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ABSTRACT

Bin picking is still a challenge in robotics, as patent in recent robot competitions. These competitions
are an excellent platform for technology comparisons since some participants may use state-of-the-
art technologies, while others may use conventional ones. Nevertheless, even though points are
awarded or subtracted based on the performance in the frame of the competition rules, the final
score does not directly reflect the suitability of the technology. Therefore, it is difficult to understand
which technologies and their combination are optimal for various real-world problems. In this paper,
we propose a set of performance metrics selected in terms of actual field use as a solution to clar-
ify the important technologies in bin picking. Moreover, we use the selected metrics to compare
our four original robot systems, which achieved the best performance in the Stow task of the Ama-
zon Robotics Challenge 2017. Based on this comparison, we discuss which technologies are ideal for
practical use in bin picking robots in the fields of factory and warehouse automation.
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1. Introduction

Bin picking is still an important problem in robotics. Its

difficulty is described in [1], for example. Picking an item

from a cluttered scene is applied to various fields: parts

supply in Factory Automation (FA), pick-and-place in

Warehouse Automation (WA), cleaning up using house-

hold robots and so on. But it was difficult to apply existing

methods, if target items have various shapes and mate-

rials. In the last few years, robotic competitions which

aim to solve a domain challenges are often held as a

platform to accelerate technology development. In the

FA field, for example, the National Institute of Standards

and Technology of USA is carrying Agile Robotics for

Industrial Automation Competition [2] since 2017. This

is a simulation-based competition focused on agility. The

Ministry of Economy, Trade and Industry of Japan is car-

rying out an Assembly Challenge [3,4] in their World

Robot Summit1 since 2018. This is a real robot’s com-

petition focusing on factors during setup changes and

during operation. The former factors are agility and lean-

ness. The latter ones are operation rate improvements. In
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the WA field, Amazon Robotics, Inc. held a competition

regarding a warehouse task automation using robotics in

2017. In large warehouses of e-commerce corporations, a

mixture of daily items are manually picked and placed.

The automation of the manual work is an important

problem in robotic bin picking. In particular, technical

problems lie in picking items with various shapes and

in identifying their texture, shape, and material. Various

methods have been proposed to solve the problems in the

competition in which the ability of the robot system was

tested in a competition setting. In this paper, we show a

system comparison of the four teams which ranked first

to fourth places in the Stow task, Amazon Robotics Chal-

lenge 2017. In the competition, the systems were ranked

according to the organizer’s rules. But we have difficulty

in analysis of a system performance in terms of more

practical use. The reason is as follows. A single metric

like the competition’s score is a kind of Principal Compo-

nent Analysis [5], thus dimensionality reduction always

loses some information about original data that reflect

the performance. While the needs of each industry are

© 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/
4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in
any way.



ADVANCED ROBOTICS 561

different, competitions reflecting the needs of each indus-

try are taking place. In this paper, we propose a set of

metrics in order to reflect the detailed behavior of a sys-

tem into our system performance analysis as a solution.

Then, we describe an example analysis showing the issues

that arise when robots are applied to actual factories or

warehouses by using the comparison results. Also, items

in each system to be improved to get more performance

are clarified.

Themain contributions of this paper are the following:

• We show the details of four unique robot systems and

compare the system configurations of each team.

• We propose a system performance evaluation based

on plural metrics introduced from reliability engi-

neering [6,7]. By this analysis, each team strategy is

revealed.

• We discuss on pros and cons of the systems and tech-

nologies including the details of the systems, and also

discuss on what we have learned and on future system

design.

The rest of this paper is organized as follows. Section 2

presents the related works. Section 3 introduces the Stow

task. Section 4 describes four systems developed for this

task. Section 5 presents our proposed system perfor-

mance evaluation. Section 6 analyzes our findings and

presents lessons learned. Finally, Section 7 concludes this

paper.

2. Related works

The related works are presented in five groups. The first

group includes systems developed for the bin picking

tasks. The second group summarizes different design

approaches for grippers. The third group is on grasp plan-

ning. The fourth group is on item recognition. Finally, the

fifth group is about comparison analysis of competition

systems.

2.1. Bin picking systems related to competitions

Bin picking is a classical but still challenging for state-

of-the-art robotics. Many proposals were made on the

automation of pick-and-place tasks in warehouses in

the Amazon Picking Challenge (later known as Amazon

Robotics Challenge), held from 2015 to 2017. In partic-

ular, there were many proposals and findings on gripper

design to solve problems when picking various items as

described in later sections. In the first competition held

in 2015, actual shelves used in Amazon warehouses were

also used in the pick-and-place of daily items from a bin.

Asmentioned in the summary article of the 2015 com-

petition [8], it was proven that a suction gripper is able

to pick many kinds of items. Further in the 2016 compe-

tition, the winner Delft [9] and many other teams suc-

ceeded in picking hard-to-pick items such as a mesh cup,

which a suction gripperwas unable to handle, by combin-

ing suction and two-finger grasping or similar pinching

mechanisms.

2.2. Gripper design

For grasping, the combination of suction and two-finger

or suction only became the common configuration. In

the 2017 competition, almost all the teams used either

of the two-gripper configurations mentioned above. The

overall winner of 2017 [10] as well as team NAIST-

Panasonic [11], who configured the system by analyz-

ing the past competitions and came fourth at their first

attempt, adopted the gripper configuration of suction and

two-finger combination. Team MIT-Princeton [12], the

winner of Stow task in 2017, where only bin picking

ability was tested, made a system which enabled sev-

eral motions such as suction down, suction side, grasp

down, flush grasp in one gripper system that combined

suction and two-finger grippers. Only the runner-up in

StowTask, TeamNanyang [13], used a configurationwith

two suction grippers and without a two-finger gripper.

They achieved a high score by focusing on bin rather

than gripper design. To explain in detail, they added a

mechanism which expanded the bin space thereby mod-

ifying the problem from a hard bin picking to a simpler

picking like a pick-and-place problem from a wide open

flat space. The team was successful in picking various

items, and their strategy was necessary for items in a

hard-to-pick pose or occluded. Team MC2 proposed a

two-stage strategy to use three types of gripper properly

[14]. As aforementioned, many types of gripper designs

were proposed in the competitions.

In comparison, jamming gripper [15] is highly versa-

tile in picking various kinds of items. Nevertheless, there

are some difficulties in applying jamming grippers to bin

picking because a jamming gripper tends to pick several

small items in a tightly packed bin simultaneously. Also,

in principle, as it needs to come into contact with the item

before it starts grasping, it tends to fail in picking soft

items which may change shape easily. Thus, nobody used

the jamming gripper in the competitions.

2.3. Grasp planning and grasp point detection

Grasp point detection takes place to determine the grip-

per pose to pick detected items. A method [16] which

convolutes a binary image model of the gripper to the
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depth image and does not require pre-information of the

object is already used in factory automation.Manymeth-

ods for grasp point detection using machine learning

from RGB images and depth images have been proposed.

Jiang et al. proposed a method [17] which searches in an

RGB image for a pose that is easy for a two-finger grip-

per to grasp and they were the first to make it practical

[18] by using deep learning. Pinto et al. proposed a grasp

point detection method [19] from an RGB image based

on 50,000 trials on actual robots. Moreover, Levine and

others achieved a method [20] where hand–eye coordi-

nation detects a grasp point fromRGBdata. The common

among all these methods is that they are able to deter-

mine the grasp point using only images. Unfortunately,

the physical correspondence between gripper and item

in grasping [21] cannot be understood just from appear-

ances in an image. Mahler and others have defined a

matrix which determines grasp points for a number of

objects in advance from the relationship between the 3D

object model and the 3D gripper model and proposed

a method [22] which assumes a physical grasp point of

unknown objects by learning from a vast amount of data.

They achieved this with deep learning [23] and used it

with vacuum and suction2 type of grippers [24]. In this

method, bin picking is available based on the learned

results when the learning becomes precise enough. Fur-

thermore, Matsumura and others succeeded in bin pick-

ing with real robots exclusively by learning from simula-

tion data [25]. TeamMIT-Princeton [12] and others fitted

for both suction and two-finger grippers by detecting

grasp pointswith Fully ConvolutionalNetwork (FCN) on

the base [12]. Whether to use a learning method by pro-

viding data beforehand or to use a non-learning method

which is more adaptive to unknown objects and envi-

ronmental changes depends on the preconditions of the

problem.

2.4. Sensors and algorithms for item recognition

In the competition, item detection based on images

obtained fromRGB-D sensors is often used. Thewinning

team in 2015 probabilistically classified multi-class items

with a method which describes the type of item in each

pixel using image features obtained from RGB and depth

images [26]. Then, items are segmented by integrating

the result. In the 2015 competition, many teams used

algorithms based on image features. From 2016 onward,

many adopted Convolutional Neural Networks (CNN)

and showed good performance. Faster network variants

such as Faster R-CNN [27] which performs bounding

box detection and multi-class classification in order, and

high-speed YOLO [28] and SSD [29], which perform the

detection and classification in parallel, were used for the

recognition. There were teams [10] who used semantic

segmentation methods as a base and all performed well

in detecting (classifying) items in the bins.

Object pose detection is used to determine grasp

point on items after they are detected. In general, data

obtained from an RGB-D sensor and object model are

matched together using methods such as Iterative Clos-

est Point [30], which minimizes the point cloud position

errors between data andmodel, andDirectional Chamfer

Matching [31], which presumes object pose by featuring

image edges andmatching them for every view direction.

Such methods are used for bin picking in FA as they are

robust against illumination changes, among other things.

The methods [32,33], which estimate object pose by vot-

ing after extracting features and matching pairs of vec-

tors obtained from edges and planes of object, are good

in speed and accuracy balance. A method [34], which

assumes the position and approximate pose of an object

by adding multi-view data to a CNN, has also been pro-

posed. Nevertheless, to use these methods, a 3D model

of the object is required. If a 3D model is not available, a

method by the TeamMIT-Princeton [35], which assumes

the object pose by fitting primitive shapes like spheres

and cubes directly to the data, has also been proposed.

The method to use depends on the precondition of the

problems.

2.5. Comparison analysis of competition systems

In the Amazon Robotics Challenge, points are awarded

or subtracted based on the performance in the frame of

the rules. But the final score does not seem to directly

reflect the technology suitability. Therefore, organizers

and teams published papers about system analysis [8].

Results of the analysis are not based on the scores in the

competition, but statistical data by a questionnaire sur-

vey about used technologies, team configurations, and

so on. From the results, we can understand which tech-

nologies were well used in the competition. But we have

difficulty in analyzing a system performance in terms of

more practical use.

Successful picking rate as shown in [14,16] or well-

known cycle time3 is an important metric to evaluate

the system performance in practical use. Mean Picks Per

Hour (MPPH) [22] is also a well-used metric [12,24],

which is related to both picking rate and picking time.

But such a single metric is a kind of Principal Compo-

nent Analysis is the name of the method so please keep

the upper case in the first letters [5]. Thus, dimension-

ality reduction always lose some information of original

performance data. Therefore, in this paper, we propose a

set of metrics in order to analyze a system performance

that reflects different aspects of a system behavior. We
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calculate metrics as below. Average time per pick and

Number of trials per hour for comparison of a bare pick-

ing action speed, Mean Time Between Failure (MTBF)

which is expected to compare a validity of a control

algorithm that can keep up with the phenomenon, Mean

Time to Repair (MTTR) which is expected to reflect

skills of recovery operation when work error occurs, and

Availability that can expect a comparison of duty rate of

normal operation and recovery operation, in addition to

MPPH, for each team. These introducedmetrics [6] were

originally used in a field of reliability engineering (for

example, [7]). The details of the metrics will be shown

in Chapter 5. The purpose of introducing a set of these

metrics is primarily a comparison of the detailed func-

tionality and performance of each system as described

above. The true goals are an uncovering of system design

strategies, a discovery of measures to obtain better func-

tionality and performance for them, and a discovery of

legitimate technologies for the purpose.

3. Problem setting of the Stow task

We show an outline of the Stow task rules in the Amazon

Robotics Challenge 2017.

• Robots must pick various daily items automatically

from a tote and place them into a storage.

• Items are mixed in a tote as shown in Figure 1. Robots

must identify the items and record which items are

placed into a bin in the storage.

• If a robot can pick and classify an item, then place the

item into a bin in the storage and record its location

successfully, points are awarded.

• If items are dropped or damaged while picking and

placing, points are subtracted.

• 20 items are in a tote. Half of the items are distributed

to teams in advance. The other half of the items are

distributed just before starting the competition. The

recognition dataset must be updated in a fewminutes.

• Robots must finish the task in 15 min. If robots finish

the task before the 15-min period, teams get additional

points.

• Storage can be designed by each team with some lim-

itations: size, number of bins and so on.

We also describe the details of the scoring system in

the rules. Points are awarded as follows:

• 5 points for each item stowed into the storage system,

plus 5 additional points if the item is a new (unknown)

item.

• 1 point for every 5 s or fraction thereof that remain on

the clock when the task is complete and all items have

been successfully stowed in the storage system, so long

as at least 15 of the locations of the items are correctly

registered in the item location file.

Points are subtracted as follows:

• −15 points for each item that is not in the storage sys-

tem, stow tote, or amnesty tote at the end of the task,

except for items grasped by the robot under normal

operation when time runs out.

• −5 points for each item in the storage system or stow

tote with an incorrect final location in the item loca-

tion file.

• −5 points for any item that is dropped into the storage

system from a height of more than 15 cm.

• −5 points for each item that is protruding more than

2 cm out of the storage system.

• −5 points for minor damage to an item, such as bends

and dents.

• −20 points for major damage to an item, such as large

rips, holes, or crushing.

More details, please check the official site4.

Figure 1. Example of items in a tote for the Stow task.
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4. Four proposed systems for the Stow task

4.1. TeamMIT-Princeton (first place)

The MIT-Princeton system [12] consists of a 6DOF ABB

IRB 1600id robot arm next to four picking work-cells see

Figure 2(a). The robot arm uses a multi-functional grip-

per with two fingers (built on top of a Weiss WSG 50

gripper) for parallel-jaw grasps and a custom retractable

suction cup. The gripper is designed to function in clut-

tered environments: finger and suction cup length are

specifically chosen such that the bulk of the gripper body

does not need to enter the cluttered space. One gripper

fingertip is equipped with a GelSight tactile sensor, while

the other fingertip uses an actuated fingernail for scoop-

ing along the sides of storage bins. Eachwork-cell consists

of a storage bin, as well as four fixed-mounted RealSense

SR300 RGB-D cameras: two cameras overlooking the

storage bins (positioned on opposite sides) are used to

infer grasp points, while the other two pointing towards

the robot gripper (also positioned on opposite sides) are

used to recognize objects in the gripper. Each work-cell

also includes a force sensor underneath for (1) checking

the weight of picked objects, and (2) detecting collisions.

The system is built around a grasp-first-then-recognize

pipeline. For each pick-and-place operation, it uses fully

convolutional networks (FCNs) to take as input RGB-D

images of the work-cell, and output pixel-wise confi-

dence scores (i.e. affordances) of four different motion

primitives for picking see Figure 2(b): top-down suction,

side suction, top-down grasp, side-flush grasp. Each pixel

of the output represents a suction or parallel-jaw grasp

centered at the 3D location of that pixel’s correspond-

ing surface in view Figure 2(c). The FCNs are trained

using a dataset of 1837 RGB-D images of cluttered work-

cells, with good/bad grasp locations manually annotated

by human experts. During inference, the system selects

and executes the motion primitive with the highest pre-

dicted confidence score, picks up one object, isolates it

from the clutter, holds it up in front of cameras, recog-

nizes its category, and places it into the appropriate bin.

The recognition algorithm uses a two-stream network to

learn a common feature embedding space between (1)

observed images of held objects, and (2) product images

– where images of the same object match to more simi-

lar output features. Since this network architecture does

not rely on knowing the number of object categories

beforehand, it is capable of recognizing images of novel

objects unseen during training by matching them to cor-

responding product images that are provided at test time

Figure 2(d). Prior to the competition, the network is

trained over observed-image-to-product-image pairs of

known objects.

This system design has several advantages. First, the

FCN-based grasping algorithm is model-free and agnos-

tic to object identities. It detects grasps by using local

geometric and texture features on objects, allowing it to

learn biases that can generalize to novel objects with-

out retraining (e.g. flat surfaces are good for suction,

porous surfaces are bad for suction, etc.). Second, the

object recognition algorithm works without task-specific

data collection or retraining for novel objects, which

makes it scalable for applications in warehouse automa-

tion and service robots where the range of observed

object categories is large and dynamic. Third, our grasp-

ing framework supports multiple grasping modes with

a multi-functional gripper (suction and grasping) and

Figure 2. The MIT-Princeton system setup (a) consists of a 6DoF robot arm next to four picking work-cells. The system uses (c) FCNs to
predict pixel-wise grasping confidences scores (i.e. affordances) of (b) four motion primitives using suction and parallel-jaw grasping.
After executing themotion primitive at the 3D location of the pixel with the highest confidence score, the system picks up an object and
uses (d) a two-stream network to match images of the held object to the most similar product image for recognition.



ADVANCED ROBOTICS 565

Figure 3. Team Nanyang’s system (a) and its system architecture (b).

thus handles a wide variety of objects. Finally, the entire

processing pipeline including grasp detection and recog-

nition requires only a few forward passes through deep

networks and thus executes quickly (a few hundred mil-

liseconds in total per pick-and-place).

4.2. TeamNanyang (second place)

The team formed by members of the Nanyang Tech-

nological University (Singapore) developed a dual-arm

robot equipped with suction-based grippers and a top-

open drawer-like storage system.

The robot system features two identical manipulators

(Universal RobotsUR5), three stereo cameras (Stereolabs

ZED) and two custom-built grippers. The built system is

shown in Figure 3(a) together with its system architecture

shown in Figure 3(b).

We divide the workspace into two individual and one

shared work cell to optimize the manipulation perfor-

mance and decrease the risk of collision between the

manipulators.

Our shelf has two bins which temporarily extend side-

ways in order to disperse the cluttered pile of items.

This allows the system to have easier access to the

items and to facilitate the object detection by decreasing

occlusion.

For object detection, we use the results of either one

of two classifiers, one based on engineered features and

the other based on learned features, whichever has the

highest confidence. This is because we expect higher

confidence for unknown items from the former, and

higher confidence for known items from the latter. As

engineered features, we use Grid-based Motion Statistics

(GMS) [36], which is a feature detection algorithm simi-

lar in principle to SIFT but superior in performance. The

learned-features are extracted using CNNs.

The grippers are suction-based since over 98% of the

training items were successfully grasped using our mod-

ified suction cups. Our grasping strategy consists mainly

on approaching the objects straight down from the top,

which is effective for almost 98% of the items.

4.3. TeamMC2 (third place)

The teamMC2 (Mitsubishi Electric Corporation, Chubu

University, Chukyo University) is shown in Figure 4(a).

Two robot arms are mounted on linear sliders, facing

each other with the item bins in the center in between

them. Each robot arm is able to operate individually and

has an RGB-D sensor and a force sensor. The RGB-D

sensor is used for item and picking position detection.

The recognition algorithms are based on SSD, graspa-

bility, and primitive shape matching for item detection

and classification, gripper pose detection, and item pose

estimation separately as shown in Figure 4(c). The force

sensor is used for force control when the robot picks and

places items. The proposed robot system has three differ-

ent types of gripper: suction, vacuum and two-finger as

shown in Figure 4(b). The suction gripper is mounted on

the left-side robot, as shown in Figure 4(a). The vacuum

and two-finger grippers are mounted on the right-side

robot, as shown in Figure 4(a). The two-finger gripper is

used after removing the vacuum gripper by using a tool

changer mechanism.
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Figure 4. Robot system by teamMC
2. (a) the system overview. (b) The system has three different types of gripper: suction, vacuum and

two-finger. (c) SSD-based object detection and 3D pose estimation algorithms can detect the graspable items and the grasping points
from cluttered scenes.

We devised a strategy in which the gripper combina-

tion changes accordingly. As bins are crowded and items

are on top of each other, vacuum gripper, which picks

items in smaller a surface area for picking, is preferred. As

items are both large and small, the suction gripper, which

is able to pick large items once it recognizes the surface,

is also suitable. In contrast, collision due to item crowd-

ing inside the bin must be considered for the two-finger

gripper and it is hard to obtain a pose for grasp posi-

tioning in a crowded bin. Therefore, the combination of

vacuum and suction gripper is chosen for the beginning

and middle part of the picking process.

When items are isolated, two-finger gripper can reach

a grasp pose more easily. Besides, the value of two-finger

gripper rises because the remaining items are hard to pick

with vacuum and suction grippers used at the beginning.

What is more, the more sparse the items get, the risk

of picking several items also decreases, and approach-

ing items in hard-to-pick poses becomes easier. Thus, the

suction gripper is also adopted. To achieve the strategy

explained so far, we configured a robot system in which

one robot arm has a suction gripper and the other has

vacuum and two-finger grippers, as described in [14].

The grippers are switched with a tool changer.

4.4. TeamNAIST-Panasonic (fourth place)

TeamNAIST-Panasonic is formedby theNara Institute of

Science and Technology (NAIST) and Panasonic Corpo-

ration and includes members with experience in robotics

competitions [37].

The proposed solution consists of a 7-DOF robot arm

(KUKA LBR iiwa 14 R820) with a custom-made end

effector, a controlled space (recognition space) with four

RGB-D cameras, and a shelf (storage system) with weight

sensors underneath [38]. The setup of the proposed bin

picking solution is shown in Figure 5(a).

The end effector has a suction gripper and a two-finger

gripper, shown in Figure 5(b), mounted on two sepa-

rate linear actuators, and an RGB-D camera to recognize

items and estimate the grasping points. The suction grip-

per consists of a compliant vacuum cleaner hose which

is partially constrained to reduce swinging when trans-

porting items. The two-finger gripper has high-friction

rubber on its parallel fingers and is used as a secondary

grasping tool. Both grippers include force-sensitive resis-

tors to detect collisions with items and force control to

avoid damaging items. The smart design of the end effec-

tor provided a reliable and consistent performance. The

high flow and compliance of the suction gripper reduced

the negative effects of vision andmotion planning errors,

making the system able to pick and transport the items

safely.

The recognition space consists of four RGB-D cam-

eras (Intel Realsense SR300) pointing at a space over

the storage system, where eight LEDs control the illu-

mination and the background of the cameras’ views

is controlled using non-reflective black plates. We

combine learned and engineered features, shown in

Figure 5(c), to achieve a robust object recognition for

both known and unknown items. This was particularly

useful in the case of the combination of bounding box
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Figure 5. Bin picking system proposed by team NAIST-Panasonic. (a) shows the system overview, (b) shows the suction and two-finger
grippers, and (c) presents the learned and engineered features used for item recognition.

volume and weight for clamshell-type and deformable

items.

The strategy to recognize an item is: (1) point the end

effector’s camera to the target container, perform object

detection using YOLO v2 [28] and grasping point esti-

mation using RGB images, and pick the item with the

highest recognition confidence; and (2) move this item

into the recognition space to confirm or reject the ini-

tial belief using SVMs for single or combined engineered

features (color histogram, bounding box volume, and

weight) trained with data collected at approximately 90 s

per item. A weight is assigned to each learned or engi-

neered feature to adapt object recognition to the task

requirements, physical characteristics of target items, and

so on, resulting in a voting system that determines the

final item class.

We designed the system to overcome failures by

quickly detecting the most common errors and by

preparing recovery behaviors in advance. This allowed

us to retry failed grasping attempts in a short time.

Furthermore, the recognize-while-holding concept of the

recognition space increased the robustness of the sys-

tem to accidentally dropped and unrecoverable items

which could critically compromise the object recognition

capabilities.

4.5. Comparison of system configurations

We show the system configurations of each system in

Table 1. The main similarities which can be understood

from this table are:

• All systems are based on industrial robots because

accuracy and speed are important factors to com-

plete the task. Industrial robot’s high accuracy may be

excessive but some collaborative robots are difficult to

use for the Stow task because of low accuracy.

• Almost all teams based their grippers on suction (or

vacuum) and two fingers. Suction-based grippers can

pick many items including deformable objects but

they are difficult to apply to mesh items (i.e. air-

permeable items). On the other hand, two-finger grip-

pers can pick mesh items. Therefore, the combination

performs well.

• The item recognition of the systems is mainly based

on RGB-D sensors and CNN-based algorithms. Open

source computer vision implementations are easy to

use for researchers of the robotics field and perform

well enough.

The main differences are:

• The number of robots and their degrees of freedomare

different. All teams basically pick items from above the

storage system with 4 DoF. Therefore, 6 DoF should

be enough. Robot systems can have many robots but

systems with too many robots are hard to implement

and are more prone to collision problems. Therefore,

many teams use systems with fewer robots.

• Some teams used force sensors, weight sensors, visual-

tactile sensors (GelSight), and so on. These sensors

seem to be useful for the Stow task but the imple-

mentation may be difficult, mainly because there are
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Table 1. System configuration of each team.

MIT-Princeton Nanyang MC
2 NAIST-Panasonic

Robots One 6-DoF robot arm Two 6-DoF robot arms Two 6-DoF robot arms on
1-DoF linear sliders

One 7-DoF robot arm

Sensors Sixteen fixed-mount RGB-D
sensors, four force sensors (below
bins), one tactile sensor (GelSight
on gripper), and one air pressure
sensor

Three RGB-D sensors Two RGB-D sensors and
two force sensors on robot
arms, and two weight
sensors

Five RGB-D sensors, two
weight sensors, two
FSR-based contact sensors,
and one air pressure sensor

Grippers Multi-functional gripper with two
fingers for parallel-jaw grasps and
a retractable suction cup

Two suction-based
grippers

One large suction gripper,
one small vacuum gripper,
and one two-finger gripper

One suction gripper and
one two-finger gripper

Recognition algorithm Two FCNs to infer grasping points
for both suction and parallel-jaw
grasping, and a two-stream
network to match real images
of objects to product images for
classification

Mixed-mode classifier
using feature extraction
(GMS) and CNN

SSD-based item detector
and classifier from a
RGB image, gripper pose
detector from a single
depth map, and 3D pose
estimator from a point
cloud data

Multi-modal weighted
voting classifier using
learned and engineered
features (YOLO from
RGB, volume from
depth, weight, and color
histogram)

Unique features Learning visual affordances
for multi-functional gripping
(grasping and suction)

Top-open extendable shelf
design

Using three types
of grippers and its
combination strategy

High-flow suction gripper
and fast failure recovery

# of robot arms 1 2 2 1
# of sensors 22 3 6 10
# of grippers 1 2 3 2

very few useful open source projects to help with the

implementation.

5. Performance evaluation

5.1. Metrics

We have previously compared two systems (team MIT-

Princeton and team MC2 at the Amazon Robotics Chal-

lenge 2017) using Mean Picks Per Hour (MPPH) [22]

and our original successful picking rate as a robot perfor-

mance index in [14]. MPPH is currently widely-used as

a bin picking system performance metric [22,39]. Since a

high correlation to the score of the competition is seen

with MPPH, it is suitable as a performance compari-

son index of several systems developed for the Amazon

Robotics Challenge 2017.

Comparing system performance using a single num-

ber is similar to the results of the Principal Component

Analysis [5], which is a method used for the dimen-

sional reduction of multidimensional data. The principle

is to reduce the original amount of information by choos-

ing the component with the largest possible variance.

In that sense, many performance indicators provide the

first principal component innately. However, if the first

principal component is chosen for each measurement

data, there is the problem that it can only be used for a

relative comparison. A solution to this problem is to eval-

uate the system performance in a comprehensive way by

calculating several absolute indices for each system.

In this paper, we calculate Average time per pick,

Number of trials per hour, Mean Time Between Failures

(MTBF),Mean Time to Repair (MTTR), andAvailability,

in addition to MPPH, for each team.

By evaluating each system individually and compre-

hensively, we analyze their system design policy and

system performance in a multifaceted manner. In each

system, their subsystems work differently as they are

designed differently, thenmultiple metrics will reflect the

difference between systems.

MPPH is calculated by multiplying the Number of

trials per hour and the Average probability of success.

Average time per pick is measured from the competi-

tion video of each team. In this metric, pick refers to the

motion from capturing object data by the sensors to pick

an item and place it. Then, number of trials per hour can

be calculated by Average time per pick.

The Average probability of success is also measured

from the competition video of each team.

MTBF is calculated by dividing the operating time by

the failure count of the system.

MTBF =
Tup

Ndown
, (1)

where Tup is the duration of the system running well,

and Ndown is the number of times the system fails and

takes some recovery actions until it succeeds. These were

obtained from the videos recorded during the Amazon

Robotics Challenge 2017.

MTTR is obtained as follows:

MTTR =
Tdown

Ndown
, (2)
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where Tdown is the duration from the beginning of the

failure to the end of the recovery actions.

Availability is obtained as follows:

Availability =
MTBF

(MTBF + MTTR)
. (3)

Availability is a dimensionless quantity, which represents

the ratio between the time that the system is running well

and the total time the system is operating.

5.2. Performance evaluation using the proposed

metrics

We calculated the proposed set of metrics and rela-

tive values, as shown in Table 2. Then, we normalized

the most significant metrics based on the winning team

(teamMIT-Princeton), as shown inTable 3.We also show

these normalized results in Figure 6. Moreover, we sum-

marized the number of picked items and the successful

picking rate per gripper type in Table 4.

From Figure 6, we observe that MPPH and the scores

are highly correlated, which makes it suitable as a com-

prehensive performance index in that sense. We consider

that the slight deviation is caused by a difference in scor-

ing when including a bonus point. However, the other

metrics are considerably fluctuating.

6. Discussion

6.1. Analysis of the performance comparison

In this section, we analyze the results shown in Figure 6.

We consider changes of eachmetric in comparison to the

actual system implementation, and explore the system

design concept.

Table 2. Results of metrics calculation of each team.

MIT-Princeton Nanyang MC
2 NAIST-Panasonic

Score based on ARCa

rules
160 125 120 110

Number of trials 32 37 28 50
Number of successesb 19 16 18 17
Number of errors 13 21 10 33
Successful picking rate 0.594 0.432 0.643 0.340
Average time per pick (s) 23.1 24.3 32.1 18.0
Number of trials per hour 156 148 112 200
Average probability of
success

0.594 0.432 0.643 0.340

MPPH 92.6 64.0 72.0 68.0
Sum of up time (s) 535 504 488 437
Sum of down time (s) 204 396 412 463
Total time (s) 739 900 900 900
MTBF (s) 28.2 31.5 27.1 25.7
MTTR (s) 15.7 18.9 41.2 14.0
Availability 0.642 0.626 0.397 0.647

aAmazon Robotics Challenge 2017.
bSuccessful sequences of pick, move, and place.

Table 3. Normalized results of selected metrics based on the
highest score team (teamMIT-Princeton).

MIT-Princeton Nanyang MC2 NAIST-Panasonic

Score based on
ARCa rules

1.00 0.78 0.75 0.69

Average time per
pick

1.00 1.05 1.39 0.78

Number of trials
per hour

1.00 0.95 0.72 1.28

Average
probability of
success

1.00 0.73 1.08 0.57

MPPH 1.00 0.69 0.78 0.73
MTBF 1.00 1.12 0.96 0.91
MTTR 1.00 1.20 2.63 0.89
Availability 1.00 0.97 0.62 1.01

aAmazon Robotics Challenge 2017.

Table 4. Number of picked items and the successful picking rate
of each gripper. We refer to the blower-based suction as suc-
tion and vacuum-pump-based suction as vacuum. In this paper,
dropped items during pick-and-place do not count as successful
picking.

Suction Vacuum Two-finger Total

MIT-Princeton
Number of picked items 13 – 6 19
Successful picking rate (%) 54.2 – 75 59.4

Nanyang
Number of picked items 16 – – 16
Successful picking rate (%) 43.2 – – 43.2

MC2

Number of picked items 9 6 3 18
Successful picking rate (%) 64.3 100 37.5 64.3

NAIST-Panasonic
Number of picked items 17 – – 17
Successful picking rate (%) 34 – – 34.0

MPPH is a good indicator that represents system per-

formance, as evident in the fact that MPPH and the score

based on the rules of the Amazon Robotics Challenge

are similar. Hereafter, we examine the factors constitut-

ing the MPPH, namely, the Number of trials per hour

and Average probability of success. First, Number of tri-

als per hour is very low forMC2, while it is high for team

NAIST-Panasonic. The other two teams are in the mid-

dle. When we look closely at the system design of each

team, MC2, for example, has a hand–eye system with

a vision sensor attached to a wrist of their robot, and

it is configured to perform the vision sensing operation

and the other operation sequentially. In other words, the

recognition operation is performed after the completion

of the stow operation, which is one cycle before, then,

the picking operation starts. Therefore, one cycle takes an

amount of time while the other teams can perform the

previous stow operation and the recognition operation

concurrently and shorten their cycle times.

For the posture variation of the grasping object,

the team NAIST-Panasonic uses only one hand with a
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Figure 6. System performance comparison based on the
selected metrics.

vertical downward trajectory, and the grasping operation

starts immediately after recognition is completed. The

operation itself is simple, which leads to an increase in the

number of attempts per unit time. The other two teams,

especially the team MIT-Princeton, have more than one

type of gripping trajectory, and it takes longer than the

team NAIST-Panasonic to plan and operate. The differ-

ence of these system designs is reflected in the number of

trials per hour.

In terms of the Average probability of success,

MC2 and MIT-Princeton are comparable, while NAIST-

Panasonic and Nanyang have lower values. As a system

design concept, the difference lies in whether it is thought

that every single operation is important, and the system

attempts to score by the number of retries even if it fails

somehow.

In terms of the MTBF, Nanyang team is somewhat

larger, while the other teams are almost equal. In other

words, since the success possibility is slightly higher than

the other teams, Nanyang team can keep their normal

operation for longer.

Considering MTTR,MC2 team has a large value. The

reason for this is that it is disadvantageous in recover-

ing, it takes long time in one operation, and fails many

times at the same object. This can lead to imagine that

the recognition method and the grasping method are too

naive to succeed (i.e. the system makes the same mis-

takes). The team NAIST-Panasonic is expected to have

a strategy switch that succeeds in recovering at high

speed. TeamsNanyang andMIT-Princeton aremoderate,

but MIT-Princeton is a little dominant. MIT-Princeton

tries different ways for every fail, each seems reasonable.

This enables quick recovery. Nanyang team did grasping

point change for each error. This worked well most of

the times. TeamNAIST-Panasonic tries aggressively, thus

items flipped when grasping failed, and, consequently,

the state of the bin was changed. Moreover, they some-

times changed the grasping point or the target object,

so the success probability increases. MC2 did gently and

naive repetition so that the state of the bin did not

change. Then, the same unsuccessful picking motion is

repeated.

In terms of Availability, the MC2 team’s value is very

low, while the other teams present high, comparable val-

ues. When combined with other indicators, MC2 has

a high probability of success but it takes long time to

recover from failure. The other teams seem to be bal-

anced on the speed of operation, the probability of suc-

cess, and the time of recovery from failure.

6.2. Lessons learned and future practical system

design

In the previous section, we estimated the design policy

differences and their performance with newly introduced

metrics, which could not be understood from the analysis

based on a single metric.

Next, we discuss an ideal system according to the

arguments we have made so far. We found that it is espe-

cially advantageous to have short operation time, if we

try to estimate the ideal system design. MPPH, which is

highly correlated with the competition score, is likely to

become significantly larger as the operation time is short-

ened. Although high probability of success is preferable,

its effect on MPPH is only linear. These facts indicate

that in a system hardware configuration that best short-

ens cycle times, a hand eye system is disadvantageous, so

vision sensors should be placed separately. Nevertheless,

the freedom of the field of view is restricted with a hand

eye configuration. If the system continues to manipulate

the same objects, this restriction will not be a prob-

lem. However, this can be disadvantageous if the target

objects constantly change, whichwill require aworkspace

reconfiguration.

In addition, recovery strategies for grasping failures

are important and repetitionwhich does not rely onprob-

abilistic phenomena is required, for example, by changing

parameters of the recognition algorithm and grasping

method, and possibly changing postures of the object by

flipping them or shaking the bins, for example. Here too,

it is important to improve the repetition rate.

Now, we can discuss a theoretical practical system

design considering a combination of the four teams’ sys-

tems. It is particularly true that short operation time is a

target factor. MPPH, which is correlated with the score,

is likely to take a significantly larger value as the oper-

ation time is shortened. Average probability of success

is not so important, as the effects on MPPH are only
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linear. These facts give suggestions for tactical strategies

to adjust the system. If there is a choice between suc-

cess probability and operation time, one should choose

to improve operation time.

In a word on a hardware configuration, hand eye sys-

tem is disadvantageous, and vision sensors should be put

separately. However, one must be careful for the model

switching or system cost in actual business use. On the

other hand, the recovery strategy at the time of grasp-

ing failure is also important. It is worthwhile to focus on

the development of error recovery methods. In any case,

speed is desired. If such a team comes to the competi-

tion, theywill also earn bonus points andmust be the first

prize.

Finally, we discuss the identification of the optimal

system configuration and technology for practical use.

Even though an analysis based on the data from the

Amazon Robotics Challenge alone is difficult to gener-

alize, what we have found at this time is that attaching or

detaching a vision sensor to a robot is about changing the

advantage or disadvantage depending on the presence or

absence of production model switching.

Then, the need for the next-generation produc-

tion system is said to be speeding up for production

changeover or switching, re-usability of production sys-

tem bodies, autonomous improvement of production

speed and quality, and unmanned operation time by

autonomous error recovery and operation learning [2,3].

Though these factors are not included in the Amazon

Robotics Challenge, it is expected that competition rules

are formulated and implemented to compare these fac-

tors in future competitions.

7. Conclusions

In this paper, we analyzed four robot systems devel-

oped for the Amazon Robotics Challenge using a set

of performance metrics that clarify the hidden features

behind the competition scoring. Based on the competi-

tion results, we could show the difference between these

systems and which technologies are important for the

competition and future practical use according to the

proposed metrics. The technologies relevant to picking

robots are improved through the competition but fur-

ther technology improvements are needed for practical

use. We expect this analysis to be a good reference for

advanced future technologies along with novel needs of

the industry.

Though the evaluation criteria reflecting the needs of

the industry were reflected in the scoring of competi-

tions, it is also true that high-level systems have been

proposed with implicit specifications which are difficult

to evaluate through competition scores. In fact, working

speed and probability of item damage are important as

needs in the industry, and they can become problems

in advanced system design and adjustment. However,

in this paper, the ultimate solution has not been found

because no records of item damage exist. It is presumed

that all teams are afraid of penalty points so that they

added a wide-enough margin to their system operation

speed to prevent items frombeing damaged. In the future,

a system configuration which can reduce such margin

will be important, as it will also improve the operating

speed.

Notes

1. https://worldrobotsummit.org/en/
2. In this paper, we refer to the blower-based suction as suc-

tion and vacuum-pump-based suction as vacuum.
3. Originally, Adept company had proposed this metric. It is

a round trip time or cycle numbers per a minute of a robot
TCP trajectory which goes 25mm up, 305mm horizontal,
25mm down.

4. https://www.amazonrobotics.com/site/binaries/content/as
sets/amazonrobotics/arc/2017-amazon-robotics-challenge
-rules-v3.pdf
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