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Whale Optimization Algorithm with Applications to

Resource Allocation in Wireless Networks
Quoc-Viet Pham, Seyedali Mirjalili, Neeraj Kumar, Mamoun Alazab, and Won-Joo Hwang

Abstract—Resource allocation plays a pivotal role in improv-
ing the performance of wireless and communication networks.
However, the optimization of resource allocation is typically
formulated as a mixed-integer non-linear programming (MINLP)
problem, which is non-convex and NP-hard by nature. Usually,
solving such a problem is challenging and requires specific
methods due to the major shortcomings of the traditional ap-
proaches, such as exponential computation complexity of global
optimization, no performance optimality guarantee of heuristic
schemes, and large training time and generating a standard
dataset of machine learning based approaches. Whale optimiza-
tion algorithm (WOA) has recently gained the attention of the
research community as an efficient method to solve a variety of
optimization problems. As an alternative to the existing methods,
our main goal in this article is to study the applicability of WOA
to solve resource allocation problems in wireless networks. First,
we present the fundamental backgrounds and the binary version
of the WOA as well as introducing a penalty method to handle
optimization constraints. Then, we demonstrate three examples of
WOA to resource allocation in wireless networks, including power
allocation for energy-and-spectral efficiency tradeoff in wireless
interference networks, power allocation for secure throughput
maximization, and mobile edge computation offloading. Lastly,
we present the adoption of WOA to solve a variety of potential
resource allocation problems in 5G wireless networks and beyond.

Index Terms—Wireless and Communication Networks, Non-
Orthogonal Multiple Access, Meta-heuristic Optimization, Edge
Computing, Resource Allocation, Whale Optimization Algorithm.

I. INTRODUCTION

A. Motivation and Related Works

The optimization of resources in wireless networks, such

as, power allocation for spectral and energy efficiency, sub-

carrier assignment in orthogonal frequency-division multiple

access (OFDMA) and multi-carrier non-orthogonal multiple

access (NOMA), time allocation in time-division multiple
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access (TDMA), computation offloading in multi-access edge

computing (MEC), remote radio head selection in cloud ra-

dio access network (C-RAN), and cluster-head selection in

wireless sensor networks, are typically formulated as mixed-

integer non-linear programming (MINLP) problems [1], which

are difficult to solve and can be NP-hard in general. Various

optimization and learning techniques have been proposed to

get the solutions to the MINLP problems of which some of

them are as follows:

1) Global Optimization: some algorithms, e.g., branch-and-

bound (BnB) and dynamic programming, can be used to obtain

the globally optimal solution to any MINLP problem [2].

However, the exponential worst-case complexity limits their

implementations and applications in wireless networks as the

channels are usually highly dynamic and massive Internet

of Things (IoT) devices with cellular connections will be

available in the years to come.

2) Heuristic Methods: To reduce the exponential computa-

tional complexity of global optimization approaches, heuristic

algorithms are widely used in the literature. An example of

the heuristic algorithm is to relax integer variables to be

continuous and to approximate the binary constraints by the

quadratic ones. For instance, the subcarrier assignment to a

device-to-device (D2D) pair d can be denoted by xc
d, whose

value is xc
d = 1 if this D2D pair is allowed to reuse the

subcarrier of the cellular user (CU) c and xc
d = 0 otherwise

[3]. By relaxing, xc
d can be represented as x̂c

d = [0, 1], which

may be understood as the fraction of time the D2D pair d
reuses the subcarrier from the CU c. Nevertheless, a major

drawback of low-complexity heuristic algorithms is that the

convergence to the optimal solution and thus the performance

gap compared to the optimal schemes are not guaranteed.

3) Game-Theoretic Approaches: game theory provides a math-

ematical tool to study the interactions among independent

rational players. More recently, game theory has played as

an important tool for solving many problems in wireless

and communications networking. For example, joint matching

theory and coalition game was used to solve the resource

allocation problem heterogeneous C-RAN with D2D commu-

nication [4], and transport theory for unmanned aerial vehicle

(UAV) communications [5]. Despite its helpfulness and wide

applications, game theory is based on rational responses and

relies on the mathematical model that may influence the

game players’ strategy and outcome, which is therefore not

applicable in some scenarios.

4) Machine Learning (ML)-based Approaches: ML has been

recently integrated in wireless and communication networks

as a disruptive technology that can balance between the
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performance and computational complexity [6], [7]. However,

there are some tasks that may defeat the use of ML in wireless

networks. For example, generating the standard training data

set for a problem is a non-trivial task, which is sometimes

not available. Moreover, training a neural network with a very

large data set and a large number of parameters is a time-

consuming process.

To provide a viable alternative for addressing complicated

resource allocation problems in wireless communications, our

goal is to make uses of metaheuristic algorithms1. We are

inspired by studies on metaheuristics and their applications

to many large-scale and real-world engineering optimization

problems, e.g., electrical engineering [8], civil engineering

[9], mechanical engineering [10], and industrial engineering

[11]. Recently, Mirjalili et al. proposed a new metaheuristic,

namely whale optimization algorithm (WOA), which imitates

the hunting behavior of humpback whales [12]. Humpback

whales are generally considered as predators and their favorite

diet mostly includes krill and small fish. One of the most

popular feeding methods of humpback whales is the bubble-

net technique, which is the unique behavior observed only in

humpback whales. In bubble-net feeding, humpback whales

swim in a shrinking circle and blow bubbles below the prey

to force them towards the surface of the ocean [12]. It

was shown in [12] that the WOA outperforms state-of-the-

art metaheuristics, e.g., particle swarm optimization (PSO),

gravitational search algorithm (GSA), genetic algorithm (GA),

and ant colony optimization (ACO), in almost all the test

scenarios. In the context of wireless networks, a mobile user

can be considered as the humpback whale and the optimal

solution of the optimization variables can be viewed as the

prey. By imitating the hunting behavior of humpback whales,

a variety of optimization problems in wireless networks can

be solved by the WOA with highly competitive performance.

More recently, many improved versions of the WOA were

proposed, for example, binary version of the WOA [13]–[15],

tradeoff between exploration and exploitation [16], chaotic

WOA [17], and WOA for optimizing neural networks [18].

The WOA algorithm has considerable advantages to be

considered as an efficient optimizer. First, the WOA does not

require to compute gradients, which is opposed to the gradient-

based algorithms, where the gradient and step size are cal-

culated and updated in each iteration during the optimization

process [19]. With the existence of massive connectivities, het-

erogeneous mobile devices (e.g., wearable computing devices,

smartphones, IoT sensor devices, and network elements), the

convergence of the heterogeneous wireless technologies, and

the emergence of many new applications (e.g., virtual reality,

video surveillance and analytics, and autonomous vehicles),

an optimization problem may become extraordinarily compli-

cated. Moreover, it is difficult to compute gradients in general

due to the dependence on a large number of optimization

variables and the requirement for huge computational capa-

bility and memory. The WOA can relax such computations,

i.e., the WOA is a gradient-free method. As a population-

1The prefix meta means that a metaheuristic algorithm typically achieves
a better performance than the corresponding heuristic scheme as the tradeoff
of exploration and exploitation is considered in any metaheuristic algorithm.

based algorithm; however, the computational cost is higher

than gradient-based algorithms due to the need to evaluate

multiple solutions using the objective function in each step

of optimization. Second, the WOA is insensitive to the initial

feasible solution(s), which may greatly affect the convergence

and performance of the traditional methods. Next, the WOA

algorithm has been equipped with adaptive mechanisms that

appropriately balance the explorative and exploitative behav-

iors of this algorithm. This increases the chance of avoiding

locally optimal solutions, which have been demonstrated in

the original paper of WOA. Finally, since the WOA is easy

to implement and flexible, it is applicable to a wide range of

optimization problems rather than a particular problem. This

advantage would make the WOA highly efficient in wireless

and communication networks because of the fact that lots of

objective functions, performance metrics, and constraints are

considered in the optimization of wireless systems.

B. Our Contributions

As aforementioned, the WOA has found important applica-

tions in a multitude of disciplines; however, we are not aware

of any work providing the application and applicability of

the WOA in wireless and communication networks. In this

paper, our main motivations are to study the WOA algorithm

and provide a compendious tutorial on the WOA algorithm,

together with the discussion on its potential applications to

various resource allocation optimization problems. The main

contributions can be summarized as follows:

• We first provide a brief overview of WOA, including the

mathematical model and optimization algorithm. Since

the original WOA is only appropriate for continuous

and unconstrained optimization problems, we present the

binary version of the WOA (BWOA) and introduce the

penalty method to deal with optimization constraints.

Combination of the original WOA with BWOA and

penalty method allows us to solve a wide range of

optimization problems and obtain a high solution quality.

• To illustrate the applicability of WOA, we investigate

three resource allocation problems in wireless networks:

secure throughput maximization, energy and spectral effi-

ciency tradeoff, and mobile edge computation offloading,

which are then solved by the WOA algorithm. Simulation

results are conducted to show that the WOA algorithm

can converge very fast and achieve almost the same

performance as in the existing algorithms.

• We outline some possible applications of WOA to un-

manned aerial vehicle (UAV) trajectory optimization, in-

terference management in ultra-dense networks (UDNs),

user association and scheduling, mode selection, and

computation offloading in multi-carrier NOMA enabled

MEC systems. The results verify that the WOA is a highly

promising algorithm to optimize resource allocation prob-

lems in wireless networks.

The rest of this work is organized as follows. Section II

introduces the fundamentals of WOA. Section III illustrates

three examples as the applications of WOA in wireless net-
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works. Then, potential applications of WOA are discussed in

Section IV. Finally, Section V concludes the paper.

II. WOA: FUNDAMENTALS AND BINARY VERSION

In this section, the fundamentals of the WOA algorithm

are discussed including encircling prey, bubble-net feeding

method, and search for prey. We then present the binary

version of the WOA algorithm and finally introduce the

penalty method as the constraint-handling technique.

A. Encircling prey

Humpback whales can recognize the location of prey (e.g.,

krill) and cover them completely. It is assumed in the WOA

algorithm that the current best search agent is the target prey

and humpback whales update their position towards the best

search agent over the course of iterations. The following

equations are used to mathematically formulate this behavior

~D =
∣

∣

∣

~C ·
−→
X∗(t)− ~X(t)

∣

∣

∣
, (1)

~X(t+ 1) =
−→
X∗(t)− ~A · ~D, (2)

where ~A and ~C are coefficient vectors, t is the current iteration,
−→
X∗(t)2 is the position of the best search agent, |·| is the

absolute value, and · denotes the element-wise multiplication.

The coefficient vectors ~A and ~C are calculated as follows [12]:

~A = 2~a · ~r − ~a, (3)

~C = 2 · ~r, (4)

where ~a is linearly decreased from 2 to 0 over the course of

iterations and in both exploration and exploitation phases, and

~r is a random vector in [0, 1]. Denote by t and Imax the iter-

ation index and maximum number of iterations, respectively,

the control parameter ~a can be updated as ~a = 2(1− t/Imax).
The main purpose of (3) and (4) is to balance exploration

and exploitation. The perimeter r is random in both equations,

which provides a stochastic behavior for position updating

of the population. In Eq. (3), the range of random numbers

decreases from 2 to 0. The exploration is done when A ≥ 1,

and the WOA performs exploitation when A < 1. To reduce

the probability of permanently being trapped in local solutions

when the WOA performs exploitation, the parameter C can be

a random number in [0, 2]. This leads to boosting exploration

of exploitation at any stages of optimization.

B. Bubble-Net Attacking Method

The shrinking encircling and spiral updating position mech-

anisms are simultaneously used to model the bubble-net at-

tacking method of humpback whales. The shrinking encircling

mechanism is achieved by setting the coefficient vector ~A in

[−1, 1] while linearly reducing the value of ~a over the course

of iterations. In doing so, the new position will be located

between the current position of the agent and the position of

the best search agent.

2For a minimization (maximization) problem, the search agent that has the
smallest (largest) fitness value is considered as the best search agent.

To mimic the helix-shaped movement of humpback whales,

the spiral equation between the location of the prey and the

whale can be used as follows:
−→
D′ = |

−→
X∗ (t)− ~X (t) |, (5)

~X(t+ 1) =
−→
D′ · ebl · cos (2πl) +

−→
X∗ (t) , (6)

where b is a constant that is used to define the logarithmic

spiral shape, and l is a random number in [−1, 1].
Because of the fact that humpback whales swim around

the prey within a shrinking circle and move along the spiral-

shaped path at the same time, the shrinking encircling method

and the spiral approach are used simultaneously. To model this

behavior, it is assumed that each mechanism is performed with

the probability of 50% as follows:

~X(t+1) =

{−→
X∗(t)− ~A · ~D, if p < 0.5
−→
D′ · ebl · cos (2πl) +

−→
X∗ (t) , if p ≥ 0.5

(7)

where p is a random number in [0, 1].

C. Search for Prey

The same approach for the shrinking encircling mechanism

can be used for the prey search. However, the coefficient vector
~A with | ~A| > 1 is utilized and the position

−→
X∗(t) of the best

search agent is now replaced by the position
−−−→
Xrand of a whale

selected randomly from the current population. In other words,

humpback whales are forced to move away from a random

whale, thus the WOA algorithm is able to extend the search

space and perform the global search. The mathematical model

for the prey search is given as

~D =
∣

∣

∣

~C ·
−−−→
Xrand − ~X(t)

∣

∣

∣
, (8)

~X(t+ 1) =
−−−→
Xrand − ~A · ~D, (9)

It is worth noting that the bubble-net attacking method

and search for prey are exactly two phases in any meta-

heuristic algorithm: exploitation and exploration, respectively.

The bubble-net attacking method focuses on the search in a

local region by exploiting the current best solution, while the

search for prey is to increase the diversity of the solutions in

order to achieve a global solution. As the number of iterations

increases, exploitation is more desired whereas exploration is

preferred at very initial iterations. Over the last few years,

many efforts have been devoted to improving the WOA, which

mainly focus on the exploitation and exploration capabilities,

and their balance. For example, [16] proposed using the

arcsine function to control the tradeoff between exploration

and exploitation, and the Lévy flight trajectory was used to

improve the exploration capability of the WOA in [15]. Adopt-

ing such improved versions of the WOA to optimize resource

optimization problems in wireless networks in an interesting

direction for the future. To conclude, the WOA algorithm can

be considered as an efficient global optimizer thanks to its

well balance between exploitation and exploration.

In summary, the pseudocode of the WOA algorithm is

illustrated in Alg. 1. The computational complexity of com-

puting fitness function is O (ND), where N is the whale
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Alg. 1 Pseudocode of the WOA Algorithm.

1: Initialize the whale population Xi, i = {1, . . . , N}, itera-

tion t = 1, maximum number of iterations Imax.

2: Calculate the fitness of the search agents and identify the

best search agent
−→
X∗(t).

3: repeat

4: for k ← 1 to M (the number of whales) do

5: Update a,A,C, l and p.

6: if p < 0.5 then

7: if |A| < 1 then

8: Update ~D by (1) and ~X by (2).

9: else

10: Select a random
−−−→
Xrand and update ~D by (8).

11: Update the position ~X by (9).

12: end if

13: else

14: Update ~D by (5) and ~X by (6).

15: end if

16: end for

17: Calculate the fitness of each search agent.

18: Update X∗(t) of the best search agent.

19: Increase the iteration index t = t+ 1.

20: until t > Imax or the stopping criterion is satisfied.

21: Output: The best fitness value and best whale position.

population and D is the dimension of search agents [13].

Similarly, updating the position vector of all the search agents

at each iteration requires a complexity level of O (ND).
Therefore, the complexity of Alg. 1 can be shown to be

of O (NDT ), where T denotes the number of maximum

iterations/generations.

D. Binary Whale Optimization Algorithm

The WOA algorithm in its original form is for contin-

uous optimization; however, many problems are formulated

as mixed-integer programming (MIP) problems, where each

variable value can be discrete or binary. To deal with the com-

binational optimization, binary versions of the WOA algorithm

have been proposed [13], [14]. The pseudocode of the BWOA

algorithm is illustrated in Alg. 2. It is worth mentioning that

the BWOA follows the same steps as in the continuous version

except for the update of position vector, thus the BWOA also

has a computational complexity of O(NDT ).
According to [13], the main differences between WOA

and BWOA lies in the position updating procedure and the

transfer function. While in WOA, the position updating is

based on the position of the best search agent and can be any

continuous value within the feasible set, the position updating

in BWOA is based on the toggling between the values 1 and

0. The change in the current bit is decided by a probability

that is calculated according to the helix-shaped movement of

humpback whales. Moreover, some concepts are considered

in a transfer function [20]: i) the value should lie in [0, 1] as

the transfer function represents the probability of changing a

position from 0 to 1 and vice versa, and ii) the transfer function

should be proportional to the distance between the position of

Alg. 2 Pseudocode of the binary WOA Algorithm.

1: Initialize the whale population Xi, i = {1, . . . , N}, itera-

tion t = 1, maximum number of iterations Imax, and set

the stopping tolerance ǫ.
2: Calculate the fitness of the search agents and identify the

best search agent
−→
X∗(t).

3: repeat

4: for k ← 1 to M (the number of whales) do

5: Update a,A,C and generate pBWOA.

6: if p < 0.5 then

7: if |A| < 1 then

8: Update ~D by (1) and σsem by (10).

9: Update the position ~X(t) based on (11).

10: else

11: Select a random agent
−−−→
Xrand and update ~D.

12: Update σsp via (14) and ~X(t) by (15).

13: end if

14: else

15: Update ~D by (5) and σsup by (13).

16: Update the position ~X(t) by (12).

17: end if

18: end for

19: Calculate the fitness of each search agent.

20: Update X∗(t) of the best search agent.

21: Increase the iteration index t = t+ 1.

22: until t > Imax or
|X∗(t)−X∗(t−1)|

|X∗(t−1)| <= ǫ.
23: Output: The best fitness value and best whale position.

the humpback whale and the prey, i.e., the search agent that

is far away from the best search agent should have a higher

probabilityThe modification details are given as follows.

Shrinking encircling mechanism: The step size is computed

according to the following transfer function

σsem =
1

1 + exp
(

−10
(

~A · ~D − 0.5
)) , (10)

where ~D and ~A are computed based on (1) and (3), respec-

tively. Actually, σsem can be treated as a probability that is used

to determine whether or not the bit values should be toggled.

The position of the search agents is modified as

~X(t+ 1) =

{

∁( ~X(t)), if pBWOA < σsem

~X(t), if pBWOA ≥ σsem,
(11)

where pBWOA is a uniform random number in [0, 1] and ∁(·)
denotes the ones’ complement operation. More specifically, to

get the ones’ complement of a binary number, we can simply

invert all the bits in the binary number, i.e., swapping 0s for

1s and vice versa. For example, with σsem = 0.45 and ~X(t) =
[0 1 1 0 1], the next position will be ~X(t+1) = 1C( ~X(t)) =
[1 0 0 1 0] if the random number pBWOA < σsem, e.g., pBWOA =
0.34, and ~X(t+1) = ~X(t) = [0 1 1 0 1] if the random number

pBWOA ≥ σsem, e.g., pBWOA = 0.68.
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Spiral updating position: The position in the spiral updating

position mechanism is computed as

~X(t+ 1) =

{

∁( ~X(t)), if pBWOA < σsup

~X(t), if pBWOA ≥ σsup,
(12)

where σsup is the step size, which can be calculated using the

following transfer function

σsup =
1

1 + exp
(

−10
(

~A · ~D − 0.5
)) , (13)

Here, ~A and ~D are calculated using (3) and (5), respectively.

Search for Prey: The step size is computed as

σsp =
1

1 + exp
(

−10
(

~A · ~D − 0.5
)) , (14)

where ~A and ~D are calculated using (3) and (8), respectively.

Hence, the position of the search agents is updated as follows:

~X(t+ 1) =

{

∁( ~X(t)), if pBWOA < σsp

~X(t), if pBWOA ≥ σsp.
(15)

It should be noted that different transfer functions can

be used to map continuous search space to discrete actions.

Mirjalili et al. in [21] proposed six transfer functions, which

are divided them into two families: s-shaped and v-shaped,

and evaluated the performance of the binary particle swarm

optimization (PSO) with these transfer functions. Taking the

s-shaped family as an example. Actually, a sigmoid function

with different lopes are used to create s-shaped transfer

functions, which can be denoted as Tα(·) with α being

the lope of the s-shaped transfer function. For instance,

T(2)(x) = 1/(1 + exp(−2x)), T(1)(x) = 1/(1 + exp(−x)),
and T(1/2)(x) = 1/(1 + exp(−x/2)). We denote the distance

between the position of the humpback whale and the prey by

x. For a given distance x, the probability of changing the bit

values becomes higher as the lope α increases. Accordingly,

T(2) returns the higher probability than T(1) for the same value

of the distance x, while T(1/2) returns the lowest probability.

This fact can be pictorially observed from Fig. 1. The use

of these transfer functions in an effective manner can further

improve the performance of the BWOA algorithm.

E. Constraint-Dealing Techniques

Since the original WOA algorithm is for unconstrained

optimization, we need to employ efficient constraint-handling

techniques so as to solve constrained problems. Yang et al.

in [22] divides constraint-handling techniques into two major

categories: 1) classic methods, which are still widely used in

its standalone form, and 2) recent methods, which are based

on the hybrid of evolutionary ideas with the classic meth-

ods. Some of the well-known constraint-handling methods

are penalty method, equality with tolerance, feasibility rules,

separation of objectives and constraints, stochastic ranking,

ǫ-constrained method, and multi-objective approach [22]. The

penalty method is one of the simple and widely-used methods,

which tries to convert constrained problems into unconstrained
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Fig. 1: Examples of s-shaped transfer functions.

problems by combining the objective and constraints together.

In the following, we present the basics of the penalty method.

For other constraint-handling techniques in metaheuristic op-

timization, the readers are invited to refer to [22, Chapter 13],

the comprehensive survey paper [23], and references therein.

Consider a problem that minimizes f0(x) among all feasible

x and satisfies m inequalities and p equality constraints:

min
x

f0(x)

s.t. fi(x) ≤ 0, ∀i = 1, . . . ,m,

hi(x) = 0, ∀i = 1, . . . , p.

(16)

The penalty function can be defined as φ(x) = f0(x)+P (x),
where P (x) is the penalty term and can be defined as follows:

P (x) =

m
∑

i=1

µiFi (fi(x)) f
2
i (x) +

p
∑

j=1

νjHj (hj(x))h
2
j (x).

(17)

Here, µi ≥ 0 and νj ≫ 1 are penalty factors, which

are typically identical for ease of implementation for all

inequalities and equality constraints, i.e., µi = µ ∀i and

νj = ν ∀j. The index function Fi (fi(x)) = 0 if fi(x) ≤ 0
and Fi (fi(x)) = 1 if fi(x) > 0. Similarly, the index function

Hj (hj(x)) = 1 if hj(x) 6= 0 and Hj (hj(x)) = 0 if

hj(x) = 0. The aim of the expanded objective function φ(x)
is to decrease the fitness of infeasible solutions, but at the

same time φ(x) is to favor the feasible solutions. As can be

noted from (17), the penalty value added to the fitness of a

solution is mainly controlled by the penalty factors. It is worth

mentioning that the penalty function is well applicable for

some problems; however, selecting the right values of penalty

factors turns out to be problem-specific. According to [24], if

the penalty factors are too small, an infeasible may not get

enough penalty. Thus, an infeasible solution may be evolved

in the evolutionary optimization process. If too large penalty

factors are used, a feasible solution can be of low quality. In

addition, the exploration of infeasible solutions is encouraged

by the (WOA) algorithm, especially when the feasible regions

are disjoint. In general, the penalty factors µ and ν are from

1013 to 1015. In the following section, µ and ν are both set to



6

1014 for all the constraints for the sake of simplicity. An inter-

esting direction is to integrate the WOA with other constraint-

handling strategies to solve more constrained problems with

potential performance improvement.

In the case of constrained problems, the computational

complexity of the WOA is higher and largely depends on the

numbers of equality and inequality constraints. The computa-

tion of index functions corresponding to p equality constraints

and m inequality constraints requires O(Np) and O(Nm)
time, respectively. Summing up these complexities with that

in the original WOA, the computational complexity of the

WOA to solve constrained optimization problems becomes

O(N(m+p+D)) per iteration. Since the WOA iterates at most

T times, the computational complexity of the WOA to solve

constrained optimization problems is O(TN(m+ p+D)).

III. WOA IN WIRELESS NETWORKS: EXAMPLES

This section aims at providing a compendious tutorial on the

application of WOA to solve three fundamental optimization

problems in wireless networks: max-min secrecy rate maxi-

mization, EE-SE tradeoff optimization, and MEC computation

offloading. The first example is to present the application of

WOA to an unconstrained continuous optimization problem,

the second example is for a constrained continuous problem,

and the last example is for an MINLP problem. While the first

problem can be solved directly by the WOA, the constraint-

handling technique needs to be used in the second example

and the third problem is solved by the BWOA with the help

of both the decomposition and constraint-handling techniques.

A. Power Allocation for Secrecy Rate Maximization

1) System Model and Problem Formulation: Consider an

interference-limited wireless network (IWN) with M users,

each user can be regarded as a communication link, which is

composed of a single-antenna transmitter and a single-antenna

receiver. Denote by pi the transmit power of the user i and by

gij the channel gain from the user j to the user i. The data rate

of the user i is given as Ri(p) = log2 (1 + pigii/(n0 + Ii)),
where Ii =

∑M
j=1 pjgij and p is the transmit power vector

and n0 is the noise power. Suppose that there is a single-

antenna eavesdropper (EV), which is considered as part of the

legitimate network. The wiretapped rate of the user i at the

EV is given as Γi(p) = log2 (1 + pigei/(n0 + Iei )), where

Iei =
∑M

j=1 pjgej and gej denotes the channel gain from the

user j to the EV. The secrecy rate of the user i is defined as

Φi(p) = max{Ri(p) − Γi(p), 0}. The max-min secrecy rate

(MMSR) problem can be formulated as follows [25]:

max
p

Φ(p) = min
i=1,...,M

[Ri(p)− Γi(p)]

s.t. 0 ≤ pi ≤ pmax
i , ∀i = 1, . . . ,M,

(18)

where pmax
i denotes the peak transmit power of the user i.

2) Existing Algorithm: Instead of using the d.c. (difference

of two concave functions) representation of the secrecy rate

Φi(p), Sheng et al. in [25] proposed a path-following pro-

cedure to solve the MMSR problem. At every iteration t, the

data rate Ri(p) and the wiretapped rate Γi(p) are, respectively,
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Fig. 2: Convergence evolution of the and the path-following

procedure in [25] (with M = 4 users).

approximated by a lower bound R
(t)
i (p) and an upper bound

Γ
(t)
i (p). Initialized from a feasible solution p(0), the following

convex optimization problem is solved at the t-th iteration

max
p

Φ(t)(p) = min
i=1,...,M

Φ
(t)
i (p)

s.t. 0 ≤ pi ≤ pmax
i , ∀i = 1, . . . ,M.

(19)

The path-following procedure is performed iteratively until the

stopping criterion ǫ is met, i.e., |
(

Φ(t) − Φ(t−1)
)

/Φ(t)| ≤ ǫ.
3) WOA-based Algorithm: The MMSR problem is an un-

constrained continuous optimization problem, thus the original

WOA algorithm can be applied directly to get the solution.

4) Simulation Results and Discussion: We adopt the same

parameters from simulation in [25]. The initial feasible point

p(0) for the path-following procedure is initialized randomly,

i.e., p
(0)
i = ρ(pmax

i − pmin
i ) + pmin

i , where pmin
i = 0 denotes

the minimum transmit power of the user i and ρ is a random

number in [0, 1]. Fig. 2 plots the convergence evolution of

the path-following procedure in [25] and the proposed WOA-

based algorithm versus the iteration index. As shown in Fig. 2,

two algorithms can converge very quickly, the path-following

procedure requires 12 iterations and that of the WOA-based

algorithm is 26 iterations. However, it must be mentioned

that at each iteration the path-following procedure invokes

the solution of a convex problem. Since the approximate

convex problem (19) evolves M optimization variables (i.e.,

pi, i ∈ {1, . . . ,M}) and M linear constraints (i.e., 0 ≤
pi ≤ pmax

i , i ∈ {1, . . . ,M}), the path-following procedure

has a computational complexity of O(T (M2M2.5 + M3.5))
with T = 12 for the network scenario considered in this

paper. Different from [25], at each iteration in the WOA-based

algorithm, users (i.e., humpback whales in WOA) follow the

best search agent to update their transmit powers, together with

the transmit power of the best search agent obtained so far. As

presented in Section II-C, the computational complexity of the

WOA for unconstrained problem is O(NMT ) with T = 26
and N = 30 (N is the number of search agents). Therefore, the

WOA-based algorithm has the advantage of low computational

complexity, which is of considerable importance for practical
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applications with massive connectivity. Moreover, almost the

same result can be achieved by both algorithms: 1.3481 bps/Hz

for the path-following and 1.3471 bps/Hz for the WOA-based

algorithm. At this point, it is concluded that the WOA-based

algorithm has a lower computational complexity, but provides

a very high-performance optimality, when it is compared with

the existing algorithm proposed in [25].

B. Power Allocation for Energy-Spectral Efficiency Tradeoff

1) System Model and Problem Formulation: Consider an

IWN and use the same set of notations as in Subsection III-A.

The total power consumption Ptot includes two main parts:

transmit power consumption pi and circuit power consumption

pCi . Thus, Ptot(p) =
∑M

i=1

(

ξipi + pCi
)

, where ξi is a constant

power-amplifier inefficiency factor of the user i. The problem

of energy efficiency (EE) and spectral efficiency (SE) tradeoff

can be formulated by maximizing the global EE (GEE) subject

to constraints on minimum rate requirements and transmit

power budgets. Accordingly, the following optimization prob-

lem is considered for the EE-SE tradeoff [26]:

max
p

q =
∑M

i=1
Ri(p)/Ptot(p)

s.t. C1 : Ri(p) ≥ Rreq
i , ∀i = 1, . . . ,M,

C2 : 0 ≤ pi ≤ pmax
i , ∀i = 1, . . . ,M,

(20)

where Rreq
i denotes the minimum required rate of the user

i and the unit of q is bits/Joule/Hz. The above optimization

problem is non-convex and NP-Hard, it is therefore difficult

to get the solution in polynomial time [26], [27].

2) Existing Algorithm: The problem in (20) is solved by

successively applying two methods: bisection and successive

convex approximation (SCA). For a given value of q, the

problem in (20), can be cast as follows:

max
p

∑M

i=1
Ri(p)− qPtot(p) s.t. C1 and C2. (21)

Using the d.c. representation of the new objective function

and further rearranging the constraint C1, the problem in

(21) can be solved by successively solving a standard convex

optimization problem at each iteration. Similar to the path-

following procedure above, the criterion |R
(t)
i − q(t)P

(t)
tot | ≤ ǫ

is used to stop the algorithm.

3) WOA-based Algorithm: The penalty method is used to

deal with the minimum rate requirement constraints C1 in

the problem (20). In this case, users can be regarded as a

search agent (a humpback whale) and the transmit power p

is considered as the position of the search agents X . At the

iteration t, the transmit power p(t) (corresponding to X(t))
can be updated by following either the shrinking encircling

mechanism, spiral updating position, or search for prey. The

fitness function used to evaluate the best search agent can be

defined as follows:

Fitness(p) = −

M
∑

i=1

Ri(p)

Ptot(p)
+ µ

M
∑

i=1

Fi (fi(p)) f
2
i (p), (22)

where fi(p) = Rreq
i − Ri(p) and µ = 1014. Note that the

placement of a minus sign in front of the objective function is
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Fig. 3: Performance evaluation of the WOA-based algorithm.

a trick to convert a maximization problem to a minimization

problem. The inequality function fi(p) is redefined as fi(p) =
Ri(p)−R

req
i and the index function Fi (fi(x)) = 0 if fi(x) ≥

0 and Fi (fi(x)) = 1 if fi(x) < 0.

4) Simulation Results and Discussion: We use the same

simulation settings as in [26]. Once the stopping criterion

|q(t) − q(t − 1)| <= 10−6 is satisfied for three consecutive

times, the proposed WOA-based algorithm is terminated. From

Fig. 3a, the convergence of the proposed algorithm can be ob-

tained in a few tens of iterations, nearly three times higher than

the number of main loops of the GAP in [26]. However, we

must stress that the proposed WOA-based algorithm requires

a single-loop operation, but the GAP is a two-loop scheme,

where the outer loop is to update the energy efficiency q and

the inner loop is to optimize the transmit power for a given

q. Moreover, each inner loop needs to find the solution to a

sequence of approximate convex problems, which is similar

to the path-following procedure in [25]. More specifically, as

analyzed in Section II-E, the computational complexity of the

WOA is O(TN(m + M)) with N = 30, m = M , (p = 0
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since there is no inequality constraint), and T = 48 (in the

case Rreq
i = 1.0 bit/s/Hz). In contrast, the GAP has a com-

putational complexity of O(T1T2(M
2(2M)2.5 + (2M)3.5)),

where T1 = 14 and T2 = 12 are the numbers of iterations

needed for the outer and inner loops, respectively [26, Figs.

2 and 3]. Comparing with the GAP, the WOA has a very

low computational complexity, which is crucial for practical

applications. By varying the minimum rate requirement Rreq
i ,

we plot the EE-SE tradeoff curve in Fig. 3b and observe that

the energy efficiency decreases as the higher minimum rates

are required. Moreover, the proposed WOA-based algorithm

achieves almost the same performance as the existing scheme.

To conclude, the WOA-based algorithm achieves competitive

performance with very low computational complexity.

C. Mobile Edge Computation Offloading

1) System Model and Problem Formulation: Consider an

MEC scenario with one MEC server that is collocated with

the eNB, and M users. Each user has a computation task Ii =
{Di, Ci}, where Di is the input size (in bits) and Ci is the

number of CPU cycles needed to accomplish the task. Denote

by ai the offloading decision of the user i. Here, ai = 1 if the

task Ii is offloaded and ai = 0 otherwise.

The completion time and energy consumption of the user

i can be expressed as Ti = aiT
r
i + (1 − ai)T

l
i and Ei =

aiE
r
i +(1− ai)E

l
i , where T l

i /T r
i and El

i/E
r
i are, respectively,

the task completion time and energy consumption of the user

i when the task Ii is executed locally/remotely. According to

[28], T l
i , El

i , T
r
i , and Er

i can be given as T l
i = Ci/f

l
i , El

i =

α
(

f l
i

)γ−1
Ci, T r

i = Ci/fi + Di/Ri, and Er
i = Dipi/ςRi,

where f l
i is the local computing capability of the user i, α =

10−11, γ = 2, fi is the computing resource allocated to the

user i by the MEC server, ς is the power amplifier efficiency,

and Ri is the data of the user i. With the assumptions that

the allocation of subcarriers is orthogonal and predefined, the

data rate Ri is given as Ri(pi) = W log2 (1 + pihi/n0) with

hi being the channel gain from the user i to the eNB.

In order to maximize the improvement in terms of comple-

tion time and energy consumption by computation offloading,

the overall utility can be defined as follows:

vi(ai, pi, fi) = ai

(

βt
i

T l
i − T r

i

T l
i

+ βe
i

El
i − Er

i

El
i

)

, (23)

where βt
i and βe

i the user preferences on completion time and

energy consumption, respectively. The problem of optimizing

the computation offloading decision and resource allocation to

maximize the overall utility can be formulated as follows [28]:

max
a,p,f

∑M

i=1
vi(ai, pi, fi)

s.t. C1 : ai = {0, 1}, ∀i = 1, . . . ,M,

C2 : 0 ≤ pi ≤ pmax
i , ∀i = 1, . . . ,M,

C3 : fi > 0, ∀i ∈ S, C4 :
∑

i∈S
fi ≤ f0,

C5 :
∑M

i=1
ai ≤ N,

(24)

where S = {i = 1, . . . ,M |ai = 1} is the set of offloading

users, f0 is the maximum computing resource of the MEC

server, and N is the number of subcarriers, which indicates

that N users are allowed to offload their computation tasks.

The constraints C3 and C4 in the problem (24) imply that

the MEC server only allocates computing resources to the

offloading users and the total allocated resources is required

to be less than the maximum computing capability f0.

2) Existing Algorithm: Since the problem (24) is NP-

hard, the authors in [28] proposed decomposing the original

problem into two subproblems. The first subproblem (JCCR)

is to optimize computation and communication resources for

a given offloading decision â as follows:

max
p,f

∑

i∈S
vi(âi, pi, fi) s.t. C2, C3, C4. (25)

The second subproblem (COD) is to to optimize the offloading

decisions for a given (p̂, f̂) and can be written as

max
a

∑

i∈S
vi(ai, p̂i, f̂i) s.t. C1 and C5. (26)

For a given â, the transmit power p and the computing

resources f are decoupled from each other; therefore, the

JCCR subproblem can be further decomposed into two sep-

arate problems of p and f . Then, the solutions of p and f

can be solved using the convex optimization and bisection

method, respectively. It is shown that the objective of the COD

subproblem is a submodular optimization problem, thus the

offloading decision a is solved through a heuristic algorithm

that is based on the submodular optimization.

3) WOA-based Algorithm: To evaluate the effectiveness of

the BWOA algorithm and fairly compare the performance of

the BWOA-based algorithm with the existing one, we propose

using the decomposition technique to get two subproblems of

a and (p,f). While the JCCR subproblem is solved using

the same approach as in [28], the BWOA algorithm is utilized

to solve the COD subproblem so as to obtain the solution

of offloading decision. It is worth noting that this subsection

is devoted to solving the binary optimization problem (26),

which is opposed to Subsections III-A and III-B, where the

WOA algorithm is used to solve continuous optimization

problems. The fact is that one can utilize the combination of

WOA and BWOA to solve the original problem (24). However,

such algorithms are not our focus, thus they are omitted in

this paper. To learn more, the interested readers can refer to

[29] and the references therein for the optimization of channel

allocation and power control in D2D communications using

particle swarm optimization.

To deal with the inequality C5, a straightforward approach

is checking to see whether the constraint C5 is satisfied. If

the constraint is satisfied, the solution is feasible and the

evaluation of the fitness function can be carried out. Once the

constraint is violated, the solution is discarded and one should

proceed with a new solution. Obviously, this approach is slow

and inefficient. To achieve a better performance, using the

penalty method, the fitness function can be defined as follows:

Fitness(a) = −
∑

i∈S

vi(ai, p̂i, f̂i) + µF (f(a)) f2(a), (27)

where f(a) =
∑M

i=1 ai −N .
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Fig. 4: Performance comparison when the number of users varies from 2 to 10. The WOA-based algorithm performs very

close to the solution obtained by the centralized heuristic algorithm HODA in [28].

4) Simulation Results and Discussion: We conduct experi-

ments to compare the performance in terms of system utility,

system-wide (i.e., total) computation overhead, and percentage

of offloading, between the proposed WOA-based algorithm

and the heuristic-offloading decision algorithm (HODA) in

[28]. These metrics are all evaluated at the convergent solution:

1) system utility is defined as the objective of the optimization

problem (24), 2) system-wide computation overhead is defined

as Ztot =
∑M

i=1(1 − ai)(β
t
iT

l
i + βe

iE
l
i) + ai(β

t
i (T

t
i + T e

i ) +
βe
iE

r
i ), and 3) percentage of offloading is defined as the ratio

between the number of offloading users and the total users,

i.e., Poff = aT
1/N . The same set of simulation parameters

for HODA [28] is utilized in our experiments. Further, each

plot is achieved by averaging the results over 200 realizations

and users are randomly positioned in each realization.

Fig. 4 shows that as the number of users increases, both

the algorithms have a wider range of users with various chan-

nel conditions, local computing capabilities, and computation

tasks, thus they can provide continuous improvements on

system utility. Since each user needs to compete with more

users for computation offloading and the number of subcarriers

is limited, some users are not allowed to offload despite

the fact that they can still benefit from remote execution.

Therefore, the percentage of offloading and the system-wide

computation overhead both increase as the number of users

increases. The WOA-based algorithm has a low complexity

level of O(N(1 + M)) (there is no equality constraint and

only one inequality constraint C5), compared with the O(M3)
and O(2M ) complexities of the HODA and optimal solution,

respectively. As can be observed from Fig. 4, the WOA-based

algorithm performs very close to the solution achieved by the

heuristic centralized HODA [28]. With the number of users

M = 8, the WOA-based algorithm obtains the system utility

of 1.731, whereas the system utility of 1.7311 is achieved by

the HODA. Moreover, [28] verified via simulations that the

HODA is able to remain its performance within 5% of the

optimal solution by the exhaustive search. Hence, the WOA

performs competitively with a low computational complexity.

Through the above three examples, we utterly demonstrate

that the WOA is a promising tool to solve various resource

allocation problems in wireless and communication networks.

All of the experiments show that the WOA-based algorithm

can obtain the solution with almost the same performance

compared to the existing algorithms with convergence guar-

antee. It is reasonable since both exploration and exploitation

are evolved in the optimization process, thus the WOA can be

regarded as a global optimizer.

IV. WOA IN WIRELESS NETWORKS: POTENTIAL

APPLICATIONS

Although the applications of WOA to wireless networks

remain unexplored, three examples in the previous section

really justify the effectiveness of the WOA-based algorithms.

In the following subsections, a number of potential applica-

tions of WOA in wireless networks are discussed. From these

discussions, we expect that the WOA will be an effective tool

for optimizing upcoming wireless systems, where many new

technologies, services, network architectures will be emerged,

e.g., federated learning, intelligent reflecting surface, cell-free

massive multi-input multi-output (MIMO), holographic and

terahertz communications. For a comprehensive survey of 5G

networks and speculative study on 6G, we invite the readers

to read [30], [31] and references therein.

A. MEC Offloading in Multi-Carrier NOMA

With the emergence of new compute-intensive and energy-

hungry mobile applications, small users (e.g., IoT devices)

tend to offload their computations to the centralized cloud

and/or edge servers, e.g., fog node and MEC server for reduced

completion latency and energy consumption [7], [32]. Conven-

tionally, computation offloading is performed by applying or-

thogonal multiple access (OMA) schemes to the transmission
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between the server and users. For instance, in time-division

multiple access TDMA-MEC (OFDMA-MEC), users are allo-

cated a fraction of time (a subcarrier) in an orthogonal manner

to offload their tasks to the MEC server. However, it may

not be efficient in MEC systems when a very large number

of users are trying to perform computation offloading over a

limited number of orthogonal subcarriers. Integrating NOMA

to MEC can not only avoid severe delay but also reduce

energy consumption [33]. Compared with the conventional

problem in OMA-MEC, joint optimization of computation

offloading and resource allocation (e.g., communication and

computation resources) in NOMA-MEC is further exacerbated

by unique characteristics of NOMA, such as user clustering

and decoding order. Since such problems are usually difficult

to solve directly, most of the literature in MEC considered

decomposing the original problem into smaller subproblems,

which are alternately and iteratively solved until the final

solution is achieved or the stopping criterion is satisfied.

The applicability of WOA to solve the joint problem of com-

putation offloading and resource allocation in NOMA-MEC is

quite straightforward. Using optimization-based approaches,

one needs to analyze the properties of considered problems

and network scenarios, and specific methods are required for

a particular problem. In contrast, the WOA can be applied to

a wide range of the computation offloading problems and the

result can be served as a benchmark for measuring the perfor-

mance comparison with other methods. A potential approach is

to directly apply the WOA to solve the joint problem, where

the original WOA deals with continuous variables, such as

power allocation, computing resource assignment, and local

computing capability control, and the binary WOA solves

binary variables, for example, offloading decision, subcarrier

assignment, and NOMA cluster selection. Another promising

direction is to decompose the problem into smaller subprob-

lems, by which several ones are solved using conventional

methods such as game theory and convex optimization while

the remaining ones are solved using WOA. Our third example

provides a clear illustration of this direction. In particular, we

proposed decomposing the joint optimization of power control,

computing resource allocation, and offloading decision into

three subproblems, and then utilized the BWOA algorithm for

offloading decision and used convex optimization for transmit

power and computing resource allocation.

B. Interference Management

In wireless networks, interference management (IM) has

become an underlying optimization problem that helps to

achieve many objectives, such as throughput maximization,

energy/computation efficiency, QoS assurance, and network

planning. The IM problem becomes further serious and com-

plicated in ultra-dense networks (UDNs), where many inter-

fering nodes (e.g., users, access points, and eNBs) may coexist

in a small area [34]. Without proper IM schemes, the network

performance can be reduced significantly while a significant

amount of resources can be wasted. In addition, IM is closely

interwoven with resource allocation in a complex way.

In general, IM is mathematically formulated as non-convex

and NP-hard optimization problems and a common approach

used in the literature is to find the near-optimal solution,

which is sometimes not guaranteed to finally converge to

the optimal values. Clearly, such problems can be solved

using the WOA algorithm with the help of constraint-dealing

techniques. Given an optimization problem, the constraints

can be avoided safely by integrating them into the objective

function. As a global optimizer, the WOA is expected to make

the performance for a particular resource allocation problem

highly competitive among the proposed algorithms.

C. User Association and D2D Mode Selection

Besides IM, user association (UA) is of importance to

enhance the network load balancing, spectrum, and energy

efficiency in UDNs. UA is meant to decide which eNB a user

should connect [35]. The well-known UA schemes are based

on basic metrics, such as signal-to-interference-plus-noise ratio

and received signal strength indicator. Different from the

previous generations, 5G will not only provide communication

but also computation, caching, and control; therefore, there

are many more metrics that can be used to yield an efficient

UA solution, for example, outage and coverage probability,

spectrum/energy efficiency, QoS, fairness, computation-aware

capability, and caching-aware contents [32], [36].

D2D communication is a promising approach to facilitate

high data rate services in a short range to increase the

performance of 5G networks [3], [29]. By means of mode

selection, two users in a D2D pair can select between two

modes: direct communication reusing subcarriers of CUs, and

indirect communication as normal CUs with the help of eNB

[37]. In LTE-unlicensed, mode selection can be considered as

the decision on which spectrum (i.e., licensed or unlicensed

spectrum) D2D pairs should use for their direct communica-

tion [29]. D2D model selection, together with consideration of

subcarrier assignment, is usually formulated as MIP problems.

Among the state-of-the-art approaches, matching theory,

coalition games, and graph theory are considered as the most

promising techniques, which try to find the binary high-quality

solution within a reasonable time and with a reduced compu-

tational complexity in comparison to the exhaustive search.

WOA provides an alternative way to solve such problems.

Although there is no convergence proof, numerical results

can be used to confirm the effectiveness of the binary WOA

algorithm. Our demonstration of the third example showed that

the WOA algorithm can achieve almost the same performance

compared to the heuristic centralized scheme.

D. UAV Trajectory Optimization

The optimization of the trajectory of UAVs has received

significant efforts from research communities as a method to

improve the performance of UAV systems [7], [38]. However,

the trajectory of UAVs is greatly affected by a different number

of factors, e.g., flight time, energy constraints, collision avoid-

ance, computation efficiency, and energy harvesting causality.

One common way to optimize the trajectory of UAVs is to

discretizing the transmission period T into N different time

slots and assume that the UAV’s location is approximately

unchanged within each time slot [39]. In doing so, the joint
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problem of trajectory and resource allocation can be optimized

by applying the successive optimization techniques, that is, the

resource allocation problem is solved for a given trajectory,

then the trajectory is updated for a given resource allocation

vector, and these two phases are alternately and iteratively

performed until the stopping criterion is satisfied.

Even though, the optimization problems to be solved within

each time slot are usually non-convex and solving them mostly

utilizes the convex approximation and heuristic methods. Due

to great advantages, one can consider applying WOA to solve

the trajectory optimization problem and it is expected that

the WOA algorithm is more competent for optimizing the

trajectory of UAVs than the existing mechanisms in terms of

solution quality and convergence speed.

V. CONCLUSION

We have presented the fundamentals of the whale optimiza-

tion algorithm (WOA) and its applications to resource alloca-

tion in wireless and communication networks. To demonstrate

the applicability of WOA in wireless and communication

networks, we have investigated three problems and some

preliminary results have been presented. Also, potential use

cases in NOMA-MEC systems, interference management in

heterogeneous networks, user association in UDNs, mode

selection in D2D communication, and trajectory optimization

in UAV systems, have been highlighted.

Since the application of WOA to wireless and commu-

nication networks remain unexplored and the WOA-based

algorithm can provide the competitive performance compared

with the state-of-the-art algorithms, WOA can be used as

a benchmark for performance comparison when someone

proposes his own methods for any optimization problem. We

hope that this paper will be serving as a starting reference

for the adoption of WOA in optimizing resource allocation in

wireless networks as well as other engineering branches.
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