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Abstract. We describe what may be all the best packings of nonoverlapping equal 
spheres in dimensions n < 10, where "best" means both having the highest density 
and not permitting any local improvement. For example, the best five-dimensional 
sphere packings are parametrized by the 4-colorings of the one-dimensional integer 
lattice. We also find what we believe to be the exact numbers of "uniform" 
packings among these, that is, those in which the automorphism group acts 
transitively. These assertions depend on certain plausible but as yet unproved 
postulates. 

Our work may be regarded as a continuation of Lfiszl6 Fejes T6th's work on 
solid packings. 

Introduction 

Stated informally, the object of  this paper is to describe what may be all the best 
(that is, "tightest") packings of nonoverlapping equal spheres in up to 10 dimensions. 
In Propositions 1-10 we give a very precise description of  these packings. 

There are some surprises. We show that the Korkine-Zolotarev lattice A 9 (which 
continues to hold the density record it established in 1873) has the following 
astonishing property. Half the spheres can be moved bodily through arbitrarily large 
distances without overlapping the the other half, only touching them at isolated 
instants, and yet the packing apparently remains tight at all times. We also discuss 
some new higher-dimensional packings, showing for example that there are extraor- 
dinarily many 16-dimensional packings that are just as dense as the Barnes-Wall  
lattice A16. 

However, although the answers are precise, the question we are answering is not 
so easily formulated, and there is a second difficulty in that the results depend on 
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certain as yet unproved "postulates." In short, we face great difficulties both in 
asking the question of  our title in a precise way, and also in answering it. For  these 
two reasons we have delayed publication of  this work for some time. Nevertheless, 
these packings are so interesting that we feel they should be placed on record. We 
hope that this will stimulate further research on these problems. 

The first difficulty arises when we attempt to give a precise definition of the class 
of packings we are characterizing, that is, to answer the question: what does it mean 
to be one of  the "best" packings? Certainly they should have the highest density, a 
well-defined concept [Ro]. However, there are many examples which show that one 
should not be interested in every packing with the highest density. For  example, if a 
finite number of spheres are removed from a packing then its density is unchanged. 
Nor is the density changed if we increase the radius vector from the origin to each 
center by its arctangent, although this change removes all contacts between the 
spheres. In neither case are the new packings "tight." Many other examples could be 
given. 

It seems difficult to give a precise definition of  this concept of "tightness." 
Professor Fejes T6th [FT2] (see also [F'I'I]) has discussed such problems and has 
introduced the notion of a "solid" packing to solve some of them. A packing is solid 
if no finite subset of  the spheres can be rearranged so as to form, together with the 
rest of  the spheres, a packing not congruent to the original one. A solid packing 
necessarily has the highest density. 

However, even a solid packing can still contain quite large cavities, and we need a 
further notion. The flaws in the packings mentioned above suggest the following 
definition. 

Consider the set of centers of the spheres, which from now on we shall identify 
with the packing. Suppose we can dissect the space of  the packing into finitely many 
polyhedral pieces (possibly infinite) in such a way that each center lies in the interior 
of some piece, and there are also some empty pieces containing no centers. Then if 
we can rearrange the nonempty pieces into another dissection in which the centers 
are at least as far apart as they were originally, we call the packing loose. 

Provisionally, we may call a packing tight if it is not loose. Packings that are tight 
in this sense certainly have the highest possible density. However, we are not sure 
that this particular definition is the right one, and perhaps some other meaning for 
"tight" should be used in the postulates below. 

The goal of  this paper is to describe all the tight packings in dimensions n < 10, 
and to give partial information about some higher dimensions. 

After we have assigned a provisional meaning to the question of  our title, we 
come to a second difficulty, that of  answering it! 

Since at present the highest density of a sphere packing in R" is known only for 
n = 0, 1, and 2 (in spite of  much recent work [Hal], [Ha2], [Hs], [Mu] on the case 
n = 3), we cannot hope to make any absolute assertions about tight packings in 
higher dimensions. Instead we base our results on certain (as yet unproved) "pos- 
tulates." 

We  say that an n-dimensional packing P,, fibers over an m-dimensional packing 
Pm if Pn can be decomposed into sets (or layers) of points lying in parallel 
m-dimensional spaces, each one of  which is a packing of type pro. 

Our  nth (for n > 2) postulate is the following. 
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Postulate n. Any tight n-dimensional packing fibers over some tight 2k-dimen - 
sional packing, where 2 k is the largest power of 2 strictly less than n. 

We believe (but cannot prove) that Postulate n is true for 2 < n < 8. Postulate 9 
requires modification, and Postulate 10 is irredeemably false (see Sections 9 and 10). 

The main results of this paper are given in Propositions 1-10, where Proposition 
n (which depends on some of our postulates) describes all possible tight packings in 
dimension n. We know much less about higher dimensions, and just describe a few 
more packings that seem likely to be tight. 

For n < 8 we also describe all the uniform tight packings, those in which the 
automorphism group acts transitively on the spheres. The putative number of 
uniform tight packings in each dimension is given by the following table: 

n 0 1 2 3 4 5 6 7 8 9 10 
Number 1 1 1 2 1 4 4 4 1 oo 1 

The uniform packings in five dimensions were found by Leech [Lel]. He also found 
some of the six- and seven-dimensional ones [Le2]. 

The densest possible lattice packings are known in dimensions 0 < n < 8. They 
are the root lattices 

Ao, A1, A2, A3 = D3, O4, D5 = Es, E6, E7, E8 

(see [CS1], which we use as our general reference for information about lattices and 
other sphere packings). It is conjectured that the highest densities in dimensions 
n < 8 are attained by these lattices, and in nine dimensions by the "laminated" 
lattice A 9. These records were already known to Korkine and Zolotareff [KZ] in 
1873. However, in the next few dimensions the records have been improved several 
times. The current record densities for lattices in dimensions 10-13 are held by 

Aa0 , Xll , 3r,(12, and .7{13, 

respectively discovered by Chaundy [Ch], Barnes [Ba2], Coxeter and Todd [CT], and 
Conway [Co], but in 10, 11, and 13 dimensions there are better nonlattice packings: 

Plot, P11a, and P13a 

respectively discovered by Best [Be], and Leech and Sloane [LS1], [LS2]. 
The minimal nonzero norm (or squared length) in the standard definitions of the 

above root lattices is 2, and we accordingly fix the radius of the spheres in all our 
packings at 1/V~-. 

The following notation in used throughout. II  n (n >__ 2) denotes a densest n- 
dimensional packing that fibers over a tight 2k-dimensional packing, where 2 k is the 
highest power of 2 strictly less than n. For 2 < n < 8, Postulate n implies that tight 
packings have this form. We also define II  n to be a tight n-dimensional packing for 
n = O, 1. We use the names A~, A 2 . . . .  for the most interesting particular cases, 
since these are analogues of the laminated lattices A n = A 1 of Chapter 6 of [CS1]. 

Suppose Pn is an n-dimensional packing that fibers over an m-dimensional 
packing P,,.  Let A be the projection onto the space of a layer P,, of a point in 
another layer P ' .  Let x be the distance of A from the closest point of Pro, and let y 



386 J.H. Conway and N. J. A. Sloane 

i V 
X 

A 

Fig. 1. 

�9 p" �9 
Q 

-- �9 P= �9 

A fibered packing and its quotient Q. 

be the separat ion between the layers Pm and P"  (Fig. 1). Then x is at most the 

covering radius R of Pm, and x 2 + y 2  > 2, so y is at least ~/2 - R 2 . 
Let  Q be the project ion of P,  onto the space Pm ~ . If we surround each point  of 

Q by a sphere of diameter  V~ - R 2 , we obtain a sphere packing in Pm ~ . If P,  is to 
be tight, it is plainly necessary that  this sphere packing in Pm ~ should be tight, and 
that Pm also be tight. (Our Postulate n asserts that all the tight n-dimensional 
packings can be obtained in this way, taking m = 2k.) This can only happen if for 
adjacent  layers Pm and P"  it always happens that every point of P"  lies above a 
deep hole of Pro. 

1. D i m e n s i o n  1 

Our first assertion needs no proof  (note that our spheres have radius 1 / v ~ ,  and the 
minimal squared distance between distinct points of our packings is 2). 

Propos i t ion  1. The only tight packing II 1 is the root lattice A 1 = A 1 . 

We recall that A 1 = ((1, - 1)), i.e., is generated by the vector (1, - 1) [CS1]. The 
dual lattice A T is the union of two cosets [0] = A 1 and [1] = A 1 + (�89 - �89 (Fig. 2). 
Each of the cosets [0], [1] consists of  the deep holes in the other. The covering radius 
of A 1 is 1 /v /2  -. 

�9 �9 ~ ~ [0] = AI = ((1,-1)) 

.~ ." ." " .  [1] = A1 + (I/2,-I/2) 

- - - �9 - -  - .~ �9 �9 A ~ = ( ( V 2 , - V 2 ) )  

[0] [1] [0] [1] [0] [1] [0] [1] [0] 

Fig. 2 
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2. Dimension 2 

Proposition 2 (depends on Postulate 2). The only tight packing [I 2 is the root lattice 
A 2 = A  2 �9 

Proof. Postulate 2 tells us that II 2 fibers over A 1 . From the discussion at the end 
1 = of the Introduction, the separation between the A 1 layers is at least f2 -  - ~ //~-, 

and this can be achieved only for the packing shown in Fig. 3, in which alternate 
layers are the cosets [0] and [1] of A 1 in A T . The packing Q is a rescaled A 1 in 
which the points are colored alternately [0] and [1]. What  results is of course a 
description of the root lattice A 2- [ ]  

A~' ~. = ~. �9 

IIIIIII 

Fig. 3 

, - .Q 

, ,  [0] 
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" [i] 
>< 

,~ [0] 

We shall introduce a language for describing fibered packings by reference to this 
case. Each layer here projects onto the starting layer, either onto [0] or onto [1]. We 
call the possible projections placements. The placements of adjacent layers must be 
adjacent in the placement graph, which in this case is the graph 21 consisting of a 
single edge: 

A 
w 

[0] [1] 

In general, the layers in a tight packing can have only a limited number of 
projections onto the starting layer: these are the placements. Two placements are 
joined by an edge in the placement  graph just if they can correspond to layers at the 

minimal distance V/2 - R 2 , that is, if each point of either projects onto a deep hole 
in the other. We use u, to denote a graph with v vertices and valence k. 

Fibering over A 2. The lattice A~ dual to A 2 consists of the three cosets 
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of A 2. The deep holes in any one of  these cosets are the union of  the other two 
cosets, and the covering radius is ~32- . Each of the cosets [0], [1], [2], and also their 
union A~, is a version of the regular hexagonal lattice (see Fig. 4). 

[0] [01 [0] [0] 
[1] [1] [1] 

[2] [2] [2] 
[0] [0] [0] 

[1] [1] [1] 
[2] [2] [2] 

[01 [0] [0] [0] 

Fig. 4 

[0] 

3. Dimension 3 

Proposition 3 (depends on Postulates 2 and 3). The tight packings I/3 are 
parametrized by 3-colorings o f  the one-dimensional packing A1, or alternatively by 
random walks on the triangle 3 2 . 

We call these the Barlowpackings, since Barlow [Bal] studied some of  them in 1883. 

Proof. Postulates 2 and 3 tell us that each layer in a H3is  a copy of an A 2 and that 
- -  - 2 -  4 the separation between any two layers is at least V ~ - x = V~-" Now suppose 

adjacent layers are always at this distance, and choose a particular layer which we 
take to be A 2 = [0]. Then the next layer must be a copy of A 2 contained in [1] u [2]. 
However, since squared distances in A 2 are even integers, the next layer cannot 
contain points from both [1] and [2] (the squared distances between which have the 
form 2n + 2), so must be all of [1] or [2], say [1]. The layer after this must now be [0] 
or [2], and so on. We conclude that every layer of  a i-I 3 lies above one of the three 
cosets [0], [1], [2] of A 2 in A~, adjacent layers lying above different cosets. In our 
formal language we express this by saying that there are three placements of  A 2, 
and the placement graph is a triangle 32: 

[o] 

w w 

[ i ]  [2] 

So indeed the tight packings are obtained from 3-colorings of  A a . []  
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Uniform Packings. A sphere in such a Barlow packing can be surrounded in two 
essentially different ways. If the two neighboring layers come from different cosets 
of .42, the contact points of the neighboring spheres form a cuboctahedron [CR, 
Fig. 101]; if from the same coset, a pseudocuboctahedron (obtained by placing a 
cuboctahedron so a triangular face is uppermost and the "equator" is a hexagon, 
and replacing the bottom half by the reflection of the top half in the equatorial 
plane). So there are only two choices for a uniform packing H3, namely, A 1 = A 3 = 
A3, the face-centered cubic (or f.c.c.) lattice, in which successive layers are 

A13: ... 0 1 2 0  1 2  ... 

(we omit the square brackets to save space) and A 2 , the hexagonal close packing (or 
b.c.p.), in which they are 

A2: ... 1 2  1 2  1 2  . . . .  

Crystal Balls. We define the first crystal ball of a sphere in a packing to consist of 
that sphere and those touching it; and inductively, the (n + 1)st crystal ball to consist 
of the nth crystal ball together with all the spheres that touch it. 

In all the Barlow packings a sphere has 12 neighbors, so the first crystal ball has 
size 13. However, the second crystal ball can have size 55, 56, or 57. a Consider five 
adjacent layers colored a, b, c, d, e, where each color is one of [0], [1], [2]. Then the 
second crystal ball for a sphere in layer c has size 55 + number of "Yes" answers to 
the two questions: 

I s a  = c ?  I s c  = e ?  

(Fig. 5 shows a case in which a = c, c 4= e.) 

O O  O I O  0 0 0  

O 0  g O 0  O I O 0  O O O 0  O O O  
0 0 0  O O O O O  g o  

O O D O  O O O  
0 0  g O O D  �9 

g i g  g o  
g i g  

7 + 12 + 19 + 12 + 6 = 5 6  

Fig. 5. How the 56 spheres of a second crystal ball are distributed into five layers in a typical 
Barlow packing. 

There are just four packings that are characterized by the set of sizes of their 
second crystal balls. If no such ball has size 56, then the answers to alternate 
questions from the sequence: 

�9 "" Is a = c? Is b = d? Is c = e? ... 

~It is asserted on p. 801 of [Hs] that the second crystal balls in all the Barlow packings have size 
57, but as we shall see this is incorrect. 
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must always be the same, and we obtain one of the three packings: 

Packing Answers Coloring Sizes 
A�89 ... NNNN . . . . . .  012012012... 55 
A~ ... YYYY . . . . . .  01010101... 57 
A~ . . .YNYN . . . . . .  0102010201... 55,57 

If all the second crystal balls have size 56, then alternate answers must always be 
different, and we find a fourth packing: 

A~ . - .YYNNYYNN . . . . . .  020210102121... 56. 

We have already mentioned A 1 and A 2 in the preceding subsection. A33 and A 4 are 
not uniform, the nonuniformity of A 4 being first revealed by the fact that its third 
crystal balls are not of constant size. 

For each of the remaining three sets {55, 56}, {56, 57}, {55, 56, 57} it is easy to see 
that there are uncountably many packings for which these are the sets of second 
crystal ball numbers. 

The spheres in A 3 and A 4 lie in just two orbits under the automorphism groups 
of these packings. Such packings were studied by Melmore [Me]. There are precisely 
two further packings with this property: 

A~ . . . Y Y N Y Y N  . . . . . .  010202121010... 56,57, 
A~ . . -YNNYNN . . . . . .  012021012021... 55,56. 

Note that there is a packing A'~ (n > 6) corresponding to each nonempty proper 
subset of {55, 56, 57}. For n = 1, 2, 3, 4, 5, 6 respectively, the packing A'~ consists of 
1, 2, 4, 4, 3, 6 translates of a lattice packing. 

4. Dimens ion  4 

Proposition 4 (depends on Postulates 2 and 4). The only tight packing II  4 is the root 
lattice A 4 = D 4 . 

Proof. Here both the layers and the quotient space are two-dimensional (Fig. 6), 
and any tight packing must come from a 3-coloring of  the two-dimensional packing 
Q, which is a rescaled version of  A 2. However, this is unique (Fig. 7), since it is 
determined by the colors of three adjacent circles. The resulting lattice is D 4 . []  

The dual lattice D~' consists of four cosets, 

1 1 [0] = D4, [1] = D 4 + ( �89 �89 ~,  ~-), [2] = D ,  + (0, 0, 0, 1), 

1 1 1 )  [3] =D 4 --I- (i, ~,~,- 2-', 

and the set of  deep holes in any one of these cosets is the union of the other three. 
The covering radus is 1. 
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�9 

Fig. 6 

Fig. 7 

5. Dimension 5 

Proposition 5 (depends on Postulates 2, 4, and 5). The tight packings II 5 are 
parametrized by the 4-colorings orAl ,  or alternatively by random walks on a tetrahedron 
4 3 . Just four of them are uniform packings. 

Proof. The usual argument shows that any two layers must be separated by at least 
v~ - 1 = 1, and that if two layers D 4 and D~ are separated by exactly this distance, 
the points in D~ must lie above deep holes of D4. In other words, D~ projects into 
[1] U [2] U [3]. Once again it cannot contain two points from different cosets (whose 
squared distance would be an odd integer), and so must in fact be a single coset [1], 
[2], or [3]. So this time there are four placements [0], [1], [2], [3], forming a 
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tetrahedral placement graph 43: 

[0l 

[ 2 1 &  D] 

[3] 

A tight five-dimensional packing II  5 is specified by giving the types 

�9 .. a b c d e  ... (1) 

of its layers, which constitute a 4-coloring of A1, or a random walk on the 
tetrahedron 43 . 

For a uniform packing there are several cases. If the neighbors of a typical sphere 
(say from layer c) come in antipodal pairs (this happens just when b = d) they must 
do so for all spheres, and we obtain the root lattice A 1 = A 5 = Ds,  corresponding to 
the coloring 

A~5: ... 0 1 0  1 0  1 ... 

D 5 can be decomposed into such layers in several different ways. 
In any other uniform packing any three adjacent letters in (1) must be distinct. 

Moreover, the division into layers is characteristic: adjacent spheres A and B are in 
the same layer just if there is a third sphere C touching B antipodally to A. 

We now consider the spheres within the second crystal ball of a given sphere, in 
layer c (say)--these will lie in five adjacent layers a, b, c, d, e, and we can ask the 
two questions: 

I s a = d ?  I s b = e ?  

The set of answers must be the same for every sphere, and determines the packing: 

A25 N N  ..- 012301230123.-- 

A 3 YY -.. 123123123123-.. 

A~ YN -.. 10213203102132031... 

Thus there are four uniform packings, first found by Leech [Lel]. It turns out that 
A'~ consists of  n translates of a lattice packing (n = 1, 2, 3, 4). []  

6. Dimension 6 

Proposition 6 (depends on Postulates 2, 4, and 6). The tight packings H 6 a r e  

parametrized by 4-colorings o f  the A 2 lattice. Just four o f  them are uniform. 

Proof. The main assertion is proved as usual. 
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Let us consider the colors of  six neighbors of a circle colored d in an A 2. There 
are essentially just four possibilities for their colors: 

abcabc, 
abacbc, 
ababab, 
ababac. 

(2) 

For  a uniform packing, every circle in the A 2 quotient must be surrounded in the 
same way as every other one. It happens that each of the above four types gives a 
unique uniform coloring, as shown in Fig. 8, the first of them being the root lattice 
A 6 = E 6. The packing A'~ consists of n translates of a lattice (n = 1, 2, 3, 4). []  

Fig. 8. The 4-colorings of A 2 that determine the four uniform tight six-dimensional packings A'~. 

7. Dimension 7 

Proposition 7 (depends on Postulates 2, 3, 4, and 7). The tight packings 1-I 7 fiber 
over D 5 . They are parametrized by choosing a packing 1-I 3 and a "period 2 coloring" of  
one of  its A z layers (as defined below). Alternatively, such a packing is specified by an 
ordered pair consisting of  a random walk on a triangle 32 and one on a square 42 . Just 
four of  them are uniform. 

A period 2 coloring of A z is a 4-coloring in which the A 2 decomposes into 
parallel  A l's, each of which uses only two colors. 

Proof. In the usual way we find that a 1I  7 is determined by a I I  3 and a 4-coloring 
of  it. But here a new feature occurs: there are infinitely many choices for II 3. 

However, in compensation, we find that the 4-coloring is completely determined 
by its restriction to any layer of  the II  3 . (Each sphere of  the next layer touches three 
spheres of  this one, and so must be of the unique remaining color.) 
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2 1 2 I 

2 1 2 1 

(a) (h) 

Fig. 9 

This prohibits the last two cases ababab and ababac of (2), since in each case (see 
Fig. 9) either choice for the next layer forces two contiguous spheres to have the 
same color. We have therefore shown that among the six neighbors of a sphere in 
any layer A 2, some pair of antipodal ones have the same color, since the other two 
cases of  (2) have this property (Fig. 10). 

We next deduce that: 

the A 2 c a n  be decomposed into parallel A l ' s ,  each of which uses just two colors. 

For if every sphere in A 2 is surrounded as in Fig. 10(a), then the coloring has period 
2 in all directions. If any one sphere is surrounded as in Fig. ll(b), then we ask: what 
is the pair of like-colored antipodal spheres around a sphere labeled 2 in Fig. 10(b)? 
The only possibility is that one of these spheres is the cental sphere colored 0. 
Repeating this argument, we obtain Fig. 11, in which a and b must be 0 and 2 in 
some order, then c and d must be 1 and 3, and so on. 

The most general II 7 is therefore obtained as follows. We color one row of an A 2 
lattice with two of the four colors, say 0 and 2, color the next row 1 and 3, the next 0 
and 2, and so on. We add other layers to this to obtain any of the Barlow packings, 
the coloring extending uniquely to these other layers. Such a packing is also 

3 1 1 3 

1 3 1 3 

(a) Co) 
Fig. 10 
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1 3 1 3 1 3 1 3 
2 0 2 0 2 0 2 0 

1 3 1 3 1 3 1 3 
a b a b a b a b 

c d e d e d e 
e f e f e f 

Fig. 11 

completely specified by giving a random walk on the square graph 

42 

to] Ill 

i i 
[3] [2] 

found from a sloping line such as that indicated in Fig. 11 by the bold-faced symbols, 
together with the random walk on the triangle 3 2 that determines the associated 
packing H a . Since each horizontal line in our diagrams represents a translate of D 5 , 
all such packings fiber over D 5 . 

There are just four cases that give uniform packings. We can extend the coloring 

2 0 2 0 2 

1 3 1 3 1 

0 2 0 2 0 

1 3 1 3 

to either the f.c.c. (giving A 1) or the h.c.p. (A27), or the coloring 

0 2 0 2 0 2 

1 3 1 3 1 3 

2 0 2 0 2 

3 1 3 1 

to the f.c.c. (A37) or the h.c.p. (A4). The first of these is the root lattice A 7 = E 7 ,  and 
for n = 1, 2, 3, 4 the packing 3.% consists of 1, 2, 2, 4 translates of a lattice. [] 

8. Dimension 8 

Proposition 8 (depends on Postulates 2, 4, and 8). The only tight packing 118 is the 
root lattice A s = E 8 . 

Proof. A 1I 8 is determined by a 4-coloring of a (rescaled) 114, equivalently of the 
lattice D~'. We show that this coloring is unique, and in fact assigns each vector of 

D~' to the coset of D4 it determines. 
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Table 1. The unique 4-coloring of D*. 

Sphere Coordinates Color Touches 

A 0 0 0 0 0 
1 1 1 1 B 7 ~- 7 7 1 A 

C 0 0 0 1 2 A , B  
D - �89 !2 1_2 • 3 A , B , C  
E 0 0 1 0 2 A , B , D  
F - �89 -�89 �89 �89 1 A ,C ,D  

G _�89 _!2 -~-2 !2 3 A , C , F  
H - 1  0 0 0 2 A , D , F  

I 1 I - �89 - �89 - 7  - 7  1 A , G , H  
J - 1  - 1  0 0 0 G , H , I  

Consider the spheres of D~' centered at the points shown in Table 1. We start by 
arbitrarily assigning colors 0, 1, 2 to the three contiguous spheres A, B, C. Then D 
must be colored 3, since it touches each of these. In a similar way we obtain the 
coloring of all the spheres shown in the table. It follows that this (possibly partial) 
coloring is invariant under permutations of the coordinates. This is because any such 
permutation fixes A and B, and either fixes C or takes it to another sphere like E 
which has been assigned the same color. 

The  spheres mentioned in the table and their permutations show that the 
coloring is also invariant under changing the signs of  any even number of coordi- 
nates. It is similarly invariant under subtraction of (1, 1, 0, 0). Since the images of 
(1, 1, 0, 0) under permutations and even sign changes generate D 4, all points of any 
coset of D 4 are assigned the same color, and hence the coloring and packing are 
unique. []  

9. Dimension 9 

It is astonishing that although Blichfeldt completed the solution of the lattice 
version of the sphere packing problem in dimensions up to eight before 1930 (see 
[CS1]), the intervening 60 years have seen essentially no progress on the nine-dimen- 
sional problem. So it is only to be expected that the nonlattice problem will have 
new features in nine dimensions. In the next few subsections we discuss more and 
more  surprising putatively tight packings in nine dimensions. 

We first suppose the truth of  Postulate 9, and also use Proposition 8, which 
depends on Postulates 2, 4, and 8. 

A. Translation 

1 It is known [CS1] that the deep holes in E a are members  of  the lattice ~E s. It 
follows that if all the layers of a I I  9 differ by translations, then all the corresponding 
placements correspond to members  of �89 a. However,  since shifting by a member  of  
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E s has no effect, it is better to regard the placements as members of the quotient 

group �89 s . 
We recall from [CS1] the structure of ~Es /E  8. There are 28 = 256 cosets of E 8 
1 in ~-E 8, and the shortest vectors in a coset are as follows: 

(i) the zero vector (1 coset), 
1 (ii) + ~u (120 cosets), 
1 1 (iii) _+ ~v I _+ ... + ~v s (135 cosets), 

where u ~ E 8 is a norm 2 vector and V l , . . . ,  v s ~ E 8 are mutually orthogonal norm 
4 vectors that are congruent modulo 2E 8. The deep holes in E 8 correspond to the 
135 type (iii) cosets. The placement graph 256135 for this problem therefore has as 
nodes these 256 cosets, and two nodes are joined by an edge whenever the 
difference of the corresponding cosets is of type (iii). This does indeed have valence 
135. Thus we have proved: 

Lemma 9A. The tight packings I/9 in which all layers are obtained by translations o f  
each other are parametrized by random walks on the above graph 256135 . 

B. Rotation 

If we allow adjacent layers to be related by rotations as well as translations there are 
more possibilities. To find out how many, we first consider the relationship between 
two adjacent layers E and F. We suppose that E is the usual E s defined with 
respect to the standard basis e I . . . .  , e 8. 

Each sphere of F lies above a deep hole v of E and will touch 16 spheres of E. If 
we take v = e 1 = 10000000, these will be the E spheres centered at 

V ___ e l , . . . ,  U ___ e8, 

and we remark that E contains all the vectors 

z l e  1 + . . .  + z 8 e  8 

for which the z i are integers with even sum, and also all vectors 

1 1 
+_~e 1 + ' " _  ~e8 

for which the number of minus signs is even. 
However, the relation between E and F is symmetrical! There will therefore be 

16 F-spheres 

+ A  • " + f s  

touching the E-sphere centered at the origin, and F will contain all the vectors 

V - ] - Z l f  1 @ " "  "~ -Z8 f  8 
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All possibilities for orthonormal bases +ft . . . . .  + ]'8 of deep holes 
in E 8 containing el.* 

Case 2f~ Group Index 

d o (20000000) 27 : S 7 2~ = 1 
d 4 (2000) 0 0 0 0 26 : S 3 • S 4 21.35 = 70 

oooo(- + + + )  
d 6 (20) 0 0 0 0 0 0 24 : 23S3 23.105 = 840 

00(- + 0 + +0) 
e 7 (2) 0 0 0 0 0 0 0 27:PSL3(2) 26.30 = 1920 

0 ( - + + 0 + 0  O) 

* + and - denote + 1 and - 1, and parentheses indicate that all cyclic permuta- 
tions of the enclosed coordinates are to be applied. (The cases are named after the 
codes obtained by reducing their coordinates modulo 2 (see [CP]).) 

for which the z i are integers with even sum, and also either all vectors 

1 l 
+ ~fl + "'" + ~f8 

for which the number  of minus signs is even, or all those for which this number  is 
odd. 

The vectors -I-fl . . . . .  -t- f8 must be an orthonormal basis of deep holes in E, one 
of which is the particular vector 10000000. Up to symmetries of E s it turns out that 
there are just four possibilities for the doubled vectors 2f l  . . . . .  2f8, as shown in 
Table 2. Each of these cases leads to a unique choice for F,  since F may not contain 

1 1 1 1 the vector ~fl + "'" + ~fs = ~el + "'" + ~e 8, which is already in E. We omit the 
arguments proving that these cases survive, and that the list is complete. 

We next compute the number  of possibilities for F. For each case the table shows 
the structure of the group that fixes or negates the leading vector 20000000, and its 
index in the subgroup 27 : S 7 of all automorphisms of E that do this. We conclude 
that the total number  of such frames that contain the vector 20000000 is 

1 + 70 + 840 + 1920 = 2831, 

and so the total number  o fcho ices fo r  F is 

2160 
2831. = 382185, 

16 

since there are 2160 norm 4 vectors we could use in place of 20000000 and each of 
the frames contains 16 such vectors. From this we obtain: 

Lemma 9B. The tight packings H 9 whose layers differ by arbitrary rotations and 
translations are parametrized by random walks on a placement graph of form 0o382185. 

The reason there are infinitely many possible placements is really that the 
automorphism group of E 8 is a maximal finite subgroup of the eight-dimensional 
orthogonal group, and two placements may differ by a rotation not in this group. We 
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can for instance find a H 8 in which every pair of alternate layers is related by the 
matrix 

2 0 0 0 0 0 0 0 
0 - + + 0 + 0 0 
0 0 - + + 0 + 0 
0 0 0 - + + 0 + 
0 + 0 0 - + + 0 
0 0 + 0 0 - + + 
0 + 0 + 0 0 - + 
0 + + 0 + 0 0 - 

(corresponding to case  e7) , whose characteristic polynomial 

( X  - 1 ) 2 ( X  2 + 3 X  + 1) 3 

shows it to be of infinite order. 
Since there are infinitely many placements but just 382,185 possibilities for a 

neighbor of a given one, the placement graph does indeed have type %82185. 

C. Flotation 

It seems that of all these packings, only the lattice packing A19 = A 9 was previously 
known. This was first described by Korkine and Zolotareff [KZ] in 1873 and is their 
packing T 9 [CS1]. We describe it in some detail, because it can be modified in 
interesting ways. 

A 9 consists of the vectors 

x l , . . . , x 8 , 2 n  and x I . . . .  , x  8 +  1 , 2 n +  1, 

where x 1 . . . . .  x s is a typical vector of E s in the standard coordinate system, and n is 
any integer. 

However, we can look at these vectors in another way! The ones with integral 
coordinates constitute the lattice D 9 ,  and so 

A9 = D 9 0 D 9  + ((L)S,o). 

This leads us to ask: 

Are there other vectors w for which the points of the "fluid diamond packing " 

D9(w ) = D 9 U (D 9 + w) (3) 

have minimal distance v~ ? 
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Lemma 9C. The answer to the above question is "Yes." In fact there are uncountably 
many choices for w. 

The condition is just that the squared distance of  w from the nearest  point of D 9 

should be at least 2, and this is achieved for instance if any eight of the coordinates 
of v are halves of odd integers, the ninth then being completely free. Let us write 

D ~  ((�89189 

Then D O+= A 9 and D91+= D~- is the nine-dimensional diamond packing [CS1]. 

Gold and Silver Among the Diamonds. We say that  a sphere in a fluid diamond 
packing (3) is "golden" if its center  is in D 9 ,  and "silver" if its center is at a point of 
D 9 + W. Then if the squared distance of w from D 9 is strictly greater  than 2, no 
silver sphere touches any golden one. So the packing A 9 has the remarkable 
flotation property described in the following theorem. 

Flotation Theorem. Let X and Y be two silver spheres in A 9 . Keeping the golden 
spheres fixed, the silver spheres can be collectively moved so that the final position of X is 
the original position, of Y. Usually the silver spheres do not touch the golden ones, and at 
no time do any two spheres overlap. At  every stage in the motion the packing is of type 
D~ for O < O <_ l. 

Proof. Let (X 1 . . . . .  X 9) and (Yl . . . . .  Y9) be the centers of X and Y. Then x 9 and Y9 
are integers, but the other  coordinates x i and Yi are halves of odd integers. The 
desired motion is performed in 10 stages. In stage 0 we fix x 1 . . . . .  x s and increase x 9 
smoothly by ~.1 Then at stage n, 1 _< n _< 9, we move the nth coordinate to yn, 
keeping the others fixed. At  all t imes in this motion, eight of the coordinates are 
halves of odd integers, and so the spheres at no t ime overlap. Only at the instants 
when some coordinate of w is an integer does any silver sphere touch a golden 
one. [ ]  

Unfortunately the existence of these "floating packings" violates our Postulate 9. 
We  therefore simply weaken the postulate to: 

Postulate 9*. Every tight nine-dimensional  packing l-I 9 either fibers over II  8 = E 8, 
or is a fluid diamond packing. 

This is not quite so despicable as it seems, since at least Postulate 9* entails that 
every tight nine-dimensional  packing is isotopic to one that fibers over H s. (Two 
tight packings of  spheres of a given radius are said to be isotopic if one can be 
continuously deformed into the other  through tight packings of  spheres of the same 
radius.) 
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We summarize our beliefs in: 

Proposition 9 (depends on Postulates 2, 4, 8, and 9*). The tight nine-dimensional 
pack ings  II 9 are of two kinds: 

(i) Packings containing E8, which are parametrized by random walks on the 
graph ~382185 �9 

(ii) Fluid diamond packings O 9 ( w ) ,  parametrized by the vector w. 

There is an uncountably infinite number of uniform packings. 

Proof. Only the last assertion remains to be proved. The fluid diamond packing 
D 9 ( w )  is seen to be uniform because it has the symmetries 

X ~ - - > U + X ,  

X ~-'~ W q- V - - X ,  

for every v ~ D 9 . [] 

Our real reason for believing this proposition is not that we find Postulate 9* 
inherently plausible (indeed, the flotation property initially made it seem extremely 
implausible), but rather that we have tried and failed many times to produce any 
other packings which are at least as good as those described there. The reader who 
finds our arguments unconvincing is invited to produce a putatively tight packing not 
covered by the proposition! 

I0. Dimensions I0 and Higher 

Proposition 10 (depends on Postulates 2, 4, and 8). Postulate 10 is false, even if 
weakened by being asserted only up to isotopy. The tightest packing currently known is 
that due to Best. 

Proof. The tightest packings in dimensions 8 + n, 0 < n _< 8, that do fiber over E s 
are easily found by our methods. They are parametrized by what we might call 
~382185-colorings of the tight packings II  n . In other words, the "color" assigned to 
each sphere of  II  n is a node of the placement graph ~382185 of Lemma 9B, and 
adjacent spheres must be colored by nodes that are adjacent in this graph. However, 
one such packing is the laminated lattice A10 whose density is strictly exceeded by 
the 10-dimensional packing found by Best and briefly described below. []  

Best's packing is a uniform packing, for which we have recently given a very 
simple construction [CS2]. 

The Pentacode consists of all cyclic shifts of  the four vectors 

01112, 03110, 21310, 21132, 

and their negatives, where the digits are integers modulo 4. (These eight words are 
all the words of  the form c - d, b, c, d, b + c, where b, c, d are odd.) We obtain the 
centers of Best's 10-dimensional packing by replacing each digit of a word of the 
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pentacode by two integers according to the following scheme: 

0 ~ even, even 

1 ~ even, odd 

2 ~ odd, odd 

3 --0 odd, even. 

Our assertions about this packing follow from [CS2]. 
Proposition 10 suggests that an appropriate modification of Postulate 10 might 

be: 

Postulate 10" ("Best is best"). Best's packing is the only tight packing in 10 
dimensions. 

The authors are of two minds about the possible truth of this postulate. We have 
greater confidence in: 

Postulate 12". The Coxeter-Todd lattice ~ 2  is the only tight 12-dimensional 
packing. 

However, we have othing plausible to offer in 11 or 13 dimensions. Neither of the 
packings mentioned in Postulates 10" and 12" fibers over E8, and Postulates 11 and 
13 fail just as dramatically. There may still be some truth in Postulates 14-16, and so 
some value in understanding the packings IIs+ . that do fiber over E 8 . 

Unfortunately the description in terms of o%82185-colorings of II n does not make 
it clear a priori that there is more than one such Hs§ . . However, we remark that 
the graph 00382185, and indeed its subgraph 256135, contains a copy of the complete 
graph 1615 on 16 points. This is because E 8 can be embedded in a scaled copy E8 ~ of 
itself having half the minimal norm [CS1]. Then E~- consists of  16 cosets of E 8, and 
we can take those to be the desired 16 placements, since any two of them differ by a 
deep hole vector. This shows us that there is a particular packing H8§ ~ correspond- 
ing to any 16-coloring of any tight packing H n. 

We estimate that this method gives us more than 10 7 distinct, putatively tight, 
16-dimensional packings having the same density as the Barnes-Wall  lattice A16. 
This lattice A16 is one of these packings. It corresponds to a 16-coloring of E 8 in 
which the colors correspond to the cosets in E 8 of a sublattice E 8 that is a scaled 
copy of E 8 at twice the minimal norm. The automorphisms of  E s permute these 16 
colors in just 116.GL4(2)1 = 8.8I ways. So by applying all 16! color permutations we 
may expect to obtain at least 16!/8.8! > 10 7 tight packings H16. 

11. Concluding Remarks 

We have achieved what seems very likely to be a complete description of all the tight 
packings in up to 9 dimensions, perhaps also in 10 dimensions. However, there is 
little point in carrying these detailed arguments much further. In particular, it seems 
unprofitable to study packings that fiber over II16's, since A16 is no longer unique. It 
may well be true that all tight packings in dimensions just above 24 fiber over the 
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Leech  lattice A24. There  are good reasons to bel ieve [CS1] that there  are  at least 
75,000 tight 25-dimensional  lattice packings, and there  may well be  25-dimensional  

analogues  of  the 9-dimensional  ro ta t ion and f lotat ion p h e n o m e n a  of  Sect ion 9. 
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