that have excess starlight detected at the
position of the source in the high angular resolution follow-up
observations. However, very few managed to measure the lens–
source separation. Under the assumption that this excess flux is
due to the planetary host star, a number of papers have claimed to
determine the host star mass (Janczak et al. 2010; Kubas et al.
2012; Batista et al. 2014), but further follow-up observations by
Bhattacharya et al. (2017) showed that the excess flux for one of
these events was not due to the host star. A detailed analysis by
Koshimoto et al. (2017a) indicated that excess starlight that is
unresolved from the source can often be due to stars other than
the lens, such as companions to the source or lens or unrelated
stars. In cases where we were able to measure the microlensing
parallax, we do not require confirmation of the predicted lens–
source relative motion. Instead, high angular resolution follow-up
observations that do not resolve the lens and source stars can
confirm and refine the microlensing parallax mass measurement
(Gaudi et al. 2008; Bennett et al. 2010b; Beaulieu et al. 2016,
2018) or distinguish between degenerate light-curve models
(Bennett et al. 2016; Sumi et al. 2016).
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The Wide Field InfraRed Survey Telescope (WFIRST) is
NASA’s next large astrophysics mission, following the James

Webb Space Telescope (JWST). The WFIRST (Spergel et al.
2015) was created by the 2010 New Worlds New Horizons
decadal survey to combine the science of three proposed
science missions that all required a wide-field infrared space
telescope. These missions were JDEM-Ω (Gehrels 2010), a
dark energy mission, the Microlensing Planet Finder (Bennett
et al. 2010a), and the Near Infrared Sky Surveyor. TheWFIRST

science program includes focused dark energy and microlen-
sing exoplanet surveys and a significant guest observer
component. A separate coronagraph instrument was added
later to address the top medium-scale 2010 decadal survey
priority. The goal of the WFIRST microlensing survey is to
discover and characterize a large sample of cold, low-mass
exoplanets with semimajor axes beyond roughly 1 au, which
are largely impossible to detect with any other technique. This
paper develops the exoplanet mass-measurement method that
will be employed by WFIRST.

This paper presents the first result from the NASA Keck Key
Strategic Mission Support (KSMS) program in support of
WFIRST, entitled “Development of the WFIRST Exoplanet
Mass Measurement Method,” with follow-up observations of
planetary microlensing event OGLE-2012-BLG-0950. This
analysis demonstrates all of the methods that are expected to be
the major host star and planet measurement methods for the
WFIRST exoplanet microlensing survey (Bennett et al. 2007).
The HST observations are part of a pilot program to use near-
simultaneous observations with Keck and HST to measure the
separation of the source and planet host stars using the color-
dependent centroid shift method (Bennett et al. 2006) in the
optical and infrared passbands. The Keck and HST images can
be used separately to measure the source–host star separation
using the image elongation method (Bennett et al. 2015). With
the image elongation method, the lens and source are partially
resolved such that their total point-spread function (PSF) is
substantially elongated. So, in order to detect the lens, we need
to fit multiple stellar profiles to the target. However, if the PSF
is not substantially elongated, we can still detect the lens from
the color-dependent centroid shift method. In this case, when
the lens and source have very different colors, their relative
brightness is very different in different passbands. As a result,
the combination of the source+lens flux will have different
centroids in different passbands at the same time. Hence,
observing the target nearly simultaneously in three different
passbands will give three different centroids for the same
target. The shift of these centroids between different passbands
can yield the separation and hence the detection of the lens. To
demonstrate this method, we took a near-simultaneous
observation of the event OGLE-2012-BLG-0950 with the
HST I and V and Keck K passbands.

The microlensing event OGLE-2012-BLG-0950 (Koshimoto
et al. 2017b) was observed by the microlensing survey
telescopes of the Optical Gravitational Lensing Experiment
(OGLE) and the Microlensing Observations in Astrophysics
(MOA) collaborations. The anomaly at HJD′=(HJD—
2,450,000)=6149 was observed primarily in the MOA data,
in addition to a single OGLE observation during the anomaly.
No significant finite source effect from the background source
was detected in the light-curve modeling, but a significant
microlensing parallax signal was seen. However, as is often the
case (Muraki et al. 2011), only a single component of the

parallax vector (πE,E) was well measured with any precision.
The second component (πE,N) is only constrained with an upper
limit on E,Np∣ ∣. Koshimoto et al. (2017b) attempted to determine
the mass of the lens system with the microlensing parallax
measurement and the excess flux seen at the position of the
source in 2013 AO follow-up imaging with the Keck NIRC2
camera, but the uncertainty in the πE,N and the possibility that
some or all of the excess flux could be due to a star other than
the planetary host star, the masses of the host star, and its planet
remained uncertain.
In this paper, we present the first planetary microlensing event

in which the lens–source separation is measured that allows us to
convert the one-dimensional microlensing parallax measurement
to a complete microlensing parallax measurement (Ghosh et al.
2004). We combine this with the lens–source separation, measured
in three passbands, to obtain a direct measurement of the lens
system mass (Gould et al. 2004). The paper is organized as
follows. Section 2 discusses the light-curve modeling, including
modeling with constraints from the follow-up observations to
determine the properties of the lens system. Section 3 describes the
details of our high-resolution follow-up observations and their
photometry calibrations. Section 4 focuses on the HST astrometric
and photometric analyses with single- and dual-star PSF fits of the
blended source plus lens target. Section 5 explores the astrometric
and photometric analyses of Keck AO images. Section 6 describes
the color-dependent centroid shifts between the positions of
the blended source plus lens target in different passbands. In
Sections 7 and 8, we determine the geocentric relative lens–source
proper motions and show that the identification of the lens
constrains the parallax vector. We discuss our determination of the
exoplanet lens system parameters in Section 9 and the implications
for similar measurements for WFIRST in Section 10. Finally, in
Section 11, we summarize our conclusions and discuss the
implications of this result for planet formation theory.

2. Light-curve Models

Our analysis includes constraints on the lens system from both
the microlensing light curve and the high angular resolution
follow-up observations, and we have found it most convenient to
redo the light-curve analysis of this event that was previously
presented by Koshimoto et al. (2017b). Our reanalysis uses the
same data set used by Koshimoto et al. (2017b), except that the
MOA-II survey light-curve data have been rereduced using
the procedure described in Bond et al. (2017). This rereduction
procedure includes a light-curve detrending procedure that is
designed to remove systematic photometry errors due to the
differential refraction of neighboring stars (Bennett et al. 2012),
as well as other seeing and air-mass effects.
The modeling was done with the image-centered ray-

shooting method (Bennett & Rhie 1996; Bennett 2010), and
the results are summarized in Table 1. The parameters of
these models can be separated into several categories. There
are three parameters that are required for single-lens light
curves: the Einstein radius crossing time, tE; the time of closest
lens–source alignment, t0; and the lens–source separation at the
time of closest alignment, u0, which is dimensionless because it
is given in units of the Einstein radius. For a binary lens
system, t0 and u0 refer to the time of closest alignment between
the source and the lens system center of mass. Four additional
parameters are generally included to describe binary lens
systems. These are the mass ratio, q, between the two lens
masses; the angle, α, between the source trajectory and the
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lens axis; the separation, s, between the two lens masses, in
units of the Einstein radius; and the source radius crossing time,
t*, which is needed for most planetary events because the sharp
planetary light-curve features often resolve the finite angular
size of the source star. Finally, there are the two components of
the microlensing parallax vector, πE,N and πE,E, which describe
the effect of the orbital motion of the observers on the Earth
around the Sun.

As explained in the discovery paper (Koshimoto et al. 2017b),
there are four degenerate solutions due to two well-known
degeneracies. The first is the usual close–wide degeneracy that
occurs for events that have planetary signals associated with the
central caustic. Normally, the close–wide degeneracy relates
models that differ mainly in the s s1« substitution, but in this
case, with s∼1, the planetary caustics have merged with the
central caustic, which ruins the usual s s1« relation. So the
two solutions instead have s≈0.9 and 1.0. The second
degeneracy is the well-known microlensing parallax degeneracy
that involves a flipping of the orientation of the lens plane with
respect to the orbit of the Earth. This is indicated by sign changes
of the α and u0 parameters.

One unexpected feature of this new analysis is that the best-fit
πE,N value has changed sign from the discovery paper
(Koshimoto et al. 2017b), from ∼0.12 to ∼−0.22, but in both
cases, the uncertainty is quite large, as is often the case for
ground-based microlensing parallax measurements (Muraki et al.
2011; Gould 2014). This change is due to an improvement in the

detrending algorithm that we have applied to the MOA data, and
it does not make a significant difference in our final conclusions.
In Section 8, we discuss constrained light-curve models that

employ constraints on the lens and source star relative proper
motion, mrel, and magnitudes that are derived in Sections 4, 5,
and 7. The best-fit models from this analysis are shown in
Table 2. As we discuss in Section 8, the mrel constraint from
our high angular resolution measurements greatly improves the
precision of our πE,N measurements, which, in turn, enables
precise determinations of the masses of the host star and planet.
The final column of Tables 1 and 2 gives the average of each

parameter over Markov chain Monte Carlo (MCMC) calcula-
tions for all four models in weighted sums. In Table 1, this
weighting is based only on the χ2 difference (Δχ2

) between the
different models. Table 2 is based on separate Markov chains
that include constraints from the follow-up observations. This
is necessary because the constraints reduce the volume of
parameter space by a large factor. Note that the probability
distribution of the parameters u0, s, and α have double peaks
since they take significantly different values in the different
degenerate models.

3. Follow-up Observations

The event OGLE-2012-BLG-0950 was observed with HST
on 2018 May 22 (HJD′=8261.5, a difference of 2110 days or
5.78 yr from the peak of the magnification) with the Ultraviolet
Visible Instrument of the Wide Field Camera 3 (WFC3-UVIS)

Table 1

Best-fit Unconstrained Model Parameters

u0<0 u0>0

Parameter s<1 s≈1 s<1 s≈1 MCMC Averages

tE (days) 70.823 71.059 70.093 70.062 69.8±2.0

t0 (HJD′) 6151.4951 6151.4988 6151.4805 6151.4785 6151.492±0.028

u0 −0.09764 −0.09734 0.09634 0.09648 0.004±0.098
s 0.89915 1.00082 0.89937 1.00243 0.942±0.056

α (rad) −1.94169 −1.94301 1.94842 1.94873 −0.07±1.95

q×104 1.6469 1.5668 1.6669 1.6295 1.95±0.38

t* (days) 0.03932 0.01433 0.01943 0.01324 0.057±0.030

πE,N −0.2364 −0.2470 −0.2040 −0.2020 −0.09±0.22

πE,E −0.1190 −0.1179 −0.0988 −0.1023 −0.122±0.028

Is 19.299 19.303 19.315 19.314 19.253±0.038
Vs 20.807 20.810 20.823 20.821 20.762±0.038

fit χ2 6488.84 6490.48 6488.99 6490.60

Table 2

Best-fit Model Parameters with mrel and Magnitude Constraints

u0<0 u0>0

Parameter s<1 s≈1 s<1 s≈1 MCMC Averages

tE (days) 68.007 67.628 68.919 68.995 68.1±1.2

t0 (HJD′) 6151.4702 6151.4749 6151.4978 6151.4999 6151.484±0.027
u0 −0.09968 −0.09734 0.10088 0.10073 0.043±0.091

s 0.89783 1.00136 0.89791 0.99900 0.928±0.052

α (rad) −1.94592 −1.94719 1.93987 1.94146 −0.84±1.75

q×104 1.7255 1.7442 1.6726 1.6165 2.01±0.39

t* (days) 0.03634 0.03633 0.03609 0.01324 0.0366±0.0013

πE,N 0.2107 0.2103 0.2192 0.2178 0.213±0.017

πE,E −0.1536 −0.1536 −0.1685 −0.1672 −0.157±0.016
Is 19.274 19.266 19.260 19.262 19.265±0.023

Vs 20.783 20.773 20.768 20.769 20.734±0.023

fit χ2 6490.25 6491.87 6491.88 6493.45
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as part of the program GO-15455. Seven dithered images, each
with 62 s exposure time, and eight dithered images, each with
111 s exposure time, were taken in the F814W and F555W
passbands (which are the HST equivalent of the I and V bands),
respectively. The pixel scale for the WFC3-UVIS instrument is
∼40 mas on a side. The images, corrected for charge transfer
efficiency (CTE) losses (Anderson & Bedin 2010), were
obtained from the Mikulski Archive for Space Telescopes
(MAST) and reduced and stacked following the methods
described in Anderson & King (2000, 2004). The stars from the
HST stack images were matched and calibrated to the OGLE III
catalog (Szymański et al. 2011), which is already calibrated to
Cousins I (Cousins 1976) and Johnson V (Johnson 1966). Nine
bright, isolated calibration stars with magnitude I 17.5OGLEIII


and color V I1.0 2.0OGLEIII

 -( ) were matched in both
frames. We obtained the following calibration relations:

I I V I28.764 0.0467 0.02, 1OGLE HST HSTIII
= + + - ( ) ( )

V V V I30.602 0.0641 0.03. 2OGLE HST HSTIII
= + - - ( ) ( )

These uncertainties on the photometric calibration were

estimated by dividing the rms scatter by the square root of

the number of stars used for the transformation.
The same event was observed within a day of the HST

observations with the Keck AO NIRC2 instrument using a laser
guide star during the early morning of 2018 May 23 as part of
our Keck NASA KSMS program. Five dithered exposures,
each of 30 s, were taken in the KS short passband with the wide
camera. In this paper, from now on, we refer to the KS band as
the K band. Each wide camera image covers a 1048×1048
square pixel area, and each pixel size is about 40×40 mas2.
These images were flat field– and dark current–corrected using
standard methods and then stacked using the SWarp Astro-
metics package (Bertin et al. 2002). The details of our methods
are described in Batista et al. (2014). We performed aperture
photometry on these wide camera images using the SExtractor
code (Bertin & Arnouts 1996). These wide images were used to
detect and match as many bright isolated stars as possible to
our custom reduction (Beaulieu et al. 2016) of the VVV images
(Minniti et al. 2010) that is calibrated to 2MASS (Carpenter
2001). Twenty-seven isolated bright stars in the K band were
calibrated to VVV with a 0.02 mag dispersion.

On the same night as the wide camera images, this event was
observed with the NIRC2 narrow camera in the K band using
laser guide star AO (LGSAO). The main purpose of these
images is to obtain images with a sharp, well-characterized PSF
for the astrometric and photometric analysis of the lens and
source stars (see Section 5). Thirty-nine dithered observations
were taken with 60 s exposures. The images were taken with a
small dither of 0 7 at a position angle (P.A.) of 0° with each
frame consisting of two coadded 30 s integrations. The
observations were taken in eight dither positions with at least
four images in each dither position. The natural seeing for these
narrow camera images was ∼0 4–0 6. There are 1048×1048
pixels in each image, with each pixel subtending 10 mas on
each side. The stars from the narrow camera images were cross-
matched to the wide camera photometry for calibration. The
photometry used for narrow camera images is from the
DAOPHOT analysis described in Section 5.

4. HST ePSF Fitting

Like many other space telescope cameras, the HST WFC3-
UVIS pixel scale undersamples the PSF. This is a compromise

between field of view and angular resolution. Fortunately,
accurate photometry (Lauer 1999) and astrometry (Anderson &
King 2000) can still be obtained if the image pointings are
dithered to recover the spatial sampling lost to undersampling.
To overcome this problem, we adopt the method of Anderson
& King (2006) to construct an effective PSF (ePSF) from the
dithered images. This method has proved effective at measur-
ing the separation of stars separated by <1 FWHM (Bennett
et al. 2015; Bhattacharya et al. 2017). The full HST analysis is
done using only the distortion-corrected individual under-
sampled dithered images. The 100× oversampled image shown
in Figure 1 is produced at the end of the analysis for visual
inspection. Eight main-sequence stars, within a 120 pixel radius
of the target and similar brightness as the target, were chosen to
build the ePSF. The ePSFs of all eight stars were computed in
each image frame, then the average ePSF over all the frames
was obtained. It is this averaging of the ePSFs from all dithered
images that helps to overcome the undersampling problem. The
procedure was iterated until the average ePSFs converged. We
used this final ePSF model to fit single and dual stellar profiles
for our target object as described in the next paragraphs. Our
methodology for fitting single and multiple stellar profiles with
ePSFs is described in detail in Bhattacharya et al. (2017). The
FWHMs of the ePSFs in the I and V bands are 76 and 72 mas,
respectively.
The first step of ePSF modeling is to do a single-star fit of

our target object. There are three model parameters for such a
fit: the two-dimensional position of the star and the stellar flux.
We selected a region centered on the target that included 175
pixels from our seven I-band images and 200 pixels from our
eight V-band images. The calibrated magnitudes of the target
object from the best-fit solution were 18.64±0.02 and
20.41±0.03 in the I and V bands, respectively. The magnitude
uncertainties are the combination of the ePSF fitting and
calibration uncertainties. As Figure 1 shows, the residual image
from this fit indicates that the best single-star fit is a poor fit. It
is also clear that the I and V magnitudes of the target are
significantly brighter than the source magnitude determined
from the microlensing light-curve analysis: IS=19.26±0.05
and VS=20.65±0.07. This indicates the presence of at least
one additional star blended with the source star, so we proceed
with the dual-star ePSF fitting analyses described below.
The dual-star ePSF fitting method requires six model

parameters: the two-dimensional positions of each of the stars
(x1, y1, x2, y2), the total flux (Z), and the flux fraction ( f1) of star
#1. The first stage of our dual-star fitting process is a grid
search. The positions of each star were allowed to explore the
full grid of 151 and 200 pixels for the I and V bands with a step
size of 0.02 pixel. For each combination of positions of the two
stars, the flux fraction, f1, was varied between 0.0 and 1.0 with
a step size of 0.02. At each step, the χ2 value was computed,
and the minimum χ2 solution was stored. This dense grid
search yielded our first best-fit result on the dual-star ePSF fit.
The grid search was performed to cover the full parameter
space. The best-fit result was used as an initial condition for an
MCMC (Verde et al. 2003) ePSF fitting in order to obtain a
more precise measurement with error bars. Our detailed
methodology of MCMC ePSF fitting for multiple stars is
described in detail in Bhattacharya et al. (2017). The best-fit
photometry from the dual-star MCMC PSF models is shown in
Table 3, and the best-fit relative astrometry is shown in
Figure 4. The uncertainties are determined from the distribution
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of 29,727 and 37,132 accepted MCMC links in the I and V

bands, respectively. Figure 2 shows that the correlation

between parameters, lens flux contribution, and lens–source

separation are negligible in the I band but quite strong in the V

band. This justifies the calculation of the uncertainties of these

correlated parameters from the MCMC chains instead of

calculating the uncertainties on individual parameters sepa-

rately. The residual of the dual star shown in Figure 1 shows

that it is a good model.
The dual-star ePSF model results (Table 4) show that the target

consists of two stars with a separation of∼34mas, with consistent

separations measured in all three passbands. The magnitudes of

star #1 (the southernmost star) are I1=19.24±0.06 and

V1=20.65±0.09, and the magnitudes of the second star are

I2=19.57±0.09 and V2=22.27±0.21. Star #1 has color

V1−I1=1.41±0.1, and star #2 has color V2−I2=2.70±
0.23. Star #1 is bluer than star #2. Since both stars have similar

brightnesses in the I band and the lens is located nearer than the
source in the bulge, the lens should be redder than the main-
sequence source. Since star #1 is bluer and also significantly
brighter in the V band, we identify star#1 as the source. Also, the

Figure 1. Top left:stack image in the HST I (F814W) passband with the target indicated by the yellow circle. Top right:summed image of all the individual images of
the target object. The source and lens positions obtained from the best-fit dual-star PSF model to the individual images. Bottom left:residual image from the best-fit
single-star PSF model. The wings are undersubtracted and the core is oversubtracted, indicating that the best-fit single-star PSF model is not consistent with the flux
distribution of the target object. Bottom right:residual image from the best-fit dual-star PSF model. This indicates a much better fit consistent with Poisson noise
(which is larger at the location of the subtracted stars), so the best-fit dual-star model is compatible with the flux distribution of the target. Both of the bottom images
are demonstrated using the same photometry scale.

Table 3

Photometry from Dual-star PSF Fits

Star Passband Mag

Lens HST I 19.57±0.09

HST V 22.27±0.21
Keck K 17.27±0.04

Source HST I 19.24±0.06

HST V 20.65±0.09
Keck K 17.68±0.05

Note. Magnitudes are calibrated Cousins I-band, Johnson V-band, and 2MASS

K-band magnitudes.
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I and V magnitudes for star #1 match the approximately

calibrated source magnitudes (Koshimoto et al. 2017b), and they
are within 1σ of the source brightness predicted from our light-

curve modeling based on improved MOA photometry, as

indicated in Table 1. In contrast, star #2 does not match

with the predicted source flux from the light curve of IS=
19.24±0.03 and VS=20.65±0.07. Hence, the second star is a
candidate for the planetary host and lens star. Note that this event

also had a one-dimensional parallax measurement from light-

curve modeling; this tells us whether the lens would be to the east

or west of the source in the high-resolution follow-up images. If

the high-resolution follow-up image shows only the lens and the

source, the source can be identified using this abovementioned
information from the one-dimensional parallax as well.

The lens–source separations in both the east and north
directions are consistent in our independent analysis of the I

and V passbands. The separation of these two stars is also

measured to high precision. The one-dimensional separation as

measured in the I band is 34.21±0.65 mas, which is a

precision of 2%, even though the separation is <0.5 FWHM of

the PSF. This is consistent with our previous analysis of the
event MOA-2008-BLG-310, where we were able to measure

the separation between the source and blend star (which was

not the lens) to a precision of 15% when the separation was

14 mas (Bhattacharya et al. 2017). From Koshimoto et al.

(2017b), the upper limit of the separation at 5.78 yr predicted
from the geocentric relative lens–source proper motion is

38.73 mas. As described in Section 9, the upper and lower
limits on lens–source separation calculated from the geocentric
relative proper motion are 34.2 and 43.8 mas. The one-
dimensional separations measured in the I and V passbands
are 34.21±0.65 and 34.53±2.40 mas, respectively. These
measured separations are consistent with the upper and lower
limits of separations from Section 9, as well as the upper limit
of the predicted separation from Koshimoto et al. (2017b).

5. Keck AO PSF Fitting

Thirty-nine images taken with the Keck NIRC2 narrow
camera were reduced. These images taken with the narrow
camera are not undersampled, so we did not need to adopt the
ePSF method for the analysis of these images. For the reduction
of these images, we used K-band dome flats taken with the
narrow camera on the same day as the science images. There
were five dome-flat images with the lamp on and five more
images with the lamp off, each with 65 s exposure time. Also,
at the end of the night, we took 20 sky images using a clear
patch of sky at an (R.A., decl.) of (18:08:04.62, −29:43:53.7)
with an exposure time of 30 s each. All of these images were
used to flat-field, bias-subtract, and remove bad pixels and
cosmic rays from the 39 raw science images. Finally, these
clean raw images were stacked into one image that we used for
the final photometry and astrometry analysis.
Because the source and candidate lens stars are separated by

<1 FWHM, we must analyze the Keck data with a PSF fitting
code to measure the astrometry and photometry of this two-star
system. However, PSF fitting photometry codes that employ
analytic PSF models may have problems with AO images that
often have highly non-Gaussian PSFs. We have previously
found that DAOPHOT (Stetson 1987) does quite well with
such images (Bennett et al. 2010b), so we use DAOPHOT for
the analysis of our OGLE-2012-BLG-0950 Keck data.
To start our analysis, we needed to construct a proper PSF.

We built the PSF in three stages. In the first stage, we ran the

Figure 2. Left:lens flux contribution in the HST I (F814W) passband with respect to the lens–source separation. Right:lens flux contribution in the HST V (F555W)

passband with respect to the lens–source separation. These plots are made from the MCMC chains of dual-star PSF fitting mentioned in Section 4. The three contours,
from darker to lighter shades, represent the 68.5%, 97%, and 99% confidence levels. The correlation between the lens flux contribution and the lens–source separation
is almost negligible in the I band. However, in the V band, these two parameters are more strongly correlated. This justifies calculation of the uncertainties from the
MCMC chains instead of calculating the uncertainties on each individual parameter separately.

Table 4

Measured Lens–source Separation and Relative Proper Motion

Passband
Separation (mas) μrel,H (mas yr−1

)

East North East North

HST I −15.5±0.4 30.5±0.7 −2.68±0.05 5.28±0.13
HST V −15.6±1.4 30.8±2.6 −2.70±0.27 5.33±0.47

Keck K −15.9±2.9 29.3±3.0 −2.75±0.49 5.07±0.52
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FIND and PHOTOMETRY commands of DAOPHOT to find
all the possible stars in the image. Then we used the PICK
command to find 23 bright (K<19.24) isolated stars to be
used for constructing our PSF. Our target object was excluded
from this list of PSF stars because it is expected to consist of
two stars that are not in the same position. We built a PSF from
these stars and fit all the stars in the field with this PSF. In the
second stage, we carefully checked the residual image that has
all the identified stars subtracted. We noticed several stars that
had large residuals. These were either very bright stars that
were near saturation (where the detector becomes nonlinear) or
elongated PSFs due to multiple blended stellar images. At this
stage, we carefully checked and found that two of our PSF
contributing stars had a significant residual from the PSF
subtraction. A close look showed that both of these had slight
elongations that are probably due to binary companions. So
these two stars were removed from our PSF star list, and the
PSF was constructed again. Next, we ran the PSF fitting again
on the field with the new PSF and moved on to the third stage.
In the third stage, we removed all of the neighbor stars of the
PSF stars and computed a clean final PSF from these 21 stars.
We then did a final round of PSF fitting for all stars in the
image with this clean PSF.

After finding a good PSF model, we started our analysis with
a single-star PSF fit to the target object. The residual of this fit
is shown in Figure 3. This residual shows a clear pattern that

indicates that it is elongated compared to the PSFs of single
stars. From our reanalysis of this event (with improved MOA
photometry), we find an extinction-corrected magnitude and
color of the source star IS,0=18.40±0.07 and (V−I)S,0=
0.74±0.07, which is consistent with the Koshimoto et al.
(2017b) analysis. From the color–color relation in Kenyon &
Hartmann (1995), (V−I)S,0=0.74 corresponds to the
dereddened color (I−K )S,0=0.75. From Cardelli et al.
(1989), the extinction in the K band is AK=0.12 at 8.2 kpc
(see Section 9). Hence, the source K-band calibrated magnitude
is (18.40− 0.75+0.12)±0.07=17.77±0.07.
The total measured K-band magnitude from our single-star

fit is 16.71±0.03, which implies an excess flux of K=17.22
mag on top of the source. This excess flux, combined with the
residual shown in the lower left panel of Figure 3, implies that
we should proceed with dual-star PSF fitting for this target. In
the dual-star fit, DAOPHOT allowed the star positions to move
around up to a 30 mas or 3 pixel radius from their initial
positions. In the HST astrometry analysis (Section 4), we found
that the separation between the two stars is ∼34 mas. So,
limiting the movement of the star positions to �30 pixels
should not impede our dual-star modeling. The best dual-star fit
yielded two stars with calibrated K magnitudes of 17.27±0.04
and 17.68±0.05, as listed in Table 3, which matches the
predicted source brightness from the discovery paper. The
separation of these two stars, given in Table 4, is consistent

Figure 3. Top left: stack image of 39 Keck K-band images taken with the narrow camera. The target is indicated by the yellow circle. Top right:closer look at the
target object. The source and lens positions are obtained from the best-fit dual-star PSF model. Bottom left: residual image after subtracting the best-fit single-star PSF
model. The undersubtracted wings and oversubtracted core indicate that the best-fit single-star PSF model is not consistent with the data. Bottom right:residual image
after subtracting the best-fit dual-star PSF model. This shows only noise, which implies that the best-fit dual-star model can account for the flux distribution of the
target. Both of the bottom images use the same photometry scale.
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with their separations in the HST I and V bands. Both the
single- and dual-star fits were done using the Newton–Raphson
method following Stetson (1987). The uncertainties were
calculated following King (1983),

F
0.65238 FWHM

4

3
, 3x

Fs
s

= ´ ´ ´ ( )

where F is the flux of the respective star. The uncertainty in the

y direction can be presented by the same equation. The FWHM

of the K-band narrow image measured from DAOPHOT is 84

and 87 mas in the x and y directions.

6. Color-dependent Centroid Shift with Simultaneous HST

and Keck Observations

The color-dependent centroid shift is a method that can be
used to confirm the identification of excess blended flux on top
of the source with the lens star. This is possible because the
constraints on the properties of the blended image of the lens
and source are known from the microlensing light curve. These
known properties always include the source star brightness, and
they usually include the lens–source relative proper motion,
μrel, or the microlensing parallax, πE.

The source stars are biased toward the brightest stars in the
bulge, since a brighter source provides a stronger microlensing
signal. However, the lens stars are detected with a microlensing
rate that scales as lens mass, ML

0.5, a mass function that scales

as ML
1.3- , and a detection efficiency that scales as ML

n, where
0�n�0.5, which implies a much flatter distribution. Thus,
the lens stars tend to have a lower mass with a redder color than
the source stars, as the cases of OGLE-2005-BLG-169 (Batista
et al. 2015; Bennett et al. 2015) and OGLE-2012-BLG-0950,
presented in this paper, demonstrate.

When the source and lens stars have different colors, their
blended images will have different centroids in follow-up
images in different passbands due to the separation between the
lens and source. This is the color-dependent centroid shift,
which was first demonstrated for the first planet found by
microlensing (Bennett et al. 2006) using HST data. The time
interval between the magnification peak and the high-resolution
follow up is denoted byΔt. The main advantage of this method
over the measurement of image elongation is that the S/N of
the color-dependent centroid-shift scales as, Δt, whereas the
image elongation signal grows asΔt2 if the source brightness is
known or Δt3 when the source brightness is not constrained
(Bennett et al. 2007). Thus, the color-dependent centroid
method might be the most effective method for determining the
lens–source separation when the separation is small.

The color-dependent centroid shift is largest with the
maximum color difference between passbands, and this was
the justification for the near-simultaneous HST and Keck AO
imaging. Previous studies (Lu et al. 2014) have argued that it is

possible to obtain astrometry with an accuracy of 150 mas from
Keck NIRC2 images, but this requires a large number of
careful corrections. Since our primary science result comes
from the dual-star fits, we do not require this very high
precision astrometry for our science results. So, we present a
preliminary test of the color-dependent centroid method here.
In order to measure the color-dependent centroid shift

between each pair of passbands, we must perform a coordinate
transformation between the images in the different passbands.
We have corrected the Keck data for achromatic differential
refraction (Yelda et al. 2010) and geometric distortion (Service
et al. 2016). Based on Gubler & Tytler (1998), the chromatic
differential refraction effect would be <0.2 mas. Hence, this
effect is ignored for our preliminary analysis. (The HST data
were corrected for geometric distortion by standard methods;
Kozhurina-Platais 2012.) For our preliminary analysis, we have
performed linear coordinate transformations with a relatively
small number of stars around the target. For the HST I to Keck
K transformation, we used 10 stars, which resulted in a one-
dimensional rms scatter of 0.9 mas. For the HST V to Keck K
transformation, we used eight stars with a one-dimensional rms
scatter of 1.3 mas. Finally, for the HST I to HST V
transformation, we used 19 stars with an rms scatter of
0.2 mas, which is consistent with the astrometric precision
obtained in a previous attempt to measure the color-dependent
centroid shift (Bennett et al. 2006). These coordinate
transformations were used to compare the centroids of the
blended lens plus source image from the single PSF fits, and
these results are reported in the second and third columns of
Table 5. The color-dependent centroid shifts in different
passbands are demonstrated in Figure 4.
We can also use our dual-star fits from Sections 4 and 5 to

calculate the expected color-dependent centroid shifts. From
Section 4, the flux fraction of the source (or star #1) is f1,
which implies that the flux fraction of the excess flux is (1−f1).
For the remainder of this section, we will refer to this excess
flux as being due to the lens star (see Section 9 and Figure 6).
We denote the source position vector as x1 and the lens position
as x2. The lens–source separation is given by xL SD - . For a
passband i, the centroid of the combined source and the lens
flux, xc i, , is given by

x x xf f1 , 4c i i i, 1, 1 1, 2= + -( ) ( )

x x x , 52 1 L S= + D - ( )

x x x xf f1 . 6c i i i, 1, 1 1, 1 L S= + - + D -( )( ) ( )

For a different passband, j i¹ , the centroid of the blended

source plus lens image is given by

x x x xf f1 . 7c j j j, 1, 1 1, 1 L S= + - + D -( )( ) ( )

Subtracting Equation (6) from Equation (7), we obtain the

centroid shift between passbands j and i as shown in

Table 5

Blended Lens + Source Centroid Shifts

Single-Star Dual-Star Single-Star—Dual-Star

Passbands ΔE (mas) ΔN (mas) ΔE (mas) ΔN (mas) ΔE (mas) ΔN (mas)

V−I −3.764 7.249 −3.460 5.950 −0.304 1.299

V−KS −6.400 12.324 −6.815 13.358 0.415 −1.034

I−KS −2.635 5.074 −5.709 7.863 3.074 −2.789
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Equation (8). Rearranging the terms, we can derive the lens–

source separation from this centroid shift and the flux ratios in

two different passbands:

x x

x x

f f

f f , 8

c j i j i

i j

, , 1 1, 1,

1, 1, 1 L S

D = -

+ - + D -

( )

( )( ) ( )

( )

x xf f , 9c j i i j, , 1, 1, L SD = - D -( ) ( )( )

x
x

f f
. 10

c j i

i j

L S
, ,

1, 1,

D =
D

-
-

( )
( )

( )

We can now use Equation (9) to predict the color-dependent
centroid shifts from the dual-star fits. The results are shown in
the fourth and fifth columns of Table 5. The sixth and seventh
columns of this table show the difference between these two
predictions. The centroid shift estimate from the dual-star fits
seems to be a rough match to the centroid measurements from
the single-star fits, but the differences between the single-star fit
measurements and the dual-star fit estimates are much larger
than we would like if we are to use the color-dependent
centroid shift measurement to confirm lens–source separation
predictions at small separations. We expect an astrometric
precision in each of the passbands of ∼0.3 mas to be achievable
(Bennett et al. 2006; Lu et al. 2014), so we should be able to
achieve a relative astrometric precision of 0.5 mas between
pairs of passbands. However, based on the scatter in our
transformations between passbands, it is clear that this is only
possible between the HST V and I bands. Our transformations
between the HST passbands and the Keck K band have a one-
dimensional scatter of 1 mas, so submilliarcsecond precision
is not possible until these transformations are improved.
Fortunately, there are several ways in which these transforma-
tions can be improved. We will study this issue more
completely in a future paper.

We should note that the lens–source separation of 34 mas
could be too large for Equations (4)–(10) to apply, particularly
in the HST V band with a PSF FWHM of ∼48 mas. Thus, the
comparison shown in Table 5 might not be completely fair.
From Table 3, we can conclude that the positions of the lens

derived from the single-star fit would be different by ∼10%–

20% from the measured positions of the lens using dual fits.
Hence, the large elongation may explain why this centroid shift
method does not match the dual-star fit results more closely.

7. Determination of Relative Lens–source Proper Motion

Our high-resolution observations were taken 5.83 yr after the
microlensing event magnification peak. If these images were
taken 6 yr after the microlensing magnification, then the HST
frame would have coincided with the heliocentric frame.
However, this time difference of 0.17 yr between the
heliocentric frame and our current HST frame, with a lens
system at 2.1 kpc (see Section 9), produces a less than 1σ
difference in the lens–source separation. So, we approximate
the HST frame to the heliocentric frame. At the time of peak
magnification, the separation between lens and source was
∼u0θE∼0.1 mas. Hence, by dividing the measured separation
by the time interval 5.78 yr, we obtain the heliocentric lens–
source relative proper motion, mrel,H. A comparison of the
mrel,H values from our independent dual-star fits is shown in
Table 4. From our I-band measurements, we find that (μrel,H,l,
μrel,H,b)=(3.23, 4.84)mas yr−1 in galactic coordinates, and
the amplitude of μrel,H=5.92±0.12 at an angle of ∼57°
from the direction of Galactic rotation. The dispersion in the
motion of stars in the local Galactic disk is ∼30 km s−1, which
corresponds to a proper-motion dispersion of ∼3 mas yr−1

(in
both directions) at the lens distance of DL≈2.1 kpc, as
presented in Section 9. The source is in the bulge, with a
proper-motion dispersion of ∼2.5 mas yr−1 in each direction.
Thus, the measured rel,Hm is entirely consistent with the
combination of the mean relative proper motion of 6 mas yr−1

in the direction of Galactic rotation combined with the proper-
motion dispersion of bulge source and disk lens stars.
Our light-curve models were done in a geocentric reference

frame that differs from the heliocentric frame by the
instantaneous velocity of the Earth at the time of peak
magnification, because the light-curve parameters can be
determined most precisely in this frame. However, this also

Figure 4. The blended image of the source plus lens stars is shown in three different passbands: Keck K (left), HST I (middle), and HST V (right). The source and lens
positions, determined from the best-fit dual-star PSF models, are shown with red and green dots, respectively. The centroids are calculated according to the flux of the
lens and source in the respective passbands (from Table 3). The sizes of the source and lens dots are proportional to the flux fraction for the lens and source stars. In the
Keck K band, the lens is brighter than the source, hence the green dot is bigger than the red dot and the centroid is shifted toward the lens. In the I band, the source is
slightly brighter than the lens, so the centroid is slightly closer to the source. In the V band, the centroid is moved toward the source, since the source is much brighter
than the lens.
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means that the lens–source relative proper motion that we
measure with follow-up observations is not in the same
reference frame as the light-curve parameters. This is an
important issue because, as we show below, the measured
relative proper motion can be combined with the microlensing
parallax light-curve parameter to determine the mass of the lens
system. The relation between the relative proper motions in the
heliocentric and geocentric coordinate systems is given by
(Dong et al. 2009)

v

au
, 11rel,H rel,G

relm m p
= + Å

( )

where vÅ is the projected velocity of the Earth relative to the

Sun (perpendicular to the line of sight) at the time of peak

magnification. The projected velocity for OGLE-2012-BLG-

0950 is v E,NÅ =(4.096, −0.448) au yr−1 at the peak of the

microlensing, HJD′=6151.48. The relative parallax is defined

as πrel≡1/DL−1/DS, where DL and DS are the lens and

source distances. Hence, Equation (11) can be written as

D D

4.096, 0.448

1 1 .L S

rel,G rel,Hm m= - -

´ -

( )

( )

Since rel,Hm is already measured in Table 4, Equation (11)

represents the geocentric relative proper motion, rel,Gm , as a

function of the lens distance. Now, at each possible lens

distance, we can use the μrel,G value from Equation (11) to

determine the angular Einstein radius, θE=μrel,GtE. As we

explain below, rel,Gm can also be used to convert a one-

dimensional microlensing parallax measurement into a full

measurement of the microlensing parallax vector. The three

lens flux measurements in the V, I, and K bands and the one-

dimensional parallax measurement constrain the angular

Einstein radius and microlensing parallax vector and, therefore,

the mass and distance of the lens.

8. rel,Hm and Lens Flux Constraints on Ep and Light-curve
Models

The OGLE-2012-BLG-0950 light curve shows a significant
improvement of Δχ2=85.9 due to the measurement of the
microlensing parallax effect. But, as is often the case (Muraki
et al. 2011; Gould 2014), only the πE,E component of the
microlensing parallax vector is measured precisely. As shown
in the left panel of Figure 5, the 2σ range for πE,N is
−0.39<πE,N<0.43. However, the microlensing parallax
vector, Ep , is parallel to the rel,Gm vector, and the two
quantities are related by

t
. 12E

rel

E

rel,G

rel,G
2

p
mp
m

=
∣ ∣

( )

So, with measurements of πE,E and rel,Hm , we can use

Equations (11) and (12) to solve for πE,N (Ghosh et al. 2004;

Bennett et al. 2007). Gould (2014) showed that Equations (11)

and (12) can be converted to a quadratic equation in πE,N. A

quadratic equation means two solutions, and Gould argued that

this presented an important degeneracy that could lead to an

ambiguous interpretation, but we find that this is generally not

the case. For our measured value of rel,Hm , the degenerate

solutions require that one solution had πrel<0, which would

imply that the lens is (unphysically) more distant than the

source. So, there is a unique solution in the case of OGLE-

2012-BLG-0950. If the sign of rel,Hm was reversed, then there

would be some degeneracy in the πE,E values at large E E,p∣ ∣, but

these would only be important for DL<0.08 kpc. In general,

this degeneracy is not important when v aurel,H relm pÅ∣ ∣ ∣ ∣, as

is the case for virtually all microlensing events observed toward

the Galactic bulge.
In order to obtain good sampling of light curves that are

consistent with our constraints, we apply constraints inside our
modeling code to ensure that the heliocentric proper motion
and lens magnitudes are consistent with the Keck and HST
observations. These constraints are the μrel,H,N and μrel,H,E

values given in Table 4, as well as VL=22.18±0.26,
IL=19.51±0.09, and KL=17.21±0.14. They are imple-
mented by calculating a χ2 contribution from each of the
constraints and adding it to the light-curve fit χ2 inside the
modeling code (Bennett 2010). This requires the use of a mass–
luminosity relation. As argued in Bennett et al. (2018), an
empirical mass–luminosity relation is preferred for lens masses
0.7M. Following Bennett et al. (2018), we use a
combination of mass–luminosity relations for different masses.
For ML�0.66M, 0.54M�ML�0.12M, and 0.10M
�ML�0.07M, we use the relations of Henry & McCarthy
(1993), Delfosse et al. (2000), and Henry et al. (1999),
respectively. Between these mass ranges, we linearly inter-
polate between the two relations used on the boundaries. That
is, we interpolate between the Henry & McCarthy (1993)
and the Delfosse et al. (2000) relations for 0.66M>ML>
0.54M, and we interpolate between the Delfosse et al. (2000)
and Henry et al. (1999) relations for 0.12M>ML>0.10M.
For the mass–luminosity relations, we must also consider the

foreground extinction. At a Galactic latitude of b=−4°.634
and lens distance of ∼2 kpc, the lens system is likely to be
behind some, but not all, of the dust that is in the foreground of
the source. We assume a dust scale height of hdust=0.10±
0.02 kpc, so that the extinction in the foreground of the lens is
given by

A
e

e
A

1

1
, 13i L

D b h

D b h i S,

sin

sin
,

L

S

dust

dust

=
-
-

-

-
( )

∣ ( ) ∣

∣ ( ) ∣

where the index i refers to the passband: I, V, or K. In the

Markov chain calculations themselves, we fix DS=8.2 kpc for
our source star at a Galactic longitude of l=1.7647, and we

fix the dust scale height at hdust=0.10 kpc. But we remove

these restrictions by reweighting the links in the Markov chain

when we sum them for our final results.
These five constraints have a very small effect on the overall

χ2. The addition of these constraints increases χ2 by
Δχ2=1.41, so it is clear that the light curve is quite
consistent with these constraints.
While these constraints have almost no impact on the best-fit

model χ2, they have a dramatic effect on the allowed range of
microlensing parallax parameters, as Figure 5 indicates. The 2σ
range for πE,N is reduced from −0.39<πE,N<0.43 to 0.18<
πE,N<0.25, a reduction of a factor of 12 in uncertainty. This
yields a microlensing parallax amplitude of πE=0.265±0.02,
which will be used in Section 9 to determine the lens mass.

9. Lens Properties

For most planetary microlensing events, finite source effects
provide a measurement of the source radius crossing time, t*.
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This allows the angular Einstein radius, θE, to be determined
with the equation θE=θ*tE/t*, where θ* is the angular source
radius, which can be determined by the source brightness and
color (Kervella et al. 2004; Boyajian et al. 2014). However, t*
was not measured for OGLE-2012-BLG-0950, because this
event did not reveal any finite source effects. Fortunately, it is
also possible to determine θE from rel,Gm , which can be
determined from the measured values of rel,Hm and πE,E using
Equations (11) and (12). The relation between the length of the

rel,Gm vector and θE is θE=tEμrel,G.
The measurement of either the angular Einstein radius, θE, or

the microlensing parallax amplitude, πE, will provide a mass–
distance relation if we assume that the source distance, DS, is
known (Bennett 2008; Gaudi 2012):
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When both θE and πE are known, the two mass–distance

relations in Equation (14) can be multiplied together, yielding

M
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which is a direct mass measurement with no dependence on DL

or DS.
To solve for the planetary system parameters, we sum over

our MCMC results using the Galactic model employed by
Bennett et al. (2014) as a prior, weighted by the microlensing
rate and the measured mrel,H value. The lens magnitude
measurements were applied as constraints in the light-curve
modeling, so we do not apply them again in the sum over the
MCMC results. We do constrain the source distances to follow
the microlensing rate weighted distribution according to our
Galactic model, and we evaluate the extinction in the
foreground of the lens using Equation (13) with the assumed
error bar for hdust. The Galactic model is used to properly
weight the source distances. However, using a fixed source
distance of DS=8.2 kpc does not alter the results.
Figure 6 provides a graphical summary of the constraints on

the host star in the mass–distance plane. The constraint from the
one-dimensional microlensing parallax only is the magenta
shaded region, while the red, black, and blue curves give the K-,
I-, and V-band constraints from the Keck and HST follow-up
observations, with 1σ error bars as dashed lines. Note that a
single passband flux measurement combined with the one-
dimensional parallax constraint yields a host star mass with

Figure 5. Left panel: Ep distribution from light-curve modeling without any constraint from follow-up observations. Right panel: Ep distribution resulting from the
addition of the high-resolution follow-up imaging constraints. The following color scheme is used to denote the χ2 differences from the best-fit light-curve model:
black represents Δχ2<1, red represents Δχ2<4, green represents Δχ2<16, cyan represents Δχ2<25, and magenta represents Δχ2�25. The right panel
clearly shows that the relative proper-motion measurements from HST and Keck constrain πE,N, which is the north component of Ep that was largely unconstrained by
the light curve. Without the rel,Hm measurement, in the left panel, the light curve slightly favors solutions with πE,N<0, but the constraint forces πE,N>0. Note that
this figure combines both the degenerate u0>0 and u0<0 models.
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large uncertainty. The combination of lens flux constraints in
three passbands does somewhat better, but it is the rel,Hm
measurement that gives the full Ep determination indicated by
the green shaded region. This is the critical feature that provides
the precise determination of the host star mass, planet mass, and
lens distance following the method described in Section 8. The
host mass is measured to be M*=0.58±0.04M, an early-M
or late-K dwarf star, orbited by a planet of twice Neptune’s
mass, mp=39±8MÅ, at a projected separation of a⊥=
2.54±0.23 au. This also implies a lens system distance of
DL=2.19±0.23 kpc. The fact that all three excess flux
measurements give the same mass and distance indicates that
there is no contamination of measurements from additional flux
from another star (Bhattacharya et al. 2017; Koshimoto et al.
2017a).

We also use the lens flux and relative lens–source proper-
motion measurements to constrain the light-curve models.
The results of our final sum over the Markov chain light-curve
models are given in Table 6 and Figure 7. The table gives the
mean and rms uncertainty plus the central 95.4% confidence
interval range for each parameter except the three-dimensional
separation, a3D, where we give the median and the central
68.3% confidence interval. The lens flux and parallax
measurements exclude most of the masses and distances for
this planetary system that were compatible with the light-curve
model without any rel,Hm or lens brightness constraints. These
constraints also imply constraints on the parameters of the
planetary system: the host star and planet mass and their
separation and distance from Earth, as shown in Table 6. They
are consistent with the parameters measured (shown in the
previous paragraph) using the empirical mass–luminosity

relations described in Section 8. Assuming a random orientation,
this implies a three-dimensional separation of a 3.03d 0.5

1.7= -
+ au.

The uncertainties are the rms of the MCMC links.

10. Implications for WFIRST

This work is an important step in the development of the
exoplanet mass-measurement methods (Bennett et al. 2007) for
the WFIRST (Spergel et al. 2015) microlensing exoplanet
survey (Bennett & Rhie 2002). This requires accurate relative
astrometry of the blended source plus lens stars, just as we have
done in this paper. In this analysis, we have measured the lens–
source relative proper motion to a precision (in the I band) of
2%, despite the fact that the lens and source were separated by
0.5 FWHM. However, the situation is not directly analogous
to WFIRST, because the WFIRST wide-field instrument has
larger pixels (110 versus 40 mas) and observes mostly at longer
wavelengths. Also, WFIRST’s prime mission will only allow a
time baseline of 4 yr instead of the 5.78 yr elapsed between the
OGLE-2012-BLG-0950 peak and the follow-up observations.
On the other hand, the WFIRST detectors are 5× more
sensitive than the WFC3-UVIS detectors in the near-IR, and
the dust extinction toward the bulge means that WFIRST will
detect an order of magnitude or more photons per unit time
than HST (Bennett & Rhie 2002; Penny et al. 2018).
Fortunately, Bennett et al. (2007) derived analytic estimates

of the precision of these measurements that can be used to
estimate the precision of the WFIRST mass measurements
(Bennett et al. 2010a), so we can compare these analytic
estimates to our measurements. These predictions only apply
for images with a low background flux, so we will only
compare to the HST analysis. Bennett et al. (2007) showed that,
in most cases, fits with a constraint on the source flux are
significantly more precise than unconstrained fits. However, a
comparison between Tables 1 and 3 shows that the uncertain-
ties in the source flux are about the same from the light-curve
model and the unconstrained fit. So, we use Equation (8) of
Bennett et al. (2007) because only the unconstrained fit analysis
of that paper will apply. Using ePSF width measurements of 76
and 72 mas for the F814W and F555W passbands, respectively,
we find predicted lens–source separation measurement preci-
sions of 1.3 and 2.3 mas for the F814W and F555W bands.
These measured precisions in Table 4 are 0.7 and 1.3 times the
predictions from Bennett et al. (2007)’s Equation (8) for the
F814W and F555W bands, respectively. The fact that we can
do better than Bennett et al. (2007) is likely due to the fact that
the Bennett et al. (2007) results are based on only the lowest-
order terms in the separation over the FWHM.
The HST observations of MOA-2008-BLG-310 (Bhatta-

charya et al. 2017) provide a test case with much lower S/N.
The star blended with the source for this event is not the lens,
but it is very likely that the lens is >3.5 mag fainter than the
blended star (assuming that massive stars are not much more
likely to host a planet of q=3.3×10−4

). So, the source flux
constrained fits from Bhattacharya et al. (2017) should be a
good test of the source flux constrained formula (Equation (4))
from this paper. From the 2014 HST observations of this event,
Bhattacharya et al. (2017) measured consistent lens-
blend separations of 14.1±2.1 mas in the I band and
13.5±2.4 mas in the V band, which compare to predicted
uncertainties of 1.5 and 1.0 mas in the F814W and F555W
bands, respectively. So, the observed uncertainties are only
1.4× larger than the prediction for the F814W band but

Figure 6. The mass–distance relation obtained from the microlensing parallax
parameter determined by the light-curve models with the mrel,H constraint from
the HST and Keck follow-up observations is plotted in green. The mass–
distance relation from the light-curve model only, with no additional constraint
on πE,N, is shaded in magenta. The mass–distance relations obtained from the
K-, I-, and V-band mass–luminosity relations with the lens flux constraints from
Table 3 are plotted in red (Keck K ), black (HST I), and blue (HST V ). The solid
lines are the best-fit values as a function of mass and distance. The dashed lines
show the 1σ error bars. All three independent flux measurements in three
different passbands result in the same solution. This confirms our identification
of the lens star.
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2.4× larger for the F555W band. The I-band results are

encouraging, but we suspect that the lower precision in the V

band may be because the eight dithered images are not

sufficient to model the ePSF in the more severely undersampled

V band. We hope to investigate this issue with F555W

observations with more dither positions.

The WFIRST high angular resolution observations differ

from our high angular resolution HST observations in several

respects. The WFIRST (Spergel et al. 2015; Penny et al. 2018)

operates in the IR with detectors that are much more sensitive

than the HST WFC3-UVIS detectors are in the F814W

passband, and WFIRST will have many more observations in

Table 6

Measurement of Planetary System Parameters from the Lens Flux Constraints

Parameter Units Values and rms 2σ Range

Angular Einstein radius, θE mas 1.26±0.08 1.10–1.14

Geocentric lens–source relative proper motion, μrel,G mas yr−1 6.74±0.42 5.92–7.58

Host star mass, M* M 0.58±0.04 0.51–0.67

Planet mass, mp M⊕ 39±8 26–59

Host star–planet 2D separation, a⊥ au 2.54±0.23 2.13–3.03

Host star–planet 3D separation, a3D au 3.0 0.5
1.7

-
+ 2.2–10.8

Lens distance, DL kpc 2.19±0.23 1.77–2.68

Figure 7. The Bayesian posterior probability distributions for the planetary companion and host mass, their separation, and the distance to the lens system are shown
with only light-curve constraints in blue and additional constraints from our Keck and HST follow-up observations in red. The central 68.3% of the distributions are
shaded in darker colors (dark red and dark blue), and the remaining central 95.4% of the distributions are shaded in lighter colors. The vertical black line marks the
median of the probability distribution of the respective parameters.
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each observing season than we can obtain with HST. The
WFIRST will have ∼800× more observations in its wide W149
passband and ∼20× more observations in the Z087 passband.
On the other hand, WFIRST observations taken with the same
telescope orientation in the prime mission will be no more than
4 yr apart, and WFIRST’s wide-field instrument pixels subtend
110 mas, 2.75 larger than the HST-WFC3 pixels. So, WFIRST
collects many more photons, but it will observe the lens and
source stars at separations that are typically smaller than the
separations of the lens and source stars in our HST and Keck
follow-up program. For a specific example, let us consider a
system just like OGLE-2012-BLG-0950 but with source and
lens magnitudes that are 2 mag fainter. If we consider
observations of their separation 4 yr after the event, when the
lens–source separation is 23.5 mas, Equation (8) of Bennett
et al. (2007) gives a separation uncertainty of 2.6 mas, or 11%,
based on 144 observations in the Z087 passband. This assumes
an effective FWHM of 131 mas, including a WFIRST model
PSF and pixelization effects. However, WFIRST will provide
tighter constraints on the source flux, so we can also use
Bennett et al. (2007)’s Equation (4) with the source flux
constraint. This gives a much tighter limit on the lens–source
separation, so we consider observations 3 yr after the event,
instead of 4 yr. With this constrained fit, we obtain a predicted
lens–source separation uncertainty of 0.43 mas, which is 2.4%
of the 17.6 mas separation after 3 yr. With ∼50× as many
observations and >5× as many photons, the ultrawide W149
passband may obtain much higher S/N than Z087, but the
color dependence of the PSFs with such a wide passband is a
complication. Fortunately, the Z087 observations seem suffi-
cient to make these measurements for most of our events.

11. Discussion and Conclusions

With near-simultaneous high angular resolution follow-up
observations from Keck and HST, we have measured the
angular separation of the source and planetary host star to be
34 mas in three different passbands, K, I, and V. This separation
measurement allows us to convert the partial measurement of
the microlensing parallax from the light curve into a complete
measurement of the two-dimensional Ep vector. The combina-
tion of this microlensing parallax measurement and the θE
value determined from the measured lens–source separation
determines the lens mass and distance. This lens mass and
distance provides lens magnitude predictions that are confirmed
independently in three different passbands. This rules out
alternative explanations of this event involving additional stars,
such as a companion to the lens or source. The one highly
unlikely possibility that is not yet excluded is that the detected
excess flux could come from an ∼0.6M companion to a white
dwarf planetary host star that is also ∼0.6M. According a
statistical study by Holberg et al. (2013), the probability of a
white dwarf hosting a main-sequence companion is ∼8%, but
the vast majority of these white dwarf–main-sequence star
binaries have separations that are much too large for the main-
sequence star to be confused with the lens. So, the fraction of
white dwarfs with binary companions that could be confused
with the lens star is about 1%. However, it is not guaranteed
that a binary companion to a white dwarf lens would have
V-, I-, and K-band magnitudes compatible with the lens mass
inferred from the πE,E measurement and the apparent rel,Hm
measurement, so the probability that a white dwarf host with a
binary companion could produce the light curve and follow-up

data for this event is 0.1%. To avoid a light-curve signal from
this binary companion, this companion would need to be
separated by 10θE≈13 mas from the lens at the time of the
event. This means that this unlikely possibility of a white dwarf
host star with a main-sequence companion could be tested with
an additional epoch of follow-up observations to confirm that
the relative proper motion of the main-sequence star does
extrapolate back to the position of the source at the time of the
event, as we have shown for planetary microlensing event
OGLE-2005-BLG-169 (Batista et al. 2015; Bennett et al.
2015).
The measured planetary mass of mp=39±8MÅ is of

particular interest because the core accretion theory predicts
that such planets should be rare. The core accretion theory
includes a runaway gas accretion phase (Pollack et al. 1996;
Lissauer et al. 2009) that is thought to imply that planets in the
mass range 20–80MÅ are rare. According to this theory,
beyond the snow line, a planetary core rapidly grows by the
accumulation of planetesimals until it reaches a mass of
∼10MÅ (Pollack et al. 1996; Rafikov 2011). Further growth is
dominated by gas accretion that starts slowly, but when the gas
mass grows to equal the core mass, growth is thought to
become a runaway exponential process. This process is thought
to continue very rapidly until it is terminated by a lack of gas at
a mass similar to that of Jupiter (318MÅ) or possibly
Saturn (95MÅ).
The cold exoplanet mass ratio function measured by Suzuki

et al. (2016) finds no evidence for a dearth of planets at these
intermediate, 20–80MÅ, masses. The measured mass ratio
function increases smoothly from a mass ratio of q=0.03
down to a mass ratio of q≈10−4, where it reaches a peak
(Udalski et al. 2018). There is no evidence of a mass ratio gap
at (1–4)×10−4, where we would expect to see this expected
low occurrence rate of 20–80MÅ mass planets. However, since
Suzuki et al. (2016) considered only mass ratios and not
masses, it remains possible that a gap in the exoplanet mass
distribution is smoothed out by the combination of a range of
host stars from very low mass stars up to solar-type stars.
Perhaps planet formation is different for very low mass stars in
a way that smooths out the gap in the exoplanet mass
distribution around solar-type stars.
Our follow-up high angular resolution imaging program

addresses this issue directly by determining the masses of the
microlens host stars and their planets. The planet OGLE-2012-
BLG-0950Lb is the first planet from the Suzuki et al. (2016)
sample to have a mass measured to be in the 20–80MÅ range,
but our ongoing follow-up observing program will measure
masses of more host stars and planets from the Suzuki et al.
(2016) sample to provide a more definitive answer to this
question. Our program has also identified a similar-mass planet,
OGLE-2012-BLG-0026Lb (Beaulieu et al. 2016), with a mass
of 46.0±2.5MÅ, orbiting a solar-type star. This planet is one
of two planets detected in this microlensing event that is,
unfortunately, not part of the Suzuki et al. (2016) sample.
This analysis has also been the first example of a full

microlensing parallax measurement being obtained from light-
curve measurement of one component of the Ep vector and a
follow-up measurement of the heliocentric lens–source relative
proper motion, rel,Hm . This is also an important part of the
WFIRST exoplanet mass-measurement tool set (Bennett et al.
2007), and in most cases, it will allow for mass measurements
that are independent of the flux detected from the host star. The
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flux of the lens is also measured in three passbands, giving rise
to additional redundant consistent constraints on the host star
and planet masses and distance. The lens and source are not
separately resolved in any of the images, but still we measure
the separation at a high significance. This combination of the
unresolved lens–source separation measurement and flux
measurement in multiple passbands plus the one-dimensional
parallax measurement includes all the major WFIRST mass-
measurement methods, as discussed in Bennett et al. (2007)
and Yee (2015).
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