
What are Multi-Protocol Guessing Attacks∗

And
How to prevent them

Sreekanth Malladi, Jim Alves-Foss
Center for Secure and Dependable Systems

University of Idaho
Moscow, ID - 83843

{msskanth,jimaf}@cs.uidaho.edu

Sreenivas Malladi
Satyam Computers Private Ltd.

Hyderabad - 500044, A.P
India.

Sreenivas Malladi@satyam.com

April 1, 2002

Abstract
A guessing attack on a security protocol is an attack
where an attacker guesses a poorly chosen secret (usu-
ally a low-entropy user password) and then seeks to ver-
ify that guess using other information. Past efforts to
address guessing attacks in terms of design or analysis
considered only protocols executed in isolation. How-
ever, security protocols are rarely executed in isolation
and reality is always a case of mixed-protocols. In this
paper, we introduce new types of attacks called multi-
protocol guessing attacks, which can exist when proto-
cols are mixed. We then develop a systematic procedure
to analyze protocols subject to guessing attacks. Using
this procedure, we will present a method of deriving some
syntactic conditions to be followed in order for a proto-
col to be secure against multi-protocol guessing attacks.
Lastly, we use the strand space framework to prove that
a protocol will remain secure, given that these condi-
tions are followed, by modeling the conditions within
the strand space framework. We illustrate these con-
cepts using the Mellovin and Berritt protocol (EKE) as
an example.

1. Introduction

Since people tend to choose poor passwords [17], secu-
rity protocols using them are vulnerable to guessing at-
tacks [9]. As an example, consider the following simple
protocol:

Msg 1. a → s : a
Msg 2. s → a : ns

Msg 3. a → s : {ns}passwd(a,s)

Here, user a aims to authenticate itself to server s.
(ns is a nonce. {m}k represents m encrypted with key
k).

∗This work was funded in part by DARPA under grant no.
MDA972-00-1-0001.

Now an attacker observing these communications can
mount a guessing attack by guessing the user’s pass-
word. For example, if the user is one of the authors of
this paper, then he might guess “alwaysalves” as the
password. He can then do {ns}alwaysalves and compare
it with message 3 that he obtained ({ns}passwd(a,s)).
A successful comparison indicates with high probabil-
ity that this might be the user’s password.
Past efforts to address guessing atacks in terms of

design [9] or analysis [15] focussed only on protocols
executing in isolation. However, security protocols are
rarely executed in an isolated environment, without in-
teraction from other protocols. Some of the main rea-
sons for “mixed” operation of protocols include:

• deliberate use of sub-protocols such as Kerberos,
Neuman-Stubblebine etc. [13, 18], which use those
sub-protocols for re-authentication, or

• protocols having different options and hence multi-
ple sub-protocols [5, 12, 16] or

• accidental execution of different protocols on the
user’s machine (many times with the same par-
ties, through the same communication channels and
having the same message formats and/or keying
material).

Together with these, re-using the same keying ma-
terial (due to the high cost of certified keys), multiple
uses of keying formats and keys (due to the widespread
use of cryptographic APIs) and using the same pass-
word for different applications (which is a commonly ob-
served characteristic of human chosen passwords), make
a mixed environment, hostile for protocols.
Hence, the interesting questions to ask are,

• can mixing of two protocols result in new attacks
that were not known to exist when either of them
executes in isolation?

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2002 2. REPORT TYPE

3. DATES COVERED
 00-00-2002 to 00-00-2002

4. TITLE AND SUBTITLE
What are multi-Protocol Guessing Attacks and How to prevent them

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Idaho,Center for Secure and Dependable Systems,PO Box
441008,Moscow,ID,83844-1008

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

7

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

• each of the protocols may be easy to analyze in-
dependently. But, how should we analyze them
when they are operating in a varying, mixed en-
vironment?

• what are the conditions (if there exist any) under
which a protocol can operate securely, without fear
of being attacked by mixing information from other
protocols?

In this paper we introduce new attacks called “multi-
protocol guessing attacks” which are guessing attacks
that are launched when protocols are mixed. Firstly, we
will present a background and motivation, together with
some examples of multi-protocol guessing attacks in sec-
tion 2. Next, we will give an overview of strand space
framework and present a systematic procedure to anal-
yse a protocol for guessing attacks (section 3). We will
then use this procedure to derive some syntactic condi-
tions under which, a protocol can remain secure against
guessing attacks even in a mixed environment. We will
model these conditions within the strand space frame-
work and prove that, as long as these conditions are
satisfied, a protocol cannot be attacked through multi-
protocol guessing attacks (section 4). We sum up with a
conclusion and some possible extensions for future work
in section 5.

2. Background

In [1, 2, 3] we have presented multi-protocol attacks on
security protocols which can exist on interleaved proto-
cols. We have also suggested some techniques that must
be adopted for a protocol to remain secure in a mixed
environment. Subsequently, Guttman et. al [11] proved
a useful result, that protocols are independent if they
use disjoint encryption—one of our suggestions earlier
to resist multi-protocol attacks. Thus, Guttman et. al
virtually buried the threat of multi-protocol attacks.
In this paper, we revive multi-protocol attacks, but

this time considering them in the context of guessing
attacks on protocols with weak secrets. We name these
newly found attacks as multi-protocol guessing attacks.
The result by Guttman et. al in [11] cannot always

be applied to multi-protocol guessing attacks. This
is because, unlike all other attacks including multi-
protocol attacks, guessing attacks can be launched en-
tirely off-line, with mere eavesdropping (without block-
ing or modifying the messages) and even without finish-
ing any protocol run.
Most importantly as we will illustrate, they can be

launched without replaying messages. Since Guttman
et. al’s result is result is based on showing that all in-
bound linking paths (messages from other protocols into
the primary protocol) can be removed, it doesn’t apply
for attacks that can be launched using mixed protocols
where there are no inbound linking paths.

We will illustrate how multi-protocol guessing attacks
can be launched the using EKE protocol. Firstly, we
make two assumptions about the guessing attacks we
consider in this paper:

1. The passwords being guessed have low-entropy
(typically, chosen by humans). Contrast this with
high-entropy passwords such as machine-generated,
where the passwords are chosen from a large space,
making guessing infeasible.

2. The verification of a guess does not need repeated
on-line interaction with other parties—typically, for
repeated unsuccessful attempts, servers raise an
alarm and mount additional countermeasures like
shutting down the connection etc. In this paper,
we consider only those guessing attacks that can be
launched entirely off-line, where failed attempts are
undetectable.

Now consider the following EKE (Encrypted Key
Exchange) protocol presented by Mellovin and Berritt
in [4]:

Msg 1. a → b : {pka}passwd(a,b)

Msg 2. b → a : {{k}pka
}passwd(a,b)

Msg 3. a → s : {na}k

Msg 4. s → a : {(na, nb)}k

Msg 5. a → s : {nb}k

Here, a and b try to agree on a shared session key
k, with passwd(a, b) representing the password that a
shares with b and pka, an asymmetric key of a. Lowe [15]
analyzed this protocol using FDR [14] and found no at-
tacks.
Now consider another protocol presented in [9]:

Msg 1. a → b : {c, n}k1

Msg 2. b → a : {f(n)}passwd(a)

k1 is a’s public key, and c is a “confounder” (a re-
dundant random number) to prevent guessing. n is any
number and f is a function which is publicly known.
This protocol as well was not known to have any flaws
when executed in isolation.
It is interesting to ask if c is really necessary. With-

out c, a penetrator can guess passwd(a) and decrypt
message 2. He can then do f−1(f(n)) and encrypt the
result with k1. A successful comparison with message 1
(without c, just {n}k1) would verify the guess.
Gong et. al [?] suggest that using c is unnecessary if

k1 is unknown— i.e. given that k1 is unknown to the
penetrator (as assumed in the EKE protocol above), the
protocol is secure.
However, if the protocol is combined with the EKE

protocol, i.e. in a mixed environment, the following
attack can be visualised:

2

Attack 1. Let P1 represent the first protocol (EKE)
and P2, the second protocol. A penetrator can initially
guess passwd(a) in P1 and decrypt message 1 to obtain
pka. He can then guess passwd(a) in P2 and get f(n).
From this value he can obtain n and encrypt it with
pka that he obtained from P1. Finally he can match
this value with it’s recorded value in message 1 of P�

to verify his guess.

Now consider another identification protocol1 similar
to the one presented in [9]:

Msg 1. a → s : a, s
Msg 2. b → a : ns

Msg 3. b → a : {{a, ns}pva
}passwd(a)

Let this protocol be represented as P3. Here user a
aims to identify itself to server s (pva is the private key
of a). This protocol as well is secure, given that the
corresponding public key of a (pka) is unknown to the
penetrator,
However, when it is mixed with P1 due to any of the

reasons mentioned in section 1, the following attack can
be visualised:

Attack 2. The penetrator can initially guess
passwd(a, b) and decrypt mesage 1 in P1 to ob-
tain pka. He can then guess passwd(a) and decrypt
message 3 in P3 to obtain {a, ns}pva

. Finally he can
decrypt {a, ns}pva

with pka (from P1) and match ns in
it with ns sent in message 2 to verify his guess.

Similar attacks can be found on many existing pro-
tocols. Observe that these attacks were possible even
though all the protocols, P1, P2, P3 were otherwise se-
cure in an isolated environment. Also, none of the at-
tacks assumed that the user used the same passwords
in each protocol—Thus, in general, the effect when the
same passwords are chosen in different protocols cannot
be overstated. Ofcourse, both assumed that users use
the same public key in more than one application, which
is not unreasonable to assume, given the facts in section
1.

3. Strand Space Frame Work

In this section, we will give an introduction to strand
space framework of [6, 7, 8]. We chose strand spaces
since it is a particularly suitable framework to derive
and demonstrate the results required in these contexts.
To start with, let Fact denote the set of all possible

elements in a protocol2 and Atom, the set of atomic
values (eg. Alice, Bob, NA, PubKey(A) etc.) assumed

1Typically these are protocols used by ATMs (automatic teller
machines).

2with ‘message’ referring to the entire collection of facts sent
in a protocol step.

to contain in a protocol. When two data items a and
b are to be concatenated, we will write, a . b or (a, b).
When a data item a is to be encrypted with a key k, we
will write {a}k and the inverse of a k as, k−1.
When we talk about the first or second component in

a fact with two components we will use subscripts “1”
and “2” as: (f1, f2)1 =̂ f1, (f1, f2)2 =̂ f2
Also, subfact relation � is defined as the smallest re-

lation on facts such that,
f � f ; f � {f ′}k′ iff f � f ′; and
f � (f1, f2) iff f � f1 ∨ f � f2.

Definition 1. A strand is a sequence of communica-
tions by any agent in a protocol run, represented as
〈±f1,±f2, . . . ,±fn〉. Each node in the set of nodes N ,
receives (represented as −) or transmits (represented as
+) a fact (fi) and belongs to a unique strand.

1. An edge ⇒ is drawn between all consecutive nodes
on the same strand.

2. An edge → is drawn between nodes belonging to dif-
ferent strands, if one node transmits a fact and the
other node receives the same fact.

3. A strand space Σ is a directed graph with all the
nodes in N as vertices and (→ ∪ ⇒) as edges.

A bundle represents a partial or complete history of
the network. Let C be a bundle and (→C ∪ ⇒C) be a
finite set of edges. Then,

1. If n2 ∈ NC receives a fact, then there exists a unique
n1 with n1 → n2.

2. If n2 ∈ NC with n1 ⇒ n2,∃ n1 ⇒C n2;

3. C is acyclic.

A node n is an entry point to a set of facts F, if there
is no node previous to n transmitting a fact in F. A
fact originates on n if n is an entry point to all possible
facts. A fact is uniquely originating in a bundle if it
does not originate on any other node in the bundle.

The penetrator is assumed to possess some message
elements, MP and keys KP.

Definition 2. A penetrator strand is one of the
following:

M Text message 〈+f〉 with f ∈ MP.
F flushing 〈−f〉.
T Tee 〈−f,+f,+f〉.
C Concatenation 〈−f1,−f2,+f1f2〉.
S Separation 〈−f1f2,+f1,+f2〉.
K Key 〈+k〉 with k ∈ KP.
E Encryption 〈−k,−f,+{f}k〉, k ∈ KP.
D Decryption 〈−k−1,−{f}k,+f〉, k ∈ KP.

3

A regular strand in contrast, is one corresponding to
an honest agent. An ideal captures all possible oper-
ations of an honest agent on a given set using a given
set of keys. In particular, a smallest k-ideal for an el-
ement h ∈ Fact using set of keys k is denoted as Ik[h].
It consists of all possible operations (concatenation and
encryption) between h and all the elements of Fact.
Since we deal with mixed protocols, we use the con-

cept of mixed strand spaces as well.

Definition 3. A mixed strand space consits of com-
bined strands from different protocols. Some particular
strands in this space are called primary strands, imply-
ing the primary protocol under consideration and sec-
ondary strands, consisting of all the remaining proto-
cols. Set of facts I ∈ Fact is unserved in a strand space
Σ if an entry point for I does not lie on a secondary
strand. Similarly I is strongly unserved in Σ if no ele-
ment in I ever originates on a secondary strand.

We will now present our method to analyze protocols
for guessing attacks using this framework and illustrate
it on an example. The basic idea for the method is
derived from [10] where Guttman uses the concept of
identifying the unintended services by honest agents to
find attack scenarios. The method we give below is such
a practical recipe for an informal analysis.
Firstly, we denote .= as a binary relation on facts that

returns true if there is a match between two facts and
a false otherwise. Also, we define some more sets of
facts, classified into:

1. Facts that can be guessed (as set G);

2. Facts that can be derived by the penetrator P in
all possible roles and combinations (as set D);

3. Facts that can be verified (as set V).
eg. {na}passwd(a) can be compared with
{na, nb}passwd(a,b) by guessing passwd(a, b)
and3 doing na

.= (na, nb)1;

4. Facts that can be constructed (as set C)—These are
typically those that the penetrator can construct
using his knowledge and derived knowledge (D and
facts obtained by guessing, O).

Firstly, we identify all unintended services offered by
honest agents that increase the penetrator knowledge
and capability. Then, we will list out the initial pene-
trator knowledge in terms of facts that he knows and use
the unintended services to derive all possible facts that
he can derive—For this, we consider all possible roles
that a penetrator can play. Then, we will use set G to
enumerate the facts that he can obtain corresponding
to decrypting facts using guesses in place of G (set O).
Finally, we will list out all possible verification attempts
using V to verify a guess and all possible facts that can

3Recall that subscripts “1” and “2” return the first and second
elements respectively from a fact with two elements.

be constructed using the updated penetrator knowledge,
similar to the form of any recorded messages—which
again would verify a guess.
Now consider the following “demonstration protocol”

presented by Gong et. al [9]:

Msg 1. a → b : {a, b, na1, na2, ca, {ta}Ka}Ks

Msg 2. s → b : a, b
Msg 3. b → s : {a, b, nb1, nb2, cb, {tb}Kb}Ks

Msg 4. s → a : {na1, na2⊕ k}Ka

Msg 5. s → b : {nb1, nb2⊕ k}Kb

Msg 6. a → b : {ra}k

Msg 7. b → a : {f1(ra), rb}k

Msg 8. a → b : {f2(rb)}k

Lowe [15] analyzed this protocol and found no attacks.
To illustrate our method, let us assume that the server
cannot detect replays.
Let init, resp and serv denote the regular strands

of a, b and s in the protocol. We will remove lot
of redundant steps in the illustration because of
the obvious symmetry visible in the protocol steps—
a and b have the same message formats in four messages.

Step 1. We first identify the unintended services
provided by serv: From the protocol it is evident
that messages 1 and 3 are “junk”. i.e. any one can
replay them spoofing as a or b (provided that the
server cannot detect those replays which was part of
our initial assumptions). Hence, strand serv gives
a message {na1, na2 ⊕ k}passwd(a) each time with a
different key for each of such replays.

Step 2. The facts that can be guessed (presumably,
poorly chosen secrets) in this protocol are: passwd(a)
and passwd(b).

Step 3. The facts initially known to P (MP ∪ KP) are:
a, b, s, Ks, {a, b, na1, na2, ca, {ta}Ka}Ks,
{b, a, nb1, nb2, cb,{tb}Kb}Ks, {na1, na2 ⊕ k}Ka,
{nb1, nb2⊕ k}Kb, {ra}k, {f1(ra), rb}k, and {f2(rb)}k.

Step 4. We will now enumerate all derivable facts (set
D) by considering all possible interactions of P : (a, b),
(Pa, b), (a, P), (Pa, P). (Here Pa represents P mas-
querading as a). We do not need to consider the re-
maining possiblities because of the symmetry in the
protocol. From combinations (a, b) and (Pa, P) and
since sserv gives two instances of {na1, na2⊕k}Ka (from
step 1 above on unintended services), P can now have,
{na1, na2⊕ k}Ka and {na1, na2⊕ k′}Ka (with k �= k′).
We leave it to the reader to check the remaining

combinations to make sure that no useful terms can be
derived.

Step 5. We now derive all possible facts ob-
tainable by using elements in set G: These are,
(na1, na2⊕ k), (nb1, nb2⊕ k). Also, the penetrator can

4

obtain na2, since in combination (a, P) of step 4, P
knows k and hence obtains na from na2⊕ k.

Step 6. We now consider the set V (verifiable facts):
From step 4 using set D, P can compare na1 in both
{na1, na2⊕ k}passwd(a) and {na1, na2⊕ k′}passwd(b) by
guessing passwd(a) and decrypting both. i.e. if g is
the guess, he can do, ({{na1, na2⊕ k}passwd(a)}g−1)1

.=
({{na1, na2⊕ k′}passwd(a)}g−1)1

Step 7. We will now show how we uncover another at-
tack on this protocol and the importance of the fields ca
and cb. We will try to find the facts that P can try to
construct using his knowledge that he obtained in the
previous steps and in the format of some recorded mes-
sages. Firstly, remove ca from message 1. The remain-
ing part of this message contains, a, b, na1, na2, which
are known to the penetrator (na1 and na2 from step 5).
Time stamp ts is arbitrary and hence he can encrypt it
with his guess which he previously used to decrypt mes-
sage 4 in step 5. He can now combine all these fields,
encrypt with Ks (which is a public key and hence ∈ KP)
to construct a message of the form of message 1 and
compare it with the actual recorded value.
It is here that the importance of ca would be perceiv-

able. Observe that P could not derive it using any of
the previous steps. Hence, if ca is present inside mes-
sage 1, it thwarts a guessing attack by preventing P
from constructing a similar message to verify the guess
. Similarly, the case for cb.

4. Mixing EKE

In this section we will use the procedure we developed
in the previous section on the EKE protocol, which we
showed to be vulnerable to multi-protocol guessing at-
tacks in section 2. The analysis would help in deriving
rules about some “criticial” messages which would be
then framed within the strand space model to prove the
correctness of EKE protocol in a mixed environment,
when the rules are followed.
Figure 1 represents the EKE protocol.

Step 1. The unintended services here are only that of
agent b’s. — corresponding to {pk}passwd(a,b), b gives,
{{k}pk}passwd(a,b).

Step 2. G = {passwd(a, b)}.

Step 3. MP = {{pka}passwd(a,b), {{k}pk}passwd(a,b),
{na}k, {na, nb}k, {nb}k}.

Step 4. Possible interactions: (a, b), (a, P), (a, Pb),
(P, b), (Pa, b). From (a, P), P can obtain PK ′

a. Hence
D = {PK ′

a}. (Again we leave it to the reader to check
all the remaining combinations to verify that there are

.

.

.

.

.

.

.

.

.

.

{pk}passwd(a,b)

{na}k

{na,nb}k

{{k}pk}passwd(a,b)

A B

{nb}k

Figure 1: Message Exchange in EKE protocol

no other possible derivations).

Step 5. Facts obtained by guessing:
O = {PKa, {k}PKa

}.

Step 6. Verifiable facts (V): V = ∅;
However, from steps 4 and 5, P can do (with guess g),
pk′

a
.= {{pka}passwd(a,b)}g−1 .

Step 7. Constructible facts: C = ∅. Since none of the
terms in MP∪D∪O can be used to construct a recorded
value for verification.
From the results in the procedure, and in particular,

steps 6 and 7, it is evident that, the protocol remains
secure as long as,

1. pka is never obtainable from a secondary strand (i.e.
using any secondary strand s, pka �� f,∀f ∈ D, D
obtained from s).

2. No term encrypted with pva(= pk−1
a) should be ob-

tainable as well.

3. No term encrypted with PKa should be verifiable
(/∈ D ∪ MP).

We will now represent these conditions in a mixed
strand space reflecting EKE protocol as a “primary”
protocol and all others as secondary protocols.

Definition 4. Let Σ be a strand space.

1. Init[pka, passwd(a, b), k, na, nb] is the set of strands
in Σ whose trace is

〈+{pka}passwd(a,b),−{{k}pk}passwd(a,b),+{na}k,
− {na, nb}k,+{nb}k〉

Σinit is the union of the range of Init.

2. Resp[pk, passwd(a, b), k, na, nb] is the set of strands
in Σ whose trace is

〈−{pka}passwd(a,b),+{{k}pk}passwd(a,b),−{na}k,
+ {na, nb}k,−{nb}k〉

Σresp is the union of the range of Resp.

5

Also, Σinit,Σresp are pairwise disjoint and form the
primary strands in Σ, denoted as ΣP (= Σinit ∪Σresp).
Rest of the strands in Σ are secondary strands and are
represented as Σ \ΣP (\ is the set difference operator).
The following definition defines the required sets of

items that we would need to define the rules that we
derived above.

Definition 5. Let L0 and ID be defined such that,

• L0 denotes the set of all terms such that ∀pk ∈
PK,∃f ∈ MP ∪ D ∪ O � pk � f .

• ID = Ik[D] with k = PVa ∪ PKa

We will now model the conditions we derived using
the procedure above, within the strand space frame-
work. Our main theorem states that a mixed protocol
environment containing the EKE protocol as the pri-
mary protocol is secure against multi-protocol guessing
attacks as long as the strand space respects those con-
ditions:

Theorem 1. Let Σ represent a mixed strand space with
the EKE protocol representing the primary strands. Let
C be a bundle in Σ. Then, no guessing attacks can
succeed in C if:

1. PKa is unserved in Σ.

2. ID is strongly unserved in Σ.

Proof. We will do a case analysis. Firstly, observe from
our procedure that, a guessing attack is feasible if,
either verification using set V (step 6) or set C (step 7)
is successful. Hence, we will consider those sets and use
the above conditions to prove that the sets will always
be null under those conditions.

Part 1. PKa is unserved. From step 5, verification of
any g ∈ G is possible, if (D ∪ MP ∪ KP) ∩ O �= ∅. In this
case, from the our analysis, (D ∪MP ∪KP) ∩O = {pka}
iff pka = pk′

a. However, according to condition 1 in the
theorem, PKa is unserved in Σ. i.e., If pka originates
in (Σinit ∪ Σresp) then ∀pk′

a originating in Σ \ ΣP ,
pka �= pk′

a. Hence, (D ∪ MP ∪ KP) ∩ O �= ∅.

Part 2. Again observe that, for verification, pka should
be verifiable since O = {pka, {k}pka

} and k /∈ (D∪MP ∪
KP). The procedure demonstrated that, pka is not veri-
fiable in ΣP . And part 1, demonstrated that pka is not
verifiable in Σ if, pka is unserved in Σ.
A verification is still possible, if f encrypted with pka

or pk−1
a is verifiable and ∈ Σ \ ΣP . However, in con-

tradiction, condition 2 requires that, ID, (all verifiable
terms encrypted with pka or pva from definition 5), is
strongly unserved in Σ. Or no such term ever originates
on a secondary strand as well. Hence, a verification at-
tempt is infeasible as long as the condition holds.

5. Conclusion

In this paper we have introduced new types of attacks
called multi-protocol guessing attacks, on protocols us-
ing weak secrets. We have developed a systematic proce-
dure to derive some conditions that would prevent these
attacks. We then proved that—as long as these con-
ditions are satisifed—a protocol can never be attacked
through multi-protocol guessing attacks.
Some points are worth mentioning here. Our pro-

cedure to analyze protocols is stronger than Gong et.
al’s [9] since we consider all obtainable knowledge sets
by the penetrator, as Lowe [15] does, whereas Gong
et. al consider only fixed penetrator knowledge. The
uniqueness in the procedure is that, it allows to pin
point the exact kind of vulnerabilities that a protocol
might present in terms of especially when operating in
a mixed environment. By determining the conditions
that prohibit any new vulnerabilities that can possibly
arise, a more concrete designing of protocols is possible.
One immediate extension of this work is related to au-

tomating the procedure we have used to detect possible
guessing attacks. Another possible extension would be
to find out techniques of general applicability to prevent
multi-protocol guessing attacks, as in [11]. It wou

References

[1] J. Alves-Foss. Multi-Protocol Attacks and the Pub-
lic Key Infrastructure. In Proc. National Informa-
tion System Security Conference, pages 566–576,
October 1998.

[2] J. Alves-Foss. Provably Insecure Mutual Authen-
tication Protocols: The Two Party Symmetric En-
cryption Case. In Proc. 22nd National Information
Systems Security Conference., pages 44–55, Arling-
ton, Va, October 1999.

[3] J. Alves-Foss. Cryptograpyhic Protocol Engineer-
ing: Building Security from the Ground Up. In
Proceedings of International Conference on Inter-
net Computing, June 2000.

[4] S.M. Bellovin and M. Merritt. Encrypted key ex-
change: Password-based protocols secure against
dictionary attacks. In Proceedings of the 1992 IEEE
Computer Security Conference on Research in Se-
curity and Privacy, pages 72–84, 1992.

[5] T. Dierks and C. Allen. The TLS protocol. Tech-
nical report, January 1999.

[6] F. J. Thayer Fábrega, J. C. Herzog, and J. D.
Guttman. Why is a security protocol correct?
IEEE Computer Symposium on Security and Pri-
vacy, 1998.

6

[7] F. J. Thayer Fábrega, J. C. Herzog, and J. D.
Guttman. Strand spaces: Proving security pro-
tocols correct. Journal of Computer Security,
7(2,3):191–230, 1999.

[8] F. Javier Thayer Fábrega, Jonathan C. Herzog,
and Joshua D. Guttman. Mixed Strand Spaces. In
Proceedings of the 12th IEEE Computer Security
Foundations Workshop, volume 27(2), pages 10–14.
IEEE Computer Society Press, June 1999.

[9] Li Gong, T. Mark A. Lomas, Roger M.Needham,
and Jerome H. Saltzer. Protecting poorly chosen
secrets from guessing attacks. IEEE Journal on
Selected Areas in Communications, 11(5):648–656,
1993.

[10] Joshua D. Guttman. Strand Spaces and Protocol
Security Goals.

[11] Joshua D. Guttman and F. Javier Thayer. Pro-
tocol Independence through Disjoint Encryption.
13th IEEE Computer Security Foundations Work-
shop, pages 24–34, July 2000.

[12] D. Harkins and D.Carrel. The Internet Key Ex-
change (IKE). Technical report, November 1998.

[13] J. Kohl and C. Neuman. The Kerberos network
authentication service (v5). RFC 1510, September
1993.

[14] G. Lowe. Breaking and fixing the Needham-
Schroeder public-key protocol using FDR. In Pro-
ceedings of TACAS, volume 1055, pages 147–166.
Springer-Verlag, 1996. Also in Software Concepts
and Tools, 17:93-102, 1996.

[15] Gavin Lowe. Analyzing protocols subject to guess-
ing attacks. Workshop on Issues in the Theory of
Security (WITS’02), January 2002.

[16] D. Maughan, M. Schertler, M. Schneider, and
J. Turner. Internet Security Association and Key
Management Protocol (ISAKMP). Technical re-
port, November 1998.

[17] Robert Morris and Ken Thompson. Password secu-
rity: A case history. Communications of the ACM,
22(11):594–597, 1979.

[18] B. Clifford Neuman and Stuart G. Stubblebine. A
note on the use of timestamps as nonces. Technical
report, April 1993.

7

