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Abstract: The papcr aims to providc the software eqtimation research community with a better 
understanding of the meaning of, and relationship between, two statistics that are often used to 
assess the accuracy of predictive models: the mean magnitude rclative error, MMRE, and the 
nuniber of predictioiis within 25% of the actuals, pred(25). It is demonstrated that MMRE and 
pred(25) are, respectively, meawres of the spread and the kurtosis of the variable z where 
z = estimate/actual. Thus, z is considered to be a measure of accuracy, and statistics such as 
MAMRE and pred(25) to be measures of properties of the distribution of z. It is suggested that 
measures of the central location and skewness of z ,  as wcll as measures of spread and kurtosis, are 
necessary. Furthermore, since the distribution of z is non-normal, non-parametric measures of 
these properties may be needed. For this reason, boxplots of z are useful alternatives to simple 
summary metrics. It is also noted that the simple residuals are bettcr behaved than the z variable, 
and could also be used as the basis for comparing prediction systems. 

1 Introduction 

A major challenge for managers of software projects is to 
be able to make accurate prcdictions. For cxample, how 
long will a project take; how much effort will it require; 
and how many defects will a particular component 
contain'? Answering this type of question has becn a 
major goal of workers in the field of software metrics 
over the past 25 years. In general, the approach adopted has 
bcen to collect various measures that can then be used to 
construct a prediction system. For example, one might 
count the number of function points, or perhaps count 
the number of reports that are to be generated, and 
investigate the relationship bctwccn thcse mcasures and 
some other mcasure of interest such as the effort to 
complctc a project. 

In this paper we are not concerned with thc mcthods 
used to construct a prediction system, we are interested in 
how researchers determine that one prediction system lcads 
to better predictions than another. A large number of 
different prediction accuracy statistics have been used in 
the literature, e.g. [ 1 4 ] .  However, in a given situabon 
diffcrent accuracy statistics often give contradictory 
results. This indicates that they are not measuring the 
same aspect of prediction accuracy. We believe that the 
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lack of undcrstanding of what different accuracy statistics 
actually measure is hindering progress in this important 
branch of software engineering. 

In this paper we investigate the two inost commonly 
used accuracy statistics: the mean magnitude relative error, 
MMRE, and the count of the number of predictions within 
m% of the actuals, pred(m), where tn is usually taken to be 
25. These arc particularly important accuracy statistics 
because almost the entire software inetrics research 
community has relied on MMRE and to a lesser extent 
pred(m) since Conte et al. publicised them. If these metrics 
are the basis of making comparisons between competing 
prediction systems, we need to be very sure of what they 
mean. 

2 MMRE and Pred(25) prediction accuracy 
statistics 

2. I Mean magnitude of relative error (MMRE) 
The mean magnitude relative error (MMRE) prediction 
accuracy statistic is the most widely used indicator in 
recent years, particularly when assessing thc performance 
of software cffort estimation models. The MMRE is 
defined in [I] as: 

- 1 r=n X ( ! y )  
n ,=I 

where x, is the actual value and x is the estimated value of a 
variable of interest. 

In our view, however, this is not particularly meaningful 
for assessing predictions (as opposed to providing a good- 
ness of fit statistic). If the aim is to generate an estimate of 
the effort for a new project, upper and lower bounds about 
the estimate are normally required in order to present a 
range of values likely to contain the actual value. Jn other 
words interest is in the deviation relative to thc estimate not 
relative to the uctuul. This is consistent with statistical 
residual analysis where the residuals (i.e. the estimate- 
actual) are plotted against the estimated values not the 
actual values. 
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A formulation of the MMRE where the absolute resi- 
duals are divided by the estimate can be referred to as the 
estimation MMRE (EMMRE). 

In order to understand what the MMRE measures, 
consider a random variable x distributed normally with 
mean p and variance u2. It is demonstrated in [ 5 ]  that for a 
sample of size n, where i is the average of the n observa- 
tions: 

If we rewrite the MMRE as follows: 

it is clear that if P, is an unbiased estimator of x,, the 
expected value of z, =P1/x, is 1. 

Furthermore, if zI  is distributed normally with mean 1 
and variance CT~,  the MMRE tends to the value 
0, x d(7c/2). This demonstrates that the MMRE is an 
estimate of the spread of the variable z that will not be 
as vulnerable to large outliers as the conventional root 
mean square estimate. In addition, the median magnitude 
relative error would be an even more robust measure of 
spread. Since MMRE is a measure of spread, it is incorrect 
to refer to it as a measure of prediction accuracy. The 
variable z is a better indicator of prediction accuracy since 
it has a defined optimum value (i.e. 1) which indicates 
clearly whether or not the prediction system under- or over- 
estimates. 

Using the above argument, the EMMRE will be an 
estimate of spread of the variable q = l/z. This discussion 
indicates that the quality of a prediction system can be 
reported in terms of the average or median value of the 
prediction accuracy variables z or q, and the MMRE or 
EMMRE can be used to assess the variability of z and q,  
respectively. 

2.2 Pred(m) 
Another widely used prediction quality indicator is 
pred(m), which is simply the percentage of estimates that 
are within m% of the actual value. Typically m is set to 25 
so the indicator reveals what proportion of estimates are 
within a tolerance of 25%. Clearly, pred(m) is insensitive to 
the degree of inaccuracy of estimates outside the specified 
tolerance level. For example, a pred(25) indicator will not 
distinguish between a prediction system for which predic- 
tions deviate by 26% and one for which predictions deviate 

As with MMRE, it is preferable to formulate pred(m) for 
estimating by considering the percentage of actuals within 
m% of the estimate. 

Based on the discussion of MMRE above, it is clear that 
if the prediction accuracy (i.e. z = estimate/actual) is 
approximately normal, pred(m) has (asymptotically) a 
functional relationship with MMRE. If zi =x/x, is distrib- 
uted normally with mean ,U = 1 and variance crl, then the 
proportion of actuals within pn% of the estimate depends 
on the size of the variance compared with a standard 
normal variate which has a mean of zero and a variance 
of 1. The MMRE provides an estimate of the variance of z. 
Recalling that the mean of z is 1, the proportion of actuals 
within m% of the estimate can be calculated using the 
tables of the standard normal variate and the ratio: 

by 260%. 

For example, if m=25% and MMRE=0.5, an estimate 
of oZ is 0.5/2/(n/2), which is approximately 
0.5/1.2533 =0.3989. The proportion of actuals within 
2% of the estimate corresponds to the number of actuals 
in the range 0.75 to 1.25. This depends on how the variance 
of z compares with the proportion m/100. In this case an 
upper and lower bound of 0.25 around the mean, and a 
standard deviation of 0.3989, corresponds to 
f 0.25/0.3989 = 0.627 standard deviations about the 
mean. From tables of the standard normal variate, this 
range corresponds to a probability of 0.46. Thus if a 
sample comprises 100 estimate-actual pairs, 46 of the 
actuals should be within 25% of the estimate. 

However, pred(25) is not a measure of the spread of z .  To 
understand what it measures, consider what happens if a 
distribution is more peaked than a normal distribution. A 
sample from a more peaked distribution would have more 
values within 25% of the mean than normal. Similarly a 
sample from a flatter distribution would have less values 
within 25% of the distribution. Thus, pred(25) is related to 
the shape of the distribution z. Shape has two dimensions: 
skewness which describes whether or not the distribution is 
symmetrical about a central value, and kurtosis which 
describes the extent to which the distribution peaks 
around its central value. Pred(25) is therefore a measure 
of kurtosis. 

2.3 Inconsistent evaluations using MMRE and 
pred(25) 
Since MMRE and pred(25) measure different properties of 
the distribution of z it is not surprising that the two 
statistics may appear to give inconsistent results if they 
are used to evaluate alternative prediction systems. For 
example, using the Desharnais data set [6], we can predict 
effort from size (measured in raw function points) in three 
ways: 

1 .  OL: using ordinary least squares on the raw data. 
2. MR: using a median regression technique on the raw 
data (as implemented in the STATA statistical analysis 

3. LNOLS: using ordinary least squares regression on the 
data after applying the natural logarithmic transformation 
to the effort and size variables. 

Using the complete 81 project data set to generate the 
models, and then using each of the models to make a 
prediction for each of the projects, we can generate the 
MMRE and pred(25) values for each of the prediction 
systems, as shown in Table 1 (where the statistics for the 
logarithmic model are calculated after the predictions have 
been transformed back to the raw data scale). 

Based on MMRE we would conclude that the logarith- 
mic transformation produced the best prediction system, 
whereas the pred(25) values suggest that it produced the 
worst prediction system. 

tool). 

Table 1: MMRE and pred(25) for Desharnais data set 

Prediction system pred(25) MMRE 

Ordinary least squares 42 0.697 

Median regression 42 0.652 
Logarithmic transformation 31 0.599 
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3 Discussion 

3. I Summary statistics for z 
We have shown that MMRE is a measure of the spread (i.e. 
standard dcviation) of the variable z where zi =.&/xi, and 
that pred(25) is a measure of how peaked the distribution 
of z is. Thus, the two accuracy statistics measure two 
different properties of the distribution of z. This explains 
why they may appear to give contradictory results whcn 
they are used to assess different prediction systems. There 
is no rcason why the distribution of z obtained from one 
system should not have a smaller variance than that of 
another system while also having a flatter distribution. 

We have also noted that the distribution of a random 
variable has two other important properties: central loca- 
tion and skewness. The central location of the variable z 
can be assessed by the mean or median ofz. 

Skewness is conventionally measured as: 
m3 

U3 = SJ 
where s3 is the cube of the standard deviation and m3 is thc 
third moment about the mean. That is 
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where n is the numbcr of values of the variable z in a data 
set, and 2 is the mean of the n values. Note s2 (the variance) 
is the second moment about the mean. This measure of 
skewness has a theoretical valuc of 0 for a normal distribu- 
tion, since the normal distribution is perfectly symmetric. 

The conventional measure of peakedness (kurtosis) is: 
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m4 
U4 = - 
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where s4 is the standard deviation taken to the fourth power 
and m4 is the fourth moment about the mean. That is 

1 "  
m4 = - (z, - 214 

n i=l 

Thus, pred(25) is related to kurtosis, but is not the standard 
way of measuring it. 

A problem with the use of conventional measures of 
central location, spread, skewness and kurtosis is that they 
were derived from consideration of the normal distribution. 
They are not very good measures of the properties of non- 
normal distributions. Since thc variable z is defined on the 
range 0 to 00 with a theoretical mean of 1 ,  z must, by 
definition, be skewed and hence non-normal. Thus, to 
understand the accuracy of a prediction system we need 
to understand the distribution of z. If we can determine the 
functional form of the distribution of z we can identify 
appropriate summary statistics to measure properties of 
interest. However, if we cannot identify the functional form 
of the distribution we need nonparametric measures of 
properties of the distribution. 

3.2 Robust distribution statistics 
In [7] it is recommended that boxplots of the residuals are 
inspected to compare models. This gives a good indication 
of the distribution of the residuals, and can help explain the 
behaviour of the summary statistics. In a similar way, 
boxplots can display the distribution of z. Boxplots are 
based on nonparametric statistics. They show the median 
value as the central location for the distribution. If the 
median is close to 1, the predictions are unbiased. The 
length of the box from lower tail to upper tail gives an 
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indication of the spread of the distribution. The position of 
the median in the box, and the length of the boxplot tails, 
show the skewness of the distribution. If the upper and 
lower tails are approximately equal, and the median is in 
the centre of the box, the distribution is symmetric. If the 
distribution is not symmetric the relative lengths of the tails 
and the position of the median in the box indicate the 
nature of the skewness. The length of the box relative to 
the length of the tails gives an indication of the shapc of the 
distribution. A boxplot with a small box and long tails 
represents a very peaked distribution, a boxplot with a long 
box represents a flatter distribution. 

Boxplots provide a simple means of comparing the 
predictions from alternative prediction systems. For exam- 
ple, using the Desharnais data set and three prediction 
systems, we can make a prediction for each of the projects 
based on each of the models. Thcn we can generate three 
different sets of z values: zOLs, zMR and z ~ , ~ ~ ~ . ~  (where 
zLNOLs is calculated after the predictions have been trans- 
formed back to the raw data scale). The boxplots for the 
three different z distributions are shown in Fig. 1 .  Fig. 1 
suggests that the logarithmic model gives marginally bcttcr 
predictions than the other models: the box length and tails 
are slightly smaller than the box length and tails for thc 
other models. Furthermore the outliers from the logarith- 
mic model are slightly less extreme than the outliers from 
the other models. However, the logarithmic model appears 
to bc more susceptible to under-estimation than do the 
othcr models. 

3.3 Statistical tests to compare alternative 
prediction systems 
Although boxplots allow a simple graphical method of 
comparing predictions from alternative prediction systems, 
they cannot confirm whether one predictions system is 
significantly better than another. Using a paired t test to test 
whether the absolute relative error (i.e. the MRE) for each 
data point obtained using one prediction system is signifi- 
cantly different from the absolute relative error obtained 
using another system was suggested in [SI. If we view the 
MMRE as a measure of spread, Stensrud and Myrtveit's 
procedure can be interpreted as testing whether or not one 
prediction system is more variable than another. This 
seems a sensible approach to assessing whether one 
prediction system is better than another, but it is worth 
considering whether other tests of the distribution of z 
would also be useful. 

Initially it would seem that we could test for bias in our 
prediction system by confirming whether or not the central 
location of the distribution is significantly different from 1. 

1.0 1 
0.5 
0 

Fig. 1 
(i) Ordinary LS regression, (ii) Median regression, (iii) Log regression 

Boxplots of'the z values for each prediction system 
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However, for skewed distributions it is not always clear 
what measure of central location should be tested, since the 
mean, median and inode will not be equal. Furthermore, 
the method used to construct the prediction system can 
directly influence the valuc of central location measures. A 
median regrcssion will lead to a prediction system where 
the median o f z  = 1 (where the values of z are based on the 
measures used to construct the prediction system). An 
ordinary least squares regression applied to the logarith- 
mically transformed data will lead to a prediction system 
where the geometric mean o f z  on the raw data scale equals 
1. Ordinary least squares regression applied to the raw data 
(i.e. size and effort measures) will not result in a prediction 
system for which the mean of z is always equal to one. 
Ordinary least squares regression results in a prediction 
system where the mean of the residuals (i.e. estimate- 
actual) always equals 0, but if the data is skewed the 
mean of z is not guaranteed to equal I .  

For example, the central location values of the three z 
distributions shown in Fig. 1 are shown in Table 2. 

It is possible to tcst whethcr thc distribution of the 
predictions from the different prediction systcms are 
equal or not using a nonparametric test such as the 
Wilcoxon matched pairs signed rank test [9] on each pair 
of prediction systems. In this case, the results of the 
Wilcoxon tests confirm that all the prediction systems 
have significantly different distributions ( p  < 0.01 ). But it 
is not clear whether the median regression model is best 
because its median value is 1 ,  or the logarithmic model is 
best because its mean valuc is closest to 1 .  

The spread statistics for the z values are shown in Table 
3. Table 3 suggests that the logarithmic model is superior. 
Both the standard deviation of z and the MMRE of z ~ , ~ ~ ~ ~  
are smaller than the standard deviation and the MMRE of 
thc other z variables, suggesting that the prcdictions from 
the logarithmic model are less variable than the prcdictions 
from other models. 

Paired ‘t’ tests of the absolutc relative crror for each data 
point confirm that the logarithmic model predictions are 
significantly less variable than the predictions from the 
other models (p < 0.01). In addition, the predictions from 
the median regression are significantly better than the 
predictions from the ordinary least squares model 
@ i 0.01). Since, the boxplots in Fig. 1 are skewed, it is 
preferable to use the Wilcoxon matched-pairs signed rank 
test on the absolute relative crror values. from each pair of 
predictions systems. In this case, the Wilcoxon tests give 
rcsults that are the same as those obtained from the paired 
‘t’ tests. However, simple sign tests, as proposed in [7]  arc 
not powerful enough to detect a statistically significant 
difference between the prediction systems. 

This discussion seems to suggest that presenting the 
mean of z and using a paired tcst of the absolute relative 
deviation is all that is necessary to compare alternative 
prediction systems. However, there are situations where 
these summary statistics are misleading. Thc standard 
deviation is based on the squared deviation from the 
observed mean of z, while the MMRE i.s based on the 

Table 2: Central location statistics for three prediction 
systems 

Central location statistics zois ZMR ZINOIS 

Arithmetic average 1.463 1.384 1 251 

Geometric mean 1.166 0.945 1.000 

Median 1.045 1.000 0.904 
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Table 3: Spread statistics for the three prediction 
systems 

~~ ~ ~ ~~ 

Distribution Standard deviation MMRE 

ZOLS 1.2889 0.697 

ZMR 1.2064 0.652 

ZLNOLS 1.0901 0.599 

absolute deviation from the theoretical mean of z (i.e. 1). 
Thus, if a prediction system consistently predicted values 
much larger or much smaller than the real values, is would 
be possible to have a very large MMRE and a mean value 
of z far from 1 ,  accompanied by a very small standard 
deviation. Such systcmatic bias is much easier to observe 
using a boxplot than using only summary statistics. 
Furthermore models can be adjusted to remove the effect 
of systematic bias, so a model that would be rejected on the 
basis of the summary statistics might be recognised as 
potentially superior from an inspection of its boxplot. 

3.4 Additional benefits of the z variable 
We believe that identifying the variable z as a measure of 
prediction accuracy, and other statistics such as MMRE 
and pred(25) as incasures of properties of the distribution 
of z,  has additional benefits beyond merely increasing our 
understanding of what the statistics actually measure. 
Currently, prediction systems are assessed as good or bad 
against arbitrary values of MMRE and pred(25). That is, by 
custom, we regard an MMRE 5 0.25 and a pred(25) 2 75 
as indicative of a good predictive system. However, neither 
of these values allow us to make simple probability state- 
ments about the accuracy of future estimates. If we 
consider the distribution of z ,  we can estimate confidencc 
limits about the central value of the distribution either 
using the boxplot for robust limits, or, if we can identify 
the functional form of the distribution of z, we can 
construct 95 or 99% confidence limits for our predictions. 

Furthermore, in an effort to compare alternative predic- 
tion systems some researchers use summary statistics 
based on the MMRE, such as the maximum MRE and 
the standard deviation of the MRE [IO].  We belicve such 
complications are unnecessary if rescarchers agree that: 

Accuracy is measured in terms of z. 
Comparison of the altcmative prediction systems are 

based on comparisons of the boxplots of z from the 
competing predictions systems, together with formal tests 
of properties such as the bias and variability of the 
prediction systems. 

3.5 Limitations of the z variable 
We have discussed the z variable at some length because it 
is the basis of MMRE and pred(n), but it is clear from 
Fig. 1 that it has some undesirable properties including 
asymmetry. An implication of that asymmetry is that if we 
base our choice of prediction system on summary statistics 
of the z variable, we will tend to favour prediction systems 
that minimise overestimates, rather than prediction systems 
that minimise underestimates. Since in most cases over- 
estimates are less serious than underestimates, this may not 
lead to an appropriate choice of prediction system. 

An alternative to the use ofthe z variable, is to consider 
the distribution of the residuals (i.e. actual-estimate). Fig. 2 
shows the boxplots of the residuals, which are clearly 
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Fig. 2 
(i) ordinary LS regression, (ii) median regression, (iii) log regression 

Boxplols ofresidziuk for each prediction systeni 

better behaved than the z variable in terms of symmetry. It 
is interesting to note that paired ‘t’ tests of the difference 
between the absolute residuals suggests there is no signifi- 
cant difference between the three prediction systems. 
The Wilcoxon matched pair rank tcst leads to the same 
conclusion. 

4 Conclusions 

Our analysis and results suggest that the two statistics most 
frcqucntly used to assess the quality of prediction systems, 
MMRE and pred(25) are, respectively, measures of the 
spread (standard deviation) and peakedness (kurtosis) of 
the variable z (where z = estimate/actual). We believe that 
it is necessary to understand the distribution of z in order to 
assess the accuracy of a prediction system. We suggest that 
boxplots of the z values or the residuals give a better 
assessment of prediction quality than one or two summary 
statistics. The usc  of boxplots is particularly appropriate 
since they are based on nonparametric suminary statistics, 
and the variable z is skewed and hence non-normal. 
Boxplots are also suitable for showing the distribution of 
residuals, even though residuals are better behaved in terms 
of symmetry than the z variable. 

Whilst the arguments in this paper may appear arcane to 
the non-statistician, it is essential that we understand how 
to make comparisons between competing prediction 
systems. Researchers have employed a wide range of 
different accuracy indicators, some of which appear to 
give contradictory results. Without understanding what 

the various indicators are describing, meaningful compar- 
ison is not possible. Furthermore if we cannot make 
meaningful comparisons we cannot make progress. We 
have argued that thc indicators are statistics describing 
the distribution of the variable z ,  and that a number of 
different properties of the distribution need to be described. 
We also note that the simple residuals are better behaved 
than the z variable. For this reason we urge researchers to 
present boxplots of the residuals, or the z variable values of 
competing prediction systems, in addition to performing 
appropriate statistical tests. 
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