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ABSTRACT Data imbalance issue generally exists in most medical image analysis problems and maybe

getting important with the popularization of data-hungry deep learning paradigms. We explore the cutting-

edge Wasserstein generative adversarial networks (WGANs) to address the data imbalance problem with

oversampling on the minority classes. The WGAN can estimate the underlying distribution of a minority

class to synthesize more plausible and helpful samples for the classification model. In this paper, theWGAN-

based over-sampling technique is applied to augment the data to balance for the fine-grained classification of

seven semantic attributes of lung nodules in computed tomography images. The fine-grained classification

is carried out with a normal convolutional neural network (CNN). To further illustrate the efficacy of

the WGAN-based over-sampling technique, the conventional data augmentation method commonly used

in many deep learning works, the generative adversarial networks (GANs), and the deep convolutional

generative adversarial networks (DCGANs) are implemented for comparison. The whole schemes of the

minority oversampling and fine-grained classification are tested with the public lung imaging database

consortium dataset. The experimental results suggest that the WGAN-based oversampling technique can

synthesize helpful samples for the minority classes to assist the training of the CNN model and to boost the

fine-grained classification performance better than the conventional data augmentation method and the two

schemes of the GAN and DCGAN techniques do. It may thus suggest that the WGAN technique offers an

alternative methodological option for the further deep learning on imbalanced classification studies.

INDEX TERMS Computer-aided diagnosis (CAD), lung nodule, computed tomography (CT), synthetic

minority over-sampling, deep learning, data imbalance, adversarial neural networks.

I. INTRODUCTION

Recent advance of deep learning techniques has been shown

to effectively address many medical image analysis problems

like segmentation [1]–[5], lesion detection [6]–[8], differ-

ential diagnosis [9]–[13], quality assessment [14], refer-

ence plane retrieval [15], etc., with perceivable performance
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improvement. The deep learning techniques are equipped

with the advantages of automatic feature learning, end-to-

end training, etc., and thus the steps of explicit feature

engineering as well as other inter-mediate processing in the

conventional pattern recognition framework can be circum-

vented. Therefore, the performance tuning of the deep learn-

ing techniques can be relatively simple and easy. In particular,

the powerful discriminative capability of the deep learning

techniques may also shed a light on fine-grained medical
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FIGURE 1. Subordinate classes distributions over all semantic attributes of nodules in LIDC dataset. ‘‘lob’’, ‘‘sphe’’, ‘‘spic’’, ‘‘sub’’, ‘‘text’’, ‘‘mar’’,
‘‘mal’’, ‘‘is’’, and ‘‘cal’’ are the abbreviations of ‘‘lobulation’’, ‘‘sphericity’’, ‘‘spiculation’’, ‘‘subtlety’’, ‘‘texture’’, ‘‘margin’’, ‘‘malignancy’’, ‘‘internal
structure’’ and ‘‘calcification’’, respectively.

image analysis to attain more precise diagnosis, progno-

sis and prediction [16], [17]. For example, the fine-grained

medical image analysis may help to achieve more accurate

computerized retrieval of relevant cases [18], lesion subtype

categorization [19], etc.

The main purpose of the fine-grained classification is to

differentiate subordinate categories of the same base classes.

The subordinate categories share very similar properties of

the same base class, whereas the differences in-between the

subordinate categories can be subtle. Therefore, the task

of the fine-grained classification can be very challenging.

The fine-grained classification is particular of help for the

applications like online shopping recommendation system,

etc. In the medical context, the fine-grained image analysis

problem has been less explored. The exploration of the fine-

grained medical image analysis is limited by the available

data and annotation. In particular, the data annotation requires

professional knowledge and the annotation cost can be very

expensive. Meanwhile, the data of the different subordinate

categories can also be very imbalanced and thus impose more

difficulty on the fine-grained medical image analysis.

In recent years, there are few studies elaborating on

the computerized fine-grained analysis for medical images.

Zhang et al. [18] developed a template matching framework

to perform the fine-grained differentiation of the two types of

lung cancers, i.e., adenocarcinoma and squamous carcinoma,

in histological images. The work [18] requires large scale

segmented cancer cells as templates to achieve promising

performance. For the lung nodule analysis in CT images,

Chen et al. [20], [21] recently leverage the deep learning

techniques of the convolutional neural network (CNN) and

stacked denoising autoencoder (SDAE) and multi-task learn-

ing technique to attain fine-grained semantic attributing of

pulmonary nodules. Specifically, a pulmonary nodule can

be profiled with 9 semantic medical descriptive terms like

spiculation, lobulation, subtlety, etc. For each semantic term,

there are around 5 to 6 subordinate scoring classes to sug-

gest the degree or instantiation of the corresponding term.

The main idea of the works [20], [21] lies to use deep learning

techniques for the learning of useful features and employs

multi-task learning to explore sharable and term-specific fea-

tures to attain satisfactory fine-grained semantic attributing

performance on the public Lung Image Database Consortium

(LIDC) dataset [22], which contains at least 1010 CT scans

from 1010 patients. However, since the distributions of the

subordinate classes of each semantic term can be very skewed

as shown in Fig. 1, the performance of the deep features

learning and multi-task framework was limited by the data

imbalance issue.

By and large, the data imbalance issue generally exists in

most medical image analysis problems. It is because that the

number of cases with diseases is relatively smaller than the

number of normal cases. Meanwhile, the case distribution

subordinate types of one specific disease can be very skewed

due to the factors of race, gender, disease rarity, and so

on. For example, Fig. 1 illustrates the distributions of the

subordinate classes of the 9 semantic terms for nodules in

the LIDC dataset. In Fig. 1, ‘‘lob’’, ‘‘sphe’’, ‘‘spic’’, ‘‘sub’’,

‘‘text’’, ‘‘mar’’, ‘‘mal’’, ‘‘is’’, and ‘‘cal’’ are the abbrevia-

tions of the terms ‘‘lobulation’’, ‘‘sphericity’’, ‘‘spiculation’’,

‘‘subtlety’’, ‘‘texture’’, ‘‘margin’’, ‘‘malignancy’’, ‘‘internal

structure’’ and ‘‘calcification’’, respectively. These semantic

terms can be commonly found in the radiology reports to

describe the semantic characteristics of the nodules for the

diagnostic reference. The terms ‘‘subtlety’’ and ‘‘sphericity’’

suggest if the nodule is easy to identify and the roundness of

nodule shape, respectively. The term ‘‘margin’’ describes how

well-defined of nodule margin is, whereas the ‘‘lobulation’’

and ‘‘spiculation’’ terms suggest if the nodule has lobula-

tion or spiculation in shape, respectively. The term ‘‘texture’’

indicates if the nodule appears solid in the image, while the

term ‘‘malignancy’’ is the subjective assessment of the malig-

nancy likeliness by the radiology. The term ‘‘internal struc-

ture’’ specifies the nodule internal can be soft tissue, fluid,

fat or air. The term ‘‘calcification’’ stands for the calcification

pattern of the nodules. More details can be found in [23].
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Referring to Fig. 1, it can be observed that the distributions of

all subordinate classes for all 9 semantic terms are extremely

imbalanced. For some subordinate classes, the sample num-

bers are significantly less than the sample numbers of some

other subordinate classes. In some cases, the sample number

of the majority subordinate class is nearly 20 times greater

than the sample numbers of the minority subordinate classes.

Consequently, the data imbalance issue in the fine-grained

subordinate classes can easily bias the learning frameworks,

but sadly was not elaborated in previous works.

In this study, the data imbalance issue of medical image

data is explicitly addressed and tested on the LIDC dataset.

The specific approach in this study is to explore the data

synthesis to augment the sample numbers in the minority

classes. The commonly-used conventional data augmentation

techniques may involve random image translation, rotation,

flipping w.r.t. horizontal or vertical direction, etc. Since the

conventional data augmentation techniques don’t consider the

data distributions of classes, the efficacy of over-sampling

for the minority classes may be limited for the data with

extreme imbalanced distribution. In this paper, we investi-

gate the deep learning approach called generative adversarial

networks (GAN) [24] to synthesize samples within general

distribution-aware decision region for the minority classes to

combat multi-class fine-grained data imbalance problem.

The GAN technique was firstly introduced by

Goodfellow et al. [24] and basically is constituted of two

networks of a generator and a discriminator. The two net-

works are trained at the same time and compete against each

other in a minimax game. The generator is trained to fool the

discriminator by synthesizing realistic samples, whereas the

discriminator is trained to be equipped high discriminative

capability for the synthetic samples. However, the training of

the two networks can be quite unstable and may suffer mode

collapse problem [24]. Therefore, the synthesized samples

by the generator can be easily noisy and incomprehensible.

To further improve the capability of the generator, the tech-

nique of the deep convolutional generative adversarial net-

works (DCGAN) [25] was proposed by imposing a set of

constraints on the architectural topology of GAN to stabilize

the training process. Although better synthetic quality can be

achieved with the DCGAN technique, the training of both

GAN and DCGAN share the same problem of not easy to

reach convergence. Therefore, to train a promising GAN and

DCGAN can be very difficult.

To alleviate the issue of training difficulty, the Wasserstein

GAN [26], denoted as WGAN for short, was developed by

employing the Earth Mover (EM) distance for better mea-

surement of the distances between distributions. With the

EM distance, the WGAN is equipped with better converge

capability and the training of the WGAN can be more stable

and better withstand the problems like mode collapse, etc.

The family of the GAN techniques has been shown suc-

cessfully in the applications of text-to-image [27], [28]

as well as image-to-image translation [29], image super-

resolution [30], etc. In medical image analysis, the GAN

techniquewas also introduced to synthesis images of different

modality [31], [32], denoising for low dose CT [33], segmen-

tation [34], image reconstruction [35], etc. Themajor purpose

of using GAN is to approximate the object distribution for

better performance in each specific application. To our best

knowledge, the GAN technique has been less exploited to

approach the data imbalance issue in the domain of medical

image analysis. In this paper, we adopt the WGAN for the

over-sampling of the minority classes. Through the adver-

sarial iterative training, the distribution of the synthesized

images will approximate the distribution of the authentic CT

images. Fig. 2 compares the authentic samples of the subor-

dinate classes of the ‘‘texture’’ attribute with the synthesized

samples by the WGAN. The majority class of the ‘‘texture’’

attribute is the class 5. Therefore, no over-sampling is per-

formed for this class. As can be found, the synthesized sam-

ples are quite similar but different to the authentic samples.

The process of synthesizing samples with WGAN considers

the distributions of classes, and, thus the synthesized CT

image samples may reserve more general distribution-aware

decision regions for classifier than conventional approaches.

Meanwhile, the difficult of the fine-grained classification can

also be observed in Fig. 2. The classification between the two

consecutive subordinate classes is quite challenging.

The contribution of this work can be summarized in

twofold. First, the WGAN-based synthetic over-sampling

technique is presented for the data augmentation of theminor-

ity classes to tackle the imbalance issue. The WGAN tech-

nique attempts to synthesize samples by the approximation of

the original data distributions of the minority classes. Second,

our method is also applied to the challenging problem of

the fine-grained classification on the 7 semantic attributes of

the LIDC lung nodules. It will be shown that the WGAN-

based synthetic over-sampling technique can improve the

fine-grained classifications on highly imbalanced medical

data and provide better and useful synthesized minority class

samples than those transformed samples with the conven-

tional data augmentation method, which is commonly used in

many deep learning paradigms. It is worth noting that the goal

of this study is to illustrate the efficacy of the WGAN-based

synthetic over-sampling technique on the fine-grained clas-

sification for the application with extreme data imbalance.

Therefore, we don’t formulate the semantic attributing of the

lung nodules into a regression framework as shown in [20]

and [21]. Since the studies don’t consider the data imbalance

issue, the optimization of regression may easily favor the

majority class with smaller regression error and scarified the

accuracy of the minority classes.

II. MATERIALS AND METHODS

A. DATASET

The LIDC dataset includes more than 1010 thoracic CT

scans from 1010 patients, where each scan was reviewed

and annotated by four experienced thoracic radiologists with

rigorous reading protocol. In total, 2632 nodules in the LIDC
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FIGURE 2. Illustration of all subordinate classes in the attribute ‘‘texture’’. The images shown in the left part are the authentic samples, whereas
the synthetic samples by WGAN are shown in the right part.

dataset are involved in [36]. The region of interests (ROIs)

in the slices that depict each nodule is cropped into 64 ×

64 pixels and normalized with the lung HU window range

level of [−1400, 200]. Referring to [36] and [37], the size of

the largest nodule in the LIDC dataset in the transversal CT

slice is no more than 64 × 64 pixels. Therefore, the setting of

the ROI size can sufficiently enclose all nodules in the LIDC

dataset. Each nodule was annotated with 9 semantic attribute

scores by at least one radiologist. If one nodule was annotated

by more than one radiologist, the semantic attribute scores

from all radiologists are averaged as representative scores

for training and testing [20], [21]. For the robustness of the

performance evaluation, 5-fold cross validation scheme based

on nodule unit is implemented for both the data augmenta-

tion step and the fine-grained classification of each semantic

attribute.

In this study, the seven semantic attributes shown in Table 1

are adopted to illustrate the efficacy of the over-sampling

technique with WGAN. The ‘‘is’’ and ‘‘cal’’ attributes are

excluded as the sample distributions of the two attributes

are too skewed to be processed. The class distributions of

‘‘is’’ and ‘‘cal’’ are (2606/15/8/2/1) and (0/0/189/82/97/2264)

respectively. On the other hand, the original number of the

subordinate classes of the rest seven attributes is 5. However,

we found that the sample number of the subordinate class 1 in

‘‘sphe’’, subordinate class 5 in ‘‘lob’’ and subordinate class

5 in ‘‘spic’’ are 2, 36 and 44 respectively. By comparing to

the number of samples in the majority class w.r.t. the above

classes, the sample numbers are too small to fit the scheme

of the 5-fold cross validation. Therefore, these minority sub-

ordinate classes are merged into their neighboring classes.

Specifically, the class with score 1 in the attribute ‘‘sphe’’

TABLE 1. Number of subordinate classes (#), sample distribution and
imbalanced ratios for each semantic attribute.

is merged into the class with score 2, and the classes with

score 5 in both attributes ‘‘lob’’ and ‘‘spic’’ are merged into

the class with score 4, respectively. After the merging pro-

cess, the numbers of the subordinate classes of the attributes

‘‘sphe’’, ‘‘lob’’ and ‘‘spic’’ are 4, see Table 1. Here, themajor-

ity class is defined as the class with the largest samples.

The imbalanced ratio throughout this paper is defined as

the ratio of the sample numbers of the majority class to

the minority class [38], [39]. As can be found in Table 1,

even with the merge preprocessing, the largest imbalanced

ratios of all seven semantic attributes range from 8.03 to

19.15, suggesting that the class imbalance issue remains

very serious. In this study, the schemes of GAN, DCGAN

and WGAN synthetic techniques and a conventional data

augementation method are employed to augment samples of

theminority subordinate classes to improve the sementic fine-

grained classification of lung nodules in CT images.

B. OVER-SAMPLING FOR MINORITY SUBORDINATE

CLASSES IN SEMANTIC ATTRIBUTES

In this study, the technique of the generative adversarial

networks (GAN) is employed for the over-sampling of the

VOLUME 7, 2019 18453
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FIGURE 3. The training flowchart of a typical GAN. (a) Training path of the
discriminator network; (b) training path of the generator network.

minority subordinate classes. Typical GAN can be constituted

of a generator and a discriminator network. The function-

ality of the generator network is to synthesize samples by

estimating the underlying distribution of the target domain,

whereas the discriminator aims to differentiate the true sam-

ples and the synthetic samples derived from the generator.

The optimization process of the GAN pushes the generator

to synthesize plausible samples that can fool the discrimina-

tor, while also sharpens the differentiation capability of the

discriminator. Therefore, the effectively training of the GAN

needs to optimize two networks. The concept of the typical

GAN is illustrated in Fig. 3.

Since it needs to train the networks of the generator and

discriminator for the GAN, the optimization process can be

difficult and may suffer several drawbacks. First, the training

of the GAN is relatively unstable and may highly depend

on the competition between the generator and the discrim-

inator within the minimax game framework [24]. In other

words, a good equilibrium between the generator and the

discriminator is important to yield good quality of sample

synthesis. However, the gradient descent during the training

of the networks can’t always promise a good equilibrium.

For example, if a discriminator is equipped with high dif-

ferentiation capability in the training process, the generator’s

gradient may vanish quickly. Therefore, the optimization of

the generator may not be able to proceed to approximate the

true distribution of the target domain. As suggested in [40],

a better generator can be trained if the discriminator is deliber-

ately weaken. In such case, it may then require several passes

of trial and error and turn the whole training process difficult

and unstable. Second, there exists the so-calledmode collapse

in GAN, where the generator tends to produce samples with

low variety. The mode collapse is caused by the cases that

the generator is trapped to the same local minimum of the

cost function to synthesize similar samples. In such case,

the generated samples are not sufficiently diverse to represent

the whole distribution of the target domain, and hence is not

helpful to address the problem of the data imbalance.

FIGURE 4. The training flowchart of WGAN. (a) Training path of the
discriminator network; (b) training path of the generator network.

The Wasserstein GAN (WGAN) is a new GAN to ease the

training difficulty of the typical GAN and avoid the potential

problem of the mode collapse. The overview of the work-

flow structure of the WGAN for samples synthesis is shown

in Fig. 4. Comparing to Fig. 3, the objective functions of the

discriminator between the WGAN and the typical GAN are

different. For the typical GAN, the objective function of the

discriminator is determined with the binary classification of

true and synthesized samples, whereas the objective function

of the WGAN’s discriminator is represented by the Earth-

Mover (EM) distance between real and synthesized distribu-

tions. To this end, the learning of the WGAN’s discriminator

is formulated as a regression task but not classification.

The incorporation of the Earth Mover (EM) distance for

the measurement of the two comparing distributions in the

WGAN can avoid the asymmetry problem of the Kullback-

Leibler divergence [40] that could lead to mode collapse,

as well as the discontinuous issue of the loss function with

Jensen-Shannon divergence that may result in unsatisfac-

tory synthetic results. The EM distance can provide reliable

and usable gradient for the loss function to more easily

achieve synthesis results with better quality. The EM distance

between the real samples’ distribution Pr and the synthetic

samples’ distribution Ps can be defined as

W (Pr ,Ps) = inf
δ∈

∏
(Pr ,Ps)

E(x,y)∼δ ‖ x − y ‖, (1)

where x and y stand for the real and the synthetic samples,

respectively, and
∏
(Pr ,Ps) suggests the set of all joint dis-

tribution δ(x, y), where the marginal distributions of x and y

are Pr and Ps, respectively. Intuitively, the EM distance can

be interpreted as the minimal transported ‘‘mass’’ from y to

x for the purpose of transforming the distribution Ps to the

distribution Pr .

However, the infimum in e.q. (1) is highly intractable.

Instead, referring to [26], the solving of e.q. (1) can be sought

by

max
D

Ex∼Pr [D(x)] − Ey∼Ps [D(y)], (2)
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where D stands for the neural network of the discriminator.

The EM distance can then be approximately sought with

the optimization of the discriminator D, which is driven by

maximization the term Ex∼Pr [D(x)]−Ey∼Ps [D(y)] [26]. The

generator network, G, aims to synthesize samples with the

distribution Ps that approximates the real data distribution Pr .

During the training process, the generator network will map

a random vector z, which is commonly drawn from a normal

distribution p(z). By considering the sample synthesis by the

generator G, the EM distance can be rewritten as

max
D

Ex∼Pr [D(x)] − Ez∼p(z)[D(G(z))]. (3)

Referring to equations (1-3), the solving of the infimum

in e.q. (1) was equivalently transformed by approximately

seeking the maximum in e.q. (3). The maximum in e.q. (3)

can suggest the EMdistance betweenPr andPs. Furthermore,

we hope to change Ps to close to Pr as much as possible.

This can be determined by adjusting the synaptic weights

of the generator G, which is equivalent to min
G
W (Pr ,Ps).

Therefore, the whole training process of the WGAN can then

be expressed as

min
G

max
D

Ex∼Pr [D(x)] − Ez∼p(z)[D(G(z))]. (4)

Accordingly, the training of the WGAN can then be inter-

preted as a two-player minimax game between the discrim-

inator D and the generator G, and then can be achieved by

iteratively optimizing the discriminator D by

maxEx∼Pr [D(x)] − Ez∼p(z)[D(G(z))], (5)

as well as seeking the better generator that satisfies

min−Ez∼p(z)[D(G(z))]. (6)

The networks of the discriminator and the generator can

be both CNNs. The architectures of the discriminator and the

generator of the WGAN in this study are shown in Fig. 5.

Specifically, the input layer of the discriminator is an image

sample (either real or synthetic) with dimensions of 64 ×

64 pixels. The following layers of the discriminator are a

series of convolutional layers paired with batch normalization

and leaky rectified linear unit (LReLU). Batch normalization

can stabilize the leaning process and enable the gradient flow

toward deeper layers. Referring to [25], the batch normal-

ization is not recommended to be implemented for the input

layer of the discriminator and the output layer of the generator

to avoid sample oscillation and model instability.

The generator is structured to output the samples with the

same dimensionality of inputs for the discriminator. The input

of the generator is a random vector with 100 dimensions ini-

tialized from a normal distribution. The random noise vector

is reshaped to 100 × 1 × 1 and then filtered with transposed

convolution, denoted as CONVT, to 512 channels 4 × 4 fea-

ture maps. The CONVT is also named as deconvolution [25].

The following four layers of the generator are also CONVT

layers. For the generator, rectified linear unit (ReLU) is used

as the activation function of the neurons whereas the LReLU

FIGURE 5. The architecture of our WGAN. (a) Discriminator architecture;
(b) generator architecture.

TABLE 2. The Architecture of the fine-grained classification CNN model.
The abbreviations of ‘‘C’’, ‘‘M’’, and ‘‘FC’’ stand for convolution, max
pooling and full connected layer, respectively. The ‘‘K’’ is the number of
the subordinate classes of each semantic attribute.

is adopted for the neurons in the discriminator network. Batch

normalization is also implemented for the stabilization of the

learning process. The four CONVT layers subsequently dou-

ble the dimensions of the feature maps, whereas the number

of the channels is sequentially halved. The output layer of the

generator is constitutedwith 64× 64 pixels. The optimization

of the WGAN is carried out with the RMSProp algorithm.

The generator and the discriminator networks of the WGAN

are initialized from scratch (random initialization from zero-

centered normal distribution with standard deviation 0.02).

The slope of the leak for the LReLU in the discriminator

network is set to 0.2, whereas the learning rates for the both

discriminator and generator are 5e-5.

C. FINE-GRAINED CLASSIFICATION FOR THE

SEMANTIC ATTRIBUTES

The major purpose of this study is to illustrate the over-

sampling effectiveness with the WGAN. Therefore, a normal

CNN model is employed for the task of the fine-grained

classification for each semantic attributes of lung nodules.

The detailed architecture configuration of the category model

is described in Table 2. The optimization of the CNN is sought

by the stochastic gradient descent (SGD) algorithm and the

momentum parameter is set as 0.9. The learning rate is set to

be 0.0001 and the number of the training epoches is 100. The

batch size of the training is 64 and the weight decay is set

as 0.0005. The architecture of the fine-grained classification

CNN model is extended from the standard shallow convolu-

tional neural network LeNet. The hyper-parameters such as

momentum, batch size and weight decay are also set as the

default values used in the LeNet. The learning rate and the

VOLUME 7, 2019 18455



Q. Wang et al.: WGAN-Based Synthetic Minority Over-Sampling Technique

TABLE 3. The Data partitions in the 5-fold CV w.r.t the 7 semantic attributes. ‘‘class1’’, ‘‘class2’’, ‘‘class3’’, ‘‘class4’’ and ‘‘class5’’ are abbreviated as ‘‘c1’’,
‘‘c2’’, ‘‘c3’’, ‘‘c4’’ and ‘‘c5’’, respectively.

number of the training epochs are empirically determined for

the fine-grained classification.

III. EXPERIMENTS AND RESULTS

In this study, the fine-grained subordinate classification is

performed for the 7 different semantic attributes of lung

nodules in the LIDC CT images. To illustrate the efficacy

of the data over-sampling for the minority classes with the

WGAN, five schemes are implemented for comparison. The

first scheme, denoted as ORI, performs no over-sampling

and data augmentation on the training data, whereas the sec-

ond scheme, named AUG, carries out the standard data

augmentation adopted in [7] and [19] on the training data,

where each image can be rotated randomly with the degree

in the range from 0 to 359. Afterward, the image may be

flipped horizontally or vertically with probability of 0.5. The

rest three schemes are implemented with the GAN-based

synthetic over-sampling technique which adopt the typical

GAN [24], DCGAN [25] and WGAN [26] respectively for

data synthesis. All five schemes use the same CNNs with

the architecture shown in Table 2 for the purpose of the fine-

grained classification.

Since every CT scan in the LIDC dataset was read by

4 radilogists, each nodule can be possibly annotated by

at least one radiologist. For nodules annotated by at least

2 radiologists, the annotated scores of the semantic attributes

from different radiologists are averaged as the ground truth

labels [10], [11], [20], [21], [41].

A. DATA OVER-SAMPLING AND EXPERIMENTAL SETTINGS

In this study, the data over-sampling for the minority classes,

including the AUG, GAN, DCGAN and WGAN schemes,

is evaluated with the 5-fold cross validation (CV). For each

fold in the CV, the over-sampling is performed on the training

dataset, whereas the validation data remains unchanged for

the latter fine-grained classification. For fair comparison,

the numbers of the synthesized samples of each class in each

fold in the AUG, GAN, DCGAN and WGAN schemes are

the same. Meanwhile, the data partitions in the 5-fold CV are

the same for the ORI, GAN, DCGAN and WGAN schemes.

Table 3 shows the details in the 5-fold CV data partitions for

the five schemes and the batch size configuration in training

GAN, DCGAN and WGAN. The batch size in training the

WGAN, is mostly set as the same as the size of the training

samples to obtain synthetic samples as many as possible.

For the special cases like class 2 in ‘‘lob’’ and class 5 in

‘‘sub’’, the batch size are cut down for better training of the

discriminator. However, the batch size setting in training the

WGAN can not perform well in training the GAN and the

DCGAN in practice. Therefore, we set the batch size a bit

smaller in training the GAN and the DCGAN. Specifically,

the batch size settings can be also found in Table 3.

The training of the GANs is conducted on 32-core Intel

Xeon CPU E5-2620 and 128GB memory machine equipped

with an NVIDIA Tesla M40 (24GB on-board memory) GPU

card. The number of the synthesized samples for a minor-

ity class is determined by the size difference between the

majority and the minority classes to make the samples of the

minority and the majority classes as equal as possible. For

eachminority class, the training iterations is empirically set as

20000 to obtain the synthesized samples with quality. Fig. 6

illustrates the synthetic quality w.r.t. the number of generator

iterations. As can be observed in Fig. 6, the synthetic quality

can be reasonably good in the iteration of 20000. The training

process of theWGAN is much more stable than the GAN and

DCGAN.
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FIGURE 6. The training process and the synthetic quality with the discriminator loss for the GAN, DCGAN and WGAN, respectively.

B. FINE-GRAINED CLASSIFICATION FOR SEMANTIC

ATTRIBUTES

The normal CNNs with architecture described in Table 2 are

used for the task of the fine-grained classification. Specifi-

cally, the 7 classification CNNs are trained for the 7 semantic

attributes of lung nodules. The fine-grained CNN classifiers

are also evaluated with the 5-fold CV that share the same

data partitions in the 5-fold CV of the over-sampling schemes

in Table 3.

In this study, three assessment metrics are adopted to

profile the performance of the subordinate classification

and indirectly illustrate the efficacy of the over-sampling

schemes. The first and the second assessment metrics are the

F1 score and the extended G-mean, which are derived by the

basic metrics of the precision and recall. The third metric

is absolute distance defined in e.q. (9) for better evaluat-

ing the classification performance of the subordinate classes

that share very similar properties of the same base attribute

class [20], [21].

The F1 score is a standard accuracy of a multi-class clas-

sification problem by considering both precision and recall.

Specifically, the F1 score for the class i can be computed as

F1(i) =
2 ∗ R(i) ∗ P(i)

R(i) + P(i)
, (7)

where P(i) and R(i) are the precision and recall of the class i,

respectively. Accordingly, the overallF1 score for one seman-

tic attribute can be simply obtained by averaging theF1 scores

of all k subordinate classes as
∑k

i=1 F1(i)/k . The second

extended G-mean metric [38], [42] is the geometric mean

of the recalls over all k subordinate classes for one semantic

attribute. The extended G-mean can reflect overall sensitivity

for one semantic attribute. Specifically, the extendedG-mean,

G, over all k subordinate classes for one attribute can be

defined as

G = (

k∏

i=1

R(i))
1
k , (8)

where R(i) is the recall of the class i. In general, larger values

ofF1 score andG-mean suggest the better agreement between

the predicted results and the labeled ground truths.

On the other hand, because the subordinate classes of each

semantic attribute share very similar properties of the same

base attibute class, the distance between the labeled class and

the predicted class can be a referential index to reflect the

relations of the subordinate classes [20], [21]. Accordingly,

the metric of absolute distance is adopted to illustrate how

close the prediction results to the true labeled class i, denoted

as d(i), which can be calculated as

d(i) =
1

Ni

Ni∑

n=1

|vn − ṽn|, (9)

whereNi is the total number of the samples for the class i, and

vn and ṽn are the true label, i.e., i, and predicted label of the

sample n, respectively. Different to the metrics of F1 score

and G-mean, smaller absolute distance values suggest better

performance of the classification method.

C. PERFORMANCE COMPARISON

To illustrate the efficacy of the data over-sampling tech-

niques for the data imbalance issue, five schemes of ORI,

AUG, GAN, DCGAN and WGAN are implemented for the

fine-grained classification of the seven different semantic

attributes of the lung nodules. Table 4 reports the overall

performances in terms of the metrics of F1 score, G-mean and

absolute distance for the seven semantic attributes w.r.t. the

five schemes. Since all five schemes are evaluated with

the 5-fold CV, the mean ± standard deviation statistics for

the three assessment metrics over the 5 folds are reported

in Table 4.

As can be observed in Table 4, both the GAN and DCGAN

schemes can achieve relatively higher F1 scores and G-means

and less absolute distances for most semantic attributes by

comparing to the ORI scheme. Meanwhile, the DCGAN

scheme performs a slight better than the GAN scheme. This

may suggest that the synthetic data augmentation can slightly

address the data imbalance issue for the CNN fine-grained

classification. In addition, the AUG scheme can achieve

slightly higher F1 scores and G-means and less absolute

distances for most semantic attributes by comparing to the
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TABLE 4. Performance summary in terms of F1 score, G-mean and Absolute distance for the 7 semantic attributes w.r.t. the five schemes over all five
folds in CV.

FIGURE 7. Performance boosting analysis of F1 score w.r.t. the over-sampling rate for the GAN, DCGAN, AUG and WGAN
schemes to the baseline scheme ORI.

DCGAN scheme. This indicates the efficacy of the conven-

tional data augmentation method commonly used in many

deep learning works. Besides, it is worth noting that the

G-mean performance in the ‘‘sphe’’ attribute of the ORI

scheme is 0. It is because the recall of its subordinate class

1 is 0 and hence the overall G-mean is resulted as 0 due

to the operation of geometric mean. The sample number of

the subordinate class 1 is 124, which is a minority class.

Accordingly, it can be suggested that data imbalance is a

critical impact factor for fine-grained classification.

On the other hand, it can be also found in Table 4 that

the WGAN scheme can perform much better than the AUG

for all semantic attributes tasks. It may be because that the

WGAN-based synthetic data augmentation method attempts

to approximate the underlying data distributions of the sub-

ordinate classes in each attribute. The conventional data aug-

mentation (AUG) method doesn’t consider the underlying

data distribution and thus the boosting of performance may

be limited. The reasons of that the performances of the GAN

and DCGAN schemes do not provide better help might be the

not enough stable training process of the GAN and DCGAN,

particularly in the small samples situation. Therefore, the syn-

thesized data from the GAN andDCGANmay sometimes not

very representative for the subordinate classes comparing to

the WGAN.

D. PERFORMANCE BOOSTING WITH OVER-SAMPLING

SCHEMES

To further illustrate the efficacy of the over-sampling tech-

nique on the performance trends of all minority classes,

we carry out the performance boosting analysis w.r.t. the

factor of the over-sampling rate of all minority classes. The

over-sampling rate is defined as
num(major)−num(minor)

num(minor)
, where

num(major) means the sample number of a majority class and

num(minor) means the sample number of a minority class.

The operation of the over-samplingmakes the sample number

of the minority classes are equal to that of the majority class.

The performance boosting here is defined as the difference

between the over-sampling schemes of the GAN, DCGAN,

AUG orWGAN to the baseline schemeORI in terms of either

F1 score or absolute distance. Meanwhile, it is worth noting
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FIGURE 8. Performance boosting analysis of absolute distance w.r.t. the over-sampling rate for the GAN, DCGAN, AUG and
WGAN schemes to the baseline scheme ORI.

again that the four over-sampling schemes of GAN, DCGAN,

AUG and WGAN are only performed in the training phase

data of the CNN fine-grained classification.

Fig. 7 illustrates the performance boosting in terms of F1
score for the GAN, DCGAN, AUG andWGAN schemes over

the ORI scheme w.r.t. all minority subordinate classes of the

seven semantic attributes. The horizontal axis in Fig. 7 is

sorted with the over-sampling rate of each subordinate class

in ascending order, whereas each index in the horizontal axis

is supplemented with 3-tuple of the corresponding semantic

attribute, subordinate class and the F1 score of ORI. As can

be observed in Fig. 7, the performance boosting on both AUG

and WGAN schemes can be mostly positive. The WGAN

scheme can gain larger performance boosting than the other

three schemes, particularly for the cases with larger over-

sampling rates, i.e., the subordinate classes with samples

significantly less than its majority class. It is worth noting

that the DCGAN scheme is comparable to the AUG scheme

when the over-sampling rate is smaller than 3.37, whereas

the DCGAN scheme doesn’t provide better help than the

AUG scheme when the over-sampling rate is larger than

3.96. This suggests that the fact of the small original training

samples might be an unfavorable condition for the DCGAN.

In contrast, the WGAN scheme performs still efficiently

and robustly even if the original training samples are very

small.

Fig. 8 illustrates similar performance boosting analysis to

Fig. 7 in terms of the absolute distance metric. Different

to the F1 score, the larger negative difference of the abso-

lute distance suggests better performance boosting. It can be

found that the better performance can be achieved when the

over-sampling rate is larger than 2.5. Meanwhile, the WGAN

scheme can also outperform the GAN, DCGAN and AUG

schemes with the metric of absolute distance.

It can be observed in Fig. 7 that the over-sampling

rate index of 10.13 (text, c1, 0.57) suggests almost

no performance boosting for either AUG or WGAN.

TABLE 5. The classification ratios of the subordinate class1 over all
subordinate classes of the ‘‘text’’ attribute w.r.t the ORI, GAN, DCGAN,
AUG and WGAN schemes. For example, the notation of ‘‘c1→c3’’ means
the proportion of true samples of the subordinate class1 being classified
as the subordinate class3.

However, the same index in Fig. 8 illustrates the performance

boosting with the AUG and WGAN schemes. It is because

that the F1 score metric can only reflect the miss-

classification but not illustrate the erroneous degree. Since

there exists class relation among the consecutive subordi-

nate classes in all semantic attributes, the erroneous degree

shall suggest that the error of miss-classifying subordinate

class 1 into class 5 can be larger than the error of miss-

classifying class 1 into class 2. The erroneous degree can be

reflected with the absolute distance metric. To further inves-

tigate the underlying cause of performance discordance for

the index 10.13 in Figs. 7 and 8, we report the classification

ratios of the subordinate class 1 (c1) into all subordinate

classes (c1,c2,c3,c4,c5) in the attribute ‘‘text’’ w.r.t. the five

schemes of the ORI, GAN, DCGAN, AUG and WGAN

in Table 5. As can be found, the miss-classification ratios

of ‘‘c1→c5’’ in the ORI and AUG schemes are perceiv-

ably larger than the ratio in the WGAN scheme, whereas

the situation is just opposite for the ratios of ‘‘c1→c2’’.

Unfortunately, themiss-classifications of the cases ‘‘c1→c2’’

and ‘‘c1→c5’’ are treated equally for the computation of F1
score. The absolute distance on the other hand can reflect

the difference between the cases ‘‘c1→c2’’ and ‘‘c1→c5’’

with erroneous degree. Accordingly, the performance dis-

cordance in Figs. 7 and 8 for the index 10.13 can be

explained.
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TABLE 6. Performance summary in terms of F1 score, G-mean and Absolute distance for the 7 semantic attributes w.r.t. the schemes of the GAN, DCGAN,
AUG and WGAN over all five folds in CV when more realistic images are augmented by comparing to Table 4.

E. PERFORMANCE IMPROVEMENT WITH MORE

REALISTIC AUGMENTED DATA

To illustrate the efficacy of the data over-sampling techniques

for the data imbalance issue when more realistic samples

are augmented, we attempt to augment more data for each

subordinate class in all semantic attributes. With the oper-

ation of the more data augmentation, the sample number

of each subordinate class has been doubled on the basis

of the schemes of the GAN, DCGAN, AUG and WGAN

in Table 4. Table 6 reports the overall performances in terms

of the metrics of F1 score, G-mean and absolute distance for

the seven semantic attributes w.r.t. the schemes of the GAN,

DCGAN, AUG and WGAN. Meanwhile, the performance

of increment (↑) and decrement (↓) comparing to Table 4

w.r.t the F1 score, G-mean and absolute distance are also

supplemented in Table 6.

As can be observed in Table 6, the performance of

the fine-grained classification of the WGAN scheme has

been improved for all semantic attribute tasks when double

amounts of data for each subordinate class in all semantic

attributes are synthesized. The WGAN scheme still performs

much better than the schemes of the GAN, DCGAN and

AUG. The performance of the schemes of the GAN, DCGAN

and AUG has also been boosted for most semantic attributes

with more augmented data. However, there are some degrees

of performance degradation in the schemes of the GAN,

DCGAN and AUG for the semantic attributes ‘‘sub’’, ‘‘text’’

and ‘‘mar’’. This may suggest that the WGAN scheme

can be more effective and robust than the schemes of the

GAN, DCGAN and AUG for addressing the data imbalance

problem.

IV. DISCUSSION AND CONCLUSION

In this paper, theWGAN technique is exploited to address the

data imbalance issue which commonly exists in the medical

image classification problems. The WGAN technique is able

to estimate the underlying distribution of a minority class

domain and hence can synthesize plausible samples to mit-

igate the data imbalance issue for the performance boosting.

The WGAN-based data synthetic over-sampling technique

is specifically applied for the fine-grained classification of

the 7 nodule semantic attributes in the public LIDC dataset.

As can be found in Fig. 1, the sample distribution of the

subordinate classes are very imbalanced, the optimization

of classification or regression [20], [21] can easily favor

the majority classes. In such case, the accuracy over the

minority classes can be scarified to attain smaller classifica-

tion or regression errors. To clearly illustrate the effectiveness

of WGAN-based data synthetic over-sampling technique for

the data imbalance issue, a CNN architecture is employed for

the fine-grained classification of the 7 semantic attributes.

Referring to Tables 4, 6 and Figs. 7, 8, the experimental

results suggest the efficacy of the WGAN scheme for the

performance boosting on the fine-grained classification of the

7 semantic attributes, particularly for those minority subordi-

nate classes.

Meanwhile, it is also shown that the WGAN-based data

synthetic over-sampling technique can be more effective than

the conventional data augmentation (AUG) scheme, which is

commonly practiced in many deep learning works. It is sug-

gested that more helpful synthesized samples can be obtained

by considering the underlying distributions of the minority

classes. On the other hand, the synthesized data from the

schemes of the GAN and DCGAN do not provide better help

in the data imbalance problem than the synthesized data from

the AUG scheme. Referring to Fig. 6, the training processes

of the generators in the GAN and DCGAN can be very

unstable in terms of the discriminator loss. The synthesized

data from the GAN and DCGAN may sometimes turn out

to be implausible or not very representative for the class

of minority. Therefore, helpful synthesized data may not be

easily obtained with a systematic tuning for the training of the

GAN and DCGAN. By contrast, the training of the generator

in the WGAN scheme is relatively stable and therefore the

quality of the synthesized data from the WGAN scheme can

be better assured.

In the medical context, the minority classes can be very

important. Since for some subtypes or stages of one disease

can be very difficult to collect, it will lead to significant data

imbalance situation, and then render the classification prob-

lem very arduous. For example, the subordinate class 3 in the

attribute ‘‘text’’ refers to the sub-solid nodules, which are rel-

atively rare in the LIDC data but important as this type of nod-

ules are highly associated to the subtype of adenocarcinomas.

Therefore, accurate identification of sub-solid nodules can

be helpful for the determination of adenocarcinomas for
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more precise diagnosis and treatment recommendation in the

computer-aided diagnosis (CAD) application. Without the

support of sufficient training data, promising performance

of the fine-grained classification may not be easily attained.

In such case, the tackle of the data imbalance matters for

many AI applications in medicine.

Important as it is, the data imbalance issue has been

less explicitly explored in previous computer-aided medical

image analysis studies. In particular, with the popularization

of data-hungry deep learning paradigms, the data imbalance

issue may be getting important. In this study, the efficacy of

the WGAN-based over-sampling scheme is demonstrated to

address the serious data imbalance issue for the fine-grained

classification on the LIDC dataset. The fine-grained classi-

fication is per se a quite difficult problem and satisfactory

performance can’t not be easily achieved [43], [44]. For the

fine-grained classification of the nodule semantic attributes,

the boundary between the adjacent subordinate classes can

be very ambiguous and subjective. The difficulty of this

problem is further exacerbated by the severe data imbalance

issue and turns out to be very arduous. Although promising

regression performance was reported in [20] and [21], low

regression values don’t necessarily reflect high prediction

accuracy for the minority classes. As the optimization may

favor the majority classes and scarify the minority classes,

the data imbalance issue shall be explicitly addressed, but

unfortunately was not tackled in many previous studies [20],

[21] on the LIDC dataset. The WGAN-based approach pre-

sented in this paper is shown to be better than the conventional

data augmentation technique used in many previous deep

learningworks and the fine-grained classificationwithout any

data augmentation. Accordingly, it may thus shed a light on

using the WGAN technique for data augmentation for the

future imbalanced deep learning studies.

The major limitation of this study lies in that we perform

minority over-sampling on individual semantic attributes,

and hence the whole over-sampling process can be little bit

tedious. The future work will explore on the relations among

the semantic attributes for the data synthesis to simplify the

over-sampling process as well as to boost the synthetic quality

even further.
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