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Abstract

In recent years, with camera pixels shrinking in size, im-

ages are more likely to include defocused regions. In order

to recover scene details from defocused regions, deblurring

techniques must be applied. It is well known that the quality

of a deblurred image is closely related to the defocus ker-

nel, which is determined by the pattern of the aperture. The

design of aperture patterns has been studied for decades

in several fields, including optics, astronomy, computer vi-

sion, and computer graphics. However, previous attempts

at designing apertures have been based on intuitive criteria

related to the shape of the power spectrum of the aperture

pattern. In this paper, we present a comprehensive frame-

work for evaluating an aperture pattern based on the qual-

ity of deblurring. Our criterion explicitly accounts for the

effects of image noise and the statistics of natural images.

Based on our criterion, we have developed a genetic al-

gorithm that converges very quickly to near-optimal aper-

ture patterns. We have conducted extensive simulations and

experiments to compare our apertures with previously pro-

posed ones.

1. Introduction
Since the 1990s, the spatial resolution of image detec-

tors has been increasing at a rapid pace. This trend is be-

ing driven by advances in silicon technology that enable the

fabrication of smaller pixels. For a given optical setting,

smaller pixels result in a smaller depth of field (DOF). Inter-

estingly, smaller pixels need more light to maintain signal-

to-noise ratio (SNR) and hence require the use of wider

apertures, which causes further reduction in DOF. The end

result is that, with increase in resolution, images are more

inclined to include large defocused regions, where scene de-

tails are blurred out. The only way to recover these details

is by using deblurring techniques. For these reasons, image

defocus deblurring has recently resurfaced as an active area

of research.

It is well-known that out-of-focus blurring can be formu-

lated as a convolution of the perfectly focused image with

a kernel that is determined by an aperture pattern; defocus
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deblurring is achieved by deconvolution with this kernel.

The main problem with defocus deblurring is that the higher

frequencies of the signal are attenuated during image forma-

tion and consequently deconvolution amplifies image noise.

For any given frequency in the Fourier domain, the lower

the power the defocus kernel has, the greater the amplifica-

tion of image noise. In the case of a conventional circular

aperture, the defocus kernel is known to not only severely

attenuate high frequencies but also have zero-crossings in

frequency domain. Over the past 50 years, numerous aper-

ture designs have been proposed to preserve high frequency

information (e.g. [1] [2]). In recent years, new coded aper-

tures have been proposed for defocus deblurring [3]. These

works have evaluated and optimized aperture patterns based

on intuitive criteria related to the shape of their power spec-

tra, such as maximizing the minimum value of the spectrum

[3]. Although such criteria have helped to find better aper-

ture patterns, they do not explicitly account for the effects

of image noise and image structure in the context of defocus

deblurring.

In this paper, the “goodness” of an aperture pattern is

evaluated based on the quality of deblurring, rather than on

any particular characteristic of the aperture pattern’s power

spectrum. In our method, the spectrum of an aperture pat-

tern is assessed together with the level of image noise and

the expected spectrum of an image. For the image spectrum

we use the well-known 1/f law [4][5][6] as an image prior.

Despite the fact that our apertures are optimized using this

specific prior, we have found that they produce high quality

deblurrings for a wide variety of real-world images.

Even though our evaluation criterion is concise, finding

the optimal pattern is still a challenging problem. For a bi-

nary pattern of resolution N × N , the number of possible

solutions is 2N×N . This makes finding the optimal pattern

intractable. To solve this optimization problem, we use a

genetic algorithm [7] in which the pattern is represented by

a gene sequence that evolves via selection, turnover, and

mutation. Because of the simplicity of our pattern evalu-

ation criterion and the efficiency of the proposed genetic

algorithm, for a 13×13 pattern, the optimization converges

to a near-optimal solution in about 20 minutes on a 4GHz

PC.
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(a) Focused Image (Ground Truth)

(c) Proposed Aperture

c

(b) Circular Aperture

Figure 1. Comparison of deblurring results obtained using a cir-

cular aperture and one of our optimized apertures. (a) A focused

image of a CZP resolution chart. (b) Severely defocused image

captured using a circular aperture (top) and the result of deblur-

ring (bottom). (c) Image captured using our optimized aperture

(top) and the result of deblurring (bottom). The apertures used

are shown in the top-left corners of the captured images. Both the

captured images were taken under identical focus and exposure

settings (hence the darker captured image in (c)).

To experimentally verify our optimized patterns, we

printed several aperture patterns as high resolution (1 mi-

cron) photomasks and inserted them into Canon EF 50mm,

f/1.8 lenses. These lenses were attached to a Canon EOS

20D camera and used to capture images of a wide variety

of scenes. For example, Figure 1 compares the deblurring

results for a CZP resolution chart obtained with a circular

aperture and our optimized aperture. We can see that al-

though the captured image is highly defocused, most details

are recovered when the optimized aperture is used. In the

case of the conventional circular aperture, however, a signif-

icant amount of information is lost – the deblurring result

is very noisy, is lacking in high frequencies, and includes

many artifacts.

Given an aperture pattern, we still need the scene depth

to determine the size of the kernel to deblur with. In this

paper, we focus on the problem of how to best preserve in-

formation during out-of-focus blurring by choosing proper

aperture patterns, and have assumed that scene depth is pro-

vided either manually or by a depth estimation method.

When depth information is not available, users can try dif-

ferent scene depths until scene details are best recovered.

The quality of these recovered details, such as car license

numbers, telephone numbers and human faces, can be criti-

cal in a variety of imaging applications.

2. Related Work
In the early 1960s, coded aperture techniques were in-

troduced in the field of high energy astronomy as a novel

way of addressing the SNR issues related to lensless imag-

ing of x-ray and γ-ray sources [8]. In subsequent decades,

many different aperture patterns were proposed, including

the popular modified uniformly redundant array (MURA)

[9]. Unfortunately, the coded apertures designed for lens-

less imaging are not optimal to use with lenses for defocus

deblurring, as observed in [3].

Also in the 1960s, researchers in the field of optics began

developing unconventional apertures to increase DOF as

well as capture high frequencies with less attenuation [1][2].

These apertures were usually chosen based on simple intu-

itions and then analyzed in terms of their optical transfer

functions. A different set of approaches use a 3D phase

plate at the aperture plane [10],[11], or a moving image de-

tector [12], to extend DOF. The goal of these approaches is

to make the blur kernel depth-invariant rather than optimal

for defocus deblurring.

It is only in the last few years that the design of apertures

for defocus deblurring was posed as an optimization prob-

lem. In particular, Veeraraghavan et al. [3] used gradient

descent search to improve the MURA pattern [9] and then

binarized the resulting pattern. Due to the large search space

associated with the optimization, they restricted themselves

to binary patterns with 7 × 7 cells. The criterion used in

[3] maximizes the minimum of the power spectrum of the

aperture pattern.

In another related work by Levin et al. [13], the aperture

pattern is optimized for the recovery of depth from defo-

cus, a different problem from the one we address. Since

they also use their optimized pattern for defocus deblurring

in their experiments, we include their pattern in our com-

parisons. However, to be fair, it should be noted that their

pattern was not designed for defocus deblurring. It is worth

mentioning that patterned apertures have also been used in

other imaging applications [14] [15] [16] [17].

3. Criterion for Aperture Quality

3.1. Formulating Defocus Deblurring

For a simple fronto-planar object, its out-of-focus image

can be expressed as:
f = f0 ⊗ k + η , (1)

where, f0 is the focused image, k is the point spread func-

tion (PSF) determined by the aperture pattern and the degree

of defocus, and η is the image noise which is assumed to be

Gaussian white noise N(0, σ2). In frequency domain, we
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have
F = F0 · K + ζ, (2)

where, F0,K, and ζ are the discrete Fourier transforms of

f0, k, and η, respectively.

Given a defocused image F and known PSF K, the prob-

lem of defocus deblurring is to estimate the focused image

F0 by solving a maximum a posteriori (MAP) problem:

F̂0 = argmaxP (F0|F, K) = argmaxP (F |F̂0, K)P (F̂0) . (3)

By assuming a Gaussian model and then taking its logarith-

mic energy function, the above MAP problem can be solved

as the minimization of

E(F̂0|F, K) = ‖F̂0 · K − F‖2 + H(F̂0). (4)

The regularization term H(F̂0) can be formulated using a

variety of image priors. To simplify our analysis, we con-

strain H(F̂0) to be ‖C · F̂0‖
2, where C is a matrix. Then,

minimizing E(F̂0|F, K) gives us the well-known Wiener

deconvolution [18]:

F̂0 =
F · K̄

|K|2 + |C|2
, (5)

where K̄ is the complex conjugate of K, |K|2 = K · K̄,

and |C|2 = C · C̄. Furthermore, the optimal |C|2 is known

to be the matrix of noise-to-signal ratios (NSR), |σ/F0|
2.

We generally do not have access to the exact NSR matrix

since F0 is unknown. The traditional approach is to replace

|C|2 with a single scalar parameter λ or a simplified matrix

like λ · (|Gx|
2 + |Gy|

2), where Gx and Gy are the Fourier

transforms of the spatial derivative filters in the x-axis and

y-axis, respectively. These simplifications cause deconvo-

lution to not be optimal. More importantly, the parameter λ
needs to be tuned, which is difficult as it is inherently scene

dependent. Since we would like our aperture pattern evalua-

tion/optimization to be automatic, we seek a deconvolution

method that is free of parameter selection.

3.2. Optimizing Parameter C Using an Image Prior

Given a blur pattern K and a defocused image F , the fo-

cused image can be estimated as F̂0 by using Equation (5).

Since noise ζ is a random matrix, we evaluate the quality of

recovery using the expectation of the L2 distance between

F̂0 and the ground truth F0 with respect to ζ:

R(K, F0, C) = E
ζ
[‖F̂0−F0‖

2] = E
ζ

∥

∥

∥

∥

ζ · K̄ − F0 · |C|2

|K|2 + |C|2

∥

∥

∥

∥

2

, (6)

where E denotes expectation. When ζ is assumed to be

Gaussian white noise N(0, σ2), we have

R(K, F0, C) =

∥

∥

∥

∥

σ · K̄

|K|2 + |C|2

∥

∥

∥

∥

2

+

∥

∥

∥

∥

F0 · |C|2

|K|2 + |C|2

∥

∥

∥

∥

2

. (7)

Since F0 is sampled from the space of all images and

has a certain distribution, we look for a C that minimizes

the expectation of R with respect to F0:

R(K, C) = E
F0

[R(K, F0, C)] =

∫

F0

R(K, F0, C)dµ(F0), (8)

where µ(F0) is the measure of the sample F0 in the im-

age space. According to the 1/f law of natural images

[4][5][6], we know that the expectation of |F0|
2,

A(ξ) =

∫

F0

|F0(ξ)|
2dµ(F0), (9)

exists (ξ is the frequency). Therefore, we can obtain

R(K, C) =

∥

∥

∥

∥

σ · K̄

|K|2 + |C|2

∥

∥

∥

∥

2

+

∥

∥

∥

∥

A1/2 · |C|2

|K|2 + |C|2

∥

∥

∥

∥

2

. (10)

For a given K, minimizing R(C|K) gives us

|C|2 = σ2/A. (11)

In practice, A can be estimated by simply averaging the

power spectra of a lot of natural images.

3.3. Evaluating an Aperture Pattern

By substituting |C|2 = σ2/A in Equation (10) and re-

arranging, we get the following metric that allows us to

evaluate the quality of the aperture pattern K:

R(K) = Σ
ξ

σ2

|Kξ|2 + σ2/Aξ
. (12)

At each frequency ξ, σ2

|Kξ|2+σ2/Aξ
reflects the degree to

which noise is amplified. The optimal pattern has the small-

est R(K).

Equation (12) highlights the fact that level of image noise

σ is an important factor in evaluating an aperture pattern.

It also suggests that, at different noise levels, the optimal

aperture pattern can be different. It should be noted that this

equation gives the expected performance of a pattern over

the entire space of natural images, but might not be optimal

for a given specific image. However, since the 1/f law is

fairly robust, the optimized aperture patterns based on this

criterion yield good deconvolution performances for a wide

variety of real images.

4. Finding the Optimal Aperture Pattern

Even though our evaluation criterion (Equation (12)) is

concise, finding the optimal aperture pattern remains a chal-

lenging problem. While the aperture pattern is evaluated

in frequency domain, it must satisfy several physical con-

straints in spatial domain: (a) All its transmittance values

must lie between 0 and 1; (b) the whole pattern should

fit within the largest clear aperture of the lens; and (c) its

spatial resolution must be low enough to avoid introducing

strong diffraction effects. Deriving a closed-form optimal

solution that satisfies all these constraints is difficult. We

therefore resort to a numerical search approach. However,

for a binary pattern of resolution N × N , the number of

possible solutions is 2N×N , making exhaustive search im-

practical even for small values of N . In previous works

that use other evaluation criteria [3] [13], randomized linear

search has been used to find sub-optimal solutions.

We develop a genetic algorithm [7] to solve this opti-

mization problem. We chose to use genetic algorithms as
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Table 1. Genetic Algorithm for Aperture Pattern Optimization

1: Initialize: g = 0; randomly generate S binary se-

quences of length L.

2: For g = 1 : G
a: Selection: For each sequence b, the corresponding

blur function K is computed as ΣPij ∗bi∗N+j , and

then evaluated by using Equation (12). Only the

best M out of S sequences are selected.

b: Repeat until the population (the number of se-

quences) increases from M to S.

— Crossover: Duplicate two randomly chosen

sequences from the M sequences of Step 2a,

align them, and exchange each pair of corre-

sponding bits with a probability of c1, to obtain

two new sequences.

— Mutation: For each newly generated se-

quence, flip each bit with a probability c2.

3: Evaluate all the remaining sequences using Equation

(12) and output the best one.

* In our implementation, L = 169, S = 4000, M = 400, c1 = 0.2,

c2 = 0.05 and G = 80.

they are known to rapidly find good solutions within com-

plex binary search spaces. An aperture pattern k of size

N × N can be expressed as k = Σ
i,j

pij · bi·N+j , where pij

is a matrix, defined as

pij(x, y) =

{

1, for [x, y] = [i, j]
0, otherwise

,

bi∗N+j is 0 or 1, and i, j ∈ [0, N − 1].

Each aperture pattern is represented with a binary se-

quence b. In Fourier domain, we have K = ΣPij ∗ bi∗N+j ,

where Pij is the Fourier transform of pij . Note that pij

should be zero-padded before computing the Fourier trans-

form. The optimization can be sped up by pre-computing

all Pij . It is well-known in optics that an aperture of higher

resolution will produce stronger diffraction effects. To this

end, we set the spatial resolution N × N of our aperture

function to be relatively low, i.e., N = 13.

The process of our genetic algorithm is described in Ta-

ble 1. In our implementation, for a 13 × 13 pattern, a total

of S × G = 320, 000 samples are evaluated, where S is

the number of samples in each generation and G is the to-

tal number of generations. The optimization takes about 20

minutes on a 4GHz PC, and no significant improvement is

observed with a larger G. We repeated the optimization ten

times with different initial populations and found that it al-

ways converges to patterns with similar appearance.

As stated earlier, the optimal aperture pattern varies with

the level of image noise. We performed our optimization us-

ing eight levels of noise; σ = 0.0001, 0.001, 0.002, 0.005,

0.008, 0.01, 0.02, and 0.03. The resulting apertures are

shown in the bottom row of Figure 3. It is interesting to note

that the optimized aperture patterns get simpler in structure
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Figure 2. 1D slices of Fourier transforms of different patterns. (a)

Circular pattern (black), Levin et al.’s pattern (green), Veeraragha-

van et al.’s pattern (blue), and the optimized pattern for σ = 0.001
(red). (b) The optimized patterns for σ = 0.001 (red), σ = 0.005
(green), and σ = 0.01 (blue).

with increase in noise.

In Figure 2(a), we compare the power spectrum of one

of our optimized apertures (σ = 0.001) with those of the

circular pattern, Levin et al.’s pattern and Veeraraghavan et.

al.’s pattern. Though these plots only show us 1D slices

of 2D Fourier power spectra, they give us a strong intu-

ition for how the various apertures would perform in the

case defocus deblurring. Figure 2(a) shows that the circular

pattern and Levin et al.’s pattern have many zero-crossings

and greatly attenuate high frequencies. Again, it should be

noted that Levin et. al.’s pattern is not designed for defo-

cus deblurring. Veeraraghavan et al.’s pattern avoids zero-

crossings, but it has lower response than our optimized aper-

ture in both the low and high frequencies.

In Figure 2(b), we compare three of our optimized pat-

terns (σ = 0.001, 0.005, 0.01). The optimized pattern for

low noise has a larger response to high frequencies, while

the one optimized for high noise has a larger response to

low frequencies.

5. Deconvolution Algorithm

By substituting Equation (11), |C|2 = σ2/A, into Equa-

tion (13), we obtain the following variant of Wiener decon-

volution :

F̂0 =
F · K̄

|K|2 + σ2/A
. (13)

Note that this deconvolution algorithm is optimal in the

sense of minimizing the expected L2 distance between the

deblurred image and the ground truth. Its results, though po-

tentially less visually appealing than methods using sparse

priors, can be expected to be more faithful to the ground

truth in this sense. More importantly, the matrix A as de-

fined in Equation (9) can be estimated by simply averaging

the power spectra of several natural images, and the noise

level σ can be approximated from the model of the cam-

era and its ISO (or gain) setting. Consequently, in contrast

to most other deconvolution methods, this deblurring algo-

rithm is free of parameter tuning. For these reasons, we
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Figure 3. All the aperture patterns we used in our simulations.

Top two rows: Eight patterns, including circular, annular, multi-

annular, random, MURA, image pattern, Levin et al.’s pattern [13],

and Veeraraghavan et al.’s pattern [3]. Bottom two rows: Eight of

our patterns optimized for noise levels from σ = 0.0001 to 0.03.

have used it in all of our comparisons and experiments. It

must be noted that similar algorithms have been advocated

in the past (see [19] for example).

6. Performance Comparison of Apertures

Before conducting real experiments, we first performed

extensive simulations to verify our aperture evaluation cri-

terion and optimization algorithm. For this, we used the 16

aperture patterns shown in Figure 3. The top 8 patterns in-

clude simple ones (circular, annular, and multi-annular) and

more complex ones proposed by other researchers [9], [13],

[3]. In addition, we have tested an “image pattern,” which

is a binarized version of the well-known Lena image, and

a random binary pattern. The bottom 8 patterns were pro-

duced by our optimization algorithm for different levels of

image noise. The performances of these 16 apertures were

evaluated via simulation over a set of 10 natural images at

eight levels of image noise.

For each aperture pattern k and each level of image noise

σ, we simulated the defocus process using Equation (1), ap-

plied defocus deblurring using Equation (13), and got an

estimate f̂0 of the focused image f0. Using each deblurred

image, the quality of the aperture pattern was measured as
√

‖f0 − f̂0‖2. To make this measurement more reliable, we

repeated the simulation on 10 natural images and took the

average. These results are listed in Table 2 for the 16 aper-

ture patterns and 8 levels of image noise. Our optimized

patterns perform best across all levels of noise, and the im-

provement is more significant when the noise level is low.

On the other hand, the circular (conventional) aperture is

close to optimal when the noise level is very high. While

there are different optimal apertures for different levels of

image noise, we may want a single aperture to use in a va-

riety of imaging conditions. In this case, we could pick the

optimized pattern for σ = 0.001 as it performed well over a

wide range of noise levels (from σ = 0.0001 to 0.01).

It is interesting to note that the image pattern (Lena)

also produces deblurring results of fairly high quality. We

believe this is because the power spectrum of the image

pattern follows the 1/f law–it successfully avoids zero-

crossings and, at the same time, has a heavy tail covering the

high frequencies. Unfortunately, the image pattern consists

of a lot of small features, which introduce strong diffraction

effects. We believe that it is for this reason that the image

pattern did not achieve as high quality results in our experi-

ments as predicted by our simulations.

7. Experiments with Real Apertures

As shown in Figure 4(a), we printed our optimized aper-

ture patterns as well as several other patterns as a single high

resolution (1 micron) photomask sheet. To experiment with

a specific aperture pattern, we cut it out of the photomask

sheet and inserted it into a Canon EF 50mm f/1.8 lens1.

In Figure 4(b), we show 4 lenses with different apertures

(image pattern, Levin et al.’s pattern, Veeraraghavan et al’s

pattern, and one of our optimized patterns) inserted in them,

and one unmodified (circular aperture) lens. Images of real

scenes were captured by attaching these lenses to a Canon

EOS 20D camera. As previously mentioned, we choose the

pattern which is optimized for σ = 0.001, as it performs

well over a wide range of noise levels in the simulation.

To calibrate the true PSF of each of the 5 apertures, the

camera focus was set to 1.0m; a planar array of point light

sources was moved from 1.0m to 2.0m with 10cm incre-

ments; and an image was captured for each position. Each

defocused image of a point source was deconvolved using

a registered focused image of the source. This gave us PSF

estimates for each depth (source plane position) and several

locations in the image2. In Figure 4(c-g), two calibrated

PSFs (for depths of 120cm and 150cm) are shown for each

pattern.

7.1. Comparison Results using Test Scenes

In our first experiment, we placed a CZP resolution chart

at a distance of 150cm from the lens, and captured images

using the five different apertures. To be fair, the same expo-

sure time was used for all the acquisitions. The five captured

images and their corresponding deblurred results are shown

1We chose this lens for its high quality and because we were able to

disassemble it to insert aperture patterns with relative ease.
2We measured the PSF at different image locations to account for the

fact that virtually any lens (even with a circular aperture) produces a spa-

tially varying PSF.
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Table 2. Performance comparison of 16 aperture patterns for eight noise levels.

Image Noise Level σ

Patterns
0.0001 0.0005 0.001 0.002 0.005 0.008 0.01 0.02

Circular 0.0234 0.0375 0.0439 0.0503 0.0587 0.0631 0.0652 0.0717

Annular 0.0194 0.0334 0.0405 0.0478 0.0573 0.0622 0.0645 0.0716

Multi-Annular 0.0141 0.0274 0.0346 0.0426 0.0537 0.0598 0.0627 0.0719

Random 0.0157 0.0294 0.0368 0.0448 0.0558 0.0616 0.0645 0.0731

MURA 0.0153 0.0279 0.0345 0.0419 0.0531 0.0594 0.0624 0.0719

Image pattern 0.0128 0.0252 0.0324 0.0403 0.0513 0.057 0.0597 0.0681

Levin 0.0181 0.0316 0.0394 0.0486 0.0619 0.0686 0.0716 0.0798

Veeraraghavan 0.0164 0.0282 0.0346 0.0419 0.0527 0.0586 0.0614 0.0703

Optimized Patterns for:

σ = 0.0001 0.0118 0.0235 0.0313 0.0407 0.0544 0.0613 0.0644 0.0732

σ = 0.001 0.0123 0.024 0.0309 0.039 0.0513 0.0581 0.0614 0.0713

σ = 0.002 0.0135 0.0261 0.0327 0.0398 0.0501 0.0561 0.059 0.0686

σ = 0.005 0.0138 0.0269 0.034 0.0415 0.0513 0.0561 0.0585 0.0663

σ = 0.008 0.014 0.0276 0.035 0.0425 0.052 0.0566 0.0588 0.0659

σ = 0.01 0.0144 0.028 0.0353 0.043 0.0527 0.0572 0.0593 0.0659

σ = 0.02 0.0151 0.029 0.0366 0.0447 0.0548 0.0593 0.0612 0.0671

σ = 0.03 0.0157 0.0301 0.0377 0.0454 0.055 0.0594 0.0614 0.0674

* The best performer for each noise level is shown in bold.
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Figure 4. (a) Photomask sheet with many different aperture patterns. (b) One unmodified lens and four lenses with patterns inserted. (c-g)

Top row shows calibrated PSFs for a depth of 120cm from the lens, and bottom row shows calibrated PSFs for a depth of 150cm. These

PSFs correspond to (c) circular pattern, (d) image pattern, (e) Levin et al.’s pattern, (f) Veeraraghavan et al.’s pattern, and (g) one of our

optimized patterns.

in Figures 1 and 5. Notice that the captured images have

different brightness levels as the apertures obstruct different

amounts of light. The resulting brightness drop (compared

to the circular aperture) for the image pattern, Levin et al.’s

pattern, Veeraraghavan et al.’s pattern, and our optimized

pattern are 48%, 52%, 65%, and 43%, respectively.

Note that our optimized pattern gives the sharpest de-

blurred image with least artifacts and image noise (see Fig-

ures 1 and 5). We performed a quantitative analysis to com-

pare the performances of the five apertures. We carefully

aligned all the deblurred images to the focused image with

sub-pixel accuracy, and computed their residual errors. The

residual errors were then analyzed in frequency domain. In

Figure 5(d), we plot the cumulative energy of the residual

error from low to high frequency. The image pattern, Levin

et al.’s pattern, and especially Veeraraghavan et al.’s pat-

tern, show large improvements over the circular aperture.

Our optimized aperture is seen to produce the lowest resid-

ual error with about 30% improvement over Veeraraghavan

et al.’s pattern (which performs the best among the rest).

7.2. Deblurring Results for Complex Scenes

We have used the lens with our optimized aperture pat-

tern to capture several real scenes with severely defocused

regions (see Figure 6). Deblurring of a region requires prior

knowledge of its depth. In all our examples, we interac-

tively selected the depth that produced the most appealing

deblurring result. This is made possible by the fact that

our deblurring algorithm described in Section 3.2 is very

fast and requires no parameter selection. For a 1024 × 768
image, our Matlab implementation of the algorithm takes

only about 100msec to run. In contrast, state-of-the-art de-

blurring algorithms, such as ones that use sparse priors, are

much slower and require the selection of parameters.

Figure 6(a) shows a captured image (left) for which the

camera was focused on the foreground object, making the

background poster severely defocused. To deblur the back-
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Figure 5. (a-c) The top row shows captured (defocused) images and the bottom row shows the deblurred images, for three different

apertures. The focused image (ground truth) and the results using the circular aperture and our optimized aperture are shown in Figure 1.

(d) For each aperture, the cumulative energy of the residual error between the ground truth and deblurred images is plotted as a function of

frequency.

ground, we first segmented out the foreground region, filled

the resulting hole using inpainting, and then applied deblur-

ring using 40 different depths. The best deblurred result

is chosen and merged with the foreground. Figure 6(b)

shows a traffic scene where all the objects are out of fo-

cus. In this case, the final result was obtained using four

depth layers. Although some ringing artifacts can be seen

in our deblurred images, significant details are recovered in

all cases. It may be noted that the degree of defocus in our

experiments is much greater than in the experiments done

in previous works [13][3]. For example, the recovered tele-

phone number and taxi number in Figure 6(b) are virtually

invisible in the captured image.

8. Discussion

In this work, we presented a comprehensive criterion for

evaluating aperture patterns for the purpose of defocus de-

blurring. This criterion explicitly accounts for the effects of

image noise as well as the statistics of natural images. To

make the aperture pattern optimization tractable, we have

assumed a Gaussian white noise model. This noise model

may not be accurate in some imaging systems, and could

result in sub-optimal solutions. Enabling the use of more

elaborate noise models and making use of an even stronger

image prior in the aperture optimization are interesting di-

rections we plan to pursue in future work.

Diffraction is another important issue that requires fur-

ther investigation. Our work, as well as previous works on

coded apertures, have avoided having to deal with diffrac-

tion by simply using low-resolution aperture patterns. By

explicitly modeling diffraction effects, we may be able to

find even better aperture patterns for defocus deblurring.

References

[1] W. Welford, “Use of annular apertures to increase focal

depth,” Journal of the Optical Society of America A, no. 8,

pp. 749–753, 1960. 1, 2

[2] M. Mino and Y. Okano, “Improvement in the OTF of a de-

focused optical system through the use of shaded apertures,”

Applied Optics, no. 10, pp. 2219–2225, 1971. 1, 2

[3] A. Veeraraghavan, R. Raskar, A. Agrawal, A. Mohan, and

J. Tumblin, “Dappled photography: mask enhanced cameras

for heterodyned light fields and coded aperture refocusing,”

ACM Transactions on Graphics, 2007. 1, 2, 3, 5, 7

[4] D. Mumford and B. Gidas, “Stochastic models for generic

images,” Quarterly of Applied Mathematics, no. 1, pp. 85–

111, 2001. 1, 3

[5] A. Srivastava, A. Lee, E. Simoncelli, and S. Zhu, “On Ad-

vances in Statistical Modeling of Natural Images,” Journal

of Mathematical Imaging and Vision, pp. 17–33, 2003. 1, 3

[6] Y. Weiss and W. Freeman, “What makes a good model of

natural images?” CVPR, pp. 1–8, 2007. 1, 3

[7] M. Srinivas and L. Patnaik, “Genetic algorithms: a survey,”

Computer, no. 6, pp. 17–26, 1994. 1, 3

[8] E. Caroli, J. Stephen, G. Cocco, L. Natalucci, and

A. Spizzichino, “Coded aperture imaging in X- and Gamma-

ray astronomy,” Space Science Reviews, pp. 349–403, 1987.

2

[9] S. Gottesman and E. Fenimore, “New family of binary ar-

rays for coded aperture imaging,” Applied Optics, no. 20, pp.

4344–4352, 1989. 2, 5

[10] E. Dowski and W. Cathey, “Extended depth of field through

wave-front coding,” Journal of the Optical Society of Amer-

ica A, no. 11, pp. 1859–1866, 1995. 2

7



(a) Indoor Scene

(b) Traffic Scene

(a) Indoor Scene

(b) Traffic Scene

Figure 6. Deblurring results for two complex scenes. Left: Captured images with close-ups (green and blue boxes) of regions that are

severely defocused. Right: The corresponding deblurring results.

[11] N. George and W. Chi, “Extended depth of field using a log-

arithmic asphere,” Journal of Optics A: Pur and Applied Op-

tics, 2003. 2

[12] H. Nagahara, S. Kuthirummal, C. Zhou, and S. Nayar, “Flex-

ible Depth of Field Photography,” ECCV, 2008. 2

[13] A. Levin, R. Fergus, F. Durand, and W. Freeman, “Image and

depth from a conventional camera with a coded aperture,”

ACM Transactions on Graphics, no. 3, 2007. 2, 3, 5, 7

[14] A. Zomet and S. Nayar, “Lensless imaging with a control-

lable aperture,” CVPR, pp. 339–346, 2006. 2

[15] M. Aggarwal and N. Ahuja, “Split Aperture Imaging for

High Dynamic Range,” International Journal of Computer

Vision, vol. 58, no. 1, pp. 7–17, 2004. 2

[16] P. Green, W. Sun, W. Matusik, and F. Durand, “Multi-

aperture photography,” ACM Transactions on Graphics,

vol. 26, no. 3, 2007. 2

[17] C. Liang, T. Lin, B. Wong, C. Liu, and H. Chen, “Pro-

grammable aperture photography: Multiplexed light field ac-

quisition,” ACM Transactions on Graphics, vol. 27, 2008. 2

[18] H. Andrews and B. Hunt, “Digital image restoration,”

Prentice-Hall Signal Processing Series, Englewood Cliffs:

Prentice-Hall, 1977. 3

[19] S. Reeves, “Image deblurring - wiener filter,” Matlab Central

Blog, http://blogs.mathworks.com/steve/2007/11/02/image-

deblurring-wiener-filter/, November 2007. 5

8


