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Currentmethods to identifyWiener-Hammerstein systems using Best Linear Approximation (BLA) involve at least two steps. First,
BLA is divided into obtaining front and back linear dynamics of the Wiener-Hammerstein model. Second, a re�tting procedure of
all parameters is carried out to reduce modelling errors. In this paper, a novel approach to identify Wiener-Hammerstein systems
in a single step is proposed.�is approach is based on a customized evolutionary algorithm (WH-EA) able to look for the best BLA
split, capturing at the same time the process static nonlinearity with high precision. Furthermore, to correct possible errors in BLA
estimation, the locations of poles and zeros are subtly modi�ed within an adequate search space to allow a �ne-tuning of the model.
�e performance of the proposed approach is analysed by using a demonstration example and a nonlinear system identi�cation
benchmark.

1. Introduction

Nonlinearities are present to a greater or lesser extent in all
real processes. When nonlinearities are weak, linear models
can be successfully used to forecast the evolution of variables
or to design control schemes. Currently, a lot of methods to
build linear models can be found in the literature [1–5]. How-
ever, when nonlinearities are hard, linear models just can be
used in a speci�c operation range. If process operating range
is large, cause-e
ect relationship should be represented by
a nonlinear model. An alternative to nonlinear system mod-
elling is to describe the process phenomena using rigor-
ous �rst-principles formulation [6–8]; nevertheless, in most
cases, it can be a very challenging task. Another alternative is
the use of so� computing methods for process identi�ca-
tion. In this framework, nonlinear system identi�cation has
attracted considerable interest of researchers over the past few
years. Nowadays, nonlinear identi�cation is an open research
topic where some benchmark problems have been proposed
[9–12] and real measurement data are available for testing
and validate di
erent nonlinear identi�cation methods (e.g.,
DaISy database [13]).

One of the most challenging problems regarding non-
linear system identi�cation is the selection of a good model
structure. Currently there are several structures based on
neural networks [14], block-orientedmodels [15, 16], Volterra
series [17], NARMAX models [18], and fuzzy models [19],
among others. A review of black box methods to nonlinear
identi�cation can be found in Suykens and Vandewalle [20].

In this paper, block-oriented models are considered,
which are a class of nonlinear representations consisting of
linear time-invariant (LTI) systems coupled with nonlinear
static functions (NL) [21]. Within this class of models, the
most popular ones are Wiener (LTI-NL), Hammerstein (NL-
LTI), Wiener-Hammerstein (LTI-NL-LTI), and Hammer-
stein-Wiener (NL-LTI-NL) models [15]. Nowadays, several
methods to identify these models can be found in the litera-
ture. An interesting classi�cation of contributions that have
been developed until the last decade can be found in Lopes
dos Santos et al. [22].

Block-oriented models are attractive for their simplicity
and great capabilities to model nonlinear dynamic systems
[23–28]. Speci�cally, Wiener-Hammerstein models have
proved to be able describe several systems like a paralyzed
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skeletal muscle [29, 30], a limb re�ex control system [31], a
DC-DC converter [32], a heat exchanger system and a super-
heater-desuperheater in a boiler system [33], and a thermal
process [34], among others [35]. Not only does the study
of block-oriented models address parameters estimation, but
also these structures are used to implement modern control
strategies [36–40].

In the context of block-oriented models, knowledge of
process dynamics can be a good starting point for identi�-
cation [52]. In this regard, the Best Linear Approximation
or BLA of a nonlinear system [52–55] can be used. For the
speci�c case of Wiener-Hammerstein models, the BLA does
not provide information about the dynamics of each LTI
block. �erefore, all BLA-based Wiener-Hammerstein iden-
ti�cationmethods have concentrated their e
orts on the BLA
division to generate initial estimates and avoid suboptimal
local minima in an optimization procedure. In Sjöberg et al.
[45], both LTI subsystems are initializedwith all possible BLA
partitions and least squares optimization is applied to �t the
nonlinearity. Although identi�cation results are very good,
the number of possible partitions (combinations) grows with
the number of poles and zeros of the BLA and therefore the
computational cost required for thismethod can be very high.

To avoid multiple BLA divisions, in Lauwers [44] and
Sjöberg et al. [45] an “advanced” method is proposed where
both LTI subsystems are overparameterized with all poles
and zeros of the BLA. �is method is formulated as a linear-
in-the-parameters total-least-squares problem for which the
back LTI subsystem is inverted and basis functions are used
to represent both linear subsystems. Tominimize the e
ect of
overparameterization, an order reduction technique is ap-
plied. However, since the formulation is based on neglecting
the e
ect of disturbances, the solution is in general not
consistent if there is noise on the output. In addition, the BLA
is required to be invertible.

Another approach to initialize Wiener-Hammerstein
models is presented by Westwick and Schoukens [42], where
the poles and/or zeros of the BLA are classi�ed by using a
nonlinear transformation of the input and the output resid-
uals (quadratic/cubic BLA). On the same context of QBLA/
CBLA and in line with “brute-force” method, Westwick and
Schoukens [46] propose a scanning technique for a rapid
evaluation of all possible BLA partitions between both LTI
blocks of the Wiener-Hammerstein system. With this evalu-
ation, the vast majority of possible partitions are discarded.
Both proposals based on QBLA/CBLA show excellent results
and overcome some disadvantages of “brute-force” and
“advanced” methods; however, the QBLA/CBLA estimation
can be di�cult (high variance) since it is estimated from the
BLA residuals.

In a more recent work, Schoukens et al. [41] propose a
more robust method based on QBLA/CBLA. Unlike the two
previous proposals, the BLA is split into a nonparametric
framework. �is avoids mainly the parameterization of the
QBLA that can be tedious given that the number of poles and
zeros tends to be high. Once the front and the back dynamics
of the Wiener-Hammerstein model have been identi�ed, a
parameterization of both LTI blocks is required in an addi-
tional step. �is step can be complicated because a linear
phase shi� can be present in the nonparametric estimate.

f(·)
u(t) v(t) w(t) y(t)

Gℎ(z)Gw(z)

Figure 1: Wiener-Hammerstein model.

To avoid QBLA/CBLA estimation, in Vanbeylen [43]
a fractional model parameterization based in multiplicities
(powers) of poles and zeros is presented. �e problem is for-
mulated in the frequency domain and fractional exponents
indicate which poles and zeros belong to each subsystem a�er
an optimization problem is solved. Once the poles and zeros
of the BLA have been classi�ed, both LTI blocks must be
parameterized in an additional step.

All methods mentioned here, each with its advantages
and disadvantages, identify Wiener-Hammerstein models
from the BLA. However, all require high user interaction to
parameterize the LTI blocks and/or a �nal optimization to
re�t all parameters of the Wiener-Hammerstein model. In
this work, we show that it is possible to obtain a goodWiener-
Hammerstein model from the BLA by solving a single opti-
mization problem, where user interaction is only required at
the beginning, just con�guring simple parameters of an
evolutionary algorithm.

Hereinafter, thispaper is organized as follows. In Section 2,
Wiener-Hammerstein systems formulation is revisited to-
gether with some relevant information about the BLA. �e
proposed evolutionary algorithm, WH-EA, is presented and
described in detail in Section 3, while its application and
results on a numerical example and on the benchmark data
SYSID’09 are presented in Section 4. Finally, in Section 5,
some conclusions are reported.

2. Background

2.1. Wiener-Hammerstein Model. A Wiener-Hammerstein
model consists of two LTI subsystems ��(�) and �ℎ(�)
surrounding a static nonlinear function �(V(�)) (Figure 1).
Both LTI subsystems can be represented in the discrete-time
domain as rational transfer functions in factorized form:

V (�) = �� (�) � (�)
= ��∏���=1 (� − ���) / (1 − ���)∏���=1 (� − ���) / (1 − ���)� (�) ,

̂ (�) = �ℎ (�) � (�)
= �ℎ∏���=1 (� − �ℎ�) / (1 − �ℎ�)∏���=1 (� − �ℎ�) / (1 − �ℎ�)� (�) ,

(1)

where � is the discrete-time operator, ��, ��1 ⋅ ⋅ ⋅ ���� and��1 ⋅ ⋅ ⋅ ���� represent the static gain, poles, and zeros of
the front LTI block, respectively, and �ℎ, �ℎ1 ⋅ ⋅ ⋅ �ℎ�� and�ℎ1 ⋅ ⋅ ⋅ �ℎ�� represent the static gain, poles, and zeros of the
back LTI block, respectively.
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�e nonlinearity can be represented as a linear combina-
tion of a �nite set (�) of basis functions:

� (�) = � (V (�)) = �∑
�=1

���� (V (�)) , (2)

where V(�) and�(�) are the input and output of the static non-
linearity,�� areweighting parameters to be estimated, and��
are basis functions.

From (1) and (2), the output of the Wiener-Hammerstein
model is analytically related to the input through the follow-
ing expression:̂ (�, �) = �ℎ (�, �h) � (�NL, �� (�, �w) � (�)) , (3)

where

�w = [��, ��1 , ��2 ⋅ ⋅ ⋅ ���� , ��1 , ��2 ⋅ ⋅ ⋅ ����] ,
�NL = [�1, �2, . . . , ��] ,
�h = [�ℎ, �ℎ1 , �ℎ2 ⋅ ⋅ ⋅ �ℎ�� , �ℎ1 , �ℎ2 ⋅ ⋅ ⋅ �ℎ��] ,
� = [�w, �NL, �h] .

(4)

�e challenge is to �nd the best � so that the predicted
output ̂(�, �) is as close as possible to the measured output(�). Without prior knowledge of the system, this identi�-
cation problem is not easy to solve, because there are some
inconveniences that must be overcome:

(i) Parameters ��, �	, �
, and �� are not known (i.e., the
structure of the LTI blocks is unknown).

(ii) �e order and basis functions for nonlinearity are not
known.

(iii) Without adequate initial values of �, it is quite possible
that the optimization process, trying to �nd the best
�, gets stuck in a local minimum.

(iv) Internal variables V(�) and �(�) are not measurable.

As a complement to the formulation presented, the
following assumptions are made about the system.

Assumption 1. �e nonlinear system to be identi�ed can be
described by (3).

Assumption 2. �e Wiener-Hammerstein system will be

identi�ed from an input/output data set {�(�), (�)}�=1. �e
input signal �(�) is Gaussian or equivalent (see Section 2.2
for more details), while the measured output (�) may be
corrupted by stationary additive noise �(�). It is further
assumed that the noise is independent of the input excitation
signal:  (�) = 0 (�) + � (�) . (5)

Assumption 3. �ere is no cancellation of poles and zeros and
all poles of both LTI subsystemsmust bewithin the unit circle.

Assumption 4. Nonlinearity is static and its current output�(�) only depends on the current input V(�) (i.e., the nonlin-
earity has no memory).

2.2. �e Best Linear Approximation (BLA) of a Wiener-Ham-
merstein System. �e BLA of a nonlinear system for a given
class of excitation signals is a linear model that minimizes the
expected mean square error between the true output of the
nonlinear system and the output of the linear model [56]:

�BLA (�) = argmin
�(�)

� [���� (�) − � (�) � (�)����2] , (6)

where �(�) is the input that excites the nonlinear system, (�)
is the measured output, and � is the expectation operator. An
alternative way to obtain the BLA of a nonlinear system is in
a nonparametric framework:

�BLA (���) = ��� (���)��� (���) , (7)

where ���(���) is the cross-power spectrum between the
output (�) and the input �(�) and ���(���) is the auto power
spectral density of �(�) [54, 57].

�e BLA depends on the excitation power spectrum
(bandwidth and amplitude level) and excitation probability
density function.�erefore, obtaining the BLA is restricted to
the type of input signal that excites the process. Most estima-
tionmethods to obtaining the BLAuseGaussian noise signals
or equivalent [58].

When a nonlinear system is excitedwith aGaussian signal
or equivalent, according to Bussgang’s theorem [59], the non-
linearity can be replaced by a constant (�NL). �erefore, in
the speci�c case of a Wiener-Hammerstein system, the BLA
can be de�ned by the following expression:

�BLA (�) = �NL��ℎ (�) , (8)

where ��ℎ(�) represents the dynamics of the nonlinear
system:

��ℎ (�) = ∏��+���=1 (� − ��) / (1 − ��)∏��+���=1 (� − ��) / (1 − ��)� (�) . (9)

It is evident that �1 ⋅ ⋅ ⋅ ���+�� and �1 ⋅ ⋅ ⋅ ���+�� are the poles
and zeros thatmust be assigned to��(�) and�ℎ(�). Although
the BLA does not provide information to distinguish the
dynamics between both LTI subsystems, knowledge of the
overall dynamics of a Wiener-Hammerstein system is a good
starting point to identify such systems.

3. The Evolutionary Algorithm (WH-EA)

In this paper, the identi�cation of a Wiener-Hammerstein
system is addressed as an optimization problem, which is
formulated considering the following issues:

(i) �e BLA is estimated in the �rst instance.

(ii) �e poles and zeros of the BLA must be classi�ed to
�nd the dynamics of the front and back of theWiener-
Hammerstein model.

(iii) �e pole-zero locations of the BLA can change mod-
erately to improve modelling errors.
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(iv) Without loss of generality, it is possible to model a
Wiener-Hammerstein system considering that both
linear blocks have unit gain (gains from ��(�) and�ℎ(�) are not part of the optimization problem).

(v) �e nonlinear static function is modelled as a piece-
wise function represented by a set of points in the V,� plane.

To explain in detail how WH-EA works, this section
has been divided into three parts. First part explains how
Wiener-Hammerstein model is coded for individuals in the
population; in addition, the optimization problem statement
is presented. Second part explains in detail the customized
genetic operators developed. Finally, the third part explains
the general procedure of WH-EA.

3.1. Optimization Problem Statement. Changing pole/zero
locations of the BLA to improve modelling error implies new
estimates around the known values. �ese locations for both
linear subsystems are coded in a single vector as follows:

P = [��1, . . . , ���
, � 1, . . . , � ��, �!1, . . . , �!�
, ��1, . . . , ���
,� 1, . . . , � ��, �!1, . . . , �!�
] , (10)

where � 1, . . . , � �� and � 1, . . . , � �� contain the locations of
the real zeros and poles, respectively, and ��1, . . . , ���
 and�!1, . . . , �!�
 contain the real and imaginary parts of com-
plex conjugate zeros, respectively, while ��1, . . . , ���
 and�!1, . . . , �!�
 contain the real and imaginary parts of complex
conjugate poles, respectively. �e values of ��, � , "�, and" depend on the number of zeros and poles (real and/or
complex conjugates) of the BLA.

Poles and zeros contained in (10) must be classi�ed to
obtain the dynamics of the front and back blocks of aWiener-
Hammerstein model. �is classi�cation is performed using a
binary vector:

C = [#�1, . . . , #��
+��, #�1, . . . , #��
+��] . (11)

�e �rst part of the vector, C (#�1, . . . , #��
+��), is asso-
ciated with ��1, . . . , ���
, � 1, . . . , � �� and indicates the zeros
classi�cation, while its second part, C (#�1, . . . , #��
+��),
is associated with ��1, . . . , ���
, � 1, . . . , � �� indicating the
poles classi�cation. Note that imaginary parts are not consid-
ered for classi�cation since they are already associated with
their corresponding real parts. It is assumed that if #��th = 1,
the corresponding !th element of P with ! = 1, . . . , �� + � 
(i.e., a real zero or a pair of complex conjugated zeros) will
belong to the subsystem ��(�); otherwise, it will belong to
the subsystem �ℎ(�). In the same way, this correspondence
can be applied to classify the poles using #�1, . . . , #��
+��.

For example, if a nonlinear system is approximated by a
BLA with four poles, �1,2 = −0.32 ± 0.77�, �3 = −0.11, and�4 = 0.17, and three zeros, �1,2 = 1.41 ± 0.56�, �3 = 1.1, then�� = 1, � = 1,"� = 1, and" = 2, P would be structured as[1.41, 1.1, 0.56, −0.32, −0.11, 0.17, 0.77], and vector C should
contain �ve elements whose values switch between zero and
one as the algorithm evolves. By way of illustration if C =[1, 0, 0, 1, 1], then��(�)would have two zeros and two poles:

�1,2 = 1.41 ± 0.56�, �3 = −0.11, �4 = 0.17, while �ℎ(�) would
have a zero and two poles: �3 = 1.1, �1,2 = −0.32 ± 0.77�.

With respect to nonlinear static function, let us consider
that it is represented by a set of � points:

B = [V1, . . . , V�, �1, . . . , ��] , (12)

where the pairs (V1, �1), . . . , (V�, ��) correspond to their
coordinates in a two-dimensional V-� plane. �e location of
these points and the interpolation method used will deter-
mine the quality of the captured static nonlinearity.

�eproposed evolutionary algorithm is based on stochas-
tic population of candidate solutions (individuals). Each
individual contains genetic information related to

(i) the pole/zero locations in the Z-plane of the linear
subsystems (P),

(ii) the point coordinates representing the nonlinear
static function (B),

(iii) and the pole/zero classi�cation for blocks ��(�) and�ℎ(�) (C),
such that any Wiener-Hammerstein model ((1) and (2)) can
be easily described from this coded information. Recall that
gains from linear blocks are assumed to be 1 and that
parameters ��, �	, �
, and �� will be implicitly optimized and
they will depend on the structure of vector C.

To �nd the best set of parameters, an optimization
problem is stated based on a prediction-error method and
the typical mean-squared error criterion (although any other
criteria can be used in the proposedmethod, such as themean
absolute or maximum error criteria):

$ (�, �) =  (�) − ̂ (�, �) , (13)

% (�) = 1& �∑=1$2 (�, �) , (14)

where � = [P,B,C] and the solution of the optimization
problem is stated as

�̂ = argmin
�

% (�) , (15)

where �̂ contains the genetic information from the best
individual at the end of generations.

3.2. Genetic Operators. Customized mutation and crossover
operators will be developed taking in mind the problem at
hand: to identify all parameters of the Wiener-Hammerstein
model in a single optimization trial. Figure 2 shows the struc-
ture of an individual as well as the genetic operators devel-
oped on each piece of genetic information. Note that ! and '
have been introduced into the formulation. Subscript ! repre-
sents an individual in the population, while the superscript '
indicates the current population.

�e speci�c mutation and crossover operators designed
are randomly selected to maintain a balance between explo-
ration and exploitation of the search space. Mutation opera-
tions are used to maintain genetic diversity, while crossover
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Mutation M.1

Crossover C.1

Mutation M.2

Mutation M.3

Crossover C.2

Mutation M.4

Pole-zero locations

Static nonlinearity

Pole-zero classi�cation

Real values Imag. values

· · ·

· · ·

B
g
i = {

C
g
i = {

P
g
i = {

Zeros

Real values Imag. values

Poles

Zeros Gw or Gℎ Poles Gw or Gℎ

}

}

}

Abscissa Ordinate

zr1, . . ., zrnrzc1, . . ., zcnc zi1, . . . , zinc

pc1, . . ., pcmc pr1 , . . ., prmr pi1, . . ., pimc

1, . . ., n , w1, . . ., wn

xz1, . . ., xznc+nr, xp1, . . ., xpmc+mr

Figure 2: Structure of individual and genetic operations performed
on each piece of genetic information.

operations allow genetic information from the best indi-
viduals to be combined and disseminated throughout the
generations. Further details on how the algorithm works will
be given in Section 3.3.

3.2.1. Location in the Z-Plane of Poles and Zeros. �eoretically
in a Wiener-Hammerstein model, the pole-zero locations of��(�) and �ℎ(�) subsystems correspond to the pole-zero
locations of the BLA; however, it is well known that once
the BLA has been divided, a re�t can be used to improve
the modelling error. In this regard, the proposed algorithm
considers that while the BLA is divided and nonlinearity is
captured, the pole-zero locations can change subtly.

Both operations used on this portion of genetic informa-

tion produce o
spring vector P̃g, which directly inherits from
its parent P

g

i all the genetic information except in a gene.
�is gene will be selected using a random integer number �� ∈ [1, . . . , � + 2�� +" + 2"�] and modi�ed according to
the corresponding genetic operatormutationM.1 or crossover
C.1.

Mutation M.1. �e selected gene is mutated to explore in an
individualized way new pole-zero locations of the BLA. A

new location 8̃�� is determined by a randomnumber&�� with
Gaussian distribution:

8̃�� = {{{
8��,� + &�� (0, <2 (')) if (� =  ��)8��,� otherwise, (16)

where � = 1 ⋅ ⋅ ⋅ � + 2�� +" + 2"�. 8��,� and 8̃�� represent the
jth elements of vectors P

g

i and P̃
g, respectively.

�e new locations for poles and zeros are explored within

a search space de�ned by P
min and P

max; therefore, 8min

� ≤8̃�� ≤ 8max

� , where 8min

� and 8max

� are the jth elements of

vectors Pmin and P
max, respectively (see Section 3.3 for more

details on search space for poles and zeros).

2
ＣＨＣ

2
end


2
(g

)

1 MaxGen

g

Figure 3: Variation of standard deviation over generations to con-
trol the aggressiveness of mutations.

Aggressiveness of mutations can be controlled through
the standard deviation:

<2 (') = Δ �100 ( <2
ini√1 + ' ∗ <2

ratio

),
<2
ratio

= (<2
ini
/<2

end
)2 − 1

MaxGen − 1 ,
(17)

where MaxGen is the prede�ned number of algorithm gen-

erations; <2
ratio

is the rate at which the standard deviation

will decrease from <2
ini

to <2
end

as the generations pass (see
Figure 3); the parameter Δ � bounds the limits of the interval
in which the selected gene can be moved. For this mutation,Δ � = 8max

��	 − 8min

��	 . Variation of <2(') will allow mutations to

be more subtle in the last generations to achieve a �ne-tuning
of the corresponding parameters.

Crossover C.1. �e selected gene is formed using genetic
information from the parent, 8��,�, combined with the corre-

sponding genetic information from the best individual,8�
best,�,

in the current population:

8̃�� = {{{{{
8��,� + 8�

best,�2 if (� =  ��)8��,� otherwise, (18)

where � = 1 ⋅ ⋅ ⋅ � + 2�� + " + 2"�.
3.2.2. Nonlinear Static Function. As the algorithm evolves,
points for nonlinear static function must be located ade-
quately in the V-� plane.Here any type of interpolation can be
used to capture the static nonlinearity. To achieve a good �t,
mutations M.2 and M.3 plus a crossover operation are used.
Both mutations used on this portion of genetic information

produce o
spring vector B̃g, which directly inherits from its
parent B

g

i all the genetic information except in two genes.
�is pair of genes represents the coordinates of the point that
will be modi�ed. Unlike mutation operations, the crossover
operation generates o
spring with a single modi�ed gene
which corresponds to the ordinate of a point. Given the
correspondence between the abscissa and the ordinate of
a point, for the three operations a single integer random
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wＧax

wＧin
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(t
)

v(t)

Ｇin Ｇax





Selected point

(Bg
i,r−1

, B
g
i,n+r−1
)

(Bg
i,r+1

, B
g
i,n+r+1
)

(B̃g
r

, B
g
n+r
)

Figure 4: Bounds for mutation M.2. Grey area indicates Ẽ���	 andẼ��+��	 feasible space.
number  	� ∈ [1, �] will allow us to select the gene(s) to be
modi�ed.

Mutation M.2. �is genetic operation allows us to explore
in the V-� plane new positions for the points. �e mutation
in both genes is handled by random numbers (&

V
, &�) with

Gaussian distribution:

Ẽ�� =
{{{{{{{{{
E��,� + &

V
(0, <2 (')) if (� =  	�)E��,� + &� (0, <2 (')) if (� = � +  	�)E��,� otherwise

(19)

with � = 1 ⋅ ⋅ ⋅ 2�. E��,� and Ẽ�� represent the �th elements of

vectors B
g

i and B̃
g, respectively. To avoid overlapping points,

bounds for mutations on the abscissa axis are set depending

on the selected point to mutate (Ẽ���	) and the location of its

neighbors according to

(i) E��,��	 + F < Ẽ���	 < E��,��	+1 − F; if  	� = 1,
(ii) E��,��	−1 + F < Ẽ���	 < E��,��	+1 − F; if  	� = 2 ⋅ ⋅ ⋅ � − 1,
(iii) E��,��	−1 + F < Ẽ���	 < E��,��	 − F; if  	� = �,

where F is a user-de�ned parameter that indicates how close
the points can be located. To achieve a good �t of the
nonlinearity F must be small, relative to the search space
on the abscissa axis de�ned by Vmin and Vmax. Note that the
horizontal boundaries for the endpoints are delimited by
their position and their le� or right neighbor, respectively.
Bounds for mutations on ordinate axis are �xed and equal for
all points. �is allows each point to move freely throughout
the search space on the ordinate axis de�ned by �min and�max. �e vertical and horizontal bounds for a selected point
are illustrated in Figure 4. When mutation M.2 is required,
the selected point can be changed to a newpositionwithin the
grey rectangle. Details on how to determine Vmin, Vmax �min,
and �max will be given in Section 3.3.

To achieve a �ne-tuning of all nonlinearity points, muta-
tions’ aggressiveness can be controlled through standard

deviation (17) as inmutationM.1. Note thatΔ � = �max−�min

is constant for all mutations over ordinate axis, while for
abscissa axis mutations, Δ � can be calculated as

Δ � = {{{{{{{{{
E��,��	+1 − F − Vmin; if ( 	� = 1)E��,��	+1 − E��,��	−1 − 2F if ( 	� = 2 ⋅ ⋅ ⋅ � − 1)
Vmax − E��,��	−1 − F if ( 	� = �) . (20)

MutationM.2 has great potential to explore the searching
space. �is genetic operation will locate points where there
are slope changes. During �rst generations, it is useful to
shape nonlinearity, while in last ones, it allows a re�nement.
However, when a point is located where there is a slope
change, it could be kept in this location until the end of gener-
ations, especially when there are abrupt changes in the slope.
Because jumps between points are not allowed withmutation
M.2, when a point is kept in a placewhere there is a signi�cant
change of slope, one or more points would remain trapped
to the le� or right of it. �is would lead to having redun-
dant points in a segment that would not require so many
orworse, to having a segment (curvature) that would not con-
tain enough points. To avoid this drawback, the exploration
in the search space is complemented with mutation M.3.

Mutation M.3. �is genetic operation is designed to con-
centrate as many points as possible on the curvatures that
nonlinearity can have.�erefore, it will be required that each
point can be displaced on the abscissa axis by jumping one or
more positions of the other points. Let us de�ne a segment as
the horizontal space between two consecutive points (so for� points there will be � − 1 segments); then a random integer
number  � ∈ [1, � − 1] will indicate to which segment the
selected point will move. �e �rst half of the o
spring vector
is found using the following expression:

Ẽ�� = {{{{{
E��,�
 + E��,�
+12 if (� =  	�)E��,� otherwise

(21)

with � = 1 ⋅ ⋅ ⋅ �. Note that if  	� =  � or  	� =  � − 1, the
corresponding point will not make a jump but it will be
located at the midpoint between its current position and
the position of the point on the right or le�, respectively.
As in the mutation M.2 to prevent points from getting too
close together, the F parameter is also used in this mutation;
therefore, a jump is conditioned to the space available in the
selected segment to accommodate a new point. Minimum
space should be 2F. If this condition is not met,  � must be
regenerated to randomly search for another segment.

To provide a smooth transition between adjacent seg-
ments, gene mutation corresponding to the position on the
ordinates axis is performed using a quadratic interpolation.
To do that, three neighboring points are required.�e second
half of the o
spring vector is found using the following ex-
pression:
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Ẽ�� =
{{{{{{{{{{{{{{{
[(Ẽ��−�)2 , Ẽ��−�, 1] ∗ [[[[[

N2N1N0
]]]]]

if (� = � +  	�)
E��,� otherwise

(22)

with � = � + 1 ⋅ ⋅ ⋅ 2�. Ẽ��−� is the V-coordinate of the selected
point to mute which can be found with (21); N0, N1, and N2
are the coe�cients of the quadratic polynomial Ψ de�ned by
three adjacent points selected once the new V-coordinate of
the point that is mutating is known.�e three adjacent points
can be selected directly when a point has mutated to the �rst
or last segment,

Ψ = {{{
�((E��,1, E��,�+1) ; (E��,2, E��,�+2) ; (E��,3, E��,�+3)) : if ( � = 1)� ((E��,�, E��,2�) ; (E��,�−1, E��,2�−1) ; (E��,�−2, E��,2�−2)) : if ( � = � − 1) , (23)

while if the point has mutated to a nonextreme segment, the
three adjacent points can be selected using the two points that

de�ne that segment plus one on its right or le�. For more
e
ective exploration, a random number  3� ∈ (0, 1] is used
for selection:

Ψ = {{{
�((E��,�
−1, E��,�+�
−1) ; (E��,�
 , E��,�+�
) ; (E��,�
+1, E��,�+�
+1)) : if ( 3� ≤ 0.5)� ((E��,�
 , E��,�+�
) ; (E��,�
+1, E��,�+�
+1) ; (E��,�
+2, E��,�+�
+2)) : otherwise

. (24)

Figure 5 illustrates how a jump occurs withmutationM.3.
Notice that the new ordinate is calculated according to the
polynomial formed by the two points of the segment plus
a point to the right: that is,  3� > 0.5. A�er a jump has
occurred, an ascending reordering of the points with respect
to the abscissa values is necessary.

Crossover C.2.�is genetic operationworks just like crossover
C.1 and is applied only to vary the position of a point on the
ordinate axis:

Ẽ�� = {{{{{
E��,� + E�

best,�2 if (� = � +  	�)E��,� otherwise

(25)

with � = � + 1 ⋅ ⋅ ⋅ 2�. E�
best,� is the �th element of vector B

g

best
,

which corresponds to the individual in the current popula-
tion ' with the best �tness value.

3.2.3. Pole-Zero Classi�cation. Due to the stochastic nature of
evolutionary algorithms, the binary values of (11) will change
as the algorithm evolves, generating di
erent structures of��(�) and �ℎ(�). �e evolution of this piece of genetic
information is handled by a simple mutation operator.

Mutation M.4. Unlike the previous ones, this operator gen-

erates a new vector C̃g that depends entirely on the e
ects of
mutation, meaning that for this piece of genetic information
there is no information exchange between generations. �is
allows free testing of di
erent structures for ��(�) and �ℎ(�)
to avoid premature convergence. When this operation is
required, a randomprocess will generate themutation vector:

Ṽ�� = {{{
1 if&
 ≤ 0.50 otherwise

(26)

with � = 1 ⋅ ⋅ ⋅ �� + � + "� + " . Ṽ�� is the �th element of

vector C̃g.&
 is a randomnumberwith standard uniformdis-
tribution on the open interval (0, 1). Note that the structure
of C̃g is built under two considerations: the LTI subsystems
cannot be improper and the sum of zeros and the sum of the
poles between both subsystems must be equal to the number
of zeros and poles of the BLA, respectively.

3.3. WH-EA Description. WH-EA is an elitist evolutionary
algorithm that evolves a population of &8 individuals. Each
individual contains three portions of genetic information
related to the parameters of a Wiener-Hammerstein model(�gi = [Pg

i ,Bg

i ,Cg

i ]). Like any other evolutionary algorithm,
WH-EA is inspired by biological evolution over generations.
Starting from an initial population, new generations are
created using information of the current generation ' and
performing crossover and/or mutation operations and selec-
tion based on the �tness of the new individuals. Algorithm 1
shows a pseudocode of main steps performed in WH-EA,
whereas details of all the parameters that the algorithm uses
are shown in WH-EA Parameters.

Initialize the Population. �e initial population [P0
B
0

C
0]

contains &8 individuals generated within a search space
delimited by lower and upper bounds. For each piece of
genetic information, the lower and upper bounds can be
determined from the information provided by the BLA
(location of poles and zeros and static gain).

Real and imaginary values of poles and zeros from the
BLA without modi�cations are introduced as part of the �rst
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Figure 5: Mutation M.3 with  	� = 2,  � = 4, and  3� > 0.5. Jump
to the selected segment (dashed line). Quadratic polynomial (solid
line).

(1) Initialise the population;
(2) Evaluate �tness of all population;
(3) for ' = 1 toMaxGen do

(4) Find �g
best

(5) Random selection of a individual ( 1);
(6) Compute W(');
(7) if  ���� ≤ W(') then
(8) Compute B̃g using Algorithm 2;
(9) else

(10) Compute P̃g using Algorithm 3;
(11) end if

(12) if  
 ≤ X then
(13) Compute C̃g using Mutation M.4;
(14) end if

(15) Update population;
(16) end for

(17) Print �MaxGen
best

Algorithm 1: Pseudocode of WH-EA.

individual P0
1 of the initial population. For the rest, mutation

M.1 (16) is used but �xing the parent vector as P0
1, that is, the

BLA.
�erefore, mutation M.1 must be executed &8 − 1 times

under the above conditions to generate mutated versions
of the BLA. Initialization and mutation M.1 are performed

considering a search space delimited by lower bound P
min

and upper bound Pmax which are set around the values of the
BLA: 8min

� = 801,� − Υmin

� ,
8max

� = 801,� + Υmax

� , (27)

where Υmin

� and Υmax

� represent the �th elements of the user-

de�ned vectors Υmin and Υmax, respectively, indicating how
much the BLA’s pole/zero position can change as the algo-
rithm evolves.

On the other hand, the initial population corresponding
to two-dimensional points must be generated within a search
space de�ned horizontally by the minimum (Vmin) and

maximum (Vmax) amplitude of V(�) (the output of ��(�))
and vertically by the minimum (�min) and maximum (�max)
amplitude of �(�) (the input to �ℎ(�)). Although V(�) and�(�) are not known, Vmin and Vmax depend on the input�(�) and ��(�). Since ��(�) is a linear system, the following
expressions can be used:

Vmin = Ω ∗ �min,
Vmax = Ω ∗ �max, (28)

where �min and �max are the minimum and maximum values
of the signal �(�), respectively, andΩ is a scaling factor which
depends on the pole/zero locations and the static gain of��(�). Without loss of generality, it is possible to model a
Wiener-Hammerstein system considering that both linear
blocks have unit gain.

Regarding �min and �max, if the input �(�) with mean�mean enters��(�) regardless of its structure, the mean of the
output signal Vmean will be equal to �mean. �is is not the case
when the signal V(�) enters the nonlinear block since the gain�NL might provide an o
set to�(�). However, since�ℎ(�) is a
linear block, the mean of the output mean will be equal to the
mean of the incoming signal �mean. With this information,
the straight line of Figure 6 can be drawn, and�min and�max

can be found using the following equations:

�min = mean + �NL (Ω�min − �mean) ,�max = mean + �NL (Ω�max − �mean) . (29)

As can be seen from (28) to (29), the search space for non-
linearity depends on the input signal, output signal, static gain
of the BLA, and Ω which is a user-de�ned parameter. Since
both linear subsystems will be estimated with unit gain, nei-
ther of these will amplify their input signals, therefore Vmin >�min and Vmax < �max. For these two conditions to be met, Ω
must be less than one. In the same way, it must be observed
that �min < min and �max > max. If Ω is less than one, the
�rst pair of conditionswill always bemet; however, there is no
guarantee that the second pair of conditionswill bemet. Since
it is possible to perform this check prior to the execution of
the algorithm, if the second pair of conditions are not met,Ω must be increased, but considering that it must be less
than one. It should also be taken into account that ifΩ is too
large, the search space will be larger than necessary, so the
algorithm will cost more to estimate static nonlinearity.

To initialize this portion of genetic information, the �
points are uniformly distributed between Ω�min and Ω�max

and located on the straight line shown in Figure 6. �ese
points are introduced as part of the �rst individual in the
population B

0
1. �e corresponding genetic information for

the rest of individuals is generated using mutation M.2 (19),
but considering that the parent vector is always B0

1.
Finally, genetic information corresponding to pole-zero

classi�cation is initialized directly using mutation M.4 (26)&8 times.

Evaluate Fitness. Performance of each individual in the popu-
lation is de�ned by a �tness criterion which can be calculated
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Figure 6: Information to de�ne the search space for the nonlinear function.

using (14), where � is obtained from the encoded information
in [Pg

i ,Bg

i ,Cg

i ].
�e O�spring. Once population has been initialized, for each
generation a random integer number  1 ∈ [1,&8] will be
used to select the parent from which an o
spring P̃g will be
generated. As can be seen in Algorithm 1, not all genetic ope-
rators are applied at the same time to generate o
spring; this
can help to expand diversity and avoid premature conver-
gence.

One or two pieces of the o
spring genetic information
will be randomly selected for modi�cation according to their
respective genetic operators. A random number  ���� ∈(0, 1] chooses betweenmodifying the portion related to static
nonlinearity using Algorithm 2 or the portion of genetic
information related to pole/zero locations using Algorithm 3.
�e probability for this selection is handled by the control
parameter W(') de�ned as

W (') = Wini√1 + ' ∗ Wrat ,
Wrat = (Wini/Wend)2 − 1

MaxGen − 1 , (30)

where Wrat is the rate at which the probability W(') will
decrease from initial probability Wini to �nal probability Wend
as generations pass; therefore, 0 < Wend < Wini ≤ 1. If Wini =1, the probability of modifying the genetic information of
nonlinearity in the �rst generations will be high, while the
probability of modifying the location of poles and zeros will
be low.On the other hand, if and Wend = 0.5, in the �nal gener-
ations, the algorithm will modify with equal probability both
portions of genetic information.�e selection of these values
is justi�ed by the fact that pole/zero locations are known and
they will only be �ne-tuned within a suitable search space
to amend possible errors in the BLA estimation, whereas
nonlinearity is completely unknown, so the algorithm should
focusmore on this portion of genetic information during �rst
generations.

Variation of genetic information corresponding to the
classi�cation of poles and zeros for both LTI subsystems is
handled by a comparison between a random number  
 ∈(0, 1] and the probability X ∈ (0, 1]. �e value of probabilityX is de�ned by the user and will be constant throughout

(1) if  ��
 ≤ ^�� then
(2) Compute _(')
(3) if  �� ≤ _min + _(') then
(4) Mutation M.2;
(5) else

(6) Mutation M.3;
(7) end if

(8) else

(9) Crossover C.2;
(10) end if

Algorithm 2: Modify two-dimensional points for nonlinear func-
tion.

(1) if  ��
 ≤ ^�� then
(2) Mutation M.1;
(3) else

(4) Crossover C.1;
(5) end if

Algorithm 3: Modify polo/zero locations.

the evolution of the algorithm. Figure 7 shows the behaviour
of the control parameters (probabilities) used to select the
portions of genetic information that will be modi�ed in each
generation.

Algorithm 2 is used to modify the genetic information
related to nonlinear static function. �e control parameter^�� ∈ (0, 1] indicates the probability with which the mutation
(either M.2 or M.3) or crossover C.2 will be used. Probability
of selecting M.2 or M.3 is variable with respect to the
generations. During �rst generations, mutation M.3 is not
necessary, since the nonlinearity can be captured thanks to
the two-dimensional points movements due to mutationM.2
and crossover C.2 operations. Since it is very likely that
nonlinearity includes one or more curvatures, as the algo-
rithm evolves mutation M.3 will be required to concentrate
as many points as possible on these curvatures. �e variable
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probability for selection between both mutations is de�ned
by

_ (') = (1 − _min) − (1 − _min) '
MaxGen

, (31)

where _min ∈ (0, 0.5] is a user-de�ned parameter indicating
the minimum probability with which the mutation M.2 can
be selected. Note that according to (31) and Algorithm 2, the
maximum probability is 1 and occurs in the �rst generation.
As the algorithm evolves, this probability will decrease
linearly until it reaches _min in the last generation. When
Algorithm 2 is required a random number  ��
 ∈ (0, 1] will
allow us to select either a mutation or crossover C.2. If a
mutation is selected, a new random number  �� ∈ (0, 1] will
allow us to select between mutation M.2 or mutation M.3.

On the other hand, Algorithm 3 is used to modify the
genetic information related to pole/zero locations using
mutation M.1 or crossover C.1. �e control parameter ^�� ∈(0, 1] indicates the probability with which each genetic
operation will be used. Since crossover C.1 causes o
spring to
inherit genetic information from the best individual, a small
value of ^�� may lead to premature convergence, whereas a
value closer to 1 will cause the algorithm to converge very
slowly. When Algorithm 3 is required, a random number ��
 ∈ (0, 1] will determine the genetic operation to be used.

Update. It is based on a competition between the generated
o
spring and the individuals of the population. �e contes-
tant with the best �tness will be the one who wins the com-
petition. From a randomly selected individual, the o
spring
starts to compete until defeating an individual; when this
happens the descendant will take his place in the population
and the algorithm continues with the next generation. If the
o
spring comes to compete with all individuals and could not
win, this will be discarded and the algorithm will pass to the
next generation.

4. Application of WH-EA and Results

WH-EA was tested on a numerical example and on the
benchmark for nonlinear system identi�cation in (SYSID’09)
[9], where a Wiener-Hammerstein system is selected as test
object. �e benchmark is not intended as a competition, but
as a tool to compare the possibilities of di
erent methods to
deal with this speci�c nonlinear structure.

For both cases, the BLAwas estimated with theMATLAB
System Identi�cation Toolbox [60] using a Box-Jenkins (BJ)
structure. Besides, trends and means were only removed
for the BLA identi�cation. �e following parameters of the
algorithm were set in common for both estimates: X = 0.25;^�� = 0.75; ^�� = 0.75; _min = 0.35; in addition, initial and
�nal standard deviations for mutations were set to 20 and 1,
respectively.

4.1. Numerical Example. A Wiener-Hammerstein system
with the following structure was designed (where tansig is the
hyperbolic tangent sigmoid transfer function):

��� (�) = 0.1190(� − 0.9048) ,
�� (�) = 0.45 tansig (2.80V� (�)) ,
��ℎ (�) = −0.01426

⋅ (� − 1.0510) (� + 1)(� − 0.9746 + 0.03656�) (� − 0.9746 − 0.03656�) .
(32)

A Gaussian excitation signal of 6 dB was �ltered with
a cut-o
 frequency of 6Hz and used as input signal. �e
system was simulated and 120000 input/output samples were
recorded and separated in two parts: the estimation data set�� ∈ [1001, 70000] for identi�cation purposes and the test
data set �� ∈ [71001, 120000] for validation purposes (in both
data sets �rst 1000 samples were ignored to avoid transient
e
ects). Furthermore, additive white Gaussian noise with a
Signal-to-Noise Ratio (SNR) of 45.32 dB was added to the
output.

�e identi�cation of the BLA was carried out and the
model obtained was expressed in factored form:

�BLA = −1b−3
⋅ (� − 1.0508) (� + 0.9631)(� − 0.9749 + 0.0366�) (� − 0.9749 − 0.0366�) (� − 0.9045) . (33)

�e root mean square of the error (eRMS) obtained with
this linear model on test data was of 0.0414.

According to the BLA structure, vectorP0
1 was codedwith�� = 0, � = 2,"� = 1, and" = 1 as follows:

P
0
1 = [1.0508, −0.9631, 0.9749, 0.9045, 0.0366] . (34)

�e search space for nonlinear function was de�ned withΩ = 0.28, while elements of Υmin and Υmax were set to 0.01
(except bounds for the zero � = −0.9631 that were set to
0.1, since it in�uences slightly the dynamics and should have
freedom of movement during tuning).
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Table 1: Performance of the numerical example estimation using
di
erent numbers of points � to represent static nonlinearity.
� NRMSE (%) bRMS

8 99.179 1.183b−3
10 99.396 1.109b−3
12 99.564 1.044b−3
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Figure 8: Convergence graph (a) and NRMSE of the captured non-
linearity (b) for Wiener-Hammerstein estimation with � = 12.

WH-EA was executed 3 times with MaxGen = 5 ⋅ 106
and di
erent number of points was chosen for the non-
linearity. For all trials, the algorithm was initialized with
60000 individuals and the minimum distance between two
points was set to F = (Vmax − Vmin)/6�. For each estimated
Wiener-Hammerstein model, the eRMS on the test data was
computed; in addition, the normalized root mean square
error (NRMSE) criterion was used to quantify the goodness
of �t between real and captured nonlinearity. �e results are
reported in Table 1; for all cases piecewise linear interpolation
was used to connect the � points.

�e poles and zeros of the BLAwere correctly classi�ed in
the three tests carried out. As can be seen in Table 1, the eRMS
of the Wiener-Hammerstein models decreased as the quality
of the captured nonlinearity increases. A reasonable model
was scored with 12 points considering that the RMS noise

was 9.98b−4. A convergence graph for this model is shown
in Figure 8, during WH-EA execution, at 6b4th generation
the poles and zeros of the BLA were correctly classi�ed, and
from there the best individual of each generation conserved
the genetic information for this classi�cation. Since the noise
RMS is known, at ' = 1b6 the performance of the model
was good enough, so the algorithm could have been stopped.
Anyway, 5b6 generations have been allowed in order to de-
monstrate the great precision that the algorithm can achieve.

In Figure 9, pole/zero locations of the BLA, the obtained
Wiener-Hammerstein model, and real system are compared.
Notice howWH-EA has moved initial locations trying to get
to the true values improving modelling error.

On the other hand, a graphical comparison between
real and captured nonlinearity is shown in Figure 10. Linear

subsystems of the estimatedWiener-Hammerstein model are
represented by (35), while the ordered pairs for the nonlinear
static function are shown in Table 2.

�� (�) = 0.0259� − 0.9048 ,�ℎ (�) = −0.01960
⋅ (� − 1.0512) (� + 0.9713)(� − 0.9746 + 0.0365�) (� − 0.9746 − 0.0365�) .

(35)

4.2. Nonlinear System Identi�cation Benchmark. �e system
to be modelled is an electronic nonlinear circuit with a
Wiener-Hammerstein structure (see Figure 11). �is system
was built by Vandersteen [61] and presented as a benchmark
problem for system identi�cation by Schoukens et al. [9].

�e �rst linear dynamic system �1(c) is designed as a
third-order Chebyshev �lter (pass-band ripple of 0.5 dB and
cut-o
 frequency of 4.4 kHz). �e second linear dynamic
system �2(c) is a third-order inverse Chebyshev �lter (stop-
band attenuation of 40 dB starting at 5 kHz). �is system
has a transmission zero in the frequency band of interest.
�is can complicate the identi�cation signi�cantly, because
the inversion of such a characteristic is di�cult. �e system
was excited with a �ltered Gaussian signal (cut-o
 frequency
10 kHz). Data used for estimation corresponds to interval �� ∈[1, 100000], whereas test data corresponds to the remaining
part �� ∈ [101001, 188000]. In order to analyse the perform-
ance of estimationmethods, themean value of the simulation
error (d), the standard deviation of the error (std), and the
root mean square value of the error (eRMS) must be calcu-
lated on test and estimation data [9].

Since �rst 5000 data samples just contain quantization
noise, a set of 95000 input/output data �� = 5001, . . . , 100000
was used to estimate the BLA.Multiple simulations were per-
formed considering di
erent combinations of poles and zeros
for the input/output model and for the noise model. For each
BJ model, the eRMS on test data set �� = 101001, . . . , 188000
was computed. �e BLA was obtained with 6 poles, 5 zeros,
and one sample delay for the input/output model and 3 zeros
and 3 poles for the noise model. �e BLA is fully described
with �NL = 0.7840 and the pole-zero pattern shown in
Figure 12. �e eRMS of this linear model was of 56.159mV
on test data and 43.143mV a�er removing trends and means.
According to the BLA structure, vector P0

1 was coded with�� = 1, � = 4,"� = 2, and" = 2 as follows:
P
0
1 = [0.7605, −0.2733, 0, −3.4122,− 30.2553, 0.6501, 0.7314, . . . ,0.8912, 0.8289, 0.7004, 0.4358, 0.1692] .

(36)

During BLA estimation stage, di
erent noisemodels were
tested and it was observed that all poles, real zeros within
the unitary circle, and complex zeros where they are located
correspond to the dominant dynamics of the system, while
real zeros outside the unitary circle were more likely to vary
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Figure 9: (a) Poles of the real system (black +), the BLA (red ×), and the estimated �� (blue ×) and �ℎ (green ×) models. (b) Zeros of the
real system (black ⬦), the BLA (red o), and the estimated �ℎ model (green o).

Table 2: Coordinates of the estimated nonlinearity with � = 12.
i 1 2 3 4 5 6 7 8 9 10 11 12

V� −0.9694 −0.5794 −0.3716 −0.2479 −0.1251 0.1038 0.1996 0.2893 0.3363 0.4739 0.7648 1.0808�� −0.3303 −0.3250 −0.2894 −0.2354 −0.1415 0.1178 0.2031 0.2558 0.2754 0.3126 0.3309 0.3317
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Figure 10: Comparison between true (solid-blue) and estimated
nonlinearity de�ned as a piecewise linear function (dashed-red)
using pairs [V�, ��] (red circles).
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Figure 11: Wiener-Hammerstein benchmark.

their location.�is information was used to de�ne the search
space for re�ning the location of poles and zeros:

Υmin = [0.025, 0.025, 0.025, 1, 10, 0.025, 0.025, . . . ,0.025, 0.025, 0.025, 0.025, 0.025] ,
Υmax = [0.025, 0.025, 0.025, 1, 10, 0.025, 0.025, . . . ,0.025, 0.025, 0.025, 0.025, 0.025] .

(37)

Bounds (37) limit search space in the system dominant
dynamics within ±0.025, while for � = −30.255 and � =−3.412, limits are between ±10 and ±1, respectively.

Static nonlinearity is represented by piecewise linear
functions with � = 8 points. Its search space was de�ned withΩ = 0.51 and the minimum distance between two points
was calculated with F = (Vmax − Vmin)/10�. �e algorithm
was initialized with 5000 individuals and 3b7 generations
were executed. �e performance of the estimated Wiener-
Hammerstein model is shown in Table 3. In Figure 13, it
is depicted how the algorithm has distributed pole/zero
locations for both linear subsystems. Notice how some of
them were displaced to improve the modelling error. �e
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Figure 12: Poles (×) and zeros (o) of the BLA for the benchmark
data (SYSID’09). Two real zeros fall outside the plot in −30.2553 and−3.4122.
outputs of the estimated Wiener-Hammerstein model, the
linearmodel error, and the nonlinearmodel error on test data
are shown in Figure 14, while the DFT spectra of this signals
are shown in Figure 15. Captured nonlinearity is plotted in
Figure 16.

Final estimated linear blocks ��(�) and �ℎ(�) are shown
in (38) and (39) respectively, while coordinates for nonlin-
ear function are shown in Table 4. �e estimated Wiener-
Hammerstein model contains 26 parameters of which 14 are
used to represent the static nonlinearity (without end points
since they can be located anywhere on their respective end
segments; nevertheless, these segments slopes are taken into
account). Figure 16 shows how mutation M.2 and mutation
M.3 located the two-dimensional points to capture the non-
linearity. As expected, due to the e
ect of mutationM.3, most
of them were concentrated on the curvature.

�� (�) = 6.5b−4
⋅ (� + 0.0138) (� + 2.9034) (� + 26.76)(� − 0.7243) (� − 0.7324 + 0.4361�) (� − 0.7324 − 0.4361�) , (38)

�ℎ (�) = 0.0120
⋅ (� + 0.2635) (� − 0.7575 + 0.6513�) (� − 0.7575 − 0.6513�)(� − 0.8191) (� − 0.8899 + 0.1688�) (� − 0.8899 − 0.1688�) . (39)

4.3. Discussion. In contrast to other methods which generate
good initial estimates by splitting the poles and zeros of the
BLA, WH-EA allows us to identify Wiener-Hammerstein
models avoiding high user interaction which is an advantage
compared to methods using QBLA, where at least two
intermediate procedures are required before �ne-tuning all
parameters of the Wiener-Hammerstein model.

�e eRMSof 0.306mVachievedwithWH-EAon test data
is quite acceptable considering that the RMS of the quanti-
zation noise is 0.189mV. With respect to the initial model
(BLA), the error was reduced by a factor of 183.52 thanks

to the captured nonlinearity and the updated pole/zero
locations. Table 5 shows other proposals that have been tested
on the benchmark. It can be appreciated that the eRMS of this
paper is slightly higher than others; however, not all estimated
models have the same complexity. Some of them use complex
models with a greater number of parameters processing raw
data before identi�cation, while in this work, WH-EA is fed
raw input/output data without preprocessing operations.

Comparing WH-EA with the proposals of Westwick and
Schoukens [42] and Vanbeylen [43] whose models have the
same complexity as the model estimated in this paper, the
results are quite similar; however, to obtain a good�nalmodel
with these two proposals, it is required that the BLA be esti-
matedwith high precision. InVanbeylen [43] at the BLAdivi-
sion phase, a false position of a pole or zero could cause the
values of the fractional powers to be close to 1/2which would
cause the user to make a bad decision and the BLA is badly
divided.�is problem is much more critical inWestwick and
Schoukens [42] since themethod is based on a graphical com-
parison between the poles and zeros of the BLA and the poles
and zeros of the QBLA.WithWH-EA, this problem does not
occur, since the evolutionary algorithm contemplates possi-
ble errors that can bemade in the estimation of the BLA.Dur-
ing the algorithm evolution, the binary code used for the
classi�cation of the poles and zeros of the BLA can be changed
without user interaction as the false positions of the poles
and zeros are corrected. �is is an important advantage of
WH-EA, since it is very likely that the BLA estimate is sub-
ject to errors due to noise and nonlinearity e
ects; this has
been experimentally demonstrated; for this reason, many
proposals carry out a �nal readjustment of the parameters of
the Wiener-Hammerstein model.

About the computational complexity, an iteration inWH-
EA involves the random selection of an individual from the
population, the o
spring generation according to the genetic
operations indicated in Section 3, the calculation of the objec-
tive function of the o
spring, and the population update.�is
algorithm was implemented on MATLAB� so�ware and was
run on a personal computer with core i7 processor of 2,6GHz
and 16Gb of RAM. �e objective function was easily imple-
mented using the �lter command to simulate both linear sub-
systems, while the nonlinearity was interpolated using the
interp1 command. For the benchmark system, the average
time consumed per 50 iterations was 1.16 s.

5. Conclusions

In this paper, a new method (WH-EA) to identify Wiener-
Hammerstein systems in a single step is proposed. �e pro-
posal estimates all parameters of the Wiener-Hammerstein
model based on a customized evolutionary algorithm (WH-
EA). Unlike conventional procedures, WH-EA is able to look
for the best BLA split capturing at the same time the process
static nonlinearity with high precision, solving a single opti-
mization problem. �e algorithm is fed with the estimated
BLA and its pole/zero locations are subtly modi�ed within an
adequate search space to allow its �ne-tuning, while piece-
wise linear function is used for the nonlinear block. �e
performance of this approach has been evaluated through
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Table 3: Performance indicators of the estimated Wiener-Hammerstein model. All values are shown in mV.

BLA Wiener-Hammerstein

Estimation Test Estimation Testd −35.825 −35.951 5.6b−4 1.1b−5
std 42.108 43.143 0.322 0.306bRMS 55.286 56.159 0.322 0.306
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Figure 13: (a) Poles (×) and zeros (o) of the linear subsystem �� (blue) and BLA (red). Zero in � = −30.2553 belonging to BLA and its
adjusted �nal value in � = −26.7609 fall outside the plot. (b) Poles (×) and zeros (o) of the linear subsystem �ℎ (green) and BLA (red).
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Figure 14: Model output (blue), simulation error of the BLA (grey),
and simulation error of the estimated Wiener-Hammerstein model
(black).

a numerical example with a complex static nonlinearity and
through the well-known benchmark data (SYSID’09). �e

results show that it is possible, using WH-EA, to identify
a Wiener-Hammerstein system with a good precision in a
parametric framework avoiding high user interaction and
drawbacks involved in using the QBLA. Further research will
be related to WH-EA extension for nonlinear multivariable
systems by using a multiobjective optimization approach.

WH-EA Parameters

nc: Number of pairs of complex conjugate
zeros of the BLA

nr: Number of real zeros of the BLA
mc: Number of pairs of complex conjugate

poles of the BLA
mr: Number of real poles of the BLA
n: Number of points to

represent nonlinearity�NL: Static gain of the BLA
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Table 4: Nonlinearity coordinates (� = 8, 14 parameters) estimated by WH-EA from benchmark data.

! 1 2 3 4 5 6 7 8

V� −0.2168 0.1596 0.3819 0.4943 0.6047 0.7596 1.0811 1.3953�� −0.1979 0.1440 0.3443 0.4276 0.4822 0.5248 0.5698 0.5901

Table 5: Performance measurements on benchmark data (SYSID’09). All the values are shown in mV. f indicates the number of parameters
used for the model.

Method/technique bRMS (mV) f
Nonparametric BLA, QBLA [41] 0.278 44

Classi�cation of poles and zeros using QBLA [42] 0.286 26

Fractional model parameterization [43] 0.295 26

Advanced method [44, 45] 0.30 64

WH-EA (this paper) 0.306 26

Brute force method [45] 0.31 30

Scanning technique [46] 0.370 -

Polynomial nonlinear state space [47] 0.42 797

Generalized Hammerstein-Wiener [48] 0.481 47

Incremental nonlinear optimization [49] 0.679 25

LS-SVMs [50] 4.070 -

Biosocial culture [51] 8.546 34
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Figure 15: DFT spectra of the modelled output signal (blue), linear
model error (grey), and nonlinear model error (black).
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Figure 16: Captured nonlinearity as a piecewise linear function
with � = 8 by WH-EA from the benchmark data. Notice that the
nonlinear block characterization only needs 14 parameters since the
�rst and last straight segments can be de�ned just with their angles.

<2
ini
, <2

end
: Initial and �nal standard deviations for
control of the aggressiveness of mutations

M.1 and M.2 (<2
ini

> <2
end

)<2
ratio

: Rate with which the standard deviation<(')2 decreases from <2
ini

to <2
endΔ �: Space over which a gene can moveF: Minimum distance between

two points on the abscissa axis for
mutations M.2 and M.3Ω: Scale factor to de�ne the search space for
static nonlinearity

MaxGen: Generations number
NP: Population size^��: Control parameter for selection between

mutation M.1 or crossover C.1^��: Control parameter for
selection between mutation (either M.2 or
M.3) or crossover C.2_('): Variable probability for selection between
mutation M.2 or mutation M.3_min: Minimum probability for selection of
mutation M.2. �e maximum probability
for this selection is 1W('): Variable probability to choose between
modifying static nonlinearity or location
of poles and zerosWrat: Rate at which W(') will decrease from
initial probability Wini = 1 to �nal
probability Wend = 0.5X: Probability to modify the genetic
information related to the classi�cation of
poles and zeros.
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brid wiener-hammerstein structure for grey-box modeling of
dc-dc converters,” in Proceedings of the 24th Annual IEEE
Applied Power Electronics Conference and Exposition, APEC, pp.
280–285, USA, February 2009.

[33] A. Haryanto and K.-S. Hong, “Maximum likelihood identi�ca-
tion of wiener-hammerstein models,” Mechanical Systems and
Signal Processing, vol. 41, no. 1-2, pp. 54–70, 2013.
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