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Cardinal Stefan Wyszyński University in Warsaw, Wóycickiego 1/3, 01-938 Warsaw, Poland
3 Center for Cardiovascular Genetics and Gene Diagnostics, Foundation for People with Rare Diseases,

Wagistrasse 25, 8952 CH-Schlieren-Zurich, Switzerland
* Correspondence: zbigniew.j.krol@cskmswia.gov.pl

Abstract: As a scientific community we assumed that exome sequencing will elucidate the basis of
most heritable diseases. However, it turned out it was not the case; therefore, attention has been
increasingly focused on the non-coding sequences that encompass 98% of the genome and may
play an important regulatory function. The first WGS-based datasets have already been released
including underrepresented populations. Although many databases contain pooled data from several
cohorts, recently the importance of local databases has been highlighted. Genomic databases are
not only collecting data but may also contribute to better diagnostics and therapies. They may find
applications in population studies, rare diseases, oncology, pharmacogenetics, and infectious and
inflammatory diseases. Further data may be analysed with Al technologies and in the context of
other omics data. To exemplify their utility, we put a highlight on the Polish genome database and its
practical application.
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1. Introduction

It has been over 20 years since the very first version of the entire human genome was
released [1]. Today, although advanced sequencing methods are available at a reasonable
price and the role of significant genetic variants localised along the whole genome is quite
well defined, the clinical implementation of whole-genome sequencing (WGS) in diagnosis
and treatment remains in its infancy [2–4]. Whole exome sequencing was thought to
elucidate the genetic background of most of the inherited diseases. However, it was not the
case, which is why other omics technologies, such as WGS, RNA-Seq, Epigenomics and
Metabolomics, gained importance [5–7]. Here, we would like to highlight the importance
of creating WGS databases. With an increasing number of individuals included in the
databases, it became apparent that genetic variation differs significantly across ethnic
groups [8]. Therefore, it is necessary to create local genomic databases that mirror the
smaller and sometimes even endemic population structure.

Oncology remains the major field that can benefit the most from whole genome
sequencing since cancer develops because of the changes in the DNA inside cells [9] and
also given the number of individuals affected. Thus, we should not hesitate to say that
cancer actually is a disease of our genome. Traditionally, most of the studies were focused
on the identification of cancer mutations solely in protein-coding genes, ignoring the
remaining 99% of the genome dubbed as “the junk DNA”, partially because very few tools
for big data analysis were available, if any at all [10]. As a result, the first collection of more
than 350 cancer-related genes, protein-coding genes to be more specific, has been created
with new genes being added over time [11]. Currently used cancer diagnostic panels span
more than 500 genes forming the modern foundation of cancer diagnosis [12]. However,
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gene panels identify mutations only in 0.01–0.10% of the genome, at best. The identification
of variants scattered in the whole sequence of the genome may provide significantly more
precision in cancer diagnosis and better treatment options.

The remaining 99% of the total DNA sequence, colloquially called “dark matter of the
DNA” is much less characterised, but also holds disease-relevant changes [10]. Multiple
types of RNA produced from those regions regulate gene expression at many levels and
this knowledge dramatically changed our understanding of how disease arises and pro-
gresses [12,13]. Whole Genome Sequence (WGS)-based analyses of thousands of genomes
representing various cancer tissues revealed multiple cancer-driver events localised in
non-coding regions of DNA such as promoters, enhancers, or miRNA coding genes [14], to
name just a few. Such events include not only single nucleotide variations (SNV) but also
small indels and larger structural changes [14]. Although the driver mutations identified
in non-coding regions are less frequent (13%) than in protein-coding genes (87%), these
variant numbers will grow with more cancer genomes sequenced [14]. Moreover, in terms
of exome region sequencing, WGS is more powerful than WES [15], also in terms of detect-
ing structural variants and exome coverage [16]. Fine-tuning cell functioning using this
whole new category of personalised therapies, or targeting specific targets in non-coding
regions, might have tremendous results, arming us with new powerful tools in intervening
and treating human diseases, cancer in particular. Big data analysis is a game-changer, and
we can be certain that the remaining unknown chunk of the DNA is important, even if we
are at the very beginning of the road to fully understand it.

The number of already existing genomic databases is increasing. The journal Nucleic
Acids Research (NAR) publishes annually a special issue on Molecular Biology Databases,
a considerable proportion of which is related to genomics. The number of NAR’s papers
reporting new databases in the last ten years has reached nearly 700 (Figure 1) [17–26].
Most of the databases, except from a few exceptions, contain pooled data not only from
genomes, but also from exomes, RNA-Seq or epigenomic data. Additionally, they differ in
terms of informed consent given by the participant [27].

Figure 1. New databases reported in Nucleic Acids Research database issue in the last 10 years.
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They find their application in various fields of medicine and their use in research
generally increases over time. This phenomenon can be illustrated with a comparison of
the number of results of the PubMed search query: “Name of database” in the last ten years
for two databases described in the next part of the review dedicated to oncology (Figure 2).
The first one is The Cancer Genome Atlas (TCGA). The second one, the Exome Aggregation
Consortium (ExAC), transformed into the Genome Aggregation Database (gnomAD), is
widely used in the population studies of all types, cancer studies included.

Figure 2. Number of results of the PubMed search query “Name of database” for two databases
described in the review.

In this review, we present the examples of the existing and currently being developed
genomic databases and their possible use. We also discuss challenges and possible limita-
tions to these global efforts and future means of improvement, to be implemented not only
in oncology or infectious diseases, but also other areas of medicine. We strongly believe
that modern medicine cannot exist without genomics.

2. Genomic Databases: Global vs. Local Initiatives

Several efforts focused on creating large aggregating genome databases gathering
data across different population of diverse ancestries. Some projects gathered a consid-
erable number of samples, such as the TopMed Program with 53831 genome-sequenced
samples [28] or gnomAD with 15,708 genomes in addition to exomes [29] (Figure 3). One
of the biggest databases that is publicly accessible gathering both phenotypical and ge-
netic databases is UK biobank, which released WGS data from nearly 200.000 individuals,
mainly British, but also from Asian and African origin [30]. On the pan-European level a
well-established initiative is 1000 Genomes Project (1kGP), which collected 3202 genomes
from diverse ancestries, among them 602 trios [31]. A bigger project, the 1+ Million
Genomes Initiative, is coordinating the efforts to provide a proper infrastructure and
framework according to local regulations to work on the genomic data [32]. On the global
level The National Center for Biotechnology Information (NCBI) curates a large genomic
database, Human Genome Resources [33], encompassing small variations, structural ge-
nomic changes and information on the relation of genomic variation to human health.
Additionally, investigating infectious diseases such as COVID required pooling of the large
genetic data from many populations and across diverse ancestries. One such initiative is the
COVID Human Genetic Effort (HGE), collecting the genomic data across the populations
for the scope of identifying variants influencing the disease course [34–36].
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The non-European genomic databases are still underrepresented in the global databases
with pooled data and a study from 2009 showed that 96% of genetic data are from studies
performed solely on Europeans [37]. However, several of the gaps have been covered by
local projects (Figure 3). Recently, very ambitious efforts in terms of WGS databases have
been undertaken in Africa and Asia. In Africa a large consortium plans to WGS sequence
3 million genomes [38]. The initiative will be a response to public health challenges, such
as parasitic and infectious diseases, especially HIV. The Genome Asia 100K project plans
to sequence 100,000 individuals from 12 South Asian, and at least 7 North and East Asian
countries [39]. A genome sequencing initiative for Japan has also already been imple-
mented [40]. In the Middle East, more than 7000 individuals have been genome-sequenced
in recent years [41]. Importantly, it revealed that polygenic scores (PGS) have reduced
predictive performance in the Qatari population, postulating the necessity of including
population-specific data in the PGS studies.

Although some genomic data are aggregated as part of the biggest projects, still
there is a need to create smaller, population-specific databases that can reveal a different
genetic landscape on the local level than a pan-European project. Given the ancestry
component in medical genetics, it is important that huge datasets reflect the populations
of interest. One such genomic database considering the structure and background of the
investigated subjects is PGG.Population [42]. The database gathered >7000 genomes from
356 global populations and is designed for population genetic studies. On the European
level, several European countries started their own biobanks, including genomic data. The
leaders in this field are Iceland [43], Finland [44] and Estonia [45]; however, the majority of
European countries is curating its own genomic database, in addition to their contribution
to global efforts [46]. Slavic genomes are often underrepresented [47,48]; therefore, a recent
Polish initiative to create a database of 1076 unrelated Poles is an important step forward
into including less represented European populations [48]. Several other initiatives for
Slavic genomes have been undertaken, including in the Ukraine [47]. We have a personal
experience on this project created initially to investigate the course of COVID disease. As
the participants consented to the scientific use of their anonymised data, the database can
be used as a reference database for the Polish population. The data of the participants that
consented might be deposited as part of the Genome of Europe project.

Furthermore, some of the analyses, especially evolutionary events, justify the creation
of smaller local databases. A Japanese genomic database revealed evolution traits related
to alcohol or nutrition [49]. In Asia local projects sequencing local populations have arisen,
such as KOVA 2, collecting almost 2000 genome-sequenced Korean individuals, surpassing,
together with WES data collected in KOVA 2, the data on Korean individuals collected
in gnomAD [50]. The whole genome sequencing of Ethiopian highlanders delineated
genomic regions that may have an impact on hypoxia tolerance [51]. In Europe there is a
tendency to create local genomic databases that are especially important in interpreting
VUS and in the application of PGS on the local level [46].

Figure 3. Sources of genomic data (existing databases) described in the review. Note that not all of
the databases mentioned above contain WGS-derived data; some of them were created on the basis
of other techniques.
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3. Genomic Databases in Oncology

As previously mentioned, thanks to genomics, our knowledge of cancer biology has
expanded considerably in the past few years. The rapid development of genomic research
in this field would be impossible without the joint efforts of the scientific community to
generate public databases, which have been extensively used as a tool for further studies
on various aspects of oncology.

By the end of 2005, the US National Institutes of Health launched The Cancer Genome
Atlas (TCGA) project. In 12 years, TCGA characterised more than 20,000 samples from 33
different cancer types, generating over 2.5 petabytes of genomic, epigenomic, transcriptomic
and proteomic data [52]. As it soon turned out that characterising a higher number of
tumour samples from different cancer types would require international cooperation, the
International Cancer Genome Consortium (ICGC) was initiated in 2008 to coordinate
large-scale cancer genome sequencing studies in 50 different tumour types “that are of
clinical and societal importance across the globe” [53]. It is the most significant cancer
genome sequencing project to date. Over 80 million somatic mutations have been identified
in this dataset. Both TCGA and ICGC were mainly focused on the exome. However,
several studies have shown the important role of non-coding and regulatory regions
in carcinogenesis. That is why the Pan-Cancer Analysis of Whole Genomes (PCAWG)
initiative within the ICGC was established to identify common patterns of mutation in
more than 2600 cancer whole genomes. According to the flagship paper of the TCGA/ICGC
PCAWG consortium published in 2020, the majority of cancer genomes contain a few driver
mutations in both coding and non-coding regions but in about 5% of them, no known
mutation was identified, which leaves room for speculation. Is the catalogue of cancerogenic
mutations incomplete or do other processes have more impact in these cases? The new
phase of the project Accelerating Research in Genomic Oncology (ARGO) started in 2019.
Its main goal is to improve the outcome of cancer patients. It will analyse 100,000 samples
in comparison with clinical data to find out how to best use genomic knowledge in the
prevention, detection and treatment of cancers [52,54].

Projects, as described above, have enabled the creation of such data collections as the
Catalogue of Somatic Mutations in Cancer (COSMIC), the world’s largest and most detailed
resource for exploring the effect of somatic mutations in human cancer, and the Cancer
Gene Census (CGC) [55,56]. COSMIC covers all the known genetic mechanisms by which
somatic mutations promote cancer such as coding and non-coding mutations, gene fusions,
copy-number variants, and drug-resistance mutations, whereas CGC is an expert-curated
catalogue of the genes driving human cancer that is used as a standard in cancer genetics
across basic research, medical reporting and pharmaceutical development. It also includes
functional descriptions of how each gene contributes to disease generation [55,56].

Another large database widely used in oncological research, as well as in other do-
mains, is the Genome Aggregation Database (gnomAD), originally launched in 2014 as
the Exome Aggregation Consortium (ExAC) [57]. It contains over 125,000 exome and
15,000 whole genome sequences from European, Latino African and African American,
South Asian, East Asian, Ashkenazi Jewish and other populations (https://gnomad.
broadinstitute.org (accessed on 10 December 2022)). All the data were contributed to
the project from independent large-scale human sequencing studies led by more than
100 investigators, then processed into summary high-quality variant data and made avail-
able for the wider scientific community. The gnomAD papers report 241 million small
genetic variants and over 335 thousand structural variants [57]. Even though this database
is widely used in oncology, it remains a valuable and broad population database with many
significant applications outside medicine too.

In addition to the already listed, numerous smaller, more specific databases have
been created. Some of the interesting examples include a database of extrachromosomal
circular DNA (eccDNAdb), which seems to play a crucial role in oncogene amplification
and tumour progression [58]; single nucleotide polymorphisms (SNPs) databases, (SNPs
can influence methylation and participate in signalling pathway degeneracy in cancer) [59]

https://gnomad.broadinstitute.org
https://gnomad.broadinstitute.org
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and upstream open reading frames (uORFs) databases. Genetic defects in the last ones
have been linked to the development of various diseases, including cancer [60].

All these resources are used in cancer-related analyses. They allow detection of viral
sequences in cancer tissues, e.g., herpesvirus family or HPV in bladder cancers [61]; finding
new genetic markers to diagnose and treat diseases with relatively poor prognosis such as
liver and oesophageal cancer [62,63]; examining the tumour microenvironment, which is
thought to be essential, e.g., for breast cancer progression and metastasis [64].

Beyond questions, the role of non-coding variants in cancer genome is significant and
should be incorporated into diagnostic and treatment procedures, which in fact is being
preceded by several guidelines-producing bodies including ACMG (for example [65–67]).
WGS of cancer genome allows to characterise the whole profile of genetic variants and
assign them to a proper cancer signature or specific feature. Each of the more than a hundred
signatures identified up to date across human cancers indicates a specific mechanism of
cancer development [68]. Most of the signatures can be associated with a defective DNA
maintenance process and a precisely pinpointed disrupted pathway, which brings us to the
point where specific treatment may be administered on the basis of this information, such
as PARP inhibitors.

PARP inhibitors (poly-(ADP-ribose)-polymerase inhibitors) are ground-breaking agents,
effective in treating several cancer types including breast, ovarian, prostate and even
pancreatic cancer [69–74]. Multiple randomised clinical trials have demonstrated their
efficacy and the PARPi drug family constantly expands, comprising such agents as Olaparib,
Niraparib, Rucaparib and Talazoparib, with many more under clinical trials around the
world [75–77]. However, it remains worrisome that only a subset of cancer patients treated
with PARPi actually benefit from the therapy [78,79].

The biomarker currently used for PARPi administration is far from being perfect: the
BRCA1 and BRCA2 gene mutations [80,81]. Even though they are an excellent indicator of
Homologous Recombination Deficiency (HRD), they are not the only hallmarks of HRD
disruption [82]. However, clinical trials have clearly demonstrated that patients without
BRCA1 nor BRCA2 mutations can also benefit from PARPi therapy [83]. For example, the
PRIMA trial (PRIMA/ENGOT-OV26/GOG-3012 trial results presented at the European
Society for Medical Oncology (ESMO) Congress in 2019) showed that assessing HRD status
with the aid of computer algorithms may allow more cancer patients with no BRCA1 and
BRCA2 mutations to undergo a successful PARPi treatment [83]. Thus, many more patients
without BRCA1 and BRCA2 do respond to PARP inhibitors and therefore may benefit from
the treatment.

In fact, the most advanced clinical application originating from cancer signatures, not
only mutated genes, relates to Homologous Recombination Deficiency and PARPi [84,85].
WGS is being used in a couple of commercially available cancer diagnostics; for example,
Illumina Comprehensive Genomic Profiling considers Tumour Mutation Burden (TMB) or
Microsatellite Instability (MSI) or MyChoiceCDx created by Myriad Genetics Inc. The diag-
nosis and treatment based on advanced machine learning algorithms, such as HRDetect
or myChoice already show promising results: several clinical trials of the drugs based on
PARPi (such as Niraparib, most recently) were effective in reducing the risk of ovarian can-
cer progression by 38% [85–87]. AI-based computer algorithms are created to screen WGS
data for rare and common variants potentially significant in pharmacogenomics, leading
to new applications of the drugs already existing in the market, but also identification of
novel regulatory variants located in non-coding parts of the genome and their function,
patient stratification and, in some cases, even the mechanistic prediction of drug targets,
response and their interactions [88,89]. Some cancer databases are designed to find patient
target genes and potential treating molecules [90]. Although datasets contain various omics
datasets, such as mRNA and epigenomics, WGS data are still the core of such databases.
As a result, a hit containing a list of potential drugs targeting a particular genetic sequence
is returned.
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Regional databases also play an important role in cancer research. Numerous studies
are focused on specific populations, such as 237 patients from a reported population-
based south Swedish triple-negative breast cancer cohort profiled by RNA sequencing
and whole-genome sequencing included in “Molecular analyses of triple-negative breast
cancer in the young and elderly” or a population-based Estonian biobank (over 150,000)
and breast cancer-affected cases from Latvia chosen to assess the spectrum and frequency
of CHEK2 variants in the breast cancer-affected and general population in the Baltic states
region [91,92].

4. Genomic Databases in Infectious Diseases

The same is true for many other human threats including infectious diseases. It has
been long known that not only can we track pathogens’ routes of transmission or evolu-
tionary development, as it has been done for MRSA strains [93,94] or cholera outbreaks
in Haiti [95,96], but also genomic regions in human DNA connected with susceptibility
or resistance to a certain pathogen, such as norovirus infections [97–99]. More recently,
this phenomenon was beautifully depicted by the global cooperation established at the
very early days of the COVID-19 pandemic, namely the COVID-19 Host Genetics Initiative
(HGI) and the COVID Human Genetic Effort (HGE). These global initiatives aimed at
understanding the disease enabled worldwide genomic sample collection, used further by
us and others, and resulted in enormous datasets suitable for AI- and ML-based algorithms
(exemplified by the HGI and HGE consortia findings described in [100,101]. Such great
databases provide evidence that, as a scientific community worldwide, we are already
very good at collecting data, but the time has come to share these datasets more eagerly.
Especially in case of the genomic datasets, it may not be feasible nor technically doable for
a single team to analyse and interpret properly whole genome sequences of such a huge
and expanding collection.

It is worth emphasizing that all the genomic data collected during the COVID-19
pandemic can be used not only in the infectious context. Our project “Search for Genomic
Markers Predicting the Severity of the Response to COVID-19” may be taken as an example.
Between April 2020 and April 2021, we collected samples from 1222 Poles to study their
genetic susceptibility to COVID-19 infections. We analysed the whole genomes to identify
and genotype a wide spectrum of genomic variation, such as small and structural variants,
runs of homozygosity, mitochondrial haplogroups and de novo variants. This study is the
biggest whole-genome screening of the Slavic and Central Europe populations done to date.
The allele frequencies, calculated for 1076 unrelated individuals, were released as a publicly
available resource, the Thousand Polish Genomes database. The Polish population, highly
homogenous and sedentary by its nature, is unique and can serve as a genetic reference
for the Slavic nations that account for over 4.5% of world inhabitants. The Thousand
Polish Genomes database contributes to the worldwide genomic resources accessible to
researchers and clinicians. It lays the foundation for further studies in the population
history and epidemiology of diseases caused by mutations in the autosomal-recessive
genes, as well as creates opportunities for tailoring NGS-based genetic screening tests and
guidelines for clinical geneticists in Poland [48].

Genomic databases in infectious diseases can play multiple roles not only in relation
to COVID [102]. They may help in identification of resistance biomarkers and treatment
targets. This seems to be particularly crucial in Africa, especially for the detection and
surveillance of malaria, HIV and drug-resistant tuberculosis [103].

As communicable diseases quite often have a localised character, creating small, local
databases might be particularly useful in their case. During the 2019–2020 dengue fever
epidemic in the Dominican Republic, a study on 488 children with a confirmed disease
was conducted to find the genetic factors of its severity in this group [104]. On the African
continent, there is a need to investigate tropical arboviruses with described zoonotic
potential. The whole-genome sequencing using novel technological approaches allows a
better understanding of their genetic diversity and distribution that may help to reduce the
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threat they pose to human and animal health [105]. The large international databases are
also frequently used in this domain. In Asia, 10 Pasteurella canis and 16 Pasteurella multocida
whole-genome sequences from National Center of Biotechnology database were selected
to perform a comparative analysis of virulence factors (VFs) between two species that
both cause zoonotic infections [106]. The collections such as the Comprehensive Antibiotic
Resistance Database (CARD) or the Virulence Factor Database (VFDB) are used to identify
the genes responsible for drug-resistance or virulence and characterise local pathogens. It
was done recently in the case of multidrug-resistant Staphylococcus hominis isolated in
Malaysia [107].

5. Genomic Databases in Rare Diseases

Rare diseases were one of the areas that profited from the WGS technology at first.
Moreover, in terms of standardisation and guidelines, WGS in rare diseases is well estab-
lished [108]. One of the most known and pioneering initiative is 100,000 Human Genomes,
a project targeted at sequencing NHS patients affected with rare diseases [109]. The prelim-
inary results gave a diagnostic yield of 35% for likely monogenic disorders and 11% for
likely complex disorders [109]. In the US, Centers for Mendelian Genomics are pioneering
institutions that use WGS in rare disease cohorts [110]. In Canada a centralized WGS
database for rare diseases has been introduced to facilitate cooperation and new gene
discovery [111]. On the European level several EU-founded projects, such as Solve-RD and
ERN, implemented WGS as part of their workups [112]. In the recent years also regional
initiatives, such as the Brasilian Rare Genomes Programme [113] and the Initiative on Rare
and Undiagnosed Diseases in Japan [114], have successfully been implemented.

6. Genomic Databases as a Fuel for AI-Driven Algorithms

Furthermore, it is worth noting that AI-based methods already are and will remain an
integral component of every modern WGS-based procedure. We can develop AI-driven
algorithms to extract crucial information from the patient’s genome and include them into
prediction or prognostic tests even without full understanding of the region itself. This is a
major breakthrough seriously challenging our perception of the scientific method. So far,
the sequence of diagnostic and therapeutic actions was preceded by deep understanding of
the target itself, its structure and function, such as the gene. Using various techniques, we
have been studying genes and their role in model organisms for years before transferring
this knowledge into human beings. However, now AI-driven algorithms may pinpoint
genomic regions or clusters of unknown function, yet crucial for the early prediction,
advanced diagnosis, or effective treatment. Although Al technologies have raised an initial
enthusiasm, there are also critical voices. For example, in a review article on AI methods in
diagnosing COVID 19, the authors found methodological flaws and biases leading to an
optimistic performance. The authors advise standardisation of methodology on several
levels [115].

Although several multiple large-scale whole genome sequencing projects have been
launched globally, and the results obtained so far are important both scientifically and
clinically, the clinical implementation of these data is for the most part lagging behind.
Most of the projects are focused on rare diseases and clinical WGS was primarily used as a
rare disease’s diagnostics. Together with whole-exome sequencing (WES), WGS has been
introduced into diagnostic procedures of many clinical centres, such as Genomic Medicine
Centre Karolinska-Rare Diseases in Stockholm or Genomics England centres across the UK.
There are many more similar institutions and programs worldwide focusing on clinical
WGS in rare disease diagnostics, such as several National Institutes of Health grant pro-
grams in the US, the Clinical Sequencing Exploratory Research Consortium, the Centres
for Mendelian Genomics, and the Undiagnosed Diseases Program and Network [110,116].
The advantage of WGS is estimated as the 7.5–30% increase in diagnostic yield. However,
WGS seems to be promising because of the diversity of variants detected, difficult to find
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using other available methods, including CNVs, balanced structural variants, short tandem
repeats and runs of homozygosity [117].

Another challenge is the identification of common and rare disease genetic variants in
genome-wide association studies. WGS together with dedicated AI-driven algorithms was
shown to increase the mapping precision for rare and low frequency variants. More and more,
WGS is being performed in a variety of different populations, supporting the notion that WGS
of related cohorts improves the power to identify genetic associations [43,118–121].

The most significant drawback when using AI-harnessing algorithms, apart from the
costly IT infrastructure, remains the huge dataset necessary for the proper learning process.
Although several mathematical models can overcome this problem, at least to some extent,
the reliability of the results and their clinical implementation should be strongly considered
and properly validated. Perhaps the next generation of AI-based genomic-analysing tools
are required and thus, should emerge from interdisciplinary close cooperation.

Finally, another objection—the time required to complete the process—is no longer
valid. Although our project was performed using a “traditional” short-reads approach
and Illumina pipeline for the WGS data, there are already other methods which might be
better, especially given the narrow time constraints in the case of some rapidly progressing
diseases. One of the most amazing examples of interdisciplinary cooperation on the
ground of AI-driven tools implementation in clinical genomics was a recent world record
in whole-genome sequencing speed, counted from the moment of sample arrival till results
delivery. A Stanford University research team led by Dr Euan Ashley, in collaboration with
such technological giants as Nvidia, Oxford Nanopore Technologies, Google, as well as
the medical world-famous Baylor College of Medicine and the University of California,
managed to complete the process in just five hours and two minutes [122].

Although there is a lot of hope in the AI-based methods, too early translation to the
clinics may lead to wrong conclusions and failures in treatment. All algorithms are often
trained on a single centre’s data and may be biased. For example, surgical skin markings
confused a deep learning algorithm for melanoma detection in which it classified benign
nevi as malignant [123] As another example, an AI system recommended “unsafe and
incorrect” cancer treatments [124]. Similarly, a sepsis prediction algorithm implemented in
a widely used EHR system performed poorly in practice. [125] A special care should be
given as most of the projects are targeting clinical research [126].

7. Conclusions

Genomic databases are not only collecting data but may also contribute to better
diagnostics and therapies. Genomic databases play a special role in infectious diseases, as
well as rare or heritable diseases. As a medical community, we should make the most of
what we have already achieved in genomics to effectively treat cancer patients. Offering the
most advanced diagnostic methods or early detection tests today, we should continuously
participate in building more accurate prediction models especially for early detection or
targeted therapies.
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