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Abstract: As the number of road accidents increases, it is critical to avoid making driving mistakes.
Driver fatigue detection is a concern that has prompted researchers to develop numerous algorithms
to address this issue. The challenge is to identify the sleepy drivers with accurate and speedy alerts.
Several datasets were used to develop fatigue detection algorithms such as electroencephalogram
(EEG), electrooculogram (EOG), electrocardiogram (ECG), and electromyogram (EMG) recordings of
the driver’s activities e.g., DROZY dataset. This study proposes a fatigue detection system based
on Fast Fourier Transform (FFT) and Discrete Wavelet Transform (DWT) with machine learning
and deep learning classifiers. The FFT and DWT are used for feature extraction and noise removal
tasks. In addition, the classification task is carried out on the combined EEG, EOG, ECG, and EMG
signals using machine learning and deep learning algorithms including 1D Convolutional Neural
Networks (1D CNNs), Concatenated CNNs (C-CNNs), Support Vector Machine (SVM), Random
Forest (RF), Decision Tree (DT), k-Nearest Neighbor (KNN), Quadrature Data Analysis (QDA), Multi-
layer Perceptron (MLP), and Logistic Regression (LR). The proposed methods are validated on two
scenarios, multi-class and binary-class classification. The simulation results reveal that the proposed
models achieved a high performance for fatigue detection from medical signals, with a detection
accuracy of 90% and 96% for multiclass and binary-class scenarios, respectively. The works in the
literature achieved a maximum accuracy of 95%. Therefore, the proposed methods outperform
similar efforts in terms of detection accuracy.

Keywords: deep learning; machine learning; drowsiness detection; medical signal classification;
driver fatigue detection; feature extraction; FFT; DWT

1. Introduction

Researchers in the automotive industry are currently working on a slew of drowsiness
detection systems to address the widespread problem of drivers nodding off behind the
steering wheel. Consider the various sensors, cloud services, servers, smartphones, and
centralized and distributed data processing that comprise the Internet of Things and its
associated applications [1]. Human behavior, automotive, and environmental analysis are
the three most common approaches to developing an efficient fatigue detection system [2].
Figure 1 summarizes the key characteristics shared by these types of systems.

The first trend comprises behavioral technologies which employ image processing
and computer vision to analyze the driver’s images and videos. This method relies on
monitoring many driver-related metrics to determine whether he is alert, tired, or asleep.
Key factors are gleaned from observations such as yawning with the lips open and closed,
eye closure, facial features, head posture, and nodding [3].
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In vehicle-based systems, devices and sensors are embedded in vehicle wheels which
form a system for detecting driver fatigue [4]. This integrated system monitors steering
wheel angle, steering wheel movement, steering wheel velocity, hand placement, hand
absence, and lane departure.

Physical-based methods monitor the signals from the driver’s internal systems by
attaching sensors to the driver’s hands, head, fingers, and chest, such as ECG, EOG, EEG,
and percentage of eyelid closure (PERCLOS). In addition, monitoring various output
signals [5], such as respiratory rate, core temperature, electrical brain activity, pulse rate,
heart rate variability, and total heart rate, are used in this method.

Moreover, drowsiness detection system methods can be divided into traditional and
machine learning algorithms [6]. SVM and CNN are widely used and highly efficient
classifiers in machine learning algorithms [7]. SVM is accurate when it is applied to large
datasets, but it suffers from low speed. On the other hand, CNN provides high accuracy
and consistency across large and small datasets, but it takes time to train on CPUs and it is
expensive to process on GPUs [7].

Developing a system to detect driver fatigue, with safe driving practices, is a significant
undertaking. Previous attempts at behavior-based techniques involved evaluating images
captured of the driver in real-time using Infrared (IR) illumination, then using software to
track their driving behavior [8]. This concept uses a wide range of parameters including
the PERCLOS, the number of times the driver nods his head, and how long he keeps his
eyes closed. A fuzzy classifier examines these factors to determine whether the driver is in
danger. The superiority of the system, over competing algorithms, is due to the abundant
tracking, analysis factors, and day-and-night data collection periods.
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A fatigue detection system was proposed by Flores et al. [9], which scanned and moni-
tored the driver’s face and eyes to decide based on facial expressions and eye movement.
The gadget was tested in real-world scenarios with varying levels of illumination. Another
method is proposed by Abtahi et al. [10] They created a straightforward technique based
on image processing. Their strategy is to keep an eye out for signs of fatigue by tracking
the driver’s face in the image and capturing features like eye and lip movement to detect
yawning and ocular languor. This method represents the wide variety of facial structures
used while motoring. Other methods for improving the accuracy of fatigue detection
include [11–13], which both seek to identify the similarity of geometrical features.

Physical-based fatigue detection comprises classifying medical signals. Some re-
searchers employ different feature extraction algorithms such as Correa et al. [14], who
used time and frequency characteristics extracted from EEG recordings. They stated that
their Artificial Neural Network (ANN)-based classification system had an accuracy of 83%.
Another feature extraction method using Approximation Entropy (AE) and Sample Entropy
(SE) was applied to EEG signals by Xiong et al. [14] to predict driver fatigue. This method
was carried out on fifty people. They used the SVM for classification, and their proposed
method achieved a classification accuracy of 90% with two categories of driver weariness.
Furthermore, driver fatigue was predicted using EEG data by Chai et al. [15] using an
autoregressive model. In this study, 48 people participated with two fatigue levels. They
employed Independent Component Analysis (ICA) to reduce the feature vector size as part
of their investigation. They deployed a Bayesian classifier which achieved an accuracy
of 88.2%. Another type of feature extraction from EEG signals based on Fuzzy Entropy
(FE) is proposed by Yin et al. [16] They tested their method on six participants to identify
two distinct states of driving fatigue using an ANN classifier which is reported to be 90%.
Hu et al. [17] used AE, SE, and FE to extract the features from EEG data to evaluate driver
fatigue. In their study, eight people volunteered to be assessed using an AdaBoost classifier
with 92% accuracy. Min et al. [18] used the AE, SE, and FE which extracted features of EEG
signals to identify fatigue. Their sensitivity, specificity, and accuracy for classifying data
were all 100% when using the ANN classifier.

Trigonometric transformation techniques are involved in feature extraction. Ko et al. [19]
extracted Frequency information from EEG signals using the FFT to detect the driver’s
state of weariness. Fifty participants used Virtual Reality (VR) equipment during the trials.
According to proponents, the LR model reliably classified data at a 90% rate. Another
effort is proposed by Wang et al. [20] to extract components from EEG recordings and they
used Power Spectral Density (PSD) to perform this task. Their classification accuracy is
83% using the LR model. Mou et al. [21] used FFT to extract frequency information from
EEG recordings to distinguish between two states of driver fatigue. They analyzed data
from twenty individuals with a reliability in classifying objects of 85%. Nugraha et al. [22]
extracted numerous time-frequency and statistical metrics from EEG data, such as mean,
standard deviation, and correlation with FFT, to determine whether or not a driver was
fatigued. Thirty people were tested using the Emotiv EPOC+ (EEG based device “https://
www.emotiv.com/epoc/” (accessed on 29 November 2022)) to identify two distinct phases
of driver fatigue. They boast a 96% accuracy rate when it enrolled into a classification task.

Another approach is proposed by Luo et al. [23]. They used a combination of adaptive
scaling factor and entropy characteristics using two channels of EEG signals (Fp1 and Fp2).
They achieved 40% on a two-stage classification of driver fatigue. In addition, the EEG
toolbox was also used to filter out unwanted EOG activity. This task enhanced the system’s
performance with a classification accuracy of 98%.

Gao et al. [24] turned to deep neural networks (DNNs) with testing on ten participants.
They used 11 convolutional layers to create their deep network. They achieved a classifi-
cation rate of 95%. A combination of EEG signals, facial expressions, and gyroscope data
is proposed by Karuppusamy et al. [25]. They proposed a system based on DNNs, which
achieved an accuracy of 93%.

https://www.emotiv.com/epoc/
https://www.emotiv.com/epoc/
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It is clear from the works discussed that many feature extraction methods were em-
ployed to extract the key features from the input signals. Furthermore, the classification task
utilized several strategies to reach the optimal detection accuracy. However, they reached a
maximum detection accuracy of 95% using powerful feature extractors and classifiers. As a
result, this article attempts to build an improved system with a high detection accuracy
rather than the ones proposed in the literature.

Machine and deep learning modalities have recently been involved in several ap-
plications [26,27], such as emotion recognition [28], speech recognition [29], and medical
diagnosis [30–33]. In this paper, we propose a drowsiness detection system to determine
the level of fatigue based on EEG, EOG, and EMG signals. The objective is to develop
a system that can detect a driver’s fatigue with a high detection rate and a fast testing
time. For this purpose, we employed wavelet transform for the feature extraction task with
PCA preprocessing. In addition, machine and deep learning models are deployed on the
extracted features to detect fatigue states. The following are some examples of how the
proposed work will advance the field:

1. Propose a feature extraction method based on trigonometric transformations for
EEG signals.

2. Medical signal preprocessing using PCA and rescaling techniques.
3. Investigate an enhanced method for fatigue detection from EEG signals based on

machine and deep learning models.
4. Evaluate the methods, discuss the results and highlight their advantages and disadvantages.
5. Compare the accomplished performance with the works in the literature.

The remainder of this paper is divided into four sections. Section two describes the
materials and methods proposed for this work. The third section discusses the outcomes of
the proposed methods. Section four briefly compares the proposed methods to works in
the literature. Finally, section five brings the paper to a close.

2. Materials and Methods

This paper proposes a fatigue detection system based on medical signals. The pro-
posed method is divided into four stages: feature extraction, preprocessing, scaling, and
classification, as shown in Figure 2. The feature extraction task is carried out using DWT,
FFT, Discrete Cosine Transform (DCT), and Discrete Sine Transform (DST). The DWT is
employed for noise reduction. The extracted signals are transformed using the trigono-
metric transformations, FFT, DCT, and DST. PCA is used through the preprocessing stage
to improve the classification process and decorrelate the extracted features. The extracted
features are then classified using machine and deep learning models.

Classifiers such as DT, KNN, SVM, RF, MLP with backpropagation, QDA, and LR are
used in the machine learning approach. In addition, the hyperparameters of the proposed
algorithms are mechanically chosen using the grid search method [34,35]. Table 1 illustrates
samples of the ittrations of hyperparameter selection, while Table 2 presents the results of
our research regarding the optimal values for the classifier’s hyper-parameters.

The deep learning approach includes concatenated CNNs and 1D CNNs. The pro-
posed CNN model consists of an input layer, three convolutional, max pooling, dropout,
and batchnormalization layers, a flatten layer, and a dense layer. At the input layer, the data
is reduced to 500 features to be enrolled in the proposed models. The maximum pooling
and convolutional layers are used to extract features from input data. The first, second, and
third convolutional layers have 128, 128, and 256 filters, respectively. Each set also includes
a dropout and a batch normalization layer. These layers are used to prevent overfitting
from occurring. Furthermore, the flatten layer, which prepares the feature vectors for
enrollment in classification, completes the connection between the feature extractors and
the classification layer. A dense layer with a softmax activation function is used to deploy
the classification task.
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Table 1. Sample of iterations for Hyperparameter Optimization.

Hyper Parameter
Accuracy

No. of Filters Activation Function Dropout Epochs Learning Rate Optimizer

128 relu 0.4 150 0.01 adam 1
256 relu 0.2 200 0.001 rmsprop 1
256 relu 0.3 150 0.01 adam 1
256 relu 0.2 150 0.001 rmsprop 0.99900794
64 relu 0.3 150 0.01 rmsprop 0.99900794

256 relu 0.2 200 0.01 rmsprop 0.99900794
128 relu 0.3 200 0.01 adam 0.99900794
256 relu 0.2 150 0.001 adam 0.99900794
64 relu 0.4 100 0.001 rmsprop 0.991071403
64 relu 0.4 150 0.001 adam 0.990079343
64 relu 0.3 100 0.01 adam 0.990079343
64 relu 0.4 100 0.01 adam 0.989087284

256 relu 0.4 100 0.001 adam 0.988095224
256 relu 0.2 100 0.001 adam 0.987103164
256 relu 0.3 200 0.01 adam 0.986111104
56 56 75 96 52 56 72
59 68 88 91 57 62 65
50 54 18 77 71 59 34
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Table 2. Hyperparameters of The Proposed Methods.

Model Hyperparameters

SVM
C: 275

gamma: ‘scale’
kernel: ‘rbf’

RF n_estimators:79
Criterion: ‘entropy’

DT

criterion: ‘gini’
min_samples_leaf: 1
min_samples_split: 2

ccp_alpha: 0

KNN

n_neighbors:1
leaf_size: 30

metric: ‘minkowski’
p: 2

weights’: ‘uniform’

QDA tol = 0.0001

MLP

Num_hidden_layers:2
hidden_layer_sizes: [34,35]

activation: ‘relu’
max_iter: 200
solver: ‘adam’

LR
solver: ‘lbfgs’

C: 1.0
fit_intercept: True

CNN

Optimizer: adam
Epochs: 150

Batch size: 20
Activation function: relu

Number of filters: 128
Dropout: 0.4

Learning rate: 0.01

C-CNN

Optimizer: adam
Epochs: 150

Batch size: 20
Activation function: relu

Number of filters: 128
Dropout: 0.4

Learning rate: 0.01

In this paper, we propose another sequential model based on C-CNNs. Concatenation
describes how multiple forks or sub-models process the input data. In a concatenation
layer, the results of these individual models are combined. The proposed concatenated
model’s architecture, as shown in Figure 3, consists of an input layer, and two branches
of a sequence of convolutional, max pooling, and dropout layers. The branch outputs are
then concatenated using a concatenation layer. The concatenated feature vector is then
enrolled in three convolutional, max pooling, and dropout layers. A flatten layer is used
for fully connected tasks, and a dense layer is used for classification tasks. Figure 4 depicts
the hyperparameters of the proposed C-CNN model.
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3. Results

This section provides a thorough examination of the proposed algorithms. First, the
dataset is thoroughly described. The evaluation metrics used to assess the performance
of the proposed methods are displayed. The hyperparameter selection is discussed. The
findings are then summarized, followed by commentary and discussion. The results are
then compared to those found in the literature.

The proposed methods are performed on a PC outfitted with a Core i7 processor,
an 8 GB NVIDIA GPU device, 32 GB of RAM, and Windows 11. The proposed models
are deployed using Python 3.8 codebases using the Keras, Scikit-learn, and TensorFlow
libraries. The proposed methods’ layers and learning parameters are displayed in Table 2
and Figures 3 and 4.

3.1. Dataset Description

The proposed techniques are tested on the “ULg Multimodality Drowsiness Database”
(abbreviated DROZY [36]). This dataset is in two parts (video monitoring and EEG signals).
First, data from 14 healthy young adults were gathered (3 males and 11 females).

DROZY includes a sleepiness indicator that uses data from sources such as the Karolin-
ska Sleepiness Scale (KSS) and polysomnography (PSG) to provide an accurate picture
of a person’s sleepiness. Polysomnograms typically have eleven electrodes: five for EEG,
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two for EOG, one for EMG, and one for ECG, all of which operate at 512 hertz. Figure 5
depicts the progression of polysomnographic signals through the driver’s brain, using
what is now known as NeuroSky (NeuroSky. NeuroSky is an EEG and ECG biosensor
for consumer-facing, wearable technology products (https://neurosky.com/ accessed on
30 September 2022)).
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3.2. Evaluation Metrics

To rank the quality of the proposed solutions, various metrics are used. The F1-
Score is based on the metrics of Recall, Precision, F1-score, Accuracy, and Matthews
Correlation Coefficient (MCC). The corresponding equations define the measurements
from Equations (1)–(5) [37–39].

Where:

(1) The number of sleepy states that were incorrectly labeled “normal” is shown in the
false-negative column.

(2) The True Positive metric indicates the percentage of drowsy states that were accu-
rately identified.

(3) The True Negative () value indicates the proportion of false negatives correctly identi-
fied as false positives.

(4) The number of times a normal status was mistakenly labeled as a drowsy status is
shown in the false positive.

Accuracy =
No.o f correctly detected images

Total No.o f images
× 100 =

(TN + TP)

(TP + FP + TN + FN)
× 100 (1)

Recall = TPR = TP/(TP + FN) = (1 − FNR) (2)

precision = TP/(TP + FP) (3)

F1 = 2 × ((precision × recall)/(precision + recall)) (4)

MCC =
(TP × TN)− (FP × FN)√

((TP + FP)× (TP + FN)× (TN + FP)× (TN + FN))
× 100 (5)

3.3. Hyperparameter Setting

The process of hyperparameter selection is carried out using a grid search algorithm
for both machine learning and deep learning approaches to select the optimal values which
achieve the maximum accuracy. Table 2 shows the hyperparameters which are set to the
proposed methods. These hyperparameters are achieved with 100 iterations for each model.

The strategy of hyperparameter selection is based on the permutations of model
architecture and the training process. The model architecture trend comprises the values
of filters of the convolutional layers, units of the dropout layers, and activation functions.
The training process trend comprises the type of optimizer, learning rate, and number of

https://neurosky.com/
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epochs. Figures 6 and 7 show samples of the learning curve for accuracy and loss which is
obtained during the hyperparameter optimization. It can be observed that the performance
of the model is enhanced through the runs due to the permutations of the hyperparamer
values. In addition, Figure 8 shows an infograph of the accuracy with the variation of
hyperparameter values. Moreover, Table 1 illustrates some iterations for the hyperparamer
optimization for the deep learning model. Table 2 illustrates the selected hyperparameters
for the proposed methods.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 25 
 

�������� =
��. �� ��������� �������� ������

����� ��. �� ������
× 100

= 100
)(

)(






NNPP

PN

FTFT

TT
 

(1)

������ = ��� = ��/(�� + ��) = (1 − ���) (2)

��������� = ��/(�� + ��) (3)

�1 = 2 × ((��������� × ������)/(��������� + ������)) (4)

��� =
(�� × ��) − (�� × ��)

�((�� + ��) × (�� + ��) × (�� + ��) × (�� + ��))
× 100 (5)

3.3. Hyperparameter Setting 

The process of hyperparameter selection is carried out using a grid search algorithm 

for both machine learning and deep learning approaches to select the optimal values 

which achieve the maximum accuracy. Table 2 shows the hyperparameters which are set 

to the proposed methods. These hyperparameters are achieved with 100 iterations for each 

model. 

The strategy of hyperparameter selection is based on the permutations of model ar-

chitecture and the training process. The model architecture trend comprises the values of 

filters of the convolutional layers, units of the dropout layers, and activation functions. 

The training process trend comprises the type of optimizer, learning rate, and number of 

epochs. Figures 6 and 7 show samples of the learning curve for accuracy and loss which 

is obtained during the hyperparameter optimization. It can be observed that the perfor-

mance of the model is enhanced through the runs due to the permutations of the hy-

perparamer values. In addition, Figure 8 shows an infograph of the accuracy with the 

variation of hyperparameter values. Moreover, Table 1 illustrates some iterations for the 

hyperparamer optimization for the deep learning model. Table 2 illustrates the selected 

hyperparameters for the proposed methods. 

 

Figure 6. Learning curves (accuracy) of the iterations in the hyperparameter optimization. Figure 6. Learning curves (accuracy) of the iterations in the hyperparameter optimization.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 25 
 

 

Figure 7. Learning curves (loss) of the iterations of the hyperparameter optimization. 

 

Figure 8. Infograph of the variation of the hyperparameters and the accuracy. 

3.4. Simulation Results 

This section discusses the simulation results of the proposed methods for different 

feature extractions and classification techniques. The strategy to propose an efficient sys-

tem comprises the selection of a strong feature extraction technique, then the selection of 

an efficient classification method. This paper selects the feature extraction technique 

among DWT, FFT, DWT with FFT, DCT, DCT with DWT, DST, and DST with DWT. This 

variety of feature extraction methods provides an extensive study to achieve the optimal 

one. In addition, these techniques are evaluated prior to precision, recall, F1-score, and 

accuracy using the proposed classification techniques. Tables 3–6 illustrates the evalua-

tion metrics of the feature extraction techniques through the employment of the proposed 

classification methods. The simulation results reveal that FFT with DWT achieves the op-

timal performance among the presented methods. 

Table 3. Brief Comparison among The Precision of The Proposed Machine Learning Models in Dif-

ferent Domains. 

Scenario Model 

Feature Extraction Method 

Time 

Domain 

Time 

Domain + DWT 
FFT 

FFT 

+ DWT 
DCT 

DCT 

+ DWT 
DST 

DST 

+ DWT 

Multiclass 

SVM 41 50 89 87 50 50 48 48 

RF 47 56 84 89 49 46 42 48 

DT 38 42 67 73 32 41 47 29 

KNN 43 51 82 90 38 38 34 34 

QDA 37 44 84 88 36 33 35 41 

MLP 39 40 82 87 42 44 48 44 

L.R. 43 43 86 90 40 44 49 41 

CNN 43 52 71 79 42 47 53 43 

C-CNN 34 56 28 47 30 18 20 44 

Binary-Classes SVM 41 57 77 97 63 63 68 68 

Figure 7. Learning curves (loss) of the iterations of the hyperparameter optimization.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 25 
 

 

Figure 7. Learning curves (loss) of the iterations of the hyperparameter optimization. 

 

Figure 8. Infograph of the variation of the hyperparameters and the accuracy. 

3.4. Simulation Results 

This section discusses the simulation results of the proposed methods for different 

feature extractions and classification techniques. The strategy to propose an efficient sys-

tem comprises the selection of a strong feature extraction technique, then the selection of 

an efficient classification method. This paper selects the feature extraction technique 

among DWT, FFT, DWT with FFT, DCT, DCT with DWT, DST, and DST with DWT. This 

variety of feature extraction methods provides an extensive study to achieve the optimal 

one. In addition, these techniques are evaluated prior to precision, recall, F1-score, and 

accuracy using the proposed classification techniques. Tables 3–6 illustrates the evalua-

tion metrics of the feature extraction techniques through the employment of the proposed 

classification methods. The simulation results reveal that FFT with DWT achieves the op-

timal performance among the presented methods. 

Table 3. Brief Comparison among The Precision of The Proposed Machine Learning Models in Dif-

ferent Domains. 

Scenario Model 

Feature Extraction Method 

Time 

Domain 

Time 

Domain + DWT 
FFT 

FFT 

+ DWT 
DCT 

DCT 

+ DWT 
DST 

DST 

+ DWT 

Multiclass 

SVM 41 50 89 87 50 50 48 48 

RF 47 56 84 89 49 46 42 48 

DT 38 42 67 73 32 41 47 29 

KNN 43 51 82 90 38 38 34 34 

QDA 37 44 84 88 36 33 35 41 

MLP 39 40 82 87 42 44 48 44 

L.R. 43 43 86 90 40 44 49 41 

CNN 43 52 71 79 42 47 53 43 

C-CNN 34 56 28 47 30 18 20 44 

Binary-Classes SVM 41 57 77 97 63 63 68 68 

Figure 8. Infograph of the variation of the hyperparameters and the accuracy.

3.4. Simulation Results

This section discusses the simulation results of the proposed methods for different
feature extractions and classification techniques. The strategy to propose an efficient
system comprises the selection of a strong feature extraction technique, then the selection
of an efficient classification method. This paper selects the feature extraction technique
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among DWT, FFT, DWT with FFT, DCT, DCT with DWT, DST, and DST with DWT. This
variety of feature extraction methods provides an extensive study to achieve the optimal
one. In addition, these techniques are evaluated prior to precision, recall, F1-score, and
accuracy using the proposed classification techniques. Tables 3–6 illustrates the evaluation
metrics of the feature extraction techniques through the employment of the proposed
classification methods. The simulation results reveal that FFT with DWT achieves the
optimal performance among the presented methods.

Table 3. Brief Comparison among The Precision of The Proposed Machine Learning Models in
Different Domains.

Scenario Model
Feature Extraction Method

Time
Domain

Time
Domain + DWT FFT FFT

+ DWT DCT DCT
+ DWT DST DST

+ DWT

Multiclass

SVM 41 50 89 87 50 50 48 48
RF 47 56 84 89 49 46 42 48
DT 38 42 67 73 32 41 47 29

KNN 43 51 82 90 38 38 34 34
QDA 37 44 84 88 36 33 35 41
MLP 39 40 82 87 42 44 48 44
L.R. 43 43 86 90 40 44 49 41

CNN 43 52 71 79 42 47 53 43
C-CNN 34 56 28 47 30 18 20 44

Binary-Classes

SVM 41 57 77 97 63 63 68 68
RF 58 67 83 96 68 65 61 67
DT 53 57 82 82 41 50 66 48

KNN 47 55 70 92 53 53 51 51
QDA 47 54 69 92 57 54 42 48
MLP 51 52 64 93 57 59 63 59
L.R. 56 56 75 96 52 56 72 64

CNN 59 68 88 91 57 62 65 55
C-CNN 50 54 18 77 71 59 34 48

Table 4. Brief Comparison among The Recall of The Proposed Machine Learning Models in Differ-
ent Domains.

Scenario Classifier

Feature Extraction Method

Time
Domain

Time
Domain
+ DWT

FFT FFT
+ DWT DCT DCT

+ DWT DST DST
+ DWT

Multiclass

SVM 41 50 84 87 47 49 48 48
RF 45 55 83 89 48 46 45 42
DT 37 41 66 73 32 40 38 47

KNN 36 44 81 85 32 35 34 34
QDA 36 43 75 87 36 40 38 35
MLP 39 40 82 87 41 44 46 48
L.R. 42 42 86 90 39 44 45 49

CNN 43 52 69 79 42 47 47 52
C-CNN 33 37 27 48 30 18 30 18

Binary-Classes

SVM 48 57 68 96 61 63 65 65
RF 57 67 83 96 67 65 63 60
DT 53 57 82 82 42 50 57 66

KNN 47 55 70 91 49 52 51 51
QDA 47 54 59 89 46 50 45 42
MLP 51 52 64 93 55 58 61 63
L.R. 56 56 71 96 51 56 67 71

CNN 59 68 88 89 57 62 60 65
C-CNN 50 54 18 51 71 59 34 48
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Table 5. Brief Comparison among The F1-score of The Proposed Machine Learning Models in
Different Domains.

Scenario Classifier

Feature Extraction Method

Time
Domain

Time
Domain
+ DWT

FFT FFT
+ DWT DCT DCT

+ DWT DST DST
+ DWT

Multiclass

SVM 39 58 84 86 45 48 47 47
RF 44 55 84 89 48 46 45 42
DT 37 41 66 73 32 40 38 47

KNN 34 43 81 85 26 32 34 34
QDA 37 44 73 87 36 31 30 27
MLP 38 39 82 87 41 44 45 47
L.R. 42 42 86 90 39 44 45 49

CNN 43 51 70 78 42 46 46 51

C-CNN 32 36 29 47 30 22 29 17

Binary-Classes

SVM 38 57 65 96 60 63 63 63
RF 56 67 83 96 67 65 62 59
DT 53 57 82 82 42 50 57 66

KNN 44 53 70 91 46 52 48 48
QDA 47 54 53 90 59 54 45 42
MLP 51 52 64 93 55 58 61 63
L.R. 56 56 69 96 51 56 67 71

CNN 59 67 88 90 58 62 60 65
C-CNN 50 54 17 64 66 58 34 48

Table 6. Brief Comparison among The Accuracy of The Proposed Machine Learning Models in
Different Domains.

Scenario Classifier

Feature Extraction Method

Time
Domain

Time
Domain
+ DWT

FFT FFT
+ DWT DCT DCT

+ DWT DST DST
+ DWT

Multiclass

SVM 41 50 84 86 47 49 48 48
RF 45 55 83 89 48 46 45 42
DT 37 41 66 73 32 40 38 47

KNN 36 43 81 84 32 35 34 34
QDA 36 43 75 87 36 33 38 35
MLP 39 40 82 87 41 44 46 48
L.R. 42 42 86 90 39 44 45 49

CNN 43 51 69 78 42 47 47 52
C-CNN 33 37 27 48 30 18 30 18

Binary-Classes

SVM 48 57 68 96 61 63 65 65
RF 57 67 83 96 67 65 63 60
DT 53 57 82 83 42 50 57 66

KNN 47 54 70 91 49 52 51 51
QDA 47 54 59 90 57 54 45 42
MLP 51 52 64 93 55 58 61 63
L.R. 56 56 71 96 51 56 67 71

CNN 59 67 88 90 57 62 60 65
C-CNN 50 54 18 64 45 59 34 48

Moreover, the classification task is carried out using machine learning and deep
learning approaches. The selection of classification method is carried out among the
proposed methods including SVM, RF, DT, KNN, QDA, MLP, LR, CNN, and C-CNN. The
optimal classification method is one which achieves a high performance prior to accuracy
of detection. The proposed classification methods are carried out on the EEG signals in
the time domain and the frequency domain. The performance of the proposed methods
are evaluated prior to precision, recall, f1-score, and accuracy. The dataset is split into 70%
and 30% for training and testing, respectively. In addition, these methods are trained and
validated using k-fold cross validation, with k = 10. Furthermore, the classification task is
performed in two scenarios of detection, binary-class and multi-class. The objective of the
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binary-class classification is to distinguish between states of alertness and tiredness. On the
other hand, the objective of the multi-class classification is to classify among alert, tired,
and non-vigilant states. The learning curves of the proposed machine learning methods
are shown in Figures 9 and 10, while the visual representation of the confusion matrices
are shown in Figures 11 and 12. In addition, the learning curves of the deep learning are
displayed in Figures 13 and 14. A visual representation of the confusion matrix of the
proposed deep learning methods are shown in Figures 15 and 16. Table 7 illustrates the
simulation results of the proposed classification methods which are carried out on the
transformed EEG signals using FFT with DWT. In a multiclass scenario, the proposed LR
and RF models outperform the others with 90% and 89% accuracy, respectively, while
SVM, RF and LR have 96% accuracy, for the binary-class scenario. Therefore, the proposed
system consists of FFT with DWT for feature extraction and a LR classifier for the wide
deployment for both binary-class and multiclass scenarios.
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Figure 9. Multiclass learning and performance curves of the proposed machine learning models.
(a) Learning Curve and Performance plots of The Proposed SVM Model. (b) Learning Curve and
Performance plots of The Proposed RF Model. (c) Learning Curve and Performance plots of The
Proposed DT Model. (d) Learning Curve and Performance plots of The Proposed KNN Model.
(e) Learning Curve and Performance plots of The Proposed QDA Model. (f) Learning Curve and
Performance plots of The Proposed QDA Model. (g) Learning Curve and Performance plots of The
Proposed LR Model.
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Figure 10. Binary-class learning and performance curves of the proposed machine learning models.
(a) Learning Curve and Performance plots of The Proposed SVM Model. (b) Learning Curve and
Performance plots of The Proposed RF Model. (c) Learning Curve and Performance plots of The
Proposed DT Model. (d) Learning Curve and Performance plots of The Proposed KNN Model.
(e) Learning Curve and Performance plots of The Proposed QDA Model. (f) Learning Curve and
Performance plots of The Proposed MLP Model. (g) Learning Curve and Performance plots of The
Proposed LR Model.
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Figure 11. Confusion Matrix of The Proposed Machine Learning Models for Multi-class Scenarion
(a) SVM, (b) RF, (c) DT, (d) KNN, (e) QDA, (f) MLP, (g) LR.
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Figure 12. Confusion Matrix of The Proposed Machine Learning Model for Binary Classification
(a) SVM, (b) RF, (c) DT, (d) KNN, (e) QDA, (f) MLP, (g) LR.
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Table 7. Brief Comparison among The Proposed Machine Learning Models.

Scenario Model Precision Recall F1-Score Accuracy MCC

Multiclass

SVM 87 87 86 86 80
RF 89 89 89 89 83
DT 73 73 73 73 59

KNN 90 85 85 84 79
QDA 88 87 87 87 75
MLP 87 87 87 87 81
L.R. 90 90 90 90 86

CNN 79 79 78 78 73
C-CNN 47 48 47 48 42

Binary-Classes

SVM 97 96 96 96 93
RF 96 96 96 96 92
DT 82 82 82 83 65

KNN 92 91 91 91 83
QDA 92 89 90 90 81
MLP 93 93 93 93 87
L.R. 96 96 96 96 94

CNN 91 89 90 90 82
C-CNN 77 51 64 64 59

4. Discussion

This paper proposes a system for drowsiness detection based on medical signals.
This system comprises feature extraction and classification tasks. The feature extraction
task is carried out using several trigonometric transformations including DWT, FFT, DCT,
and DST. The classification task is performed using machine learning and deep learning
algorithms. Figure 17 shows the extracted features and their importance for the output.
The accomplished system comprises FFT with DWT for feature extraction and LR for
classification. In this section, we discuss the performance of the proposed system in
different cases including the performance of the LR classifier on the signals in the time
domain and different transformations in addition to its performance with the added DWT
denoising technique. Figure 18 shows a comparison of the proposed system in different
scenarios including binary-class and multi-class scenarios.
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Figure 18. Brief Comparison of The Proposed System in different scenarios.

Moreover, the proposed models are compared with the efforts in the literature. This
comparison comprises both feature extraction and classifications utility for each research
work. Table 8 illustrates this comparison prior to accuracy of detection. Corea et al. [40]
proposes a system based on multimodal analysis for feature extraction and ANN for
classification. They achieved 83% accuracy of detection. Another work was proposed
by Ko et al. [41] which used FFT for feature extraction and ANN for classification. They
deployed their system on EEG signals from a wireless device, like Neurosky. They achieved
an accuracy of detection of 90%. It can be observed that the employment of the DWT
denoising technique and different classifiers leads to a considerable enhancement of the
accuracy. Yin et al. proposed their system based on FE and SVM for feature extraction
and classification tasks, respectively. They achieved an accuracy of detection of 95%. This
comparison reveals that the proposed system presents a superior performance than the
works in the literature. Therefore, it can be considered as an efficient fatigue detection
system for real-life applications.

Table 8. Brief Comparison among The Proposed Models and Works in The Literature.

Work Year Feature Extractor Classifier Accuracy

Corea et al. [40] 2014 Multimodal Analysis ANN 83
Ko et al. [41] 2015 FFT ANN 90

Xiong et al. [14] 2016 AE and SE SVM 90

Chai et al. [15] 2016 Entropy Rate Round
Minimization Analysis BNN 88.2

Yin et al. [16] 2017 FE SVM 95
Karuppusamy et al. [25] 2020 DNN DNN 73

Lui et al. [42] 2020 Deep Transfer Learning Deep Learning 93

Proposed 2023
FFT + DWT SVM 96
FFT + DWT RF 96
FFT + DWT LR 96

5. Conclusions

The problem of driver fatigue detection has been discussed in this paper. The proposed
approach comprises both feature extraction and classification tasks. The feature extraction
task has been accomplished using FFT and DWT. The classification task has been performed
using machine learning and deep learning methods including SVM, RF, LR, MLP, QDA,
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KNN, DT, 1D CNN, and C-CNN. In addition, the proposed models are carried out on EEG,
EOG, EMG, and ECG signals, which are included in the DROZY dataset. Furthermore, two
scenarios have been carried out for the classification, multiclass and binary-class scenarios.
The proposed method achieves an accuracy of 96% with superior performance among the
proposed efforts prior to fatigue detection.

However, the proposed approach has a drawback which is represented in the low
performance of deep learning methods. Therefore, the performance can be enhanced in
future work with some ideas. Using different feature selection and feature engineering
algorithms will improve the performance by selecting some features with optimal impor-
tance. Another type of enhancement is to employ different optimization techniques to
improve the performance of the deep learning approach. Furthermore, recurrent models
can be considered and tested by the DROZY dataset.
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Abbreviations

SVM Support Vector Machine
KNN k-Nearest Neighbor
MLP Multilayer Perceptron
RF Random Forest
LR Logistic Regression
DT Decision Tree
QDA Quadrature Data Analysis
CNN Convolutional Neural Network
C-NN Concatenated Convolutional Neural Network
MCC Matthews Correlation Coefficient
ANN Artificial Neural Network
FFT Fast Fourier Transform
DWT Discrete Wavelet Transform
DST Discrete Sine Transform
DCT Discrete Cosine Transform
EEG Electroencephalogram
ECG Electrocardiogram
EOG Electrooculogram
EMG Electromyogram
IoT Internet of Things
FE Fuzzy Entropy
SE Sample Entropy
PSD Power Spectral Density
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