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Whale counting in satellite and 
aerial images with deep learning
Emilio Guirado  1,2, Siham Tabik1, Marga L. Rivas3, Domingo Alcaraz-Segura  2,4 & 

Francisco Herrera1

Despite their interest and threat status, the number of whales in world’s oceans remains highly 
uncertain. Whales detection is normally carried out from costly sighting surveys, acoustic surveys or 
through high-resolution images. Since deep convolutional neural networks (CNNs) are achieving great 
performance in several computer vision tasks, here we propose a robust and generalizable CNN-based 
system for automatically detecting and counting whales in satellite and aerial images based on open 
data and tools. In particular, we designed a two-step whale counting approach, where the first CNN 
finds the input images with whale presence, and the second CNN locates and counts each whale in those 
images. A test of the system on Google Earth images in ten global whale-watching hotspots achieved a 
performance (F1-measure) of 81% in detecting and 94% in counting whales. Combining these two steps 
increased accuracy by 36% compared to a baseline detection model alone. Applying this cost-effective 
method worldwide could contribute to the assessment of whale populations to guide conservation 
actions. Free and global access to high-resolution imagery for conservation purposes would boost this 
process.

Whales, which comprise some of the largest animals that have ever existed, have always thrilled humans1,2. 
Whales had and keep an enormous economic and societal value3. More than 13 million whale-watchers were 
registered in 2008 across 119 countries, generating a global economic activity of US$ 2.1 billion4. Since whales 
generally are long-living species at high trophic-levels, they play an essential role to structure marine food webs, 
and to maintain ecosystem functions and services5,6. In the past, commercial whaling depleted whale populations 
from 66% to 90% from their original numbers, which subsequently caused alterations in marine biodiversity and 
functions7. To prevent whales from extinction, the signatories of the International Convention for the Regulation 
of Whaling limited whale hunting to scientific or aboriginal actions since 1946, although the moratorium on 
commercial whaling did not come into force until 19828. Even though, there still exist a great uncertainty around 
the number of whales in the oceans and the viability of their populations9. In late 2017, the Species Red List of 
the International Union for Conservation of Nature (IUCN)10 reported that 22% of 89 evaluated cetacean spe-
cies were classified as threatened, whereas almost 50% species could not be evaluated due to the lack of data. 
Hence, a more accurate estimation of whale distribution and population sizes is essential to warrant cetacean 
conservation11.

The process of identifying and estimating the number of cetaceans is normally carried out12,13 (1) in situ, from 
ships14,15, planes16,17 or ground stations18, by using visual surveys19,20, acoustic methods21,22, or a combination 
of both23,24; or (2) ex situ, by using satellite tracking25,26 or photo-interpretation or classical image classification 
techniques on Very High Resolution (VHR) aerial or satellite images27–31. However, these methods are costly, not 
robust against scenario changes (e.g., different regions or atmospheric conditions), not generalizable to a massive 
set of images, and often require handcrafted features32,33. Indeed, biodiversity conservation would certainly ben-
efit from robust and automatic systems to assess species distributions, abundances and movements from satellite 
and aerial images34,35.

Deep learning methods, particularly Convolutional Neural Networks (CNNs), could help in this sense since 
CNNs are already outperforming humans in visual tasks such as image classification and object detection36. CNN 
models have the capacity to automatically learn the distinctive features of different object classes from a large 
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number of annotated images to later make correct predictions on new images37. Although the construction of a 
dataset for training is costly, the learning of CNNs on small datasets can be boosted by data-augmentation, which 
consists of increasing the volume of the training dataset artificially, and additionally by transfer learning, which 
consists of starting the learning of the network from a prior knowledge rather from scratch38,39.

Identifying whales from aerial and satellite images using CNNs at a global scale is very challenging for several 
reasons: (1) comprehensive datasets with VHR images of whales to train CNNs do not exist yet; (2) VHR images 
are expensive and relatively scarce in the marine environment; (3) whales could potentially be confused with 
other objects such as boats, rocks, waves, or foam; (4) whale postures or behaviour captured in a snapshot are 
quite variable since different parts of whale bodies can be emerged or submerged (e.g. blowing, logging, etc.); and 
(5) occlusions and noise could occur due to clouds, aerosols, haze, sunglint, or water turbidity.

In this work, we propose a large scale generalizable deep learning system for automatically counting whales 
from satellite and aerial images. For this, we combined two CNNs into a two-step model, where the first CNN 
detects the presence of whales and the second CNN counts the number of whales in the images (See Methods sec-
tion). To overcome the above mentioned challenges, (1) we combined several open datasets to build an annotated 
training database of high quality vertical images of whales and of objects that could be confused with whales, (2) 
we used data augmentation and transfer learning techniques to make the CNNs robust to image variability, (3) 
we assessed the effect of whale posture and location on the model performance, and, as a proof of concept, (4) we 
applied the model to free Google Earth coastal imagery in 10 whale-watching hotspots. Additionally, we com-
pared the performance of our combined approach to the performance reached just using the second CNN alone.

Contributions
The main contributions of this work can be summarized as follows:

•	 It presents the first proof of concept on how deep learning can be exploited for counting whales in RGB aerial 
and satellite images and using free machine learning software.

•	 It addresses the problem of whale counting at large scale areas by using a two-step approach: (1) the first step 
CNN selects the candidate images with a high probability of whale presence, and (2) the second step CNN 
analyzes these images by a detection model to localize and count the existing whales. Combining these two 
steps increased accuracy by 36% compared to the baseline detection model alone.

•	 It provides two datasets that guarantee a good learning for the first-step and second-step CNN-based models, 
with 2,100 images. For the external evaluation, this work also provides a new test dataset made of 13,348 
images of ten marine mammal hotspots.

•	 It analyzes the effect of whale postures or behavior on model performance.
•	 It provides evidence on how a CNN based system trained on higher resolution aerial images of whales is able 

to find whales in lower resolution satellite images.

Preliminaries on CNN models for image classification and object detection in images. Deep 
Neural Networks (DNNs) are a subset of machine learning algorithms able to learn from a training dataset to 
make predictions on new examples called testset. They are built using a hierarchical architecture of increasing 
sophistication, each level of this hierarchy is called layer. One of their main particularities is their capacity to 
extract the existent features from data automatically without the need of external hand crafted features. Under the 
supervised learning paradigm, DNNs provide a powerful framework when trained on a large number of labelled 
samples.

Convolutional Neural Networks (CNNs) are a specialized type of neural networks capable of extracting spatial 
patterns from images. Their architecture is built by staking three main types of layers: (1) convolutional layer, 
which is used to extract features at different levels of the hierarchy, (2) pooling layer, which is essentially a reduc-
tion operation used to increase the abstraction level of the extracted features and (3) fully connected layer, which 
is used as a classifier at the end of the pipeline.

CNNs need a large number of examples to achieve good learning. However, building dataset from scratch is 
costly and time consuming. To overcome these limitations in practice, two techniques are used: Transfer learning 
and data-augmentation. Transfer-learning consists of using the knowledge acquired in problem A to problem 
B. This is implemented by initializing the weights of the model for problem B using the pre-trained weights on 
problem A. Data-augmentation consists of applying specific transformations to the training images. In general, 
these transformations simulate the deformations that data could suffer in real world, e.g., scaling, rotations, trans-
lations, different illumination conditions, cropping parts of the image. It was demonstrated in several works that 
data-augmentation increases the robustness and generalization capacity of CNNs40.

CNNs constitute the state-of-the art in all the fundamental tasks in computer vision, e.g., in image classifica-
tion and object detection in images. In image classification, the CNN model has to analyze the input image and 
produce a label that describes its visual content, together with a probability that expresses the confidence of the 
model. In object detection, the CNN detection model has not only to produce the correct label but also determine 
by means of a bounding box the region in the input image where the target object is located. Examples of the most 
accurate and robust models for image classification are Inception41 and Inception ResNet42. The most accurate 
detection frameworks are end-to-end object detection models that combine a sophisticated detection technique 
with one of the most powerful CNN classification models. At present, there exist several detection frameworks 
that provide good trade-off between accuracy, robustness and speed, such as, Faster-RCNN36, YOLO900043, 
FPN44, RefineDet45, DSSD46 and Focal Dense Object Detection47. Furthermore, several studies are focusing on 
improving these frameworks on specific remote sensing data48–51. In this work, we used Faster-RCNN36 based on 
Inception RenNet v2, as it is the most accurate detection framework according to the this study48.
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Results
Whale presence detection model (step-1) validation. The analysis of the first step CNN-based model 
on ten marine mammal hotspots for whale watching (Fig. 1) confirmed the presence of whales in six of the ten 
assessed whale watching hotspots (Fig. 2). The acquisition dates of the satellite images available through Google 
Earth for these six sites matched the known whale watching period from the literature (Tables 1, 2). In the whale 
watching hotspot located in Memba (Mozambique), the spatial resolution of Google Earth images was not suffi-
cient for the human annotator to determine with a high confidence whale presence and hence, the prediction of 
the whale presence model was tagged as uncertain. In the three sites where the model did not find whales (Peru, 
Canary Islands, and Japan), the acquisition date of their Google Earth images was not within the known whale 
watching period but during the migration season. In the Peruvian coast and in the Canary Islands the detection 
was particularly challenging since the images presented rough sea.

Step-1 CNN-based model that detects the presence of whales reaches an average F1-measure of 81.8% for 
whales, 95.9% for water + submerged rocks and 96.7% for ships (Table S2). Only 20.58% of test grid cells con-
taining whales were misclassified as water (19.11%) or ships (1.47%). A very small number of water + submerged 
rocks and ship images were misclassified as whales (1.00% and 2.25%, respectively; see Fig. 3). An example of a 
false positive that shows a hand-glider over the sea in Witsand (South Africa) is illustrated in (Fig. S2).

Whales behaviour affects the performance of the first step CNN-based model for detecting the presence of 
whales (Fig. 3). Higher detectability (greater than 90% of true positives) was obtained for the following whale 
postures: blowing, breaching, peduncle, and logging. The lowest detectability occurred for submerged and spy-
hopping postures (33% and 60% of false negative, respectively; see Fig. 4A). Indeed, the lower performance of 
step-1 model in the Argentinean and New Zealand sites (Table S1, Fig. S1) was due to the much greater frequency 
of these latter postures in the images (see Data S5). Overall, greater number of whales were in the passive behav-
iour of logging and submerged (60% of detected whales and 74% of photo-interpreted whales), while the lower 
number of whales were detected under active movements (Fig. 4A, Data S5).

Whale counting (step-2) model validation. The second step CNN-based model for localizing and 
counting whales analyzes only the cells where step-1 found whale presence (Fig. 5). From a total number of 84 
whales photo-interpreted in this study across six hotspots for whale watching around the world, step-2 automat-
ically localized and counted 62 of them, which gives the model an overall performance of 94% ± 0.015% of F1 
measure (Table S1 and Fig. S3).

Discussion and Conclusions
This study illustrates how global cetacean conservation could benefit from the operational application of deep 
learning on VHR satellite images. Using a two-step convolutional neural network model trained with a reduced 
dataset and applied on free Google Earth imagery, we managed to automatically detect and count 62 whales in six 
hotspots for whale watching around the world, reaching an overall global F1-measure of 78% ± 0.07% (F1 meas-
ure of 81% ± 0.13% for presence detection and 94% ± 0.01% for locating and counting). Our results show how 

Figure 1. Results at a global scale of the first step whale presence detection model in ten marine mammal 
hotspots for whale watching (details in Table 1). Red, blue, and yellow cells indicate respectively whale presence, 
water + submerged rocks, and ships.
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the acquisition date of the satellite image, the behaviour recorded in the image and the resolution of the image 
can influence whale presence detection and counting. For instance, the spatial resolution of SPOT-6 satellite 
images was not good enough to assess whether the model was correct in Memba (Mozambique) at the date and 
location chosen. This robust, transparent and automatic method can have direct and wide implications for whale 
conservation by assessing whale distributions, abundances, and movement behaviours globally from satellite and 
aerial images.

Our satellite and aerial based assessment can complement and be compared with other aerial, marine, and 
land observations. The coastal images of Google Earth at zoom 18 that we used correspond to a visual altitude of 
~254 m, similar to the aerial surveys for grey whales, and up to ~4 km offshore the coast, the maximum distance 
for whale visual surveys from land52. In whale assessments, such distances are good enough to get reliable esti-
mates of instantaneous presence and relative population abundances53. As new RGB images become available, our 
method also enables dynamic updates at low cost, to assess seasonal and interannual changes in population sizes, 
feeding and breeding areas, migratory routes, and distribution ranges around the world.

Several studies show that the performance of CNNs can be equal or even better than humans when the quality 
of the images is good, for instance, for skin cancer detection54, mastering the game of Go55, or generalizing past 
experiences to new situations56. In general, the quality of the images determines the accuracy of the classifica-
tion in CNNs57, learning and performing better on higher resolution images58. However, our results show how 
CNN-based methods trained on high-quality images (see methods section) can also reach good performance 

Figure 2. Illustration of the assessed grid cells where the first step CNN-based model detects presence of 
whales. The cells with whale presence are indicated in red boxes in six of the ten candidate hotspots. In the 
three remaining hotspots, high resolution images were not available for the whale watching months. Map data: 
Google, DigitalGlobe.

Site IDs Site names (country)
Cells with whales 
(photo-interpreted)

Cells with whales 
(CNN-based model)

Total number 
of cells

1. Hawaiian Islands (USA) 4 4 565

2. Baja California (Mexico) 7 6 2,974

3. Valdés Peninsula (Argentina) 7 4 1,295

4. Witsand (South Africa) 40 35 3,312

5. Memba (Mozambique)* U 1 594

6. Coral Sea (Australia) 2 2 346

7. Enderby Island (New Zealand) 8 4 790

8. Peruvian coast (Peru) 0 0 1,307

9. Canary Islands (Spain) 0 0 1,045

10. Japanese coast (Japan) 0 0 1,120

Total 68 56 13,348

Table 1. Summary of the results of step-1 CNN-model in a total number of 13,348 evaluated cells. The first 
column shows the IDs and names of the ten evaluated whale watching sites. The second column shows the 
number of cells with whale presence photo-interpreted by the authors. The third and fourth columns show 
respectively the number of cells with and without whales according to step-1 CNN-based model predictions in 
each site. The asterisk and U indicates labeling uncertainty due to the low resolution of the images in that region.
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in classification and detection on medium-quality images, such as those available for free in Google Earth. In 
addition, the CNN-based models are robust59 against the differences in spatial and illumination angles across 
the different satellite sensors used in Google Earth38. Automatic image classification methods with convolutional 
neural networks can save time with respect to manual visual image classification methods60. In addition, human 
fatigue conditions the efficiency of labeling images61.

The use of free Google Earth imagery is convenient but it also has limitations since these are RGB images 
rather than multispectral, only available for few dates that may not be within the known whale presence period, 
are generally constrained to limited locations along coastal areas (up to ~4 km offshore), and are restricted for 
massive access. These last three limitations must be overcome together with the use of supercomputing for the 
worldwide “wall-to-wall” application of this method but do not impede its use for local assessments of whales 
around the world. Image spatial resolution can also limit the application of this method to detect cetaceans 
shorter than 5 m long (e.g. pilot whales, dolphins, etc.), which would require pixel sizes smaller than 1 m. For 
example, in our study, higher resolution images tend to give higher F1-measure (Table S3), though low contrast 
between whales and surrounding water tend to decrease performance (e.g. New Zealand) and high contrast to 
improve it (Table S3).

Our results showed that the behaviour and the image acquisition date can also bias the probability of detecting 
whales. The spatial pattern of whales under blowing, breaching, and peduncle postures showed better detectabil-
ity than under logging and submerged, when whale bodies can be confused with submerged rocks and seafloor. 
However, the greater number of whales (both detected by the model and photo-interpreted) in our study were 
under passive (logging and submerged) instead of active behaviour, and in images captured during the breeding 
season. Therefore, the best time to identify whales might be along the breeding season (Table 1), when whales 
spend more time in surface and in shallow waters62. The effect of overlapped positions between females and calves 
on their detectability and counting should be further studied. In contrast, the most difficult time might be during 
migration and in the feeding season (Table 1), when whales are mainly in spyhopping, peduncle, and deeply sub-
merged postures63, and in areas with low contrast between water and whales, or under high sea surface roughness, 
sea glint, or bad atmospheric conditions (clouds or aerosols).

The application of CNNs in remote sensing opens a world of possibilities for biodiversity science and conser-
vation64,65. The great performance obtained by the CNN-based models trained on and applied to free VHR images 
opens the possibility to automatically process millions of satellite images around the world from whale hotspots, 
marine protected areas, whale sanctuaries, or migratory routes. Our procedure requires less time and lower cost 

Site IDs Site names
(country)

Latitude Longitude 
WGS84

Whale watching 
period

Date of Google 
Earth image

Season of
acquisition date

Image source 
Pixel size (m)

1. Hawaiian Islands (USA) 20.636602, −156.462511 Dec-Apr89 Apr 3, 2013
Jan 13, 2013

Breeding
USGS aerial
0.15 M

2. Baja California
(Mexico)

26.769961, −113.242382 Feb90 Feb 20, 2017 Breeding
WV-03
0.31 P
1.24 M

3. Valdés Peninsula (Argentina) −42.603384, −64.810850 May-Dec1 Sep 18, 2003 Breeding
QB-02
0.61 P
2.5 M

4. Witsand
(South Africa)

−34.390203, 20.879985 Jul-Oct4 Aug 9, 2009 Breeding
GE-01
0.46 P
1.84 M

5. Memba (Mozambique) −14.185282, 40.691405 Jun-Jul91 Jun 23, 2017 Breeding
SPOT-6
1.5 P
6.0 M

6. Coral Sea (Australia) −24.622170, 153.291559 Sep-Nov92 Sep 13, 2005 Breeding
QB-02
0.61 P
2.5 M

7. Enderby Island (New Zealand) −50.501698, 166.282294 Jul-Sep93 Sep 2, 2012 Breeding
WV-02
0.46 P
1.84 M

8. Peruvian coast (Peru) −14.253483, −76.159243 Jun-Sep94 Mar 9, 2016 Migrating/Feeding
WV-03
0.3 P
1.24 M

9. Canary Islands (Spain) 28.139039, −16.796631 Aug-Nov95 Mar 10, 2017 Migrating
WV-02
0.46 P
1.84 M

10. Japanese coast (Japan) 41.947425, 143.246413 Apr96 Oct 5, 2014 Migrating
WV-02
0.46 P
1.84 M

Table 2. Sources and characteristics of the images used for the external verification of the whale presence 
detection model (step-1). Location of the ten evaluated sites. Match between the known whale watching 
period from the literature and the acquisition date and season of the satellite images in Google Earth. For each 
image source in Google Earth (reduced spectral resolution) these metadata are provided: the satellite (GE-01: 
GeoEye-01; QB-02: QuickBird-2; SPOT-6; USGS: United States Geological Survey orthoimagery; WV-02: 
WorldView-2; and WV-03: WorldView-3), the pixel size at nadir in m, and the sensor spectral resolution (M: 
Multispectral; P: Panchromatic).
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than the traditional acoustic surveys from ships or the visual surveys from planes and helicopters. The efficiency 
of remote sensing methods is particularly relevant to save time and money for long-term whale monitoring in 
remote places, or under difficult circumstances such as whales trapped inside sea ice in polar regions66. The detec-
tion of whales using satellite images was already achieved using classical methods29, but their portability to other 
regions or dates was strongly limited by the necessity of spectral normalization. However, our CNN-based model 
is easily transferable to any region or RGB image with different characteristics in color, lighting and atmospheric 
conditions, background, or size and shape of the target objects, and it requires no human supervision, which 
speeds up the detection process37.

Further research could increase the performance and variety of species identified by our CNN-model. For 
instance, the model could be improved by increasing the number of samples and variety of atmospheric and sea 
conditions in the training datasets, by building hierarchical training datasets with different behaviour across 
different species67, by using more spectral bands and temporal information68, and by artificially increasing the 
spatial resolution of the images through rendering69. In addition, as it is a fast and scalable method, it can even be 
transferred to very high spatial resolution images (<10 cm) captured by unmanned aerial vehicles (UAVs) for the 
automatic identification of specific individuals70.

A global operationalization of our satellite-based model for whale detection and counting could greatly com-
plement traditional methods12–22 to assist whale conservation, to guide marine spatial planning71, or to assess 
regional11 and global72 priorities for marine biodiversity protection against global change73. In addition, our 
method could be extended to higher resolution RGB images in particular and VHR multispectral data in general 
to identify and quantify cetaceans species35 and other marine species such as seals and sea lions74, penguins75, 
etc. To boost this process, free access to satellite data is key76. The compromise with biodiversity conservation 
from corporations such as Google, Microsoft, Planet, Airbus, or DigitalGlobe77 could be materialized through 
the systemic release of free high resolution aerial and satellite imagery at least from key sites for marine con-
servation. Even more, the acquisition of these images in pelagic environments does not directly compete with 
satellites commercial activity, which is usually focused on terrestrial and coastal areas. Having these images avail-
able would also make it possible to organize the development of a global database of images of cetaceans and 
many other marine vertebrates that could be used to improve the training of our whale detection and counting 
model or to develop similar models for other marine organisms. Images of the highest spatial resolution (such 
as WorldView-3 satellite images with a pixel size of 0.3 m) are particularly appropriate for this purpose. This way, 
satellite and CNN-based detectors of big marine organisms could serve to produce global characterizations of 
species populations and traits and of community composition as part of the initiative by the Group on Earth 
Observations - Biodiversity Observation Network (GEOBON) on satellite remote sensing essential biodiversity 
variables78.

Figure 3. Visualization (Circos plot) of the confusion matrix between the photo-interpreted ground truth 
and the predictions made by the CNN-based model (step-1) for detecting the presence of whales (in red), 
ships (yellow), and water + submerged rocks (blue). The links between classes depicts false negatives (whales 
that were misclassified as ship or water + submerged rock) and false positives (ships or water + submerged 
rocks that were misclassified as whales), the thickness of these links indicate the percentage of misclassified 
instances. Errors and successes are shown as a percentage on the outer concentric bars. Only 13 and 1 whale 
images were classified respectively as water + submerged rocks and as ships, while only 9 ship images and 4 
water + submerged rocks images were classified as whales.
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Methods
We address the problem of whale counting in large scale areas represented by a large number of VHR satellite and 
airborne images using a two-step approach that combines two models: (i) an image classification model and (ii) 
a whale detection model. To build these models, we needed to build two training datasets, one for each model. 
In this section, we first present the proposed two-step approach for whale counting then describe the process we 
used for building the training and test datasets for each step. In addition, we compare the performance of our 
two-step approach with a baseline approach based only on the detection model (Faster RCNN).

The proposed two-step approach. Counting whales in large scale areas that can be represented by a 
large number of images is not only a complex task but also expensive from a computational point of view. To 
overcome these limitations, we propose a two-step CNN-based approach capable of counting whales in vast areas 
with a reduced computational cost, where the first CNN is used to filter out water potential false positives (ships, 
foam and rocks) but keeping candidate images to be analyzed later by the second and much slower CNN. To 
overcome these limitations, we designed a two-step whale counting approach, where the first and quicker CNN 
filters out images of just water or containing potential false positives (e.g., ships, foam, and rocks) but keeping 
input images with whale presence, and the second and slower CNN locates and counts each whale in the latter 
images. Thanks to this combination of two CNNs, our model is capable of counting whales in vast areas with a 
reduced computational cost. In our proof of concept, the first step CNN-based model analyzes 10 whale hotspots 
around the world represented by 13,348 grid-cells using a 71 × 71 m sliding window -twice the size of blue whales 
(30 m)- and outputs the probability of having detected whales in each cell (Fig. 6A). To reduce the computational 
cost of the overall approach, the second step CNN-based model analyzes only those cells with high probability 
of whale presence, localizes each whale within a bounding box, and outputs the number of counted individuals 
(Fig. 6B). On average, step-1 was less time consuming than step-2 by one order of magnitude (while step-1 only 
took around 1.02 seconds/image, step-2 took around 12.35 seconds/image, both in a laptop with a 1.6 GHz i5 CPU 
and 8 GB of RAM).

To facilitate its use and to support whale conservation, the CNN-based model was built using open-source 
software and can be used on free Google Earth images (subjected to terms of service). To increase the volume of 
the training dataset, we used data-augmentation techniques by applying rotation with a factor selected randomly 

Figure 4. Impact of whale postures or behaviour on the performance of the step-1 CNN-based model for 
detecting the presence of whales. (A) The Circos plot shows the distribution of the false negatives (undetected 
whales, in red color) and true positives across whale postures. Whales under blowing, breaching, and peduncle 
postures were better detected than under spyhopping, logging and submerged. (B) Example of images for each 
behaviour from the detected hotspots at the highest zoom. Map data: Google, DigitalGlobe.
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between 0 and 360°, randomly flipping half of the training images, randomly cropping, random the scale size of 
the images, and random the brightness level of pixels by a factor of up to 50%.

We used Google TensorFlow deep-learning framework79 to train, validate and test the step-1 CNN-based 
model, and Google Tensorflow Object Detection API80 to train, validate and test the step-2 CNN-based model.

Step-1: Whale presence detection phase. When seen from space, whales are often confused with other 
object classes such as ships and wave foam around partially or entirely submerged rocks. To give the first step 
CNN-based model the capacity to distinguish between these objects, we addressed the problem as a three-class 
image classification task. The first model was built using the last version of GoogleNet Inception v3 CNN archi-
tecture41, pretrained on the massive ImageNet database (around 1.28 million images, organized into 1,000 object 
categories). We retrained the parameters of the two last fully connected layers in the network on our dataset, 
using a learning rate of 0.001 and a decay factor of 16 every 30 epochs. As optimization algorithm, we used 
RMSProp with a momentum and decay of 0.9 and epsilon of 0.1.

To assess whether whale posture, season, and location affected whale presence detection in satellite images, we 
compared the F1-measure metric across different seasons and locations of the world, and across multiple active 
and resting behaviour64.

Figure 5. The results of the whale counting (step-2) CNN-based model that locates and counts the number of 
whales (green bounding boxes) in the grid cells in which step-1 CNN gave high probability for whale presence. 
The red bounding box shows a false negative. Map data: Google, DigitalGlobe.

Figure 6. The proposed automatic whale-counting procedure with a two-step CNN-based model. (A) The 
first-step CNN scans the sample area (following the yellow line) to search for the presence of whales in each grid 
cell (white squares). Only grid cells in which the first-step CNN gives high probability for whale presence (red 
square) are analyzed by (B) the second-step CNN, which finally locates and counts individuals (the four green 
bounding boxes indicate correctly detected whales and the red box indicates a false negative). Map data: Google, 
DigitalGlobe.
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Step-2: Whale counting phase. We built the second CNN-based model that counts whales by refor-
mulating the problem into an object detection task. We used the detection model Faster R-CNN based on 
Inception-Resnet v2 CNN architecture42,81, pre-trained on the well known COCO (Common Objects in Context) 
detection dataset, which contains more than 200,000 images organized into 80 object categories82. The two last 
fully connected layers of the network were retrained on our dataset using a learning rate of 0.001 and a decay 
factor of 16 every 30 epochs. As optimization algorithm, we used RMSProp with a momentum of 0.9 and epsilon 
of 0.1.

Training, testing and validating datasets. Currently, there does not exist any accessible datasets of sat-
ellite or aerial RGB images for whales detection. We had to build two datasets for training the CNN-based models 
to respectively detect the presence of whales and count their number, and a third dataset for testing and validating 
the whole procedure. We built the training datasets using satellite and aerial images of different resolutions so that 
the models can generalize correctly to different resolutions, contrasts and colors. The three datasets were built by 
combining, preprocessing and labeling images selected from the only sources available to us: Google Earth38, free 
Arkive83, NOAA Photo Library84, and NWPU-RESISC45 dataset85. For step-1, the training dataset contains 2,100 
images of the following three classes (700 images per class): (1) whales, (2) ships, and (3) “water + submerged 
rocks” (Data S1). Whale images for training the CNN were mainly aerial images. For step-2, the training dataset 
contains 700 aerial images, with whales and background, in which each whale is annotated within a bounding box 
(the total number of bounding boxes is 945).

The dataset for testing and validating the whole procedure consists of RGB (Red, Green, and Blue bands) 
images downloaded from Google Earth in 14,148 cells of 71 × 71 m distributed worldwide. For ships, we selected 
400 images from 100 seaports around the world (Data S2). For “water + submerged rocks” class, we selected 400 
coastal images randomly around the world (Data S3). Finally, for whales (Table 1), we downloaded 13,348 cells 
(Data S4) of 71 m × 71 m from 10 areas that had very high-resolution images at zoom 18 (eye altitude of ~254 m) 
and that are known for marine mammal diversity or whale watching. These areas have been highlighted either 
as global marine biodiversity hotspots86, marine mammal hotspots72, irreplaceable or priority conservation sites 
(threshold >=0.3)11, and are included within or next to a marine protected area87 (Table 1). Two authors visually 
inspected all the images to annotate each cell with the name of the corresponding class and with the number of 
whales. From the 13,348 cells in the 10 hotspots for whale watching, the authors’ visual photo-interpretation 
revealed whales only in 68 cells.

The annotators also verified the presence of whales in these areas through specialized websites on whale 
watching and used the time-lapse tool of Google Earth to differentiate whales from sea floor and submerged 
rocks by comparing images from the same spot at different dates. Finally, to assess the effect of whale posture or 
behaviour on model performance, the annotators tagged each of the 68 cells with whale presence with the most 
dominant or conspicuous posture in it, by choosing from the following active and resting behaviour88, i.e., log-
ging, breaching, spyhopping, blowing, peduncle, and submerged.

Comparison between our two-step approach and the baseline detection model (Faster 
R-CNN). For comparison purposes, we trained and analyzed Faster RCNN directly on the input images with-
out any previous analysis. On the same test images (ten hotspots), Faster RCNN obtains an average F1 42%, which 
is substantially lower than the results obtained by our two-step approach (see Table S1D). This low performance 
is mainly due to the high number of false positives (e.g. boats, foam, rocks), specially in the sites with lower res-
olution images. Whereas, in site with very high resolution images, i.e., Hawaiian Islands (USA), Faster R-CNN 
obtained comparable results with our two-step approach, with F1 of 94%. The main reason why our two-step 
approach reaches much better accuracy than the detection model alone is that step-1 filters out most possible false 
positives, which consequently helps the next stage, step-2, in finding whales more accurately.

Metrics used in the performance assessment. To evaluate the performance of both CNN-based mod-
els, we used these metrics39: positive predictive value, sensitivity, and F1-measure (Table 3).

True positives correspond to images that were correctly classified or counted as whales by the models, false 
positives correspond to images that were classified or counted as whales by the models but actually corresponded 
to another class, and false negatives correspond to undetected images with whales. In simple terms, high positive 
predictive value means that the model returned substantially more actual whales than false ones, while high sensi-
tivity means that the model returned most of the actual whales. F1-measure provides a balance between precision 
and sensitivity. We used 5-fold Cross-Validation strategy to evaluate our two-step approach and the baseline on 
the test dataset.

Accuracy indicator Equation Interpretation

Positive predictive value (or precision)
+

truepositives

truepositives falsepositives
In how many images the assigned class was correct.

Sensitivity (or recall)
+

truepositives

truepositives falsenegatives
From all images of a class, how many were correctly are detected.

F1-measure (or F1-score)
+

x2
positivepredictivevaluexsensitivity

positivepredictivevalue sensitivity
Index that evaluates the balance between precision and recall.

Table 3. Accuracy indicator, equation, and interpretation of the performance assessment.
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Data Availability
The test and training datasets that support our findings are available from Github archive (https://github.com/
EGuirado/CNN-Whales-from-Space). Restrictions apply to the availability of the images of the training and vali-
dation data, which were used with permission for the current study, but are not publicly available. Some data may 
be available from the authors upon reasonable request and under written permission from Google Earth, Arkive, 
or NOAA Photo Library when applicable. To allow reproducibility, in the Supplementary Information, we provide 
the metadata of all the images in the training and testing datasets.
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