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ABSTRACT
Informally, structural properties of mathematical objects are usually character-
ized in one of two ways: either as properties expressible purely in terms of the
primitive relations of mathematical theories, or as the properties that hold of all
structurally similar mathematical objects. We present two formal explications
corresponding to these two informal characterizations of structural properties.
Based on this, we discuss the relation between the two explications. As will be
shown, the two characterizations do not determine the same class of mathemat-
ical properties. From this observation we draw some philosophical conclusions
about the possibility of a ‘correct’ analysis of structural properties.

1. INTRODUCTION
Structural properties play a central role in the contemporary philosophy of
mathematics, particularly in the debate about mathematical structuralism.
This is the view that mathematics is not concerned with the ‘internal nature’
of its objects, but rather with how these objects ‘relate to each other’ [Shapiro,
1997; Resnik, 1997; Parsons, 1990]. Take the natural numbers as an exam-
ple. The standard mathematical theory of the natural numbers is second-order
Peano arithmetic. It is well-known that many different set-theoretic systems
satisfy the axioms of Peano arithmetic, such as the (finite) von Neumann ordi-
nals ∅, {∅}, {∅, {∅}}, . . . and the Zermelo ordinals ∅, {∅}, {{∅}}, . . . for example.
According to the structuralists, however, mathematics is not concerned with
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the concrete set-theoretic structure of these models — second-order Peano
arithmetic does not describe the numbers as specific sets. Rather, arithmetic
describes how the numbers add up, how they can be divided, and so on —
it describes the structure that the set-theoretic systems satisfying the theory
have in common. In other words, according to structuralism, mathematics is
concerned with the structural properties of its objects.

Despite the importance of structural properties for mathematical structural-
ism, there appears to be no formal explication of the concept in the literature.
Informally, structuralists usually characterize structural properties of objects
in a mathematical system in one of two ways: (i) as properties definable from
the primitive relations of a given system, or (ii) as properties of objects that
are shared by structurally similar systems. Compare, for instance, Shapiro on
the first approach in his account of non-eliminative structuralism:

Define a property to be ‘structural’ if it can be defined in terms of the
relations of a given structure. [Shapiro, 2008, p. 286]1

The central idea here is that structural properties are precisely the proper-
ties that are definable in the language of a mathematical theory. The second
approach, in contrast, is based on the notion of structural invariance or abstrac-
tion. Compare Linnebo on this account, again in the context of non-eliminative
structuralism:

A structural property can now be characterized as a property that can be
arrived at through this process of abstraction, or, equivalently, a property
that is shared by every system that instantiates the structure in question.
[Linnebo, 2008, p. 64]

The main idea here is to specify structural properties of objects based on an
act of abstraction from isomorphic systems: a property of objects in a system
counts as structural if it also holds of all corresponding objects in isomor-
phic systems. So far, however, little work has been done to make these two
approaches formally precise.2

In this paper, we aim to remedy this situation. We will present two formal
explications of structural properties corresponding to the two informal charac-
terizations above. We will call them the definability account and the invariance
account of structural properties respectively. A central point to be made here
is that each of these two accounts comes in two versions based on two ways of

1 It should be noted here that in Shapiro’s account, the mathematical entities consid-
ered here are not concrete objects in model-theoretic systems, but ‘places’ in ante rem
structures. Compare also [Shapiro, 2006] for a more detailed philosophical discussion of
the notion of structural properties.

2An important exception is [Linnebo and Pettigrew, 2014] which contains a formal
discussion of structure-abstraction principles for non-eliminative structuralism and of
‘fundamental properties’ of positions in such structures.
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representing mathematical entities: (i) a version for structured mathematical
systems and (ii) a version for entities conceived as elements in such systems.
The reason for this bifurcation is that being a structural property means dif-
ferent things in those two contexts. Take the natural numbers as an example
again. A natural-number system is a system of objects that satisfies the axioms
of second-order Peano arithmetic. Such a system of objects may have addi-
tional structure, but in this context all we care about is the structure in virtue
of which the system satisfies the theory in question. Intuitively, then, a struc-
tural property of a natural-number system is a property the system has or does
not have in virtue of this structure.

The elements within a natural-number system, in contrast, are the numbers
from the point of view of the system. A structural property of a number, then,
is a property that the number has or does not have in virtue of the relevant
structure of the system in which it occurs. The properties of a prime number are
examples of structural properties in this sense, while the property of being a von
Neumann ordinal is a counterexample. Thus, we have two senses of structural
properties depending on two different contexts: if we look at structured systems
as a whole, we get one sense of structural properties, and if we look at the
elements within such structured systems, we get another sense.

Present work on mathematical structuralism focuses mainly on structural
properties in the latter sense, that is, on the structural properties of elements
in mathematical systems. This holds in particular for recent contributions to
non-eliminative structuralism, specifically in the debate on the identity of struc-
turally indiscernible places in pure structures. This discussion focuses on the
adequacy of structuralist identity principles formulated in terms of structural
properties of such places. The principle in question says that two places in a pure
structure count as identical here if they share the same structural properties.3 In
turn, when philosophers discuss structural properties of mathematical systems
— for instance in work on eliminative or category-theoretic structuralism —
then usually no connection is made to these other debates.4

The present paper wants to bridge these different lines of research in philoso-
phy of mathematics by giving a unified account of the notion. In particular, the
first main goal here will be to show that both the invariance account and the
definability account can be made to work in a precise sense for both types of
mathematical properties, that is, for properties of systems as well as properties
of elements in such systems. Our focus will consequently not be on a particular

3See, for instance, [Keränen, 2001; Shapiro, 2008; Ketland, 2006; Leitgeb and Ladyman,
2008]. Even though the debate centers around this and related principles of structural
indiscernibility, structuralists do not universally accept the principle. Indeed, Leitgeb and
Ladyman, among others, reject the principle as a criterion of identity for objects in (ante
rem) structures.

4An important exception to this is [Landry and Marquis, 2005] where structured
systems (such as groups, topological spaces, etc.) are treated as objects within category-
structured systems. See [Awodey, 1996] for a general account of category-theoretic
structuralism.
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version of mathematical structuralism such as non-eliminative or eliminative
structuralism. Neither will we take a stance on standard structuralist claims
involving structural properties, such as the identity of structural indiscernibles
or the so-called purity thesis, which states that mathematical objects have only
structural properties (see [Linnebo and Pettigrew, 2014]). Rather, the aim will
be to give a general conceptual and logical analysis of the notion that provides
us a better understanding of how structural properties should be used in these
philosophical debates.

The second main goal in the paper is to get a clearer understanding of the
relation between the invariance-based and the definability-based accounts of
structural properties. In particular, we will show that the two accounts do
not characterize the same concept. Based on this observation, we propose a
tolerant, Carnapian stance with respect to the choice of explication: we argue
that neither of the two explications gives us the ‘correct’ notion of structural
properties; instead both accounts have their philosophical and mathematical
merits.

The paper will be organized as follows: In Section 2, we will lay the con-
ceptual foundations for the rest of the paper. In particular, we will further
explain the distinction between structural properties of systems of mathemati-
cal objects and structural properties of elements in such systems. In Section 3,
we will present a generalized version of the invariance-based account of struc-
tural properties. Section 4 will present the explication of structural properties
in terms of their definability in a mathematical language. Section 5 will then
turn to a more general discussion of the conceptual relation between the two
approaches. Specifically, we offer a philosophical assessment of the fact that the
two accounts do not determine the same pre-theoretical notion of a structural
property. Section 6 will contain a summary and some suggestions for future
research.

2. MATHEMATICAL OBJECTS AND THEIR PROPERTIES
As mentioned in the introduction, structural properties will be specified here in
accordance with two different ways to represent mathematical objects in partic-
ular contexts: (i) as elements in structured systems, and (ii) as the structured
systems themselves. When we speak about mathematical entities in the latter
sense, we usually refer to them in the context of certain axioms that describe
the relevant structure of the system: systems are thus considered as models of
these axioms. For instance, when the natural numbers are treated as a struc-
tured number system, this system is understood as a model of the axioms of
second-order Peano arithmetic. Notice that mathematicians may talk differ-
ently about the same system in different contexts: for example, they may treat
the natural numbers as a model of Peano arithmetic or as a monoid, i.e., as a
system satisfying the monoid axioms. Moreover, such systems can themselves
be elements in larger mathematical systems: for example, the natural numbers
viewed as a monoid are themselves elements in the system of submonoids of
the natural numbers. Thus, how we conceptualize the mathematical objects we
talk about is highly context sensitive.
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In what follows, we will present both ways to think about mathematical
entities in a standard model-theoretic setting. Structured systems always belong
to a particular mathematical type, for instance the type of groups, graphs, or
number systems. A specific type is usually defined by a set of axioms and
formulated in an associated language. This is often a first-order language, for
instance a first-order language describing abstract groups. Nevertheless, in the
remainder of this paper, we will also consider higher-order languages for the
description of mathematical systems and their properties. The second-order
formulation of Peano arithmetic is a well-known case in point here. In the
following account of mathematical types, systems, and objects, we deliberately
leave the logical strength of the mathematical languages unspecified for the
moment.

If T is a type of structured systems of mathematical objects, we denote the
associated set of axioms by ΛT and the language in which these axioms are
formulated by LT. Typically, the non-logical vocabulary of such a language
contains a set of function symbols F , a set of relation symbols R, and a set of
individual constants C. For example, the vocabulary of a (first- or second-order)
language LPA of Peano arithmetic contains the function symbols S, +, and · for
the successor function, addition, and multiplication, as well as the individual
constant 0 for zero. One can view a structured system canonically as a model
of LT which satisfies the axioms ΛT — i.e., we can view it as a model-theoretic
system of the form

M = 〈DM, fM, RM, cM : f ∈ F , R ∈ R, c ∈ C〉

that consists of a non-empty domain DM, a number of functions and relations
over the domain that interpret the function and predicate symbols, as well as
of a number of distinguished elements that interpret the individual constants of
the language such that all of these components behave as ΛT says. Given this,
we can simply view elements of systems as individuals in the domain of a model-
theoretic structure. So, if N = 〈NN , 0N , SN 〉 is a natural-number system, then
an element in N , i.e., a natural number in the system, is simply an individual
number n ∈ N

N .
In this model-theoretic framework, the important notion of structural

similarity between systems can be made precise in terms of the notion of iso-
morphism for models of the relevant language. This relation is defined in the
usual way:

Definition 1 (T-isomorphism). Two LT-systems M and N are isomorphic
if there exists a bijection λ : DM → DN such that:

(i) λ(cM) = cN , for all individual constants c ∈ LT

(ii) (a1, . . . , an) ∈ RM ⇔ (λ(a1), . . . , λ(an)) ∈ RN , for all n-ary relation
symbols R ∈ LT and a1, . . . , an ∈ DM.

(iii) λ(fM(a1, . . . , an)) = fN (λ(a1), . . . , λ(an)), for all n-ary function sym-
bols f ∈ LT and a1, . . . , an ∈ DM.
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We say that two systems M and N of type T are isomorphic, in symbols
M 	 N , iff M and N are isomorphic as models of language LT.

We next turn to the properties of mathematical objects. A lot can be said
about the nature and existence of properties and philosophical positions on
these matters abound.5 We shall try to remain as neutral as possible on the
subject. For the most part, an intuitive understanding of properties suffices:
properties are simply those things that we can attribute to or predicate of
things. Informally, one usually refers to properties using gerunds of the form
‘being . . . ’ or ‘having . . . ’. For technical purposes, we distinguish between
properties of elements in systems and properties of systems. For example, the
property of being prime is a property of numbers in a number system and the
property of having an infinite domain is a property of systems of a certain type.
For both elements and systems, we write P(x) to indicate that the object x has
the property P.

In the following, we will treat properties of mathematical systems as classes
of such systems. For instance, the property of being a commutative group will
be understood here as the class of Abelian groups.6 In contrast, properties of
elements in such systems will be understood (in a Lewisian sense) as functions
from systems to sets of elements in these systems. For example, the property of
being an even number will be treated as a function that maps to each number
system satisfying second-order PA the set of even numbers in its domain.7

Mathematical properties of both types can thus be expressed more formally in
the following way:

Definition 2 (Mathematical Properties).

(1) A property P of T-systems is the class {S ∈ T | P(S)} of all and only the
systems of type T that have the property P.

(2) Let P be a property of elements of T-systems. The local extension of P in a
system S is the class εSP = {x ∈ DS | P(x)} of all and only those things
in the domain of S that have the property. Property P is the function
ιP : S 
→ εSP that assigns to every system S of type T the local extension
εSP of P in system S.8

Given this account, three points should be noted here. First, since most types
of mathematical systems (e.g., the type of Abelian groups) are not sets but,

5For an overview see, for instance, [Oliver, 1996].
6Strictly speaking, extensions of mathematical properties so construed are often proper

classes. An axiomatic class theory such as von Neumann-Bernays-Gödel set theory (NBG)
would therefore be a suitable theoretical framework to express the present account of
mathematical properties more formally.

7This functional account of mathematical properties essentially conforms with Lewis’s
[1986] possible-worlds approach to properties.

8 In the remainder of the paper, we will also use the following notation to speak about
the local extensions of properties of elements in particular systems: if M is a mathematical
system, d ∈ D an object in this system, and P a property, then we also write PM(d) to
say that d is in the extension of P in M.
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strictly speaking, proper classes, it follows that the mathematical properties of
elements in such systems, if understood in the above sense, cannot be presented
by set-theoretic functions. Instead, they have to be thought of as proper-class-
sized functions, i.e., as functions between proper classes.9

Second, given the present account, one can think of a mathematical prop-
erty of elements as being instantiated in different systems of a given type.
Consider again of the property of being even in the context of number sys-
tems: this number-theoretic property is understood here as a function from
systems satisfying second-order PA to particular number sets, namely the sets
of even numbers in the particular model considered. As will be shown in the
next section, these local extensions of the property can differ from system to
system. For instance, given two different set-theoretic models of PA, the one
based on the von Neumann construction of the natural numbers and the other
on Zermelo’s construction of the natural numbers, the respective sets of even
numbers will clearly be distinct. Nevertheless, the present account allows us to
treat these local extensions as belonging to the general arithmetical property
that can be instantiated in all of these systems. This functional understand-
ing of properties of elements is clearly motivated by a structuralist account
of mathematics. In particular, a structuralist would think of ‘being even’ as a
general number-theoretic property that is independent of any particular system
satisfying the theory.10

Finally, following Quine’s famous dictum of ‘no entity without identity’, the
present account of mathematical properties also calls for a specification of their
identity conditions. When should we be committed to saying that two math-
ematical properties are identical? The philosophical literature on properties
discusses a number of possible criteria of property individuation suitable for
this task. Generally speaking, one can think of these identity criteria as laws
of the following form:

For all properties P and Q: P = Q iff C(P, Q),

where C(P, Q) is a condition, usually expressed in the form of an equivalence
relation between the properties P and Q. If we restrict our attention to the case

9The notion of classes is treated informally in standard set theory; that is, classes are
not described by the axioms of (first-order) ZF, but treated as definable predicates in
the language of set theory. A proper-class-sized function F can also be dealt with in ZF
by representing it as a first-order definable formula of the form Φ(x, y) such that Φ(x, y)
holds in V if and only if F (x) = y, where by V we mean the cumulative von Neumann
hierarchy of sets. Proper-class-sized functions can also be characterized more explicitly in
an axiomatic class theory such as NBG or Morse-Kelley set theory. Compare [Jech, 2002,
pp. 5–6] for details. We would like to thank an anonymous reviewer for emphasizing this
point in his report.

10From the perspective of non-eliminative structuralism, it is tempting to say that such
general mathematical properties hold primarily of pure positions in abstract structures.
Since these structures can be exemplified by more concrete systems, it follows that the
properties also apply to elements in systems that instantiate these pure positions. In the
present paper, we choose to treat mathematical properties of elements functionally instead
of adopting such a non-eliminative account of structures.
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of properties of elements in systems, one natural approach would be to specify
identity in terms of co-extensionality in all systems:

For all properties P and Q of objects in systems of type T: P = Q iff for
all systems S of T and for all objects x ∈ DS : {x ∈ DS | P(x)} = {x ∈
DS | Q(x)}.

For most applications discussed in the following, this identity criterion will be
adequate. However, one might argue that it is still too coarse-grained for the
individuation of mathematical properties. In particular, given the functional
account of properties outlined above, one will be forced to identify properties
that are intuitively distinct. Consider again of the case of arithmetic: the prop-
erties of ‘being the square of 2’ and of ‘being the fourth successor of 0’ will
turn out as identical according to the above criterion since they share the same
extension in every system satisfying PA.

Given these reasons, one might consider other, so-called hyperintensional
identity criteria for mathematical properties. These criteria are finer-grained
than co-extensiveness in all systems. Recent work on the metaphysics of prop-
erties has focused on different versions of structured-property theories. Very
roughly, properties so conceived are either primitive or equipped with some
internal propositional structure. The identity of complex properties is then
determined by reference to this internal structural composition.11 We will not
be able to discuss such hyperintensional identity criteria and their possible rel-
evance in the context of mathematical properties any further here. Instead,
we simply acknowledge the fact that thinking about identity of mathematical
properties in terms of co-extensiveness can lead to problematic results. A more
definitive theory of identity conditions for mathematical properties will have to
be developed elsewhere.

Given this general model-theoretic picture of mathematical systems, objects,
and their properties, when do mathematical properties qualify as structural?
Intuitively, a structural property is a property a mathematical object has in
virtue of or because of its structure. As should be clear, this means different
things for systems and elements of such systems: a structural property of a
system is a property the system has because of its internal structure — it tells
us something about the structural composition of the system. In the case of
elements in structured systems, in turn, structural properties are properties that
express information about the role of the elements in the overall structure of the
system. Put differently, these are properties a particular element has because
of its contextual structure, i.e., the relations in which it stands with the other

11See, for instance, [Menzel, 1993] for an algebraic approach and [King, 2007] for a
‘quasi-syntactic’ approach to structured properties. The conception of quasi-syntactically
structured properties in the context of mathematical properties can already be found in
[Lewis, 1986, pp. 56–58].
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elements of the system it belongs to.12 The aim in the next two sections will be
to see how these two informal ways of thinking about structural properties can
be made formally precise in terms of the notions of invariance and definability.

3. THE INVARIANCE ACCOUNT
One way to specify structural properties is based on the notion of invariance
under structure-preserving transformations. This notion has a long mathemat-
ical history, tracing back to nineteenth-century work in algebra and algebraic
geometry. The first attempt to define the notion of structural properties explic-
itly in terms of invariance can be found in Carnap’s early work on axiomatics.
In his manuscript Untersuchungen zur allgemeinen Axiomatik, Carnap gives us
the following definition:

Definition 1.7.1 The property fP of relations is called a ‘structural
property’ if, in case it applies to a relation P , it also applies to any
other relation isomorphic to P . To say that fP is a structural prop-
erty is expressed in a formula as follows: (P, Q)[(fP&Ism(Q, P )) → fQ].
The structural properties are so to speak the invariants under isomorphic
transformation. They are of central importance for axiomatics. [Carnap,
2000, p. 74]

Carnap defines structural properties of relations here as those properties that
remain invariant under isomorphisms. How can we generalize this invariance-
based approach to apply to properties of arbitrary mathematical objects? To
address this, it should be emphasized that something Carnap’s account does not
give us is an understanding of structural properties in terms of more basic or
non-structure-related notions. His definition can be taken to rely in one way or
another on some primitive structural facts that determine whether two objects
count as structurally equivalent or isomorphic. To see this, consider again how
the relation of isomorphism for a given class of mathematical objects is usually
defined. The ‘traditional way’ specified in Section 2 — and already anticipated
by Carnap — is by first identifying a set of primitive properties and relations
and then to defining two objects as being isomorphic if and only if there is a
bijection between them that preserves these primitive properties.13

Carnap’s definition is thus based conceptually on a prior axiomatic stipula-
tion of certain facts that are taken as our basis for speaking about structure
and structural invariance. What the above definition does is that it extends
these axiomatically specified properties to arbitrary properties. This said, it is

12Examples of such properties can be traced back to Benacerraf’s famous paper ‘What
number could not be’ from 1965: ‘Being prime’ or ‘being even’ are structural properties of
individual natural numbers whereas ‘being a specific Zermelo number’ is not.

13Take groups as a concrete example. A group isomorphism between groups G and G′

is a bijective function from G to G
′, such that g ◦G h = j iff f(g) ◦G′

f(h) = f(j). Thus,
the relevant primitive property is having a group operation ◦. A group isomorphism is a
bijection that preserves this property.
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explicitly left open how we identify the primitive properties of mathematical
objects in the first place. Moreover, these properties clearly differ for differ-
ent classes of mathematical objects. For instance, an object N is isomorphic
to the natural numbers N iff there is a bijection from N to N that preserves
the successor function and the distinguished object 0 ∈ N. Similarly, an object
R is isomorphic to the reals R iff there is a bijection from R to R that pre-
serves the distinguished objects 0 ∈ R and 1 ∈ R, the addition function +,
the multiplication function ·, and the order ≤ of the reals. Thus, for different
kinds of mathematical objects we have different kinds of axiomatically defined
constitutive properties.

Based on these considerations, we can outline a modernized account of Car-
nap’s definition of structural properties. Specifically, we will assume that a
definition has to be relativized to a particular type of mathematical objects.
As mentioned above, this type comes with a distinguished ‘structural vocabu-
lary’, i.e., a set of primitive terms in the formal language of the theory. The
explication of structural properties of structured objects or systems of a given
mathematical type then looks as follows:

Explication 1. A property P is a structural property of systems of type T iff

∀S, S′ ∈ T : P(S) & S 	 S′ ⇒ P(S′).

Structural properties of systems of a given type are thus properties that remain
invariant under the isomorphisms between systems of that type. For instance,
being a graph of a certain order or clique number clearly turns out as a struc-
tural property of graphs under this condition. Similarly, being an infinite cyclic
group turns out as a structural property of groups.14

Our discussion of the invariance-based account has so far focused on prop-
erties of systems, that is, mathematical objects that already possess some
kind of internal structural composition. What about properties of elements in
such a system? Interestingly, several analogous definitions of structural prop-
erties of individuals in a structured system can be given in terms of invariance
conditions. One possible approach here is to restrict attention to the structure-
preserving permutations of a given domain in which such objects occur. Let
A be a particular model-theoretic system. The objects considered now are the
elements in D. Properties of such elements can be treated extensionally as
subsets of the system’s domain. Given this, a possible invariance condition for
such properties is based on the automorphisms of A, that is, isomorphisms of
the form f : D → D. Specifically, we can say that a property of elements in

14An enticing idea in this context would be simply to consider structures as limit cases
of structural properties of mathematical systems. For instance, we might understand the
natural-number structure as the structural property of being isomorphic to the canoni-
cal natural-number system N. We would like to thank a referee for pointing us to this
possibility.
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A is structural if and only if it remains invariant under every automorphism
on A.15

The symmetry between this approach and Explication 1 should be clear
enough: in both versions, the ‘structural’ character of a property is defined
in terms of its invariance under certain structure-preserving transformations.
In the first case, this is invariance under isomorphisms, in the second case
it is invariance under automorphisms, i.e., the inner isomorphisms of a given
system. In spite of this nice symmetry, the automorphism-based account does
not give us a materially adequate account of structural properties of objects in
a given system. One can easily construct counterexamples, namely properties
that turn out to be structural in this sense but fail to be structural from a pre-
theoretical understanding of the term. Typical cases in point here are properties
of elements in rigid systems, i.e., systems without non-trivial automorphisms.
Examples of this are the natural-number systems satisfying second-order PA
or the real-number field. Given that the only automorphisms on these systems
are the respective identity mappings, it follows that every property of elements
in their domains is by definition invariant in the above sense. This includes
properties such as ‘being someone’s favorite numbers’ which clearly fail to count
as structural from an intuitive point of view.16

Fortunately, there exists an alternative explication of structural properties of
elements in mathematical systems that is also in direct symmetry with Expli-
cation 1. The underlying idea here is to specify the notion not in terms of
invariance under automorphisms of a single given system, but — as in the
above case — in terms of the invariance under isomorphisms between different
systems:

Explication 2. Let S be a system of type T. Then a property P is a structural
property of the objects in the domain of S iff for all systems S′ (also of type T)
and for all isomorphisms λ : DS → DS′

:

∀x ∈ DS : PS(x) ⇒ PS′(λ(x))

Structural properties of objects in a system S are specified here as those prop-
erties that the objects ‘keep’ when making isomorphic copies of S.17 Consider,
for instance, the property of having no predecessor in the context of systems

15More formally, we say that a property P of objects in A is a structural property iff it
is invariant in A, i.e., for every element in the automorphism class f ∈ Aut(A), we have
f(P) = P. The idea of characterizing structural properties in terms of invariance under
automorphism has also been discussed in non-eliminative mathematical structuralism, in
particular, in [Keränen, 2001].

16 It is interesting to see that the distinction between rigid and non-rigid systems also
plays a key role in recent work on non-eliminative structuralism, in particular, on the
identity of indiscernible positions in a pure structure. See, e.g., [Keränen, 2001; Leitgeb
and Ladyman, 2008; Shapiro, 2008].

17The notion of structural properties is defined here as a binary relation between sys-
tems and properties of elements in these systems. It could also be defined as a ternary
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satisfying PA. In the standard system of natural numbers, this property is true
only of the number zero. Furthermore, the property turns out as structural in
the above sense since it also applies to all isomorphic copies of zero, i.e., to the
‘base element’ in any other model of PA.

To illustrate this isomorphism-based account further, let us look at another
example. Take the arithmetical property of being an even number discussed
already in the previous section. For present purposes, we will focus on two
particular number systems of PA. The first one can be called the von Neu-
mann system: natural numbers are represented here by sets in the following
way: 0vN = ∅, 1vN = {∅}, 2vN = {∅, {∅}}, . . . , and N

vN = {0vN, 1vN, . . .}. The
successor function is specified as SvN(n) = n ∪ {n}, for any n ∈ N

vN. The
system NvN = 〈NvN, 0vN, SvN〉 satisfies second-order PA. The second number
system is the Zermelo system: natural numbers are identified here with sets in
the following way: 0Z = ∅, 1Z = {∅}, 2Z = {{∅}}, . . . , and N

Z = {0Z, 1Z, . . .}.
The successor function is specified as SZ(n) = {n}, for any n ∈ N

Z. The system
NZ = 〈NZ, 0Z, SZ〉 is also a model of second-order PA. Benacerraf’s central
insight in [Benacerraf, 1965] was that, from a purely structural point of view,
it does not matter which of the two set-theoretic systems is taken to represent
the natural-number structure. Neither of them should therefore be singled out
as the preferred model of arithmetic. Put differently, both systems are suited
equally well for this task since the elements in them share the same structural,
i.e., purely relational properties. Based on this insight, we suggested treating
arithmetical properties such as ‘being an even number’ as functions from PA-
systems to subsets of elements in them. In the particular example, the function
presenting the property of being even will pick out the set {2vN, 4vN, 6vN, . . . }
relative to the von Neumann system, the set {2Z, 4Z, 6Z, . . . } relative to the
Zermelo system, and corresponding sets for any other model of PA. This prop-
erty is clearly structural according to Explication 2: systems NvN and NZ are
isomorphic and any isomorphism between them maps the object 2vN to object
2Z, object 4vN to 4Z, object 6vN to 6Z, and so on. Thus, the property of being
even is preserved under isomorphisms in the sense specified above.

Does Explication 2 rule out the kind of counterexamples to the
automorphism-based approach mentioned above? Consider again the case of
accidental properties such as being someone’s favorite numbers. How such prop-
erties are to be evaluated depends on how they are understood given the present
framework. In our view, the most natural way to interpret them is to say that
such properties apply to objects of a particular number system, for instance,
of a particular model of PA. Thus, we take it that such properties are about
a particular set of natural numbers in a particular number system. To give
an example, consider the property ‘being one of Zermelo’s favorite numbers’
(henceforth Zer) and let Zermelo’s favorite numbers be the numbers in system
NZ which form his birth date {1871Z, 7Z, 27Z}. As can easily be shown, Zer

relation between systems, properties, and particular elements in the following way: a prop-
erty P is a structural property of an object a in system S iff for all systems S′ (also of
type T) and for all isomorphisms λ : D → D′: PS(a) ⇒ PS′(λ(a)).
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turns out to be invariant and thus structural (relative to NZ) according to the
automorphism-based approach. However, it fails to be structural according to
the isomorphism-based account. One way to think of Zer more formally is as a
function that gives us the set {1871Z, 7Z, 27Z} for system NZ and the empty set
for any other PA-system. This treatment reflects the fact the Zer applies only to
certain elements of system NZ and to no objects in any other number system.
As a consequence, Zer is not preserved by isomorphisms between PA-systems
and thus fails to be structural. In this respect, the present approach is clearly
preferable to the automorphism-based account.18

Note that Explication 2 of the notion of structural properties presupposes
the functional understanding of mathematical properties of elements in systems
outlined in Section 2. Thus, in contrast to the automorphism-based approach,
it makes little sense to conceive of properties purely locally as sets of elements
in a particular system. Rather, we have to assume that a property can recur
in different mathematical systems and have different interpretations (or local
extensions) in them. It is therefore natural to think of properties as functions
from systems to such local extensions, viz., as sets of individuals in a given
system, in the sense specified in Section 2. Viewed in this way, a property
qualifies as structural if there exists, between its local extensions in any two
systems, a bijective correlation that is induced by an isomorphism between the
systems.19

This functional treatment of mathematical properties (of elements in sys-
tems) also allows us to address a possible objection regarding the descriptive
adequacy of Explication 2.20 Consider again the example of ‘being one of Zer-
melo’s favorite numbers’ but let this now be the property of being a prime
number in a PA-system. Is this property structural? This again depends on
whether the property is interpreted only locally, i.e., as applying exclusively to

18 It should be noted here that there exists a second way to interpret ‘being one of
Zermelo’s favorite numbers’. According to this view, the property applies not to elements
of a particular PA-system, but rather to abstract number positions that can be exemplified
by such set-theoretic objects. In particular, given the present framework, we could think
of Zer as a function that assigns the respective interpretations of the numerals ‘1871’, ‘7’,
and ‘27’ for each PA-system. Understood in this way, Zer is a structural property.

19How are the two explications of structural properties suggested here related to
the different versions of mathematical structuralism discussed in the literature? The
automorphism-based approach sides well with non-eliminative structuralism and its focus
on properties of positions in pure structures. In contrast, Explication 2 seems closer in
spirit to eliminative structuralism given that structural properties are specified here for
objects in systems and in terms of the generalization over systems and isomorphisms
between them. That said, it is interesting to compare Explication 2 with the treatment of
structural properties in the context of non-eliminative structuralism given in [Linnebo and
Pettigrew, 2014]. Linnebo and Pettigrew specify pure structures as well as the positions
and relations in such structures in terms of Fregean abstraction principles. ‘Fundamental
relations’ of such positions are constructed by abstraction from relations on the domain
of a concrete system. Linnebo and Pettigrew further show that fundamental properties so
construed are structural in the sense specified in Explication 2.

20We would like to thank one of the anonymous reviewers for pointing out this objection
to us and for very helpful suggestions.
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objects of a particular system or more generally, as a property applying to the
prime numbers in all PA-systems. Considering the first — in our view more
natural — interpretation, one could say that the property of being Zermelo’s
favorite numbers (henceforth Zer∗) is given by the set {2Z, 3Z, 5Z, 7Z, 11Z, . . . }
of objects in the Zermelo system. Alternatively, we could understand Zer∗ as
the function that selects this set relative to system NZ and the empty set for
any other PA-system. So construed, the property is not isomorphism invariant
and thus not structural.

Considering the second option, one could also understand ‘being one of Zer-
melo’s favorite numbers’ more generally as the property of prime numbers in
all PA systems (henceforth Zer‡). Thus, again adopting our functional treat-
ment of properties of elements, the property can then be viewed as the function
that selects the set of prime numbers in each PA system. As mentioned above,
accidental properties of elements in systems of a given type (such as the prop-
erty of belonging to person X’s favorite numbers) should intuitively not count
as structural, simply because they are not about the internal structure of the
systems in question. However, Zer‡ clearly turns out to be structural according
to the isomorphism-based account since it is invariant under any isomorphic
transformation of the standard natural-number system.21

Does the property ‘being one of Zermelo’s favorite numbers’ present a coun-
terexample to Explication 2? In the local version of it, i.e., understood as Zer∗,
the property clearly presents no problem to the isomorphism-based account. In
the general version Zer‡, the situation is less obvious. In particular, an answer to
the question depends on the choice of a particular criterion of identity that one
wants to adopt for mathematical properties. Recall from Section 2 that differ-
ent criteria can be considered here. As we saw, one natural approach is to take
two properties to be identical if they are co-extensive in all possible systems
considered. Applied to the present example, this would imply that the number-
theoretic properties ‘being one of Zermelo’s favorite numbers’ (interpreted as
Zer‡) and ‘being a prime number’ are in fact identical. Following a reviewer’s
suggestion, we might say that being one of Zermelo’s favorite numbers (under-
stood in this way) is in fact the property of being a prime presented in an exotic
disguise. Moreover, as we saw, it also turns out to be a structural property, at
least if one adopts Explication 2 as a way to precisify this notion. Therefore,
at least if identity of properties is captured in terms of co-extensiveness in all
systems, property Zer‡ does not present a counterexample to Explication 2. A
different assessment may be needed, however, if other, finer-grained criteria of
identity for properties are considered. A more detailed discussion of the intri-
cate relationship between different identity criteria for mathematical properties
and the notion of structural properties (as specified in Explication 2) would

21Consider again the two systems of PA, namely the Zermelo system and the von Neu-
mann system. Relative to these two systems, property Zer‡ picks out two infinite sets,
namely {2Z, 3Z, 5Z, 7Z, 11Z, . . . } and {2vN, 3vN, 5vN, 7vN, 11vN, . . . } respectively. Since
any isomorphism between NZ and NvN will preserve this property, it turns out to be
structural.
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go beyond the scope of this paper. We therefore leave this issue for possible
future work.

Given the two invariance-based explications of structural properties, two
further points of commentary are in order here. Notice first that in contrast
to Carnap’s original account, the modernized versions only give a partial def-
inition of structural properties relative to a given mathematical type or to
particular objects of systems of a given type. Moreover, the definitions are
non-reductive in the sense that they assume a prior specification of the primi-
tive structural terminology used to describe the objects of this type. Thus, the
notion of structure-preserving mappings is presupposed in the invariance-based
account. As a consequence of this, the approach is sensitive to how we present
objects and systems, that is what types and languages we associate with them.

Second, as already indicated above, both accounts are materially adequate
in the sense that they agree with many of our intuitions about what counts as
a structural property. In particular, the standard examples of such properties
mentioned in [Benacerraf, 1965] all turn out to be structural according to Expli-
cations 1 and 2: having infinitely many prime numbers is a structural property
of PA-systems. Being prime is a structural property of numbers in such sys-
tems. In contrast, having the set of von Neumann ordinals as the domain is not
a structural property of PA-systems. Being a specific set is also not a structural
property of numbers in such systems. Thus, both invariance-based explications
seem to reflect closely our pre-theoretical understanding of structural properties
in mathematics.

4. THE DEFINABILITY ACCOUNT
The second approach to defining structural properties is based on the notion
of logical definability. As with the invariance-based approach, it has a long his-
tory, tracing back to early work on formal philosophy and the logic of science.
In Russell’s monograph The Analysis of Matter, one can find the view that a
relation’s ‘structure is what can be expressed by mathematical logic’ [Russell,
1927, p. 254]. The same view is elaborated more fully in Carnap’s Der Logis-
che Aufbau der Welt [1928]. The position defended there is that the structure
of a relation is presented by ‘the totality of its formal properties’. Formal or
structural properties in turn are specified in the following way:

By formal properties of a relation, we mean those that can be formulated
without reference to the meaning of the relation and the type of objects
between which it holds. They are the subject of the theory of relations.
The formal properties of relations can be defined exclusively with the aid
of logistic symbols, i.e., ultimately with the aid of the few fundamental
symbols which form the basis of logistics (symbolic logic). [Carnap, 1928,
p. 21]

Thus, unlike in [Carnap, 2000], structural properties are not defined here in
terms of invariance under isomorphisms, but in terms of their logical defin-
ability. How can we make this second approach more precise? As in the above
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case, it makes sense to highlight some facts about Carnap’s account that need
further consideration.

First, properties are defined here not only for mathematical relations, but
for all possible relations, including physical or empirical ones. In the present
context, the approach of specifying structural properties in terms of their defin-
ability can be restricted to the case of mathematical properties. The second
point concerns what is meant by ‘logical’ in talk about logical definability here.
In Carnap’s case, definability in logic means expressibility in a pure logical lan-
guage, i.e., a language without non-logical vocabulary. Thus, according to this
account, structural properties are precisely those properties expressible in pure
higher-order logic. In the context of mathematics, this approach seems insuf-
ficient. When mathematicians speak of definable properties here, they usually
have in mind formal languages that additionally contain some primitive math-
ematical vocabulary. Any modern reconstruction of the present account will
thus have to be explicit about both the logical resources of a given language
and its mathematical signature.

The final point concerns the metatheoretic notion of ‘definability’ in use here.
For Carnap, being definable means that a property can be explicitly defined in
the background language. Such definitions are conceived of purely syntactically
by him, i.e., as expressions ‘formulated without reference to the meaning’ of
the relations and their relata [Carnap, 1928, p. 21]. In contrast to this, our
present account of mathematical properties will be based on a model-theoretic
understanding of definability.22

With these points in mind, we can turn to an explication of structural proper-
ties in terms of logical definability. We say that structural properties of systems
can be specified in terms of the notion of definable classes of models of type T
in the following sense:

Explication 3. A property P is a structural property of systems of type T iff
there is a closed formula ϕ ∈ LT such that ϕ defines P, i.e.:

{S ∈ T | P(S)} = {S ∈ T | S � ϕ}.

Structural properties of systems in this account are properties whose extensions
— conceived here as classes of models of a given type — are definable in the
associated language of that type. Consider some examples of mathematical
properties that turn out to be structural in the above sense: the property of a
group G to have κ elements in the underlying set for κ a finite cardinal number
is definable in the language of groups. The property of a graph to have n edges
is definable in the language of graph theory.

This explication applies to properties of mathematical systems with some
kind of internal structural composition. As in the case of the invariance

22See, e.g., [Marker, 2000, §1.3] for a detailed discussion of the notion of definability
in model theory.
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approach, an analogous explication can be given for properties of elements
in such systems. One possible way to go here is to specify structural properties
relative to a single system. In this case, LT-definability does not concern classes
of models of a certain signature, but sets or relations in such a given system.
Structural properties of elements in a system S of type T are thus properties
whose extensions in S are definable in the associated language LT. This account
corresponds closely to the automorphism-based approach stated in Section 3.
As we saw, invariant properties of objects can also be specified relative to a
particular system, namely in terms of the invariance under all automorphisms
of that system.

We have mentioned, however, that these ‘local’ approaches are not fully
satisfactory for present purposes. In particular, they fail to capture our general
‘structuralist’ motivation for these definitions, namely to describe properties as
entities that apply to individual objects across systems.23 Thus, according to
this view, the property of ‘being prime’ is not considered here as a property of
natural numbers of a particular number system, but as an arithmetical property
that applies to objects in all systems satisfying PA. For this reason, we propose a
more general explication. First, we make sure that whenever we have a system
S of type T, we have a name for every member of the domain D of S. We
achieve this by adding to the language LT an individual constant d for every
member d ∈ D. This gives us the extended language L+

T. We then move to the
extended system S+, which is defined just like S, except that we stipulate that
dS+

= d. Then we say:

Explication 4. A property P is a structural property of elements in T-systems
iff for every system S of type T there is a formula ϕ(x) ∈ LT such that:

{d ∈ D | PS(d)} = {d ∈ D | S+ � ϕ(d)}.

According to this account, structural properties of elements in the systems of
a given mathematical type are thus properties whose local extension in each
system is definable in the associated language.

Some points of commentary are again in order here. First, notice that both
definability-based explications closely capture our informal ways of thinking
about structural properties (as outlined in Section 2). Recall that a structural
property of elements in a system is usually understood as a property expressing
some piece of information about their relational or contextual structure, i.e.,
about the relations in which these objects stand to other objects in the system.

23As mentioned before, such local approaches to invariance and definability are com-
patible with a structuralist account of mathematics if one adopts a non-eliminative
understanding of structures. Structures are then conceived as universals or patterns with a
domain of abstract positions that can be instantiated by objects of concrete mathematical
systems. Definable properties in this context do not concern objects in systems but rather
their abstract placeholders in such structures. See, e.g., [Keränen, 2001].
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Exactly this understanding of structural properties is made precise in Expli-
cation 4. Similarly, we can say that the informal understanding of structural
properties of structured systems is captured closely by Explication 3: structural
properties are conceived here as those properties expressing a fact about the
structural composition of the systems considered. Here again, definability in
terms of the primitive terminology of a mathematical theory secures that the
properties so expressed are about these internal or intrinsic structural facts.24

Second, it is insightful to see how the present approach differs conceptually
from the invariance-based approach outlined above. Notice that Explications 3
and 4 also give us a partial and non-reductive account of structural properties.
The account is partial because structurality is always specified relative to a
particular mathematical context or type. It is non-reductive in the sense that
a prior identification of primitive terminology is assumed that allows us to
identify what we mean by structure in this particular context in the first place.
Moreover, just as in the invariance approach, these explications are sensitive to
how we represent objects and systems, that is how we set up the languages to
describe them.

The central difference from the invariance approach is that the present
account is also highly sensitive to the expressive power or logical strength of
the associated language. Thus, it makes a difference whether the mathematical
language LT in use is first-order or higher-order. To give just one example:
some fairly simple graph properties — for instance, properties concerning the
clique number of a graph — are not expressible in a first-order framework and
are thus not structural according to Explication 3. They do become definable
and thus structural, however, if one adopts a second-order language that allows
one to quantify over subsets of a graph’s vertex set. More generally, we can
say that what counts as a structural property according to the definability
approach is strongly dependent on the choice of the background language. It
depends both on the mathematical (viz., non-logical) signature as well as the
logical resources (viz., the types of variables and types of quantifiers that are
part of the language) in use.

5. COMPARISON
Two different explications of the notion of structural properties were presented
here, both of which seem to capture our pre-theoretical understanding of such
properties in mathematics. In light of this, a natural question to ask is whether
the invariance-based and the definability-based accounts are in fact equivalent.
Put differently, do they determine the same collection of properties for a given
type of mathematical objects? Prima facie, this seems a plausible assumption to
make. The symmetry between invariance and definability has long been inves-
tigated in model theory. Thus, the approaches can be considered as two sides of

24This does not mean that the definitions expressible in a formal language necessarily
capture all structural facts about the mathematical systems considered. As will be pointed
out below, the logical strength of a language in use also plays a significant role here.
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the same coin, that is, as two ways of describing the structure of mathematical
objects.25

This fact has also been acknowledged in the more recent literature on math-
ematical structuralism. For instance, a close variant of the definability-based
explication of structural properties of objects in a system is discussed at length
in the context of non-eliminative structuralism in [Keränen, 2001]. Keränen
introduces there the notion of ‘inter-structural’ relational properties of places
in a pure structure that can be instantiated by the elements of concrete systems.
These properties are, he points out, definable in the relevant mathematical lan-
guage (without individual constants) [2001, pp. 315–317]. Keränen goes on to
argue that

. . . a property is guaranteed to be invariant under the automorphisms of
S if and only if it can be specified by formulae in one free variable and
without individual constants. [2001, p. 318]

Unfortunately, the relation between the invariance-based and the definability-
based accounts is not as clear as is suggested there. In fact, Keränen’s
observation does not hold in general. It is not always the case that the expli-
cations of structural properties in terms of invariance match those given in
terms of definability in a formal language. To see this, a simple cardinality-
based argument can be given. Consider again the standard system of natural
numbers N = 〈NN , 0N , SN 〉 (which, for the sake of concreteness, we may take
either to be NZ or NvN). As pointed out above, N is rigid, i.e., there are no
automorphisms on N other than the identity mapping. It follows from this
that any property (conceived as a set) of the elements in N is invariant in the
above sense. Hence, there are 2N invariant properties of natural numbers. How-
ever, assuming that our language or arithmetic LPA is finite, there are at most
countably many definable properties of natural numbers.

In order to clarify the relation between invariance and definability in the
context of our discussion, we need to move back from Keränen’s non-eliminative
account to a more neutral understanding of structuralism and translate his
claim into our preferred way of thinking about invariance across systems, that
is, invariance with respect to the isomorphisms between systems. Given the
previous distinction between properties of structured systems and properties of
the elements of such systems, his assumption can be reformulated in terms of
two equivalence claims, namely:

(α) A property of systems of type T is invariant under isomorphisms
between T-systems iff it is LT-definable.

(α∗) A property of elements in a T-system S is invariant under
isomorphisms between T-systems iff it is LT-definable in S.

25See, for instance, [Hodges, 1997, p. 93].
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Do these equivalences hold? The respective right-to-left directions can easily
be confirmed. Put differently, the definability account subsumes the invariance
account. This is a simple consequence of the isomorphism lemma from elemen-
tary model theory, viz., the result that isomorphic systems are semantically
equivalent.26 Thus, for case (α), the following holds:

Observation 1. Let P be a property of systems of type T. If P is LT-definable,
then it is invariant.

Proof sketch: Intuitively, what needs to be shown here is that any class
of systems defined in LT consists of full isomorphism classes of Ts. Let the
extension of P be defined by sentence ΦP and let S ∈ T such that S |= ΦP.
Then, by the isomorphism lemma, for any X ∈ T: if X 	 S we also have
X |= ΦP. A formal proof of this can be given by induction on the complexity
of formulas.27 An analogous argument can be given in support of the claim
that L-definable properties of elements in a system S are invariant under all
isomorphic copies of S.

While this direction of the equivalence claims is straightforward, the left-
to-right direction is not. Specifically, it is not generally the case that invariant
properties are also definable in the particular language of the theory in question.
To see this, consider some counterexamples against claim (α): the property of
first-order PA-systems of ‘being isomorphic to the standard number system N’
is not definable in first-order LPA, but is clearly invariant under isomorphisms
of PA-systems. As is well known, the property becomes characterizable if one
works within a second-order language of arithmetic, simply due to the fact that
the second-order formulation of PA (with the second-order axiom of induction)
gives a categorical axiomatization of this number system.28 One could thus
think that the equivalence stated in (α) could be restored if a notion of second-
order definability were presupposed.29 However, this is also not the case. One

26Lemma (‘Isomorphism Lemma’): Let L be a language. Then for all models M and
N of L and all ϕ ∈ L: M �L N ⇒ M � ϕ ⇔ N � ϕ.

27A full proof of the isomorphism lemma for first-order languages is given in [Marker,
2000, pp. 13–14]. This proof can easily be generalized to apply also to higher-order
languages.

28PA is categorical if one assumes a standard semantics for the second-order language
in which the theory is formulated. See [Shapiro, 1991, §4.2] for a detailed discussion of dif-
ferent semantics for second-order languages as well as for a proof sketch of the categoricity
of arithmetic.

29 It should be noted here that using second-order languages (and higher-order lan-
guages more generally) in this context might be seen as problematic since this would
qualify certain properties of mathematical objects as structural that we would intuitively
not count as such. Consider, for instance, the second-order language for real-number fields.
One can easily formulate statements in this language which are true if and only if the con-
tinuum hypothesis is true. However, few number theoretists would take such a statement
as expressing a structural property of the real-number systems. We would like to thank
an anonymous reviewer for drawing our attention to this fact.
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can construct examples of invariant properties that fail to be second-order
definable. To give one example:

Observation 2. Let L�2
PA := LPA ∪{�2}, where �2 is a unary predicate that is

intended to apply exactly to the codes of all the second-order validities. Then the
property of ‘being isomorphic to 〈NN , 0N , SN , Val2〉’, where Val2 is the set of
codes of second-order validities, is not second-order definable, but is invariant
under isomorphisms between L�2

PA-models.30

Proof. By Theorem 41C of [Enderton, 2001, p. 268] the set Val2 is not definable
in 〈NN , 0N , SN 〉 by any formula of second-order logic. Suppose that we could
define the property of being isomorphic to 〈NN , 0N , SN , Val2〉 by a formula
ϕ, i.e., M ∼= 〈NN , 0N , SN , Val2〉 iff M � ϕ. Then n ∈ Val2 iff ϕ → �2 (n)
is valid. To see this, note that if M � �2(n) and M ∼= 〈NN , 0N , SN , Val2〉,
then n ∈ Val2. And so if we could define the property of being isomorphic
to 〈NN , 0N , SN , Val2〉, Val2 would be definable in 〈NN , 0N , SN 〉 after all, in
contradiction to Enderton’s Theorem 41C. So the property of being isomorphic
to 〈NN , 0N , SN , Val2〉 is not definable by any formula in second-order logic. �

The latter example suggests that however strong one chooses one’s back-
ground language to be, there is always a way to construct examples of
mathematical properties that are invariant but fail to be definable in that
language. An important exception to this, at least for the case of properties
of elements in systems, is the limit case where definability is specified relative
to an infinitary language. Let L∞,∞ be a language of pure infinitary logic,
i.e., an extension of a first-order language that allows formulas with infinitely
long sequences of conjunctions, disjunctions, and quantifiers. There are a num-
ber of well-known mathematical results — discussed mainly in the debate on
invariance-criteria for logical notions — that show that the notions definable in
such a language in fact coincide with those meeting certain invariance condi-
tions.31 The central result in this debate, presented in [McGee, 1996], is based
on Tarski’s [1986] suggestion of characterizing logical notions in terms of invari-
ance under permutations of a given domain of objects. McGee’s theorem states,

30As a consequence of a result of Hintikka [1955], this observation generalizes to higher-
order logics beyond second-order logic. Consider the language L�n

PA := LPA ∪ {�n}, where
�n is intended to apply to exactly the codes of the validities of nth-order logic, for n a
natural number. Then the property of ‘being isomorphic to 〈N

N , 0N , SN ,Valn〉’, where
Valn is the set of codes of second-order validities, is not nth-order definable. The reason
is that by Hintikka’s result Valn is (computably) reducible to Val2. More specifically, for
every sentence ϕ ∈ L�n

PA we can find a sentence ψ ∈ L�2
PA such that ϕ is valid in nth-order

logic iff ψ is valid in second-order logic. Thus, if ‘being isomorphic to 〈N
N , 0N , SN ,Valn〉’

were definable in L�n

PA, then ‘being isomorphic to 〈N
N , 0N , SN ,Val2〉’ would be definable

in L�2
PA, which we have already observed is not the case. Montague [1965] has shown that

Hintikka’s result even extends to infinitary-order languages, and thus our observation also
applies there.

31See, in particular, [McGee, 1996; Bonnay, 2008; Bonnay and Engström, 2015].
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roughly, that a logical operation is invariant under all permutations of a given
domain if and only it is definable in L∞,∞. Note that this result is more general
than the invariance and definability conditions discussed in the present paper.
Invariance in the context of logical operations means invariance under all per-
mutations of a given domain, not invariance under permutations that preserve
some additional (mathematical) structure. Similarly, definability means defin-
ability in a pure logical language without non-logical constants for McGee. In
contrast, our focus in the present context is on mathematical properties that
are definable in languages with a non-empty signature.

That said, one can easily present a relativized version of McGee’s theorem
that connects definability in a mathematical language with invariance under the
automorphisms of a given model of that language. Let L∞,∞,T be an infinitary
language with a signature of mathematical type T and let M be an interpreta-
tion of it. In order to keep the following discussion simple, we assume here that
M is a purely relational system of the form 〈D, R1, . . . , Rn〉 with R1, . . . , Rn

first-order relations (of a given arity) on an infinite domain D.

Observation 3. For all systems M of type T, the extension of a property P in
M is invariant under all automorphisms of M; in symbols, P ∈ Inv(Aut(M)),
iff the extension of P in M is definable in L∞,∞,T.32

Proof. (⇐) Assume that the extension of P in M is definable by a formula
ϕ(x) ∈ L∞,∞,T, i.e., {d ∈ D | PM(d)} = {d ∈ D | M � ϕ(d)}. Let f be an
automorphism of M. By definition, for any RM (of arity n) in M, we have:
(d1, . . . , dn) ∈ RM ⇔ (f(d1), . . . , f(dn)) ∈ RM. One can show by straightfor-
ward induction on the complexity of formulas that M |= ϕ(d) iff M |= ϕ(f(d)).
Hence, PM(d) iff PM(f(d)), and thus P ∈ Inv(Aut(M)).

(⇒) Let P ∈ Inv(Aut(M)). We construct a sentence ϕ ∈ L∞,∞,T that
defines it. Take an enumeration I → D of the elements in D, and pick a set of
variables V of cardinality |D| enumerated by I → V. Let J = {j ∈ I | P(dj)}
be the set of indices in I that enumerate the members of the extension of P
in M. Next, for every n-ary relation RM and every K ⊆ I with |K| = n,

let δRM
K be R(xk1 , . . . , xkn

) if (dk1 , . . . , dkn
) ∈ RM and ¬R(xk1 , . . . , xkn

) if
(dk1 , . . . , dkn

) �∈ RM. Then the description ΔRM of RM in L∞,∞,T is the
conjunction:

ΔRM =
∧

K⊆I

δRM
K .

Now, we can let ϕ be:

(∃xi)i∈I(
∧

i,j∈I,i�=j

(xi �= xj) ∧ ∀y
∨

i∈I

(y = xi) ∧
∧

R∈R
ΔRM ∧

∨

j∈J

x = xj).

32A version of this result with second-order relations is presented in [Bonnay and
Engström, 2015]. Our proof of this result (for first-order relations) is based on the proof
in [Rogers, 1967].
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It remains to show that ϕ defines the extension of P in M, i.e., P(d) iff
M |= ϕ(d):

From left to right, let d be in the extension of P in M. Then d = dj , for
some j ∈ J . Now consider any assignment σ in M. Then simply pick some
assignment σ′, such that σ′(xi) = di, which will be a V-variant of σ. Then the
formula:

∧

i,j∈I,i�=j

(xi �= xj) ∧ ∀y
∨

i∈I

(y = xi) ∧
∧

R∈R
ΔRM ∧

∨

j∈J

d = xj (∗)

is clearly satisfied relative to σ′. Hence ϕ is satisfied relative to σ, which is what
we needed to show.

From right to left, let σ be an assignment such that ϕ(d) is satisfied in
M relative to σ. Hence there is a V-variant σ′ of σ, such that (∗) is satisfied
relative to σ′. Now consider the values σ′(xi) ∈ D of the variables xi ∈ V for
i ∈ I. Since σ′ satisfies the first and second conjuncts of (∗), we know that
D = {σ′(xi) | i ∈ I}. Thus, we can find a permutation f : D → D such that
f(σ′(xi)) = di for i ∈ I. Now note that since σ′ satisfies the third conjunct of
(∗), f ◦ σ′ is an automorphism of M (simply inspect the definition of δRM

K ).
Finally, since σ′ satisfies the fourth conjunct of (∗), we know that d = σ′(xj)
for some j ∈ J . Then for this j ∈ J f(σ′(xj)) = d is in the extension of P in M.
But since f ◦ σ′ is an automorphism and P is invariant under automorphisms
by assumption, this means that d is in the extension of P in M, which is what
we needed to show. �

This result shows that if a sufficiently strong infinitary language is adopted,
invariant properties always turn out to be definable. Notice, however, that the
invariance condition used here, namely invariance under automorphisms of a
given system, has been rejected by us as a proper way to explicate the notion of
structural properties. Thus, as it stands, Observation 3 is not directly relevant
to our present investigation.

Nevertheless, there exists an interesting generalization of McGee’s theorem
that turns out to be applicable to the present discussion. The so-called Tarski-
Sher thesis, also formulated in the debate on the nature of logical constants,
states that an operation is logical if and only if it is invariant under bijections
across domains. Thus, in contrast to Tarski’s original thesis, logicality is defined
here not in terms of invariance relative to a given domain, but in terms of
invariance across domains. Given this approach, McGee [1996] has formulated
an interesting corollary of his result about logical notions (understood now as
operations across domains) that are invariant under bijections. The theorem
states that an operation P is invariant under all bijections between domains
iff for each cardinal κ �= 0 there is a formula ϕκ ∈ L∞,∞ which describes the
action of P on domains of cardinality κ.

Applied to the present discussion of mathematical properties, this result can
be easily transformed into the following relativized result. Let P be a property
of elements in systems of mathematical type T and let language L∞,∞,T be
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specified as above. Let us say that the extension of P is invariant under isomor-
phisms of T-systems iff for all T-systems S, T , all isomorphisms λ : S → T ,
and all elements d ∈ DS , PS(d) ⇒ PT (λ(d)). We can then show the following:

Observation 4. The extension of P is invariant under isomorphisms of T-
systems iff for each equivalence class κ = [M]	 of isomorphic T-systems there
is a formula ϕκ ∈ L∞,∞,T which defines the extensions of P in all systems
M ∈ κ.

Proof. (⇐) Assume that the extension of P is definable in all systems in all
κ = [M]	 by formula ϕκ(x). Let S, T be two T-systems. If they are not
isomorphic, then the claim trivially holds; so assume without loss of generality
that S 	 T and λ : S → T is an isomorphism between the two. Since the
two systems are isomorphic, we know that [S]	 = [T ]	, and so the extension
of P in both systems is defined by the same formula ϕ[S]� . It then follows by
a simple inductive argument on the complexity of ϕ[S]� that for all d ∈ DS ,

PS(d) ⇒ PT (λ(d)), since {d ∈ DS | PS(d)} = {d ∈ DS | S � ϕ[S]�(d)} and
{d ∈ DT | PT (d)} = {x ∈ DT | T � ϕ[S]�(d)} by assumption.

(⇒) Assume that the extension of P is invariant under isomorphisms of T-
systems and let κ = [M]	 be some equivalence class of isomorphic T-systems.
Consider the formula

(∃xi)i∈I(
∧

i,j∈I,i�=j

(xi �= xj) ∧ ∀y
∨

i∈I

(y = xi) ∧
∧

R∈R
ΔRM ∧

∨

j∈J

x = xj)

from the proof of Observation 3 now defined for the representative M of κ. We
can take this formula to be ϕκ. To establish this, we need to show that in all
N ∈ κ, PN (d) iff N � ϕκ(d). The proof of this fact goes along the same lines
as the proof of Observation 3.

For the left-to-right direction, assume that PN (d) and let λ : N → M be an
isomorphism. Since P is invariant under isomorphisms of T-systems, this means
that PM(λ(d)) and thus λ(d) = dj for some j ∈ J . By the same argument
as in the proof of Observation 3, we get that M � ϕκ(λ(d)). But since λ is
an isomorphism, it follows by the isomorphism lemma of model theory that
N � ϕκ(d), as desired.

For the right-to-left direction, assume that N � ϕκ(d). Hence, again by the
isomorphism lemma, we get that M � ϕκ(λ(d)) and by the same argument as
in the proof of Observation 3 that PM(λ(d)). But since P is assumed to be
invariant under isomorphisms of T-systems, we get that PN (d) as desired. �

This adaptation of McGee’s second theorem shows that the local extension of
a property is always definable if the property is invariant under isomorphisms.
More generally, these results indicate that the invariance-based and definability-
based explications of structural properties tend to converge if one increases the
logical strength of the language in use. Moreover, they determine the same class
of properties of a given mathematical type if we choose an infinitary language
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as our mathematical language. Leaving aside such limit cases, however, the
examples presented above show that the equivalence claims (α) and (α∗) are
not generally true. In particular, it is not the case that all invariant properties
of mathematical objects are also definable in the languages in which these
objects are usually described. It follows that the two explications suggested
here do not determine the same pre-theoretical notion of structural properties.
Where does this leave us in our philosophical assessment of the paper’s main
question?

More generally, two different philosophical morals can be drawn from the
above observations. The first one is to uphold the view that there exists a
unique pre-theoretical notion of structural properties that can be captured
formally by one of the two accounts presented above. What needs to be con-
sidered then is which one of the two explications is more adequate or, in
Carnap’s terminology, which one bears more similarity to the pre-theoretic
explicandum. The problem this approach faces is that neither of the two expli-
cations fully captures our informal understanding of the notion. Specifically,
the invariance account tends to overgenerate, that is, it carves out more prop-
erties as structural than we would do so intuitively. In contrast, the definability
account (specified relative to a particular language) tends to undergenerate:
It fails to specify properties as structural that we would intuitively charac-
terize in this way. Starting with the first problem, we can consider two types
of properties that qualify as structural according to the invariance-based def-
inition, but that do not plausibly qualify as structural pre-theoretically. We
will dub them propositional and parasitic properties. Roughly, a propositional
property is a property such that there is a proposition that, for everything,
having the property is equivalent to the proposition’s being true, i.e., Prop(P)
iff ∃p∀x(P(x) ↔ p).

Propositional properties are problematic for the invariance-based explica-
tion. Since for every proposition p it is a logical truth that p → p, it follows
immediately that if P is a propositional property, then P is invariant under
every equivalence relation, i.e., about every subject matter. Hence, in par-
ticular, any propositional property counts as structural under Explication 1.
But it clearly seems unnatural to take all such properties as structural given
that they express no information about the structural composition of partic-
ular objects or their relations to other objects in a system. To illustrate this
point, consider the propositional property of groups such that a group of order
two exists. By the previous reasoning this property is a structural property of
groups. But pre-theoretically we should only say of groups of order two that
they have the property of being such that a group of order two exists in virtue
of their internal structure and not the structure of something else. Hence the
problem.

In turn, we call a property ‘parasitic’ if its formulation is based on the isomor-
phism relation for a given mathematical type T. It turns out that no matter how
we define IsoT(x, y), the property λx(∃y¬IsoT(x, y)) is always trivially invari-
ant under the isomorphisms in T. However, pre-theoretically λx(∃y¬IsoT(x, y))
should not count as a structural property of the Ts as it says that there is
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something with a different structure and a system has that property not in
virtue of its own intrinsic structure but in virtue of this external fact. Para-
sitic and propositional properties of this sort can be viewed as philosophical
counterexamples against the view that the invariance-based explications fully
capture our pre-theoretical understanding of structural properties. What is typ-
ical of these counterexamples is that the properties are invariant, however, not
in virtue of the internal structural composition of the systems they hold of.
The properties in question have as their extension either the full type T or the
empty set ∅. Thus, statements referring to them are non-informative about the
structure of the objects in question.

Turning to the undergeneration problem, it was already shown above that
the definability account fails to provide an intuitively satisfying demarcation
between structural and nonstructural properties. This has to do with the fact
that the specification of structural properties based on Explications 3 and 4 is
strongly dependent on the choice of a particular logical background language.
In particular, a property may fail to be structural according to the definability
approach purely because of the limitations of the logical resources of the formal
language in use. Depending on the expressive strength of a particular language,
some intuitively structural properties can turn out to be indefinable: ‘being iso-
morphic to N = 〈NN , 0N , SN 〉’ was a case in point here for first-order languages
of arithmetic. This language relativity makes it difficult to consider Explica-
tions 3 and 4 as the most adequate ways to formalize structural properties in
mathematics.33

The alternative and in our view more promising approach is to take a Car-
napian or tolerant view on this matter. This is to embrace the fact that there
are different ways to formalize our informal understanding of the notion. In
contrast to the above view, the invariance and the definability accounts should
thus be seen as two equally legitimate ways to make precise what we mean by
structural properties of mathematical objects in informal discourse. Moreover,
there are, as we saw, different accounts of definable properties corresponding
to the spectrum of possible logical background languages. The choice of one
formalization over the other should thus be based on purely practical con-
siderations in a particular theoretical context and not on a general ideal of
correctness or truth. For instance, for certain mathematical or foundational
questions, the invariance-based approach seems preferable because it provides
us with a very comprehensive account of structural properties. In other con-
texts, the definability-based approach might seem more useful, in particular in
cases where one is looking for a more tractable or constructive criterion for
structurality in mathematics.

33A related form of language relativity has been discussed in debates on mathematical
structuralism. See, in particular, Resnik [1997] on this point. He describes in detail the
‘structural relativity’ underlying his non-eliminative theory of patterns or structures there.
This is the fact that ‘the structures we can discern and describe are a function of the
background devices we have available for depicting structures’ [1997, p. 250].
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6. CONCLUSION
The paper presented several explications of the notion of structural properties
of mathematical systems as well as of the elements of such systems. Accord-
ing to the invariance-based approach, properties are structural if they remain
invariant under all isomorphic transformations. According to the definability-
based approach, structural properties are those definable in the language of
a given mathematical theory. It was shown that the two ways of explicat-
ing structural properties usually do not determine the same pre-theoretical
notion.

In what sense are the results given here relevant for present discussions in
philosophy of mathematics and for mathematical structuralism in particular?
As mentioned in the introduction, the aim in the paper was not to argue for
a particular version of mathematical structuralism (such as ‘ante rem’ or ‘uni-
versal’ structuralism). Rather, it was to give a general logical analysis of the
notion of structural properties that allows one to see how the notion could
be understood (in a precise sense) in different philosophical debates. Such
debates concern, for instance, the ontological dependence between places and
pure structures in which they occur [Linnebo, 2008], the identity of structurally
indiscernible places [Leitgeb and Ladyman, 2008; Keränen, 2001; Shapiro, 2008]
in non-eliminative structuralism, or the formulation of consistent ‘structural’
abstraction principles [Linnebo and Pettigrew, 2014]. In each of these special-
ized discussions, structural properties play a central role. We hope that the
present attempt to precisify the notion in terms of invariance and definability
conditions will be useful for future work on these topics.
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