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Abstract 

 

Understanding potential impacts of climate change is complicated by spatially mismatched land 

representations between gridded datasets and models, and land use models with larger regions defined 

by geopolitical and/or biophysical criteria. Here we quantify the sensitivity of Global Change 

Assessment Model (GCAM) outputs to the delineation of Agro-Ecological Zones (AEZs), which are 

normally based on historical (1961-1990) climate. We reconstruct GCAM’s land regions using projected 

(2071-2100) climate, and find large differences in estimated future land use that correspond with 

differences in agricultural commodity prices and production volumes. Importantly, historically 

delineated AEZs experience spatially heterogeneous climate impacts over time, and do not necessarily 

provide more homogenous initial land productivity than projected AEZs. We conclude that non-climatic 

criteria for land use region delineation are likely preferable for modeling land use change in the context 

of climate change, and that uncertainty associated with land delineation needs to be quantified. 
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Highlights 

 
• Land resource inputs and projections are sensitive to land use region boundaries. 
• Developed a system to generate land data for given Agro-Ecological Zones (AEZs). 
• AEZs based on projected climate differ considerably from historical AEZs. 
• Climate within historical AEZs becomes spatially heterogeneous with climate change. 
• Non-climatic land use region boundaries may reduce model error, compared to AEZs. 
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1. Introduction 

 Global climate projections rely on a scenario-based process by which Integrated Assessment 

Models (IAMs) generate estimates of anthropogenic emissions and spatially explicit land use change for 

driving global climate and Earth System Models (ESMs) (Moss et al., 2010; Taylor et al., 2012, van 

Vuuren et al., 2014). These projections are used in turn to estimate impacts of global change on a wide 

variety of human and environmental systems. Climate change in the upcoming century is expected to 

substantially change conditions at local and regional scales, but current assessments indicate a high 

degree of variability in impact direction and magnitude across models, regions, and sectors (IPCC, 

2014a). Some of this variability may be due to uncertainty in regional climate projections. For example, 

recent studies have highlighted large spreads in regional multi-model climate ensemble projections, at 

both coarse and fine resolutions (e.g., Mearns et al., 2013; Qiao et al., 2014, van der Linden and 

Mitchell, 2009). While these differences are often attributed to model differences in general, 

inappropriate resolution or spatial aggregation in models can cause significant biases in outputs (Di 

Vittorio and Miller, 2014; Ogle et al., 2006; Riley et al., 2009). 

 Unfortunately, uncertainties associated with a given spatial delineation of the earth are not 

usually accounted for in modeling studies because models are often constructed at only a single 

resolution or level of aggregation, or because it is too computationally expensive to rerun simulations 

using different spatial configurations. Errors associated with a given spatial delineation are compounded 

when different models interact, as is the case in scenario-based global climate projections. Where IAMs 

often delineate the earth based on geopolitical and biophysical factors, ESMs generally use a regular 

grid at coarse resolution, and impact models usually have fine resolution with either regular or irregular 

grids. Not only are the spatial units different between models, but the types and definitions of land use 

and cover are different as well. These fundamental discrepancies and associated inconsistencies in the 

IAM-ESM-impact chain can render projections of local and regional climate change and impacts 

invalid, and in some cases cause ESMs to simulate an entirely different scenario from the one prescribed 

by the IAM (Di Vittorio et al., 2014). 

 Four IAMs, each with a different spatial delineation of the land surface, generated the four 

Representative Concentration Pathway (RCP) scenarios (van Vuuren et al., 2011a) used by ESMs in 

phase 5 of the Coupled Model Intercomparison Project (CMIP5) (Taylor et al., 2012). RCP class IAMs 

are economic models that project detailed breakdowns of the production and use of energy and land 

resources, balancing supplies and demands of modeled commodities through market mechanisms. A key 

feature of these IAMs is that they include a biogeophysical component that estimates climate change 

associated with projected energy and land resource utilization. This interaction between the human and 
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environmental components is critical for generating the RCP scenarios, which are based on specific 

climate targets (van Vuuren et al., 2011a), although climate impacts are not fed back into energy and 

land projections. Incorporating the climate-land feedbacks using mechanistic ecosystem models is a 

relatively new area of research (Calvin et al., 2013; Di Vittorio et al., 2014; Kicklighter et al., 2014; 

Kyle et al., 2014; Reilly et al., 2012) and has the potential to introduce additional uncertainty associated 

with model spatial delineations. 

 For CMIP5, each IAM calculated land use for a different set of geopolitical regions, and these 

outputs were harmonized to historical data by a separate model with its own unique representation of 

land use. The four IAM models contain the following numbers of regions: 11 (MESSAGE, Riahi et al., 

2011), 14 (GCAM, Thomson et al., 2011), 24 (AIM, Masui et al., 2011), and 26 (IMAGE, van Vuuren et 

al., 2011b). Three models (AIM, MESSAGE, IMAGE) incorporated downscaling to a half-degree grid, 

with MESSAGE and IMAGE using historical Agro-Ecological Zone (AEZ) data to inform the 

downscaling. The individual model outputs were harmonized (and downscaled in the case of GCAM) by 

the Global Land-use Model (GLM) to a half-degree global grid (Hurtt et al., 2011), and then passed to 

ESMs. GLM employs local spatial relationships, but as a global model it still lacks local constraints such 

as barriers to land availability, limits to intensification, (in)accessibility to markets, restrictions on land 

use practices, and land governance and tenure (Verburg et al., 2013). Regardless, the land use 

harmonization process propagated uncharacterized spatial error unique to each IAM due to different 

sensitivities to the land regions delineated by each model. 

  The modeled land regions and corresponding initial state of these IAMs critically determine 

their land resource projections, and require a tremendous amount of data to ensure proper calibration to 

present day conditions. Model goals generally determine the type of land use model, and combined with 

available data, also the extent and resolution (Brown et al., 2013). IAMs have traditionally represented 

human activities in 10-30 geopolitical regions due to their origins as energy market models, and some of 

these models have recently disaggregated their geopolitical regions into smaller units for land use 

modeling, often using historical AEZs as the basis for this disaggregation (e.g., Schmitz et al, 2014). 

AEZs have been used in land use modeling for decades (e.g., Fischer et al. 1996; for review see FAO 

2016) to improve the real-world feasibility of modeled land use transitions by taking advantage of 

similarities in climate, soil, and topography (Lee et al., 2005). The use of AEZs to disaggregate 

geopolitical regions in IAMs also refines the spatial resolution of land use regions, and allows more 

detailed estimation of physical characteristics that are relevant for model outcomes (e.g., crop 

productivity, vegetation types, carbon contents). However, generating the IAM-relevant data associated 

with these AEZs is a major task. 
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 A set of commonly used historical AEZs and associated land data were developed by the Global 

Trade Analysis Project (GTAP; Monfreda et al. 2009), and models that currently use this particular set 

of AEZs to disaggregate geopolitical regions include AIM (Hasegawa et al. 2015), FARM (Sands et al. 

2014), GCAM (http://www.globalchange.umd.edu/archived-models/gcam/), and GTAP-AEZ (Hertel et 

al. 2009), among others. BLS-AEZ (Fischer et al. 2005) also uses similar terminology for classifying 

land, but with different criteria and sub-regional zone boundaries than the GTAP AEZs. However, the 

traditional IAM modeling paradigm does not include climate impacts, leaving an unexplored question 

regarding the representativeness of AEZ-averaged values in land use modeling under changing climate, 

in which case the AEZs may not retain their expected homogeneity. Note that the use of AEZs is not 

ubiquitous in land use modeling; other strategies to disaggregate geopolitical regions using primarily 

non-climatic criteria include grid cell boundaries (e.g., MAgPIE, Dietrich et al. 2014; GLOBIOM, 

Havlik et al., 2013), hydrologic watersheds (e.g., IMPACT, Rosegrant et al. 2012), and province/state 

boundaries (e.g., FASOMGHG, Beach et al. 2015). While these non-climatic boundaries avoid some 

issues associated with AEZs in the context of climate change, they can still suffer from lack of 

representativeness if they are not carefully defined, and they still generate model uncertainty associated 

with a particular delineation of the land surface.  

 Here we quantify the uncertainty in land resource projection due to spatial delineation of the land 

surface using the Global Change Assessment Model (GCAM), which is a community IAM that has 

been, and continues to be, used to generate scenarios for international climate assessments (van Vuuren 

et al., 2011a). While we use the AEZ methodology as implemented in GCAM, the present study is not 

an investigation of the effectiveness of current methods for representing agricultural climate impacts in 

land change models, nor is it an attempt to develop a new method of climate impacts assessment. Rather, 

we aim to 1) determine whether climatically defined boundaries, in particular AEZs, are appropriate in a 

land modeling context, and 2) characterize and quantify uncertainty in land resource projection due to 

spatial delineation of the land surface. To address these aims we generate new spatial boundaries 

(Section 3.1), evaluate the suitability of AEZ-based data sets for land use modeling under climate 

change (Section 3.2), quantify differences in inputs (Section 3.3) and outputs (Sections 3.4) due to 

different land use regions, and discuss the implications of these differences for land use modeling with 

and without climate impacts (Section 3.5). 

 

2. Methods 

 GCAM is a community IAM that simultaneously represents human and biogeophysical 

processes associated with climate change (http://www.globalchange.umd.edu/archived-models/gcam/). 
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The human system simulates activities within the global energy, industrial, and agricultural systems that 

are relevant for producing emissions and changing land use patterns. The biogeophysical system 

simulates feedbacks with the carbon cycle and the resulting impacts on the atmosphere and climate. A 

comprehensive data processing system generates GCAM input files from a wide variety of source data 

spanning resolutions from 5 arcmin grid cells to the globe.  

 To facilitate projection of both energy and land resources, GCAM contains two distinct 

modules—energy, and Agriculture and Land Use (AgLU)—that are linked via markets for bioenergy, 

nitrogen fertilizer, and (where applicable) greenhouse gas emissions. The AgLU component models land 

use decisions at scales that are smaller than the geopolitical regions at which markets for agricultural and 

energy goods are modeled. The intersection of 18 global AEZs with the geopolitical regions defines the 

land use regions in the AgLU module. The purpose of these smaller land use regions is to represent the 

heterogeneity in land productivity that exists across environmentally diverse geopolitical regions.  

 Our first goal is to determine the suitability of AEZs for splitting geopolitical regions into 

smaller land use regions. Each AEZ represents particular bioclimatic conditions as defined for a given 

time period. This means that temperature and water availability regimes are assumed to be relatively 

similar throughout each AEZ, allowing for the modeling assumption that average crop and vegetation 

productivity is representative of an entire AEZ. A major challenge to this approach is that the AEZs are 

defined only for 1961-1990 bioclimatic conditions, but the level of land and energy resource utilization 

in most IAM scenarios is expected to cause climate change over the 21st century (IPCC, 2014b). Actual 

AEZ boundaries will shift due to climate change as temperature and water availability change, causing 

the original land use regions to experience potentially heterogeneous rates of change that could lessen 

accuracy in determining the environmental conditions relevant for future crop production. To facilitate 

further exploration of the effects of bioclimatic heterogeneity in projections, we determine new land use 

regions by defining a new set of AEZs based on a realization of 2071-2100 climate. 

 Our second goal is to quantify the sensitivity of land resource projections to the land use region 

boundaries. This is a necessary first step toward examining the combined effects of spatial structure and 

aggregated climate impacts on projections. Given the difficulty of changing the model structure to 

accommodate a new spatial configuration, and the potential for using projected AEZs to better 

understand the limitations of such approach under climate change, we have elected to use the projected 

AEZs from our first goal as the new boundaries for assessing spatially driven uncertainty in GCAM. It is 

important to note that we do not impose climate change impacts in this study, which is consistent with 

CMIP5 (van Vuuren et al., 2011a) and the upcoming CMIP6 (O’Neill et al., 2014), for which climate 

impacts are not included in climate and socio-economic pathway generation. Omitting climate impacts 
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avoids confounding our analysis with averages of temporally and spatially heterogeneous impacts. 

Furthermore, the distributions of circa year-2000 individual crop yields (Monfreda et al., 2008) within 

GCAM land use regions are not any more homogenous for the historical AEZs than for the projected 

AEZs (Figure 1), indicating that the AEZ method does not necessarily provide the homogeneity of land 

productivity assumed by the land use projection algorithm. This indicates that there is no clear 

advantage to one set of boundaries over the other, and allows us to use the projected AEZs as an 

independent, alternative boundary set in assessing the uncertainty associated with the spatial 

configuration of the model. 

 In order to evaluate AEZ suitability and carry out the required GCAM simulations (section 2.1), 

we have generated new AEZ boundaries defined by climate projections for the end of the 21st century 

(section 2.2) and implemented a Land Data System (LDS) that generates new inputs to the GCAM data 

processing system for any given set of AEZ boundaries (section 2.3). The LDS output replaces certain 

data system inputs (Table 1) in order to initialize GCAM’s (AgLU) module with the projected set of 

AEZs. Additionally, the raster image of the AEZ boundaries (section 2.2) is a primary input to the 

geographic preprocessing system that provides tabular data for input to the comprehensive data system. 
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Figure 1. Comparison of circa year-2000, individual crop yield variation within GCAM land use 

regions. Using New (projected) versus Original (historical) AEZ boundaries has a negligible effect on 

the spread of individual crop yields within the regions. Each value included in these histograms 

represents one of 175 crops, where present, within each of 151 land use regions.

 

 

2.1. GCAM simulations 

 We run two reference scenario simulations from 2010 – 2100 at 5-year time steps, with 2010 

designated as the base-year for calibration and reporting purposes. The reference scenario in GCAM has 

been documented elsewhere (e.g., Eom et al. 2013), and in the context of ongoing scenario development 

in integrated assessment models, its assumptions are similar to the “middle of the road” SSP2 pathway 

(O’Neill et al. 2015). As with SSP2, global population peaks in about 2070, and per-capita incomes 

increase in all regions throughout the course of the century, with particularly high rates of growth 

assumed in currently developing nations. Of particular relevance for agriculture and land use, global 

average per-capita caloric demands increase by 6% from 2010 to 2100, with 15% growth in animal 

product caloric demands. Furthermore, purpose-grown second-generation bioenergy crop demands 

increase from 0 in the base year to between 50 and 70 EJ per year by mid-century. No climate impacts 

are applied in these scenarios. 

 For this study, we remove all AEZ-dependent assumptions from GCAM in our simulations. By 

default, the potential locations and types of biomass crops for energy and the carbon densities assumed 

for several ecosystem types are specified by AEZ. That is, in several minor instances, the AEZ number 

is used to infer characteristics about the land and its potential uses. In order to avoid any interactions 
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between these model assumptions and the AEZ boundaries, we have restricted biomass to a single crop 

and allowed it to be introduced in all land use regions, and we have used carbon density values that do 

not vary by AEZ. These carbon densities are used to calculate land use change emissions and to 

determine the proportion of forest harvested for wood products. For each land type we use an average of 

the default carbon values, which were derived from several literature sources as documented in Kyle et 

al. (2011). 

 We perform two simulations using the assumptions above with: 1) original AEZ input data as 

generated by the LDS and 2) new AEZ input data as generated by the LDS. The only difference between 

these two simulations is that they use different land use region boundaries for initialization (Table 1) and 

projection of land resources. 

 Our GCAM output analysis focuses on simple differences in land resource outputs between the 

original and new AEZ simulations. We calculate these differences for each region and for the globe, and 

present them as percent change relative to the original AEZ outputs. 

 

Table 1. Initialization data replaced to run GCAM with new Agro-Ecological Zone (AEZ) boundaries. 

See Tables 2 and 3 for source data. 

Description Update method Used by 

Agricultural harvested area and 

production of 175 crops for 

each AEZ within 226 countries 

Land Data System GCAM data processing system 

Total land rent value of 12 

commodity sectors for each 

AEZ within 87 regions 

Land Data System GCAM data processing system 

Association of each AEZ with a 

country 

Land Data System GCAM data processing system 

Association of each grid cell 

with an AEZ, country, and 

GCAM region 

Land Data System Geographic preprocessing 

Raster image of AEZ areas R script Geographic preprocessing 
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2.2. AEZ boundaries 

 The original AEZ boundaries are provided by the Global Trade Analysis Project version 6.0 

Land Use Data set 2.1 (henceforth referred to as GTAP; Lee et al., 2005; Lee et al., 2009; Monfreda et 

al., 2009). They have been derived from a combination of Global AEZ (GAEZ) version 1.0 length of 

annual growing period data (Fischer et al., 2002) and other climate data for the baseline period of 1961-

1990 (Ramankutty and Foley, 1999). We implement the GTAP methods (Lee et al., 2005; Monfreda et 

al., 2009) in an R script (www.r-project.org) to generate a new global AEZ image file at 5 arcmin 

resolution, based on a realization of 2071-2100 climate, as described below (also see Figure 2). 

 

2.2.1. Boundaries data 

 The input data required to generate new AEZ boundaries come from multiple sources, detailed in 

Table 2. The original AEZ image is used to mask all other data so that the new AEZ image is an exact 

geographic match, except for the new AEZ boundaries. The future length of growing period data are 

from the GAEZ version 3.0 database (Fischer et al., 2002; IIASA/FAO, 2012) and use downscaled, 

2071-2100, ECHAM4 climate model (Roeckner et al., 1996) output for the A2 scenario of the Special 

Report on Emissions Scenarios (SRES) (IPCC, 2000). Downscaled SRES A2, ECHAM5 (Roeckner et 

al., 2003), maximum and minimum monthly temperature averaged over 2081-2090 (Jones et al., 2009), 

combined with daily minimum temperature from 1961-1990 (Adam and Lettenmaier, 2003; Maurer et 

al., 2009) and monthly minimum temperature averaged over 1961-1990 (Hijmans et al., 2005), are used 

to delineate the three temperature zones. While the averaging periods and model versions do not exactly 

match, these are the only available relevant data, and we have been fortunate enough to find suitable 

climate data that matches closely with the source data for the length of growing period calculation. 
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Table 2. Data inputs for defining new Agro-Ecological Zone (AEZ) boundaries. 

Data Details Source
a
 

Original AEZ 

boundaries 

5 arcmin, 

1961-1990 data,  

160 country boundaries 

Lee et al., 2005; Lee et al., 2009; Monfreda et 

al., 2009; 

https://www.gtap.agecon.purdue.edu/resources/r

es_display.asp?RecordID=1900 

Average length 

of annual 

growing period 

5 arcmin, 

2071-2100 average, 

SRES A2 scenario, 

ECHAM4 model 

Fischer et al., 2002; IIASA/FAO, 2012; 

http://www.fao.org/nr/gaez/en/ 

Average monthly 

minimum and 

maximum 

temperature 

5 arcmin, 

2081-2090 average, 

SRES A2 scenario, 

ECHAM5 model 

Jones et al., 2009; http://www.ccafs-

climate.org/data/ 

Daily minimum 

temperature 

0.5°, 1961-1990 Adam and Lettenmaier, 2003; Maurer et al., 

2009; 

http://www.engr.scu.edu/~emaurer/global_data/ 

Average monthly 

minimum 

temperature 

5 arcmin, 

1961-1990 average 

Hijmans et al., 2005; 

http://www.worldclim.org/current 

aAll these data were accessed in late 2012. 

   

2.2.2. Boundaries processing 

 The 18 global AEZs are created by intersecting six, length of annual growing period bins with 

three temperature zones (Ramankutty and Foley, 1999; Lee et al., 2005; Monfreda et al., 2009). The 

length of growing period is calculated for each grid cell using climate, soil, and reference grass data 

(Fischer et al., 2002; IIASA/FAO, 2012). A day is included in the growing period if the average daily 

temperature is greater than 5°C and the actual evapotranspiration is greater than or equal to half of the 

potential evapotranspiration. The first five growing period bins each include 60 days while the sixth bin 

includes days greater than or equal 300. The length of growing period generally relates to moisture 

regime, with the shortest being dry and the longest being humid, but in some places the daily average 

temperature determines the growing period bin. 
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 The temperature zones are derived from a combination of annual Growing Degree Days (GDD 

(°C); 5°C base): 

 GDD =
max(tmax,30)+min(tmin, 5)

2
d=1

365

∑ ,      (1) 

where tmax is the daily maximum temperature, tmin is the daily minimum temperature, and d is the day of 

year, and the absolute minimum daily temperature over the period of interest, following these rules: 

a) Hot: absolute minimum temperature > 0 °C 

b) Temperate: absolute minimum temperature > -45 °C and GDD > 1200 °C 

c) Cold: everywhere else 

 The intersection of growing period and GDD data delineates 18 zones with zones 1-6 being hot, 

7-12 temperate, and 13-18 cold. Within each temperature zone the lowest number is the shortest length 

of growing period and the highest number is the longest (Lee et al., 2005; Monfreda et al., 2009). 

 We transform our average monthly data to produce daily values required by the GDD and 

temperature zone calculations. Average monthly temperature values are applied to each day of each 

month to calculate the average annual GDD over 2081-2090. To estimate the absolute minimum 

temperature for the 2081-2090 temperature data, we first calculate the difference between average 

monthly minimum temperature (averaged to half-degree) and the absolute daily minimum temperature 

within each month for 1961-1990. We calculate this difference at half-degree resolution, and then 

subtract it via disaggregation from the 2081-2090 average monthly minimum temperature data. The 

minimum value across months for each grid cell is used as the absolute minimum temperature for 

determining the temperature zone. 

 We calculate differences between the new and original thematic AEZ data sets to examine the 

spatial patterns of changes in length of growing period, temperature zone, and AEZ in relation to the 

original GCAM land use regions. 

 

2.3. AEZ land data 

 GTAP provides the original land data for each AEZ within each country or region. The three 

primary land variables used to initialize GCAM are crop production, crop harvested area, and land rent 

value. The crop data are provided for 175 crops in 226 countries, and the land rent data for 13 

agricultural sectors in 87 countries and regions. Here we implement the GTAP methods (Lee et al., 

2005; Lee et al., 2009; Monfreda et al., 2009) in our LDS to recalculate these initial data for both the 

original (section 2.2) and new (section 2.2.2) AEZ boundaries. 
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2.3.1. Land data 

 A wide variety of source data are required to generate the production, harvested area, and land 

rent data provided by GTAP (Table 3). A major challenge to reproducing the original GTAP data is that 

the spatially explicit data (i.e., raster and vector data) are independent of the tabular data (e.g., crop 

production listed by country). This makes it unlikely that our LDS will aggregate the source gridded 

data to the exact same country boundaries used for the original GTAP data. Additionally, four different 

country sets require reconciliation among the source data, further decreasing the fidelity between LDS 

and the original GTAP data. 

 The primary source data are globally gridded maps of circa year-2000 yield and harvested area 

for 175 crops (Monfreda et al., 2008), and are the same for LDS and GTAP (see Monfreda et al., 2009). 

These data, combined with the country and AEZ boundaries, determine the initial crop production and 

harvested area for the GCAM data processing system. These data include fodder crops, including fodder 

grasses that are used to determine the yield of intensive pasture for ruminant production in GCAM. 

 The remaining source data, used for calculating land rent, are not exactly the same between LDS 

and GTAP. For example, we combine global cropland and pasture area (Ramankutty et al., 2008) with 

HYDE3.1 urban area (Klein Goldewijk et al., 2010) and potential vegetation data (Ramankutty and 

Foley, 1999) to determine forest and pasture area for calculating forestry and livestock land rents, while 

GTAP additionally used outputs from a biome model (Haxeltine and Prentice, 1996) and a timber model 

(Sohngen et al., 1999) to further disaggregate forest and management types (Lee et al., 2005, Lee et al., 

2009). We do not use these additional data because not all the required data and metadata are available. 

It is also possible that we used different Food and Agriculture Organization (FAO) crop production and 

price data than GTAP for calculating agricultural land rents because we downloaded these data several 

years after GTAP. We do, however, use the GTAP sector land rent data, aggregated to the 87-region 

level, as the starting point for disaggregating land rent to given AEZ boundaries. 
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Table 3. Land Data System (LDS) inputs for calculating land data for Agro-Ecological Zone (AEZ) 

boundaries. 

Data Details Source
a
 

Crop yield and 

harvested area 

5 arcmin, 

175 crops-same as GTAP, 

circa 2000, 

area provided as fraction 

of land area in grid cell 

Monfreda et al., 2008; 

http://www.sage.wisc.edu/mapsdatamodels.html 

Cropland 

extent and 

pasture area 

5 arcmin, 

circa 2000, 

provided as fraction of 

land area in grid cell 

Ramankutty et al., 2008; 

http://www.sage.wisc.edu/mapsdatamodels.html 

Fraction of 

land area in 

grid cell 

5 arcmin, 

spherical earth. 

average WGS84 radius 

D. Plouff and N. Ramankutty provided these 

data corresponding to the above crop and pasture 

data (in late 2013) 

Potential 

vegetation 

5 arcmin, 

thematic, 

vegetation circa 2000 if no 

historical land use had 

occurred 

Ramankutty and Foley, 1999; 

http://www.sage.wisc.edu/mapsdatamodels.html 

Urban area 5 arcmin, 

circa 2000 

Klein Goldewijk et al., 2010; 

http://themasites.pbl.nl/tridion/en/themasites/hyd

e/download/index-2.html 

Land area in 

grid cell 

5 arcmin, 

for urban area fraction, 

excludes glaciers 

Klein Goldewijk et al., 2010; 

http://themasites.pbl.nl/tridion/en/themasites/hyd

e/download/index-2.html 

Total grid cell 

area 

5 arcmin, 

for urban area fraction 

Klein Goldewijk et al., 2010; 

http://themasites.pbl.nl/tridion/en/themasites/hyd

e/download/index-2.html 

246 Country 

boundaries 

5 arcmin, 

from VMAP0 vector data 

(the source of FAO 

VMAP0: 

http://gis.ess.washington.edu/data/raster/GlobalD

ata/ 
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country boundaries), 

added East Timor from 

the Timor-Leste 

Geographic Information 

Group 

East Timor: 

https://sites.google.com/site/gigtimorleste/home 

Original AEZ 

boundaries 

5 arcmin, 

1961-1990 data, 

160 country boundaries 

Lee et al., 2005; Lee et al., 2009; Monfreda et 

al., 2009; 

https://www.gtap.agecon.purdue.edu/resources/r

es_display.asp?RecordID=1900 

GTAP 226 

countries and 

87 regions  

Tabular Lee et al., 2005; Lee et al., 2009; Monfreda et 

al., 2009; 

https://www.gtap.agecon.purdue.edu/resources/r

es_display.asp?RecordID=1900 

Land rent for 

13 use sectors 

Tabular, 

87 regions by 18 AEZs, 

original GTAP data 

Lee et al., 2005; Lee et al., 2009; Monfreda et 

al., 2009; 

https://www.gtap.agecon.purdue.edu/resources/r

es_display.asp?RecordID=1900 

FAO 241 

countries 

Tabular Jones et al., 2009; http://www.ccafs-

climate.org/data/ 

FAO Crop 

production and 

producer 

prices 

Tabular, 

up to 169 crops 

http://faostat.fao.org/; accessed Aug 2013 

aAll these data were accessed in late 2012 unless otherwise noted. 

 

2.3.2. Land processing 

 We use the LDS, as described below, to generate production, harvested area, and land rent data 

for both the original and new AEZ boundaries. The LDS outputs are in the tabular format used by the 

GCAM data processing system. The bulk of the processing reconciles inconsistencies among all the 

input data sets. The final outputs are based on data that are in a valid AEZ grid cell, as determined by the 

original AEZ image file, and also in a cell with land area, as determined by the land fraction data. 

Assignment of raster data to countries is based on a combination of the 246-country boundary data and 

the original AEZ image file. The 246-country boundary data is also used by the FAO, and so LDS uses 
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these 246-country data first to assign a cell to a country. If a country is not found for a given cell, then 

the country in the original AEZ image file is used. The cell data are not used if no country can be 

associated with it. These spatial countries are mapped to the tabular GTAP and FAO countries for 

further processing of the data, causing the raster data to be aggregated in some cases (e.g., Serbia and 

Montenegro) and omitted in others (e.g., GTAP does not include Western Sahara). The non-agricultural 

land cover is determined by assigning the potential vegetation to the non-crop/pasture/urban land in each 

grid cell. The land fraction data, combined with the assumption of a spherical earth, determine the land 

area within a grid cell because they are consistent with the 175-crop, total cropland, and total pasture 

data. The HYDE urban area are reconciled with the other land type data through conversion to fraction 

of land area within the grid cell, and then back to area using the land fraction data. If the land area is less 

than the total crop, pasture, and urban area, then first urban, then pasture, and then crop area are reduced 

until their total matches the land area. 

 Once these data are reconciled, the crop production and harvested area for each crop in each 

AEZ in each GTAP country are determined from the gridded 175-crop yield and harvested area data. 

There are 226 GTAP countries, and not every crop or AEZ are present in each country. Harvested area 

and production (harvested area multiplied by yield) are simply summed across all grid cells within a 

given boundary because the source data have already been normalized to 1997-2003 average annual 

FAO data (Monfreda et al., 2008; Monfreda et al., 2009).  

 The agricultural and forestry land rent data are generated separately at the level of 87 regions. 

There are 12 agricultural sectors, including three livestock sectors for meat, dairy, and fiber production, 

and a non-ruminant livestock sector that has zero land rent value because it is assumed to not use 

substantial area in production. For each region, the eight crop land rents are distributed among the AEZs 

following (Lee et al., 2005; Lee et al., 2009): 

 L
c,a

= L
c

P
i
Q
i,a

i∈SECTOR=c
∑ P

i
Q
i,a

i∈SECTOR=c
∑

a∈AEZ
∑

⎡

⎣
⎢

⎤

⎦
⎥

,            (2)
 

where Lc,a is the land rent for sector c in AEZ a (2001USD), Lc is the original total land rent of sector c 

within a region, Pi is the FAO production-weighted 1997-2003 annual average price per metric ton of 

GTAP crop i, Qi,a is the production for GTAP crop i in AEZ a (metric tons, from above), SECTOR is the 

set of GTAP sectors within a region, and AEZ is the set of AEZs within a region. 

 The livestock sector land rent calculation for each region uses the average cereal grain sector 

price and yield along with the pasture area, and the proportion assigned to each AEZ is the same for 

each livestock sector. Using the production-weighted price and the area-weighted yield (from production 



	
   17	
  

divided by harvested area above) essentially scales the value term in eq. (2) by the ratio of pasture area 

to total harvested grain area within an AEZ: 

Ll,a = Ll
Apasture,a

Ai,a
i∈SECTOR=grain

∑
PiQi,a

i∈SECTOR=grain
∑

Apasture,a

Ai,a
i∈SECTOR=grain

∑
PiQi,a

i∈SECTOR=grain
∑

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟a∈AEZ

∑
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥ ,      (3) 

where Ll,a is the land rent for livestock sector l in AEZ a (2001USD), Ll is the original total land rent of 

livestock sector l, Apasture,a is the pasture area in AEZ a, Ai,a is the harvested area of GTAP crop i in AEZ 

a, grain denotes the grain sector, and Pi, Qi,a , SECTOR, and AEZ are the same as in eq. (2).  

 The forestry land rent within each region is distributed among new AEZs based on the original 

land rent per forest area within the original AEZs. First, the original land rent per unit forest area is 

calculated for each original AEZ and region. Next, the new AEZ forestry land rent is calculated as the 

sum of the product of original land rent per area and forest area within the new AEZ:  

 L f ,new = LD f ,aA f ,a∩new

a∈AEZ∩new

∑ ,              (4) 

where Lf,new is the forest sector f land rent for AEZ new, LDf,a is the forest land rent per unit area in 

original AEZ a, Af,a∩new is the forest area of original AEZ a within new AEZ new, and AEZorig is the set 

of original AEZs within the region. We cannot reproduce the original method because some of the 

required source data and metadata are not available (see Section 2.3.1).  

 To validate the LDS, we compare the reproduced original AEZ LDS outputs against the original 

GTAP data set and FAO, at the country level. We also compare the new AEZ LDS outputs with GTAP 

and the reproduced original AEZ LDS outputs at the land use region level to determine how the different 

boundaries affect the input data for GCAM. Differences among the data sets are visualized by 

cumulative distribution functions and difference histograms derived from values associated with each 

defined land use region. We also calculate the mean of the crop- and use-specific regression parameters 

among LDS and GTAP outputs at the country and land use region levels.  
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Figure 2. The Land Data System (LDS). Creation of the Agro-Ecological Zone (AEZ) raster data, shown 

in the dashed box, is implemented separately from the LDS. The dotted lines separate the three main 

LDS components. Crop data are processed first because production and harvested area are needed for 

agricultural land rent. Forestry land rent is independent of the agricultural calculations. Ovals are 5 

arcmin raster data, hexagons are tabular data, boxes are processes, and the LDS outputs are in 

underlined, bold lettering within bold hexagons. GTAP = Global Trade Analysis Project, FAO = Food 

and Agriculture Organization. 
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3. Results and Discussion 

 Using end-of-century climatic conditions to define AEZs dramatically changes the boundaries, 

and in some cases the size, of the land use regions, which leads to different long-term regional and 

global land resource outcomes in GCAM. The changes in these boundaries also indicate that climate-

related impacts within original land use regions will be spatially heterogeneous. This heterogeneity 

invalidates the agro-economic modeling assumption that average land productivity is consistent within 

an entire land use region, thus introducing an additional source of uncertainty that could be exacerbated 

by averaging climate impacts within these regions. 

 

3.1. New AEZ boundaries 

 The new AEZs indicate that geographic AEZ shifts are dominated by changes in length of 

growing period combined with warming in northern high latitudes (Figures 3a-b). This means that both 

temperature and water availability are important factors in determining future ecological conditions, and 

that their interactions provide a more complete, and complex, picture of changing environmental 

conditions. This is consistent with recent studies on climate velocity that show how spatial patterns of 

temperature and precipitation (Ackerly et al., 2010; Loarie et al., 2009) and evapotranspiration 

(Dobrowski et al., 2013) do not, and are not expected to, have identical geographic shifts over time. 

Therefore, future bioclimatic studies need to take into account interactions among variables when 

assessing potential geographic shifts in biome, ecosystem, and species ranges. However, bioclimatic 

studies may not capture some key factors in determining biogeography of various ecosystems. For 

example, the AEZ approach does include soil water availability (to incorporate soil texture) rather than 

simply precipitation, but not factors such as topography, daily and seasonal radiation regime, and soil 

type, which are also not commonly included in dynamic vegetation models (Snell et al., 2014). 

Furthermore, land use change has been and likely will continue to be the primary determinant of global 

land cover distribution (e.g., Hurtt et al., 2011; Wilkenskjeld et al., 2014), even at fine scales (Álvarez-

Martínez et al., 2014). 

 The new AEZs also demonstrate that projected climate change makes the original land use 

regions bioclimatically heterogeneous over time (Figure 3c). This means that several different AEZs, 

and thus different environmental conditions, may exist in a single original land use region in the future, 

indicating that climate will not change uniformly within these regions. The original AEZs are based on 

1961-1990 climate, so present day land productivity is supposedly represented by the average 

characteristics (i.e., yields) of these land use regions. However, we also show that these original AEZs 

do not provide more homogeneity of circa year-2000 crop yields within land use regions than do the 
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new AEZs (Figure 1). This implies that the AEZ approach does not necessarily confer a representative 

advantage in the present day over alternative boundary definitions, possibly due to missing factors as 

discussed above. Nonetheless, our results indicate that climate change would cause different rates of 

change in environmental conditions within different parts of each original land use region, and also 

changes in global AEZ area over time (Figure 3d). We obtained qualitatively similar results using the 

CSIRO Mk3 model outputs for generating projected AEZs for the same period (data not shown). This 

suggests that averaging projected climate impacts within static, climate-based land boundaries could 

introduce additional error into studies on land use and climate due to the mismatch of climatic 

assumptions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Differences between new and original Agro-Ecological Zones (AEZs). Map values are 

changes in thematic label calculated from new minus original AEZs. Map lines delineate the 151 GCAM 

land use regions based on the original AEZs intersected with 14 geopolitical regions. a) Length of 

growing period. b) Temperature zone. c) AEZ. d) Global land area by AEZ. 
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3.2. LDS evaluation against GTAP and FAO data 

 The LDS production and harvested area outputs for all 175 crops and the original AEZs match 

the GTAP data very well at the country level (e.g., Figure 4). The mean, individual crop regression slope 

for both production and harvested area across the 86 crops with data for at least 20 countries is 1.03 (± 

0.04 std err) with an r2 of 0.95. Reducing the sample size to 10 for each regression includes 120 crops 

and gives nearly identical results. Furthermore, the LDS outputs are generally closer to FAO data than 

are the GTAP values, and if there is a discrepancy between the LDS and GTAP, LDS follows FAO more 

closely. We did not expect the larger differences between the LDS/GTAP data and the FAO data 

because the source gridded crop data are calibrated to the national average FAO statistics, even where 

sub-national level values are used (Monfreda et al., 2008; Monfreda et al., 2009). Paddy rice is a typical 

example of a decent match (slope = 0.92 ± 0.00 std err, r2 = 1.00), and comparison of the cumulative 

distribution functions and histograms of country-level differences for production demonstrates the 

validity of the LDS in a less abstract manner (e.g., Figure 5). Harvested area results are effectively the 

same as the production results for individual crops. Nonetheless, LDS does not, and cannot, reproduce 

GTAP exactly, which indicates a need for increased transparency and standards for widely used data. 

 The primary cause of irreproducibility in these two variables is very likely the difference in the 

country boundaries between LDS and GTAP. An unlikely source of additional discrepancy could arise 

from undocumented GTAP adjustments to, or slightly different versions of, the source crop data. This 

additional discrepancy is unlikely because the yield and harvested area source data that we use are, to 

the best of our knowledge, the data developed, documented, and made publically available for use by 

GTAP and others (Monfreda et al., 2008; Monfreda et al., 2009). We also follow the methods exactly as 

documented (Lee et al., 2005; Lee et al., 2009). On the other hand, the country boundary data are 

different due to lack of data availability. The country boundary data used by the LDS are supposedly the 

source of the FAO country boundary data, but as the actual boundary data are not provided by GTAP or 

by FAO, it is very likely that these boundary differences are a primary source of discrepancies between 

the LDS outputs and both the GTAP and FAO data. 
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Figure 4. Country level evaluation of the Land Data System (LDS) production and harvested area. LDS 

outputs using the original Agro-Ecological Zone (AEZ) boundaries and the Food and Agriculture 

Organization (FAO) data for each individual crop are regressed against the corresponding Global Trade 

Analysis Project (GTAP) data. These are the mean regression values across the 86 crops with regression 

sample size >= 20 (i.e., present in at least 20 countries). 
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Figure 5. Individual crop example of country level evaluation of the Land Data System (LDS). These 

paddy rice production data represent 241 countries and the harvested area data have similar relationships 

among the presented data sets. a) Cumulative distribution function of rice production. b) Corresponding 

histograms of the LDS and Global Trade Analysis Project (GTAP) percent differences from Food and 

Agriculture Organization (FAO) data. 

 

 The LDS land rent outputs for the original AEZs also match well with the GTAP data at the AEZ 

level within GTAP regions (Figure 6). All 12 land use sectors have sufficient regression sample sizes 

(>= 245) to be included in the mean LDS versus GTAP regression parameters. The mean regression 

slope is 0.98 (± 0.01 std err), with an r2 of 0.93, which indicates fairly high fidelity between LDS and 

GTAP land rents. The worst match is for the “other crops” sector, which has a slope of 0.74 (± 0.05 std 

err) with an r2 of 0.36. This poor correlation is mainly due to three outliers with values greater than 

3x109 USD (Figure 6b). Removing these outliers increases the “other crops” r2 to 0.68 and decreases the 

slope to 0.70 (± 0.03 std err), which has a negligible effect on the mean regression values. Following 

GTAP (Lee et al., 2005; Lee et al., 2009), all land rent sector calculations except forestry use FAO price 

and production data in addition to the respective crop production and harvested area outputs. While 

some of the differences between LDS and GTAP in land rent outputs are possibly due to slightly 

different FAO price and production data, we have shown that the differences in crop inputs to the rent 

calculations are very likely due to spatial inconsistencies. Given that the average LDS accuracy for the 

land rent is similar to that of the production and harvested area outputs, and the land rent has the added 

FAO source of uncertainty, it is likely that the spatial inconsistencies between LDS and GTAP are a 
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significant portion of the land rent error. Conversely, since the additional error source did not increase 

the land rent error beyond that of its crop inputs, and we used the published equations for land rent (Lee 

et al., 2005; Lee et al., 2009), this is additional evidence to support our claim that spatial inconsistencies 

very likely dominate the errors in production and harvested area over any possible difference in source 

crop data. On the other hand, the LDS forestry land rent, which is not used by this version of GCAM, 

utilizes different methods and data from GTAP, yet matches the GTAP data very well (slope = 1.00 ± 

1x10-6 std err, r2 = 1). This good match is partially due to the fact that the LDS simply redistributes the 

GTAP forestry data from the original to the new AEZs, but even with such high statistical correlation 

the cumulative distribution function shows some deviation that arises due to this spatial redistribution 

(Figure 6c), which can be explained only through spatial inconsistencies between GTAP and LDS. Thus, 

these land rent results not only further demonstrate the irreproducibility of the GTAP data, but also 

support the finding that differences between LDS and GTAP are driven largely by inconsistencies in 

spatial boundaries arising from the lack of spatial data that directly correspond with the available tabular 

data. Nonetheless, LDS reproduces the GTAP land data inputs to GCAM well enough such that using 

either GTAP or LDS inputs generates nearly identical GCAM outputs (data not shown). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Evaluation of Land Data System (LDS) land rent against the Global Trade Analysis Project 

(GTAP) data, at the level of Agro-Ecological Zones (AEZs) intersected with GTAP regions. a) Mean of 

LDS versus GTAP regression values for each of the 12 sectors. b) Scatter plot of the “other crops” 

sector land rents, which has the worst correlation of all sectors between LDS and GTAP. c) Global 

cumulative distribution functions of forestry land rent. 
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Figure 7. Effects of new boundaries on Land Data System (LDS) production and harvested area outputs. 

These data are aggregated to the Global Change Assessment Model (GCAM) land use region level. a) 

Mean of production regressions for each of the 117 crops with sample size >= 20 (i.e., present in at least 

20 countries). b) Mean of harvested area regressions for each of the 118 crops with sample size >= 20. c) 

Global cumulative distribution function comparison for paddy rice production. 

 

 

 

 

 

Figure 8. Effects of new boundaries on Land Data System (LDS) land rent outputs. These data are 

aggregated to the Global Change Assessment Model (GCAM) land use region level. a) Mean of land 

rent regressions for each of the 12 land use sectors. b) Global cumulative distribution function 

comparison for forestry land rent. 

 

3.3. New versus reproduced original AEZ data 

 The differences in LDS outputs between the new and original GCAM land use regions 

demonstrate that using different boundaries effectively changes the simulated world. These differences 

generally are more pronounced for production and harvested area (Figure 7) than for the land rent inputs 

(Figure 8). It is important to note that the mean regression values of the new versus original outputs are 

not direct one-to-one comparisons because they represent only identically labeled land use regions, 

which are different between the new and original AEZ boundary sets. For example, there are 151 land 
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use regions in the original set and 184 land use regions in the new set. They are still instructive, 

however, in that they clearly demonstrate the differences in initial conditions where the same AEZs exist 

in any land use region for both AEZ boundary sets. Crops are included in the mean values only if they 

exist in at least 20 countries. The mean slopes for crop production (117 crops) and harvested area (118 

crops) are 0.90 (± 0.06 std err) and 0.92 (± 0.06 std err), respectively, each with an r2 of 0.73. These 

slopes are clearly different than one, indicating that the new land use regions give a distinctly different 

representation of the world than the original land use regions. The cumulative distribution function of 

paddy rice presents a good example of how the global distribution of values changes due to the new land 

use regions (Figure 7c). Each crop does respond uniquely to the new boundaries, however, which has 

important implications for GCAM land resource projection because land use area shares are determined 

by the relative profitability of each land use within a land use region. 

 Likewise, the global distributions of land rent also shift with the new land use regions, separating 

the new simulated world farther from the original one (Figure 8). All 12 land use sectors are included in 

the mean regression values, and as for the crop data, these regressions are made between the identically 

defined AEZs, which cover different areas in the two land use region sets. The mean slope is 0.91 (± 

0.05 std err, with r2 = 0.69), which is also clearly different than one. The sensitivity of these initial land 

data to spatial aggregation also becomes apparent when comparing the forestry land rent cumulative 

distribution functions for the GCAM land use regions (Figure 8b) with those for the AEZs within GTAP 

regions (Figure 6b). While there is an obvious shift in the global distribution at the native GTAP 

resolution (AEZs intersected with 87 regions), aggregating to the GCAM land use regions (AEZs 

intersected with 14 regions) reduces this shift. The regression values correspond with the global 

distributions, with the slope for GCAM regions (0.96 ± 0.05, r2 = 0.74) being closer to one than the 

slope for GTAP regions (0.90 ± 0.03, r2 = 0.71). Overall, spatial boundaries are a primary determinant of 

the how the world is represented, which directly impacts global simulations, and ultimately affects how 

we understand global change. 

 

3.4. GCAM simulations 

 GCAM’s land resource projections vary between the original and new AEZ simulations, 

indicating that simply changing the boundaries of the initial land data drives the whole system in a 

different direction. More specifically, different boundaries drive dramatic differences in land use and 

cover, associated emissions, crop production and price, and bioenergy production and consumption. 

 The mechanics responsible for divergent model outcomes are reviewed briefly here. In each 

GCAM land use region, land is allocated among up to 20 competing uses according to the relative 
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profitability of each land use. Because this allocation is done on the basis of shares, modifying the size 

of a land unit will result in different land quantities, all else equal. However, changing the land use 

region boundary also changes base-year productivity and therefore profitability of each land use in each 

land use region, which can lead to divergent land shares over time. Furthermore, dedicated bioenergy 

crops do not have base-year data; instead, their future shares depend on their profitability in relation to 

that of the dominant crop in the base-year in each land use region. By changing the characteristics of the 

base-year crop production in each land use region—harvested area, production, and yield—the 

comparative future profitability of bioenergy in each region may also be affected. 

Fodder crops, bioenergy crops, and intensive pasture have substantial percent differences in 

global area by 2100 between the new and original AEZ simulations, with grain crops also having a 

distinct difference (Figure 9a and Table 4). These differences are more pronounced when considered as 

percentages of the original projected change from 2010 to 2100. In particular, total grain crop area is 

only 3.5% less with new AEZs, but this difference is a 67% decrease in the originally projected increase. 

As Figure 2d shows, the new AEZs generally have more land in relatively productive AEZs, and less 

land assigned to relatively unproductive AEZs, specifically 7, 13, 14, and 15. The enlarged AEZs 

overlap somewhat with their original counterparts, increasing agricultural expansion via the mechanisms 

described above. The increase in total end-of-century cropland area with new AEZs is 204,000 km2 

(1.4% of original AEZ value), which is 7.7% of the range covered by RCPs 2.6, 6, and 8.5 in 2100 (van 

Vuuren et al., 2011a). Differences at the regional level can be even greater (e.g., Figure 9b and Table 4) 

than global differences, and often include substantial differences in other crops and harvested forest. 

This is because the regional differences will reflect spatial tradeoffs in land use region expansion and 

contraction combined with regional changes in relative productivity among crops. The net change in 

global area for any given land type is the net result of these spatially driven regional tradeoffs. 

While the effects of new boundaries on area can be considerable for particular crop groups, both 

globally and regionally, the relative sizes of these effects vary when aggregated to all cropland and 

compared with an AgMIP study that uses ten global agro-economic models to estimate changes in 

cropland area from 2005 to 2050 (Schmitz et al., 2014). Globally, the AgMIP study reports a range of 

cropland expansion from about 1% to 26% for a baseline scenario with SSP2 population and GDP, 

without climate change impacts (for the seven models that include bioenergy crops), with GCAM 

having an 11% increase. Our study shows that using the new AEZ boundaries increases cropland 

expansion from 13% to 14% over the same time period. For the former Soviet Union, however, our 

study shows an increase from 7.1% to 10% for cropland expansion due to the new AEZ boundaries, 

while the AgMIP reports a range of ±23% for cropland area change, with GCAM having the maximum 
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expansion. Note that the differences in GCAM’s output between these two studies reflect different 

assumptions about population, GDP, and future yield growth, all of which were harmonized among the 

AgMIP models to values that differ from GCAM’s native and modified assumptions used in this study. 

Regardless of these differences, the main point of this comparison is that the difference in projected 

global cropland expansion by 2050 due to the new AEZ boundaries is 6.2% (123,938 km2) of our 

original expansion estimate, 6.5% of their model-average expansion estimate without climate impacts, 

and 10% of their model-average expansion estimate attributed solely to projected climate impacts. Even 

though we do not address climate impacts in this study, this comparison demonstrates that different 

boundaries can potentially have a substantial influence on projected changes in global cropland area 

when climate impacts are included. 
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Figure 9. Percent difference in projected land use and cover area (new – original AEZs). 
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Table 4. Projected land use and cover area in year 2100 (thousand km
2
). 

  Global Southeast Asia 

Land type Original 

AEZs 

Difference:   

new – 

original 

AEZs 

Difference 

as percent 

of original 

Difference as 

magnitude 

percent of 

2010 to 2100 

change in 

original 

Original 

AEZs 

Difference:   

new – 

original 

AEZs 

Difference 

as percent 

of original 

Difference as 

magnitude 

percent of 

2010 to 2100 

change in 

original 

Biomass 3869 271 7.0 7.0 278 -39 -14 14 

Fodder 

crops 

1061 144 14 43 10 4 40 63 

Forest 35758 4.4 0.01 0.2 2409 -6 -0.2 2.8 

Harvested 

forest 

4442 9.2 0.2 0.7 172 -15 -8.5 41 

Grain crops 6425 -226 -3.5 67 598 4 0.6 9.1 

Grassland 40082 97 0.2 4.0 628 17 2.8 29 

Non-arable 19447 0 0.0 0.0 430 0 0.0 0.0 

Other crops 6254 16 1.8 0.3 640 66 10 800 

Intensive 

pasture 

2664 -333 -12 38 218 -32 -15 37 

Shrubland 6933 9.8 0.1 2.8 385 -0.05 -0.01 0.2 

 

 

 Differences in area translate directly into dramatic differences in regional and global crop 

production. Global crop production shifts toward more palm fruit, fodder crops (grasses and 

herbaceous), and away from intensive pasture and bioenergy crops by 2100 (Figure 10a, Table 5). As 

with area, regional shifts in production due to the new land use regions drive the global changes, and 

these changes are a large portion of the original projected change from 2010 to 2100 for several crops. 

The increase in palm fruit (oil palm) production with new AEZs is particularly interesting, as it 

highlights a large sensitivity in model output to initial conditions and land use region size that may be 

mitigated somewhat by applying climate impacts to crop yield. With new AEZs defined by future 

climate, about 9% of total, base-year oil palm production is shifted from AEZ 6 to the drier and larger 

AEZs 4 and 5. Because oil palm prices increase in both scenarios due to demands from the energy 

system, and yields are not modified to reflect climate change, the profitability of the oil palm increases 

over time, as do the shares of land allocated to oil palm production. However, the new AEZ scenario 

with more base-year oil palm production in AEZs 4 and 5 sees more expansion in total land area and 

production primarily because the land use regions in which is it produced have increased in size. 
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 Differences in crop prices are consistent with differences in area and production, with intensive 

pasture and fodder experiencing the most dramatic price changes (Figure 10b, Table 5). Note that the 

global supply/demand equilibria associated with these prices depend for each crop on the price 

elasticities of the various demands (food, animal feed, bioenergy, and other uses). Crops that are used 

mostly for food (e.g., wheat, sugar, rice) tend to have low assumed price elasticity or substitutability, 

and thus smaller supply/demand changes with new AEZs. In contrast, crops used mostly or exclusively 

for bioenergy or fodder tend to be relatively price-elastic and have larger changes in response to new 

land use regions. These crops are readily substitutable in the energy transformation and meat production 

sectors, respectively, and the quantities of the final commodities (e.g., refined fuels, meat) demanded by 

consumers are also price-responsive. 

 

Table 5. Global crop production and prices in year 2100. 

  Production (Mt) Prices (1975$/t) 

Land type Original 

AEZs 

Difference:   

new – 

original 

AEZs 

Difference 

as percent 

of original 

Difference as 

magnitude 

percent of 

2010 to 2100 

change in 

original 

Original 

AEZs 

Difference:   

new – 

original 

AEZs 

Difference 

as percent 

of original 

Difference as 

magnitude 

percent of 

2010 to 2100 

change in 

original 

Biomass 5898 -434 -7.4 7.4 26.45 0.37 1.4 10 

Corn 1383 -19 -1.4 3.5 35.11 -0.40 -1.1 11 

Fiber crop 101 -2.3 -2.3 8.2 169.84 -1.03 -0.61 10 

Fodder 

grass 

1216 150 12 36 41.58 -9.24 -22 58 

Fodder herb 1756 168 9.6 20 51.18 -8.64 -17 60 

Forest 

(harvested) 

2289 0.0 0.0 0.0 114.08 0.35 0.3 1.2 

Miscellaneo

us crop 

2164 -5.5 -0.3 1.3 185.11 1.92 1.0 45 

Oil crop 604 -19 -3.1 9.9 68.88 -0.83 -1.2 13 

Other grain 417 -7.9 -1.9 6.5 35.71 -0.38 -1.1 16 

Palm fruit 1093 256 23 32 28.28 -1.78 -6.3 26 

Pasture 

(intensive) 

3073 -134 -4.4 14 44.26 -4.53 -10 24 

Rice 954 -6.7 -0.7 2.3 51.38 0.66 1.3 24 

Root tuber 1125 -0.2 -0.02 0.06 55.61 -2.10 -3.8 60 

Sugar crop 2981 -46 -1.5 4.5 12.39 0.12 1.0 18 

Wheat 860 -5.1 -0.6 2.9 26.45 0.37 1.4 27 
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Table 6. Biomass energy production in year 2100. 

  Biomass energy (EJ) 

Region Original 

AEZs 

Difference:   

new – 

original 

AEZs 

Difference 

as percent 

of original 

Global 109 -8.0 -7.4 

Latin 

America 

12 -0.04 -0.3 

Africa 12 2.5 21 

Australia 

and New 

Zealand 

2.8 -1.3 -48 

Canada 2.8 -0.3 -11 

China 11 -2.0 -19 

Eastern 

Europe 

14 -5.6 -39 

Former 

Soviet 

Union 

14 -0.3 -1.9 

India 6.3 4.2 66 

Japan 1.0 -0.4 -35 

Korea 0.2 -0.1 -45 

Middle East 3.1 -0.2 -7.8 

Southeast 

Asia 

8.1 -2.1 -26 

USA 12 -2.0 -17 

Western 

Europe 

11 -0.3 -3.0 

 

Dedicated crops for biomass energy are first available in 2020 in these simulations, and the 

global reduction in crop biomass energy production with new AEZs (Figure 10c, Table 6) despite an 

increase in bioenergy crop area (Figure 9a, Table 4) is due to lower average yields globally and within 

each geopolitical region. The new AEZ boundaries aggregate lower-yield areas with higher-yield areas 

in such a way that lowers average yields in land use regions that are important for bioenergy crop 

production. As these lower values are part of the initialization data, biomass crops need more area to 

produce less energy in 2020, and this relationship persists through 2100. The global, dedicated-biomass, 

primary energy production of 63 EJ in 2050 with original AEZs is within the range of recently revised 

estimates of maximum production ranging from 45-111 EJ (Searle and Malins, 2015). The 4.6 EJ (7.3%) 

decrease in 2050 with new AEZs is 7% of this range of maximum potential production, which is high 



	
   37	
  

considering that the GCAM estimates are market-based rather than maximized, but is well within the 

range of future biomass energy projections in GCAM and in IAMs in general (Fischedick et al., 2011). 

The regional sensitivity of biomass energy production to land use region boundaries is much greater 

than the global sensitivity, with India being exceptionally sensitive due to the doubling in size of AEZs 4 

and 10 and the change in relative crop productivity in AEZs 2 and 3, both of which lead to increases in 

biomass crop area. The differences in land resource projections due to new AEZs do influence energy 

markets enough to change the amount of electricity produced by biomass (-2%, or -86 TWh, by 2100) 

and the total amount of biomass bioenergy consumed across all sectors (-2.7%, or -4.6 EJ, by 2100). 

These results demonstrate that the integrated energy-land system is fairly sensitive to the spatial 

delineation of the earth. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Percent differences in a) global crop production, b) biomass energy production, and c) global 

crop prices (new – original AEZs). 
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 The differences in land use and cover between the simulations also drive differences in net 

annual land use and cover change CO2 emissions at both the regional and global levels (Table 7). Note 

that divergent global land use change emissions are observed even in the historical period. This results 

from GCAM’s method of calculating land use change emissions, which is based on net changes in 

different land use types over time within individual land use regions. Grid cells are aggregated to 

regions prior to performing the emissions calculation, and aggregating grid cells differently can change 

the extent of historically offsetting land use changes within land use regions.  

From the first projection year (2015) forward the globe is a net sink for land use change 

emissions largely due to land use changes during the historical period that favor forest regrowth and 

discourage crop expansion after 2010. From 2020 to 2050, the annual strength of this sink increases with 

the new AEZ boundaries by as much as 40 Mt C per year, but after 2055 this increase declines to zero 

by 2100. At the regional level, the relative differences in net emissions can be very large while the 

absolute values remain comparable to the global values. Despite the complexity of accounting and 

tracking land use change emissions, it is crucial to reduce this uncertainty associated with land use 

region boundaries because land use and cover change emissions currently contribute significantly to 

anthropogenic radiative forcing (11% of total CO2 emissions for 2002-2011; Le Quere et al., 2013), and 

could become an even greater share of total emissions under climate target scenarios that reduce the 

amount of fossil fuel emissions by the end of the 21st century, such as RCPs 2.6 and 4.5 (van Vuuren et 

al., 2011a). 
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Table 5. Projected global land use and cover change CO2 emissions (MtC yr-1). 

Year original AEZs new – original AEZs
a
 

1980 977 14 

1985 1026 14 

1990 1016 14 

1995 756 10 

2000 703 -2 

2005 625 -9 

2010 712 -40 

2015 -720 34 

2020 -553 -16 

2025 -477 -4 

2030 -290 -5 

2035 -99 -20 

2040 -78 -14 

2045 -27 -26 

2050 -5 -24 

2055 2 -15 

2060 -58 -7 

2065 -84 -6 

2070 -78 -4 

2075 -82 -5 

2080 -83 -6 

2085 -78 -5 

2090 -69 -5 

2095 -65 -3 

2100 -60 0 
aNegative difference indicates less emissions or a larger sink with new AEZs. 

 

3.5.  Implications for modeling land change under climate change 

 Given the spatial heterogeneity of environmental factors and potential climate impacts (section 

3.1) and the uncertainty introduced by land use region averages (section 3.4), the application of climate 

impacts, as aggregated to land use regions from gridded model output, will likely decrease the 
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homogeneity of land productivity, which is a key reason for the use of AEZs in land use modeling. In 

turn, this seems likely to increase associated model uncertainty in land resource projections. That said, it 

is unclear even if AEZs as currently implemented actually provide sufficient homogeneity (Figure 1) for 

the modeling assumption of representative averages to hold for model initialization, regardless of 

whether or not climate impacts are incorporated. For example, native GCAM spatially assigns biomass 

crop characteristics and ecosystem carbon densities by AEZ (section 2.1). Spatial uncertainty is 

introduced if the homogeneity and/or location of these AEZs do not actually coincide with GCAMs 

assumptions about relationships between AEZs and land characteristics. Additionally, such assumptions 

that rely on static AEZ boundaries preclude consistent implementation of climate impacts because the 

boundaries and assumptions would remain the same while productivity changes heterogeneously over 

time within these boundaries. Even if the boundaries and assumptions were not tied to AEZs, averaging 

across this increasing heterogeneity and applying the results as representative values for each land use 

region would introduce additional uncertainty to model projections. This additional uncertainty is 

directly related to the boundaries themselves, thus it is important to first characterize uncertainty due to 

land use region boundaries without the additional effects of potential climate impacts. 

 Quantifying the effects of spatial uncertainty on land resource projection is also important for 

scenario based climate modeling in general, which does not yet incorporate feedbacks from climate to 

land modeling. The CMIP process separates climate impacts from scenario generation, and as such the 

scenarios contain spatial uncertainty, free from the effects of climate, that can influence impact studies. 

For example, Brovkin et al. (2013) show that projected land use change significantly affects local to 

regional climate, but unfortunately the six ESMs evaluated did not agree on the magnitude, sign, or 

location of these climate effects. They concluded that the differences among the model outputs were due 

mainly to differences in land use and cover change implementations and corresponding spatial 

distributions of land cover. These distributions, however, included uncharacterized uncertainty 

associated with the spatial land surface delineation of the driving IAM. A different set of spatial 

boundaries in the IAM would generate a different land use projection that would then be uniquely 

implemented in each ESM, giving a different set of results due to the direct biophysical effects of land 

use and cover change (e.g., Jones et al., 2013). Thus, it is critical to characterize and reduce the 

uncertainties associated with the spatial delineation of the earth surface in both IAMs and ESMs in order 

to adequately project climate change. 

 Gridded climate projections are input to various impact models, and several recent and ongoing 

assessments have aggregated grid- or farm-scale crop model output to larger scales in order to allow 

climate impact assessments using models of different scales (e.g., von Lampe et al. 2014; Beach et al. 
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2015). For the AgMIP inter-model comparison, Müller and Robertson (2014) aggregated half-degree 

crop model output, which was driven by ESM climate projections, into 115 country and multi-country 

regions, using base-year harvested area as the weighting factor, allowing an average climate-related 

change in yield for each crop to be computed for each of these regions. Thus, the assumption in the 

AgMIP studies is somewhat analogous to that of the AEZ approach in IAMs—i.e., that agricultural 

productivity may be approximated for entire land use regions via weighted aggregation of potentially 

heterogeneous grid cells—but differs in that the defining criteria for the land use regions are political, 

not climatic. As such, the criteria for defining land use regions are not affected by climate change. This 

example not only demonstrates how the IAM and ESM spatial uncertainty is propagated through 

scenario based climate projection to impact analysis, but also shows how land region delineation would 

contribute to uncertainty when averaging climate impact feedbacks into IAM land projection. 

 Increasingly, studies are including climate change impacts on land projection to incorporate 

these feedbacks, and as these feedbacks are implemented the potential for increasing error due to spatial 

mismatch also increases. Studies modeling climate change impacts in GCAM (e.g., Calvin et al., 2013; 

Di Vittorio et al., 2014; Kyle et al., 2014) apply average changes to crop productivity in the AEZ-based 

land use regions, even though the changes may not be consistent with the boundaries, mainly because 

the spatial structure of the model is fixed. Two other feedback studies also assume that climate impact 

averages are representative over time, even though they use only 16 geopolitical regions for land use 

projection (Kicklighter et al., 2014, Reilly et al., 2012). While the geopolitical regions are not 

climatically determined, they are quite large and so the averages may not be representative, which is 

why several IAMs have disaggregated their geopolitical regions and in some cases introducing new 

issues related to climatic delineation. Our results suggest that spatial land boundaries in land use models 

should not be determined by climatic factors that may change, but rather by physical (e.g., watershed) or 

imposed (e.g., grid) factors that are unlikely to change over the simulated time period. While these 

alternative boundary definitions will not eliminate the sources of spatial uncertainty identified above, 

they have the advantage that they can be more easily constructed and do not lose their defining criteria 

over time, because they are not tied to climate. 

 

4. Conclusions 

 The two main purposes of this study are 1) to evaluate the utility of climatically-defined 

boundaries, AEZs in particular, for long-term agricultural sector projections in the context of a changing 

climate, and 2) to quantify the sensitivity of GCAM land resource projections to land use region 

boundaries, without applying climate impacts. Using AEZ boundaries defined by a future climate 
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realization reveals inconsistencies in agro-economic modeling assumptions when considering future 

climate change, and also leads to a very different trajectory of land use distribution in GCAM at regional 

and global levels, with dramatically different land resource projections through 2100. The main 

implications for land change modeling are that 1) greater care must be taken when delineating land use 

regions and 2) the uncertainty associated with this delineation must be quantified. 

 Importantly, climate-induced shifts will cause historical-climate-based land use regions to 

become heterogeneous over time with respect to climate impacts on land productivity. This 

heterogeneity violates the modeling assumption that the average vegetation productivity adequately 

describes the area for purposes of land resource projection over the upcoming century. The effects of 

this misrepresentation may be relatively small in this study compared to the effects of changes in the 

initial state of the world because here the homogeneity assumption applies mainly to prescribed rates of 

forest growth and technological yield improvement, and also because the historical and projected AEZs 

provide nearly identical levels of homogeneity in the initial crop yields. However, when including 

climate impacts on crops and vegetation, averaging productivity over increasingly heterogeneous land 

units will likely introduce substantial error into land resources projections. Note that in this study, we 

have not applied any changes to the land productivity consistent with future climate impacts; for this 

reason, the results with new AEZs should not be seen as representative of agriculture under a changing 

climate. This point is particularly illustrated by the results for future oil palm production, where the 

future production is actually increased by shifting a portion of total, base-year production from historical 

AEZ 6 to future, drier, and enlarged AEZs 4 and 5, a shift which indicates a likely, climate-induced 

reduction in productivity over time for this crop (an effect not considered in this study). Instead, the 

results should be interpreted to indicate the importance of base-year AEZ initialization for future long-

term agricultural and energy system projections. The demonstrated importance of the initial model state 

and its dependence on land use region boundaries suggests that climate-based delineations of land use 

regions and their associated assumptions may not be appropriate for studies involving climate change. 

While any set of static boundaries will have uncertainties associated with it, we suggest defining 

boundaries using factors that remain fixed over time, so as to eliminate additional uncertainties 

associated with dynamic boundaries and reduce the potential for a false sense of homogeneity at any 

given point in a simulation. 

Resulting differences in land use and cover change and bioenergy production affect net land use 

change CO2 emissions and the mix of energy production, respectively, demonstrating that GCAM’s 

whole energy-land system shifts in response to a different spatial delineation of the earth surface. Year 

2100 differences in global area of biomass energy crops (+7%), fodder grass (+14%), and intensive 
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pasture (-12%) are quite large with new AEZs, and regional differences can be even larger. These area 

differences correspond with changes in crop yields, production, and prices, which propagate through to 

the energy system, where biomass demands by the electricity and refining sectors are lower. The 

observed differences are generally explained by the land sharing algorithms in GCAM—wherein total 

land cover by land use type is affected by the size of the land use regions—and by the sensitivity to 

base-year-calibrated, within-region land allocations and yields, which are also affected by the shape and 

position of the land units. 

 We have been able to achieve these results by implementing a land data system that generates 

reproducible data for an arbitrary set of AEZ boundaries from publically available data sets. This system 

effectively reproduces the original GTAP land data used by GCAM, but not exactly due to lack of 

available spatial data that corresponds directly with the tabular data. Nonetheless, GCAM simulations 

using GTAP or the original AEZ LDS outputs generate nearly identical results. Furthermore, individual 

crop production and harvested area outputs from LDS generally match FAO data better than the GTAP 

data at the country level. The LDS has increased value over a single data set in that it enables flexible 

disaggregation of geopolitical boundaries, based on application-specific criteria, such as the desire to 

optimize land use regions to minimize error introduced by heterogeneity of climate impacts to 

agriculture and ecosystems over time. It also offers a self-consistent method for transforming gridded, 

initial-state land data to a variety of model-specific spatial structures, which could be useful for multi-

model studies. 

 

Software Availability 

The Land Data System (LDS) is C code, with additional support scripts written in R. The source code is 

less than 1 MB, the executable is about 200 kB, and the included input data is about 12 GB. The user 

must also download about 37 GB of additional input data. The LDS requires Linux or Mac OS X 

(Xcode is useful, but not necessary), the R statistical software (https://www.r-project.org), the NetCDF 

library, and 2 GB of RAM. The code has been written in standard C, so it should also compile on 

Microsoft Windows/DOS, with the appropriate tools, although this has not been tested. Alan Di Vittorio 

developed this code at Lawrence Berkeley National Laboratory, and it is available from the developer at 

no cost for non-commercial use only. Contact information: 

Alan Di Vittorio 

Lawrence Berkeley National Laboratory 

Climate and Ecosystem Sciences Division 

One Cyclotron Road, MS 74R316C 
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Berkeley, CA  94720-8268 

510-486-7798 

avdivittorio@lbl.gov 
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