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ABSTRACT
Motivation: What constitutes a baseline level of success
for protein fold recognition methods? As fold recognition
benchmarks are often presented without any thought to
the results that might be expected from a purely random
set of predictions, an analysis of fold recognition baselines
is long overdue. Given varying amounts of basic infor-
mation about a protein—ranging from the length of the
sequence to a knowledge of its secondary structure—to
what extent can the fold be determined by intelligent
guesswork? Can simple methods that make use of sec-
ondary structure information assign folds more accurately
than purely random methods and could these methods be
used to construct viable hierarchical classifications?
Experiments performed: A number of rapid automatic
methods which score similarities between protein do-
mains were devised and tested. These methods ranged
from those that incorporated no secondary structure
information, such as measuring absolute differences in
sequence lengths, to more complex alignments of sec-
ondary structure elements. Each method was assessed
for accuracy by comparison with the Class Architecture
Topology Homology (CATH) classification. Methods were
rated against both a random baseline fold assignment
method as a lower control and FSSP as an upper control.
Similarity trees were constructed in order to evaluate the
accuracy of optimum methods at producing a classification
of structure.
Results: Using a rigorous comparison of methods with
CATH, the random fold assignment method set a lower
baseline of 11% true positives allowing for 3% false
positives and FSSP set an upper benchmark of 47% true
positives at 3% false positives. The optimum secondary
structure alignment method used here achieved 27% true
positives at 3% false positives. Using a less rigorous
Critical Assessment of Structure Prediction (CASP)-like
sensitivity measurement the random assignment achieved
6%, FSSP—59% and the optimum secondary structure
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alignment method—32%. Similarity trees produced by the
optimum method illustrate that these methods cannot
be used alone to produce a viable protein structural
classification system.
Conclusions: Simple methods that use perfect secondary
structure information to assign folds cannot produce an
accurate protein taxonomy, however they do provide
useful baselines for fold recognition. In terms of a typical
CASP assessment our results suggest that approximately
6% of targets with folds in the databases could be
assigned correctly by randomly guessing, and as many
as 32% could be recognised by trivial secondary structure
comparison methods, given knowledge of their correct
secondary structures.
Contact: David.Jones@brunel.ac.uk

INTRODUCTION
As the gap widens between the number of known
sequences and the number of experimentally deter-
mined protein structures, the pressure has never been
greater to develop rapid, fully automated fold prediction
methods. Currently fold recognition methods such as
THREADER 2 (Jones et al., 1992, 1999) ProCeryon
(Domingues et al., 1999) and the method developed by
Panchenko et al. (1999) for example have limited accu-
racy, and often interpretation of results is not automated.
Methods such as 3D-PSSM (Kelley et al., 2000), SAM-
T98 (Karplus et al., 1999), GenTHREADER (Jones,
1999b) and others tested at Critical Assessment of Fully
Automated Structure Prediction CAFASP-1 (Fischer et
al., 1999) are fast fold prediction methods designed to
automatically screen genomic databases. However, given
that these methods are intended to be used automatically,
it is essential that they are evaluated properly. In order
to test the limitations of these methods, benchmarking
schemes have been developed (e.g. Fischer et al., 1996;
Domingues et al., 2000), however, a proper evaluation
of the random baselines for fold recognition has not yet
been carried out. This is in contrast with the secondary

c© Oxford University Press 2001 63



L.J.McGuffin et al.

structure prediction field, where the random prediction
baselines are easily calculated and widely understood.

Given recent improvements in protein secondary struc-
ture prediction methods, some groups have attempted to
improve the speed of fold prediction by developing meth-
ods that incorporate predicted secondary structure infor-
mation (Russell et al., 1996; Rice and Eisenberg, 1997;
Di Francesco et al., 1999). It is thought that these meth-
ods may offer an advantage over methods that rely on pri-
mary sequence alone (Di Francesco et al., 1999). How-
ever, methods that recognise fold directly from secondary
structure prediction have not as yet proved to be superior
to the best threading methods (Murzin, 1999).

Contrary to the argument that predicted secondary
structure offers no real advantage to fold prediction,
some groups have put forward the conjecture that protein
secondary structure is in fact the major factor determin-
ing three-dimensional fold. Based on this conjecture
Przytycka et al. (1999) have attempted to develop a
protein taxonomy by constructing similarity trees based
on simple pairwise alignments of secondary structure
elements within a set of 183 proteins of known structure.
From their results they deduce that pairwise alignments
of secondary structure elements may be an effective basis
for protein classification.

In this paper we evaluate a number of trivial fold
recognition methods ranging from random fold assign-
ment, to methods which consider the order and lengths
of secondary structure prediction elements. The first
problem tackled in this paper is to establish a set of
baselines for fold recognition methods to help in the
future to identify automated methods which are capable
of producing results well above the random level. The
other question addressed here is to ask whether simple
methods that make use of secondary structure information
can assign folds more reliably than other random methods
and further how valuable these methods might be in the
rapid construction of useful hierarchical classifications.

METHODS
A number of automated methods ranging in complexity
and speed were used to score pairwise similarities between
protein domains. Pairs of domains with high similarity
scores were taken to indicate proteins of similar fold. Each
method was assessed by comparing it with the Class Ar-
chitecture Topology Homology (CATH) protein structural
classification database assignment of fold (Orengo et al.,
1997, http://www.biochem.ucl.ac.uk/bsm/cath/). For each
method true positives were taken as pairs of domains with
high similarity scores found to have the same topology ac-
cording to CATH. Conversely, false positives were taken
as pairs of domains with high similarity scores found to
have different topologies according to CATH. The per-

centage of true positives—taken at a cut-off of 3% false
positives (see Section Results)—for each method were
compared. A less rigorous measurement of the sensitiv-
ity of each method—the percentage of correctly assigned
top scoring folds—was also made.

SIMILARITY SCORING BETWEEN PROTEIN
DOMAINS
A representative set of 1087 protein domains with
resolutions �2.5 Å was selected from the CATH
list of sequence family representatives (S-reps, v1.6)
(ftp://ftp.biochem.ucl.ac.uk/pub/cathdata/v1.6/Sreps).

Secondary structure was assigned for each domain using
both the DSSP method of Kabsch and Sander (1983) and
a backbone dihedral angle method similar to Przytycka
et al. (1999). Helical residues were taken as those with
backbone dihedral angles (−80 ◦ � φ � −40 ◦, −65 ◦ �
ϕ � −5 ◦) or (−110 ◦ � φ � −40 ◦, −74 ◦ � ϕ �
−0 ◦) (N.B. Przytycka et al. (1999) allow only isolated
residues in the range (−110 ◦ � φ � −40 ◦, −74 ◦ � ϕ �
−0 ◦), however for our data set we have found that it
makes no significant changes to our results when we allow
all residues in this range). Strand residues were taken as
those with backbone dihedral angles (−180 ◦ � φ �
−60 ◦, 60 ◦ � ϕ � 180 ◦) or (−180 ◦ � φ � −60 ◦,
−180 ◦ � ϕ � −140 ◦).

For each domain a file was generated containing
4 strings: (1) CATH domain name (four-character
PDB code followed by chain identifier and domain
number); (2) DSSP amino acid sequence; (3) DSSP
assigned secondary structure (Kabsch and Sander, 1983);
(4) Backbone dihedral angle assigned secondary structure
(Przytycka et al., 1999). A clarifying example follows:

>1atx00

GAAaLbKSDGPNTRGNSMSGTIWVFGcPSGWNNbEGRAIIGYacKQ

EEE TTS S TTSSEEEEEESS TT EEE SSSSSEEEE

CEEEEEHHECEEEECCCECEEEECCCEECCEECEEECCEECEEEEC

These files are available as zipped archives from http:
//insulin.brunel.ac.uk/∼mcguffin/baseline.html.

The strings were interpreted so that primary sequence
lowercase letters were taken to be cysteine residues, a
strand would equal three or more consecutive Es and a
helix would equal five or more consecutive Hs. All other
secondary structure elements were taken as coil.

Similarity scores were calculated between pairs of
domains by the 11 methods listed in Table 2 (see Section
Results). (N.B. Secondary structure has been interpreted
from the 4th string unless otherwise stated. Methods
are roughly numbered by increasing complexity and
decreasing speed. A detailed explanation of each method
used is available at http://insulin.brunel.ac.uk/∼mcguffin/
baseline.html.)
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Table 1. Cut-offs used to assign class to protein domains from secondary
structure composition

Assigned class Class number Percentage helix Percentage strand
(CATH) residues residues

Mainly alpha 1 �24 <20
Mainly beta 2 �15 >20
Alpha/beta 3 >15 �20

Optimisation of similarity scoring methods using
class prediction as a pre-filter
Class was used as a filter to improve the true positive rate
of the methods. Two domains were only considered to be
similar if they had identical predicted class.

For each domain class was assigned purely from
secondary structure composition using a similar method
to that of Michie et al. (1996). Percentages of residues
constituting helices and strands were calculated for
each domain within the representative set. The CATH
class assignment for each domain was then taken and
plots (Figures 1a–c) were produced. The scatter plot of
secondary structure composition (Figure 1a) was used
to set minimum percentage alpha composition required
for alpha class assignment and minimum percentage beta
composition required for beta class assignment.

Alpha/beta domains were seen to overlap the composi-
tion regions of both alpha and beta domains. Alpha and al-
pha/beta domain regions were separated by calculating the
percentage beta cut-off that would allow the majority of
domains to lie in their correct regions. Similarly, beta and
alpha/beta domain regions were separated by calculating
the percentage alpha cut-off that would allow the majority
of domains to lie in their correct regions. The points on the
graphs where the lines cross in Figures 1b and c indicate
the optimum alpha and beta cut-offs. The cut-offs used to
assign class are tabulated in Table 1.

Percentage primary identity filter
Percentage primary sequence identity was calculated
between all pairs of domains using method 11 (alignment
of primary sequence). The representative set was screened
for redundant pairs with sequence identities >25% prior
to comparison of methods with CATH.

A RIGOROUS COMPARISON OF SIMILARITY
SCORING METHODS WITH CATH
In this first comparison we were concerned with measur-
ing the percentage of true positives at a fixed low false
positive percentage.

Each similarity scoring method produced a list of
590 241 ( 1

2 n(n − 1), where n = 1087) pairs of domains

Secondary Structure Composition of Domains within
Representative Set
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Fig. 1. (a) Secondary structure composition of domains within
representative set. Class assignment for each domain has been taken
from CATH. Separation lines indicate cut-offs used to assign class
as shown in (b) and (c). (b) Calculation of percentage beta cut-off
separating alpha domains from alpha/beta domains. (c) Calculation
of percentage alpha cut-off separating beta domains from alpha/beta
domains.

with similarity scores. These lists were sorted by de-
scending similarity score and were read line by line. The
CATH topology codes (CAT codes) for each domain
within a pair were compared. If the CAT codes were seen
to be dissimilar then the number of false positives was
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Table 2. Results of assessment of similarity scoring methods by rigorous comparison with CATH. Column (a) shows percentage true positives at a false
positive rate of 3% and similarity score for methods 1–11 without using predicted class as a pre-filter. Column (b) shows percentage true positives at a false
positive rate of 3% and similarity score for methods 1–11 with predicted class as a pre-filter

Method Similarity score at Percentage true positives
Method title number 3% false positives at 3% false positives

(a) (b) (a) (b) (a) (b)

Alignment of primary sequence 11 11 0.14 0.12 3.56 8.52
Absolute difference in length 1 1 0.97 0.93 6.25 13.28
Absolute difference in number of secondary structure elements 2 2 0.93 0.92 14.49 16.43
Simple alignment of secondary structure elements 3 3 0.74 0.7 12.25 17.70
Alignment of secondary structure elements with absolute difference

in length as scoring scheme 9 9 0.47 0.45 15.68 19.89
Alignment of full length secondary structure strings 10 10 0.64 0.63 20.01 21.06
Alignment of secondary structure elements with gap penalty 7 7 0.59 0.58 20.53 21.95
Alignment of secondary structure elements with gap penalty for

long elements 8 8 0.66 0.66 25.33 25.91
Alignment of secondary structure elements (Przytycka et al., 1999) 4 4 0.73 0.72 25.91 26.39
Alignment of secondary structure elements using DSSP as

secondary structure assignment 6 6 0.72 0.71 25.86 26.45
Alignment of secondary structure elements without additional

scoring 5 5 0.68 0.67 26.92 27.18

incremented. Conversely, if a pair of domains was seen
to have equal CAT codes the number of true positives
was incremented. Thus, the percentage of false positives
was taken as the number of pairs of dissimilar CAT codes
at the top of the list divided by total number of pairs
with dissimilar CAT codes within the whole list. The
percentage of true positives was taken as the number of
matching CAT codes at the top of the list divided by
the total number of matches within the whole list. The
accuracy of methods was measured by comparing the
percentage of true positives when the percentage of false
positives reached 3% (see Section Results).

Lower control—random assignment of fold
compared to CATH
CAT codes were randomly assigned to each domain
without replacement, according to the frequency of each
CAT code within the representative set. The randomly
assigned folds were compared against the real CATH
assignments and the percentage true positives and false
positives were calculated. The random simulation was
carried out 100 times and the average true positive and
false positive percentages were recorded.

In order to test the validity of the random simulation,
formulae for the theoretical true positive and false positive
values were derived. True positives were calculated by
y/x and false positives by (x − y)/(1 − x), where x
equals the sum of squares of relative fold frequencies and
y equals the sum of cubes of relative fold frequencies.

Upper control—comparison of FSSP with SCOP
and CATH
Protein structural classification schemes are not in 100%
agreement as shown by a systematic comparison of
SCOP (Structural Classification of Proteins Murzin et
al., 1995), CATH and FSSP (Families of Structurally
Similar Proteins Holm and Sander, 1994) carried out
by Hadley and Jones (1999). In order to determine the
percentage of true positives that could be achieved by
an automated fold assignment method, given knowledge
of 3D structure, FSSP was compared against both CATH
and SCOP individually. This set a target or upper level of
accuracy for fold assignment methods.

FSSP files were downloaded from ftp://ftp.ebi.ac.
uk/pub/databases/fssp, the SCOP list from http://scop.
mrc-lmb.cam.ac.uk/scop/parse/dir.dom.scop.txt 1.48
and the CATH list from ftp://ftp.biochem.ucl.ac.uk/pub/
cathdata/v1.6/cath.list.

The FSSP classification scheme was treated essentially
as a similarity scoring method. A list of pairwise compar-
isons and FSSP Z -scores was compiled for proteins with
sequence identity �25%. The FSSP, SCOP and CATH
lists were then screened for shared single domains exist-
ing in all three databases.

FSSP fold assignments of shared single domains were
then compared against SCOP and CATH assignments
individually, in the same way as the similarity scoring
methods. In each case, the percentage of true positives at
3% false positives was taken as a measurement of accuracy
of FSSP (see Section Results).
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A LESS RIGOROUS CRITICAL ASSESSMENT
OF STRUCTURE PREDICTION-LIKE
COMPARISON OF SIMILARITY SCORING
METHODS WITH CATH
In this second comparison we were interested in assess-
ing the sensitivity of each method. In terms of a typical
Critical Assessment of Structure Prediction (CASP) as-
sessment, we may be simply concerned with measuring
the probability of a method correctly guessing each fold.
Sensitivity values—percentages of correctly assigned top
hits—were calculated as follows.

The data set was initially screened for domains with no
matching folds so that ‘novel folds’ were not included in
the sensitivity calculations. Each domain was assigned the
fold with the highest similarity score or top hit, however,
a homologous superfamily filter was imposed. Top hits
were only valid if the target domain and the top hit had
dissimilar CATH codes to the H -level. If two or more
hits were found to have the highest score a fold was
randomly chosen from them. In order to account for this
randomisation, the sensitivity calculation for each method
was carried out 100 times and the average value was taken.

Upper and lower controls
Sensitivity scores were calculated for the FSSP upper
control—with the homologous superfamily filter—as
above. A random proportional fold assignment—with the
homologous superfamily filter and with replacement—
was carried out for the lower control.

CALCULATION OF DISTANCE MATRICES AND
SIMILARITY TREE DRAWING
Distances matrices were calculated for domain pairs.
The distance between a pair was defined as one minus
their similarity score. Clustering was carried out by
inputting distance matrices into the program QCLUST
(by John Brzustowski). QCLUST is free to download
from ftp://www.biology.ualberta.ca/pub/jbrzusto/trees/.
NJPLOT (Perrière and Gouy, 1996) was used in order to
produce tree diagrams. NJPLOT is freely available from
ftp://pbil.univ-lyon1.fr/pub/mol phylogeny/njplot/.

RESULTS
Comparison of the percentage true positives
attained by similarity scoring methods
The experimental comparison of the random assignment
of fold with CATH, or lower control, set a threshold
level of 10.79% true positives and 2.88% false positives,
hence a cut-off of 3% false positives was set for all other
methods. These values are near the theoretical values of
10.99% true positives and 2.86% false positives.

The upper control comparison of FSSP with SCOP set
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Fig. 2. Percentage true positives at a false positive rate of 3% for
methods 1–11 with and without using class as a pre-filter. The
dashed horizontal line at 11% represents the threshold of accuracy
set by the lower control at 3% false positives.

a benchmark level of 61.14% true positives at a Z -score
of 6.1 and at a rate of 3% false positives. The upper control
comparison of FSSP with CATH set a benchmark level of
46.71% true positives at a Z -score of 5.8 and at a rate of
3% false positives.

In Figures 2 and 3 the solid and dashed horizontal
lines indicate the approximate true positive levels at 3%
false positives set by the upper controls and lower control
respectively.

Using percentage true positives at 3% false positives as
a measure of accuracy, the most accurate method applied
to our data set appears to be number 5—the alignment of
secondary structure elements without additional scoring.
In most cases, at a 3% false positive percentage, methods
that score the similarity of domains by the alignment of
secondary structure elements are in better agreement with
CATH than other methods. In method 6, using DSSP to
assign secondary structure as opposed to using backbone
dihedral angles does not appear to significantly affect the
overall true positive percentage (Table 2a and Figure 2).

Methods in Table 2b are sorted by increasing accuracy.
The order of accuracy of methods does not appear
to correspond to their relative speed or complexity as
indicated by the non-sequential ordering of the method
numbers.

Protein domain class assignment was predicted with
an accuracy of 85.2% (926/1087 domains predicted cor-
rectly) using the secondary structure composition method.
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The effect of using prediction of class as a pre-filtering
stage to all similarity scoring methods is illustrated in
Table 2b and Figure 2. There is a significant increase in
the mean population percentage of true positives at 3%
false positives across all similarity scoring methods at
the 5% significance level according to a paired samples
t-test. The increase in true positives is marked for domain
comparison methods that use little or no secondary
structure information. Methods that are more complex
and incorporate more secondary structure information do
not appear to benefit notably from the class pre-filter.

Figure 3 clearly illustrates the effect of using class as
a filter to method 1, the ‘absolute difference in length’
method. The relative accuracy of method 1—with and
without the class pre-filter—is compared to method 5—
the most accurate method—at increasing percentages of
false positives. At <10% false positives method 5 is
considerably more accurate than both method 1 alone and
method 1 with the class pre-filter. However when the false
positive rate is increased to �10%, the effect of the filter
becomes more distinct and the gap between method 1 with
the class pre-filter and method 5 becomes less extensive.
At �20% false positives method 1 with the class pre-
filter and method 5 exceed the targets or benchmarks set
by the upper controls at 3% false positives. At a rate of
�60% false positives the differences in accuracy between
methods start to fluctuate and become less apparent.
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Fig. 4. Sensitivity values (percentage correctly assigned top scoring
folds) for random fold assignment, methods 1–11 and FSSP.

Assessment of the sensitivity of similarity scoring
methods
The random lower control set a threshold sensitivity value
of 5.91% and the FSSP upper control set a benchmark
sensitivity value of 59.42%. The optimum alignment
of secondary structure elements—method 5—achieved a
sensitivity value of 31.78%, however this method does not
perform significantly better than other secondary structure
alignment methods. The order of sensitivity of similarity
scoring methods does not correlate with the speed or
simplicity of each method (Figure 4).

Similarity trees
Figure 5 shows similarity trees, which compare some of
the most common folds within each class. All similarity
trees were calculated from distance matrices produced
by method 5. Figure 5a shows a complete similarity tree
featuring all globin-like domains versus all casein kinase
domains. Due to the high number of entries of folds
featured in Figures 5b and c, for clarity only sub-trees that
are representative of the complete trees are shown.

In Figure 5a there is a distinct separation of globin-like
and casein kinase domain folds. Conversely, there are
many regions of the sub-tree for immunoglobulin-like
folds versus folds represented by thrombin, subunit H
which show no clear separation of folds (Figure 5b).
Figure 5c shows that there are isolated regions where
alpha–beta plaits are separated from Rossmann folds
although in some cases these folds are not clearly
differentiated.

A full similarity tree comparing all 1087 folds within
the representative set has been calculated and is available
to download as a PostScript file from http://insulin.brunel.
ac.uk/∼mcguffin/baseline.html. Although there are small
areas of this tree where similar folds are clustered the tree
is generally disordered.
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Fig. 5. Similarity trees for selected domains within the representative set. Folds of domains are indicated by CATH topology codes (CAT
codes). Branch lengths are proportional to the mean dissimilarity between clusters. (a) Globin-like versus casein kinase (CAT codes ‘1 10 490’
and ‘1 10 510’ respectively), complete tree shown. (b) Immunoglobulin-like versus Thrombin, subunit H (CAT codes ‘2 60 40’ and ‘2 40
10’ respectively), sub-tree shown. (c) Alpha–beta plaits versus Rossmann folds (CAT codes ‘3 30 70’ and ‘3 40 50’ respectively), sub-tree
shown.

DISCUSSION
In this paper we intended to answer the question ‘What are
the baselines for fold recognition?’ by evaluating a num-
ber of simple similarity scoring methods that use varying
amounts of structural information. One additional diffi-
culty turned out to be that the question can be answered
in different ways, depending on the way the methods are
evaluated. We assessed the validity of each method firstly
by stringently measuring of the percentage of true posi-
tives at a low percentage of false positives, and secondly
by a less stringent measurement of the percentage of cor-
rectly assigned folds as top hits (sensitivity), which is per-
haps the most frequently used evaluation method for fold
recognition methods. In addition we assess the suitabil-
ity of simple secondary structure alignments in classify-
ing folds by comparing them with random and simple fold
assignments and by the construction of similarity trees.

The reliability of benchmarks based on SCOP,
CATH or FSSP
For routine application of fold recognition methods for,
say, genome annotation, it is important that folds be
assigned with a low rate of false positives. For this reason
it is now common to benchmark methods on the entire set
of similarities found in a structure classification resource

such as CATH or SCOP. As we wished to compare results
to simple random fold selection (according to the observed
distribution of folds) the precise false positive rate had to
be fixed at 3% for each method to ensure the results were
comparable across the board.

In this paper, our ‘gold standard’ was taken as being the
CATH classification scheme. However, it is quite apparent
that fold assignment even based on known 3D structures is
an inexact science. One surprising result from the analysis
here, and which has also been investigated previously
in a different way (Hadley and Jones, 1999), is that the
agreement between the competing structure classification
systems is actually quite low. When evaluated at the
same 3% false positive rate as the ‘prediction’ methods,
the highest agreement was found to be between FSSP
and SCOP where a true positive rate of only 61% was
achieved. As we have discussed before (Hadley and Jones,
1999) this is mainly due to the differences of opinion
between the curators of these classification systems: the
SCOP team favouring a relatively subjective evolutionary
view of fold similarity and the FSSP team favouring
an entirely automated approach. In particular the very
common doubly-wound alpha/beta folds are hardest hit
in this comparison. In SCOP these ‘Rossmann-like fold’
proteins are split into different fold groups, but FSSP (and
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CATH) tends to group them together as being sufficiently
similar. Clearly there is no right answer, but the effect
of this uncertainty causes severe problems when fold
recognition methods are benchmarked. In our opinion, it
may be better to benchmark automatic fold recognition
methods on a consensus of structural classifications (i.e.
just on cases where SCOP, CATH and FSSP are in
complete or at least partial agreement). Such a consensus
can be obtained from the following web site: http://
globin.bio.warwick.ac.uk/∼hadley/db. It is fair to say
that it makes no sense to penalise a fold recognition
method for incorrectly assigning folds which cannot be
unambiguously assigned even given the two sets of 3D co-
ordinates.

Percentages of true positives at fixed percentages of
false positives
Despite the above concerns about the maximum achiev-
able success rates, these concerns are not so important
when a single benchmark is used simply to rank different
methods. In view of this we picked a single ‘gold standard’
(CATH) and stuck to it through the evaluations.

The optimum ‘baseline’ similarity scoring method
under these conditions is method 5, the alignment of
secondary structure elements without additional scoring.
This method achieved 26.92% true positives without the
class pre-filter and 27.18% true positives with the class
pre-filter. True positives were measured under stringent
conditions—false positives were kept below 3% and
percentage primary identity between domains was less
than 25%. The optimum methods are found to be pri-
marily adaptations of the method originally put forward
by Przytycka et al. (1999) although slight improvements
can be made by the addition of class pre-filters and by
disallowing division of helix and strand elements to align
with coil.

The addition of the class pre-filtering stage increases
the mean population percentage true positives at the 5%
significance level using a paired samples t-test, implying
that this filter is beneficial. The increase in true positives
is most striking for methods that do not rely on secondary
structure information such as the ‘absolute difference
in length’ (method 1) and the ‘alignment of primary
sequence’ (method 11). The more complex alignment
methods that use the most secondary structure information
may not benefit so much from the measurement of the
secondary structure composition by the class pre-filtering
stage, as a similar type of filter may already be inherent in
the methods (Figure 2 and Table 2).

When the percentage of true positives is measured less
stringently, differences between the more complex meth-
ods and the more simplistic methods become less con-
siderable. That is to say that when false positives rates
are fixed at 30%, the differences between the ‘alignment

of secondary structure elements without additional scor-
ing’ (method 5) and the ‘absolute difference in length’
(method 1) with the class pre-filter is negligible. In order to
reach the ‘FSSP versus CATH’ target of 46.71% true pos-
itives (at 3% false positives) and ‘FSSP versus SCOP’ tar-
get of 61.14% true positives (at 3% false positives), false
positives rates for these methods must increase to beyond
10%. At these higher levels of false positives faster sim-
pler methods such as method 1 with the class pre-filter
are seemingly no less accurate than slower more complex
methods such as method 5 (Figure 3).

Sensitivity of similarity scoring methods—average
percentage correctly assigned folds
Despite the obvious stringency of benchmarking across all
pairs of structures in a benchmark set, it is much more
common to evaluate fold recognition methods based on a
smaller benchmark of structurally similar pairs. A widely
known example of this is of course the international
CASP experiment (Moult et al., 1999) where truly blind
predictions are evaluated. The usual way in which CASP
prediction success is stated for fold recognition is simply
the percentage of folds correctly recognised. Generally
speaking, little attention in this case is paid to false
positive rates. When the false positive rates are ignored,
it is reasonable to simply take the top scoring fold as the
prediction, but in this case of course, every target protein
will be predicted, even when no correct answer exists in
the data bank of known folds. Despite this, however, such
a crude estimate of a methods sensitivity (percentage of
folds correctly recognised) is easy for non-specialists to
understand, and so it does remain a popular benchmarking
metric.

Evaluating the methods on the basis of how many cor-
rect folds are found as the best match also puts method 5
in first place with a success rate of 31.78% using our
data set, however this value clearly falls very short of the
benchmark of 59.42% set by FSSP. These results clearly
imply that simple alignment of secondary structure
elements cannot be considered a sensitive method for
classifying non-homologous folds. These results do sug-
gest, however, that given the perfect secondary structure
of a fold target these simple methods can achieve limited
success at recognising folds of distantly related protein
domains (Figure 4). Certainly an accurate knowledge
of the secondary structure of a protein (e.g. from NMR
chemical shift analysis) would provide a certain advantage
in the fold recognition process.

Differences between similarity trees
Although up until now we have only considered the
benchmarking of fold recognition methods, one issue that
has been raised in previous work (Przytycka et al., 1999)
is that simple similarity methods might be sufficient to
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produce a reasonable structural classification of proteins
in its own right. This idea, whilst attractive, must be
considered rather contrary to the popular belief that useful
fold ‘taxonomies’ can only be produced by detailed
analysis of the 3D structures.

The example similarity trees in Figure 5 illustrate that
folds with distinctly different secondary structures such as
globin-like folds and casein kinase folds can be cleanly
separated by simple methods (Figure 5a). The popular
belief seems to be wrong in this case. However, when
obvious differences in secondary structure become less
clear, such as the difference between immunoglobulin-like
folds and folds represented by thrombin, subunit H , the
methods do not distinguish between them as effectively
(Figure 5b). It would thus appear that the popular belief is
correct for this case.

To explain the difference of opinion, we can look more
closely at the two cases. According to CATH, globin-
like folds have on average 8 helices and 153 residues and
casein kinase folds have on average 12 helices, 4 strands,
and 204 residues. At a glance it is apparent that based
on differences in number and type of secondary structure
elements and sequence length these folds can be easily
separated. Conversely, immunoglobulin-like folds have on
average 1 helix, 8 strands and 109 residues, similar to
folds represented by thrombin, subunit H which have on
average 2 helices, 7 strands and 101 residues. Clearly
in this case, we might expect that a tree produced by
a simplistic comparison of secondary structure would
be disordered, and indeed this is the case (Figure 5b).
Similar problems occur with the separation of alpha–
beta plaits from Rossmann folds as shown in Figure 5c.
Repeating ‘helix–strand–helix-strand’ motifs common to
both folds and similarity in relative composition of
secondary structure may be responsible for disorder in
this case. The isolated areas that show separation may be
accounted for by differences in average sequence length
and distinctive strand–helix–strand–strand–helix–strand’
motifs that are common in alpha-beta plaits.

Clearly from these examples it is apparent that simple
secondary structure alignments alone can not be relied
upon to construct a viable taxonomy of protein folds.
Although isolated sub-trees can show separation of folds,
the similarity tree for all folds is generally disordered.
It must be re-emphasised, however, that as we have
shown, surprisingly, even established automated and
semi-automated fold classifications systems (FSSP and
CATH respectively) can disagree considerably when
making pairwise comparisons on single domains of
known structure. Again, these results generally agree with
the findings of Hadley and Jones (1999).

The basis on which the taxonomy produced by Przyty-
cka et al. (1999) is constructed begins to break down when
obvious differences in secondary structure between folds

become subtler. The main differences that account for the
successful cases seems to be simple such as differences
in secondary structure composition, sequence length, and
the lengths, type and number of secondary structure ele-
ments. These may be useful distinguishing characteristics
at some level but are not sufficient alone to identify 3D
structure in a majority of cases. Przytycka et al. (1999)
anticipate that their method will improve with the incor-
poration of information on super secondary structural mo-
tifs, and this is likely to be true, but this moves the simple
method much closer to a more traditional structure com-
parison approach.

WHAT ARE THE BASELINES FOR FOLD
RECOGNITION?
So what conclusions can be reached as to the baselines
for fold recognition? Clearly the simplest answer to this
question is to consider the case where folds are randomly
assigned in proportion to fold frequencies within current
databases. Our results indicate that by randomly assigning
folds in proportion to their frequency within our data
set, a level of ∼11% true positives and ∼3% false
positives is attained. The upper limit of simple secondary
structure alignment methods tested here is ∼27% allowing
3% false positives. These true positive limits for simple
methods can be treated as baseline levels over which
fold recognition techniques must exceed. In terms of a
typical CASP assessment (Moult et al., 1999)—where
the sensitivity of a method is the prime consideration—
our results suggest that on average 6% of targets with
folds in the databases would be correctly assigned if
folds were assigned randomly and that as many as
32% could be assigned correctly given perfect secondary
structures of the targets. Perhaps this rather quantifies
the so-called ‘Jones rule’ discussed by Murzin (1999).
Assuming that the proteins considered at CASP are
representative, it is reasonable to say that groups making
‘bets’ according to their knowledge of fold distributions,
and the secondary structure and lengths of the proteins
concerned do have a reasonable chance of success in
CASP-like evaluations. However, this does ignore the
thorny problem of generating an accurate sequence to
structure alignment at the end of the day.

Although the simple similarity scoring methods tested
here are obviously limited in reliability, it is still possible
that as they are comparatively fast, they might still have
some value as an automatic pre-filtering stage to enhance
threading methods. For example they could be used either
in combination with or as a replacement for the secondary
structure ‘masking’ stage in THREADER 2 (Jones et al.,
1999). In addition they may help to increase the sensitivity
of automatic genome annotation methods. One final aspect
which we are currently evaluating is the sensitivity of
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these methods to the use of predicted secondary structure.
Methods for randomly simulating prediction errors are
currently being developed in order to assess these effects.
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