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Abstract: Mega sustainable construction projects (MSCPs) require complex system engineering.

There are various indicators available to evaluate sustainable construction, and it is difficult

to determine which the key indicators are among them. Existing studies do not adequately

consider the stakeholders associated with the indicators of sustainable construction, leading to key

decision-makers’ lack of targeted management strategies to improve the sustainability level of MSCPs.

Using literature analysis and expert interviews, this study identified the key evaluation indicators of

MSCPs from a stakeholder-network perspective. Social network analysis (SNA) was used to explore

the relationships between the key evaluation indicators and corresponding stakeholders. The results

showed that the government and designers significantly impacted other stakeholders and played as

the key stakeholders in MSCPs. Regarding the indicators, applying energy-saving and intelligent

technologies plays a key role in the MSCPs. This study links key indicators of MSCPs with the

associated stakeholders, which helps decision-makers to develop targeted strategies to improve the

sustainability level of MSCPs, thereby not only improving the efficiency and effectiveness of the

intervention strategies, but also helping to save decision-makers’ monetary and human resources

which are usually limited.

Keywords: MSCPs; stakeholders; evaluation indicator; social network analysis

1. Introduction

The increasing fixed asset investments led to China’s rapidly developing construction industry.

This development generated a significant amount of energy consumption, waste, and greenhouse

gas emissions. Energy consumption accounts for two-thirds of global greenhouse gas emissions [1].

This highlights the need for the construction industry to reduce greenhouse gas emissions and the

negative impacts on the environment. Sustainable construction can be defined as “building a healthy

environment based on resource efficiency and ecological principles” [2]. Mega sustainable construction

projects (MSCPs) are extremely large-scale projects typically costing more than $1 billion such as

power-plant highways and tunnels, bridges, railways, seaports, and enormous projects for cultural

events [3]. Many domains are involved in these mega projects, which leads to the inherent complexity

of technology, structure, society, and management associated with megaprojects. MSCPs must integrate
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sustainability objectives (i.e., aspects related to the environment, economy, and society) with three

project management objectives (duration, quality, and cost) [4]. Managers and decision-makers who

lead MSCPs must consider, balance, and incorporate environmental, economic, and social indicators

into the criteria for evaluating megaprojects [5].

Previous research on the evaluation indicators for assessing the sustainability level of construction

projects focused on the characteristics of evaluation indicators, such as determining the weights

of the indicators and on comparing different evaluation systems [6,7]. Studies also developed

recommendations through simulation and modeling [8–10]. However, most existing studies paid little

attention to the stakeholders influenced by or responsible for the implementation of the indicators.

MSCPs involve a wide range of stakeholders, who have their own interests and are interested in various

types of objectives. MSCPs are a complex adaptive system that requires close collaboration among

different stakeholders to achieve the sustainability objectives of the project [11]. Fully considering

the interests of all parties can continuously and effectively improve the project’s sustainability level.

Therefore, MSCPs should be closely linked with stakeholders to set the objectives [12].

As a network analysis tool, social network analysis (SNA) emphasizes the inclusion of social

science variables in complex project management. It considers the complexities brought by stakeholder

relationships and their chain effects on the project. SNA is appropriate for analyzing the network of

mega construction projects, and for other projects involving many objects and interdependent, iterative,

and interactive relationships [13]. Using SNA to assess the interrelationships among stakeholders

can contribute to achieving the sustainability objectives of projects. Therefore, this study adopted the

SNA method to establish relationships between stakeholders and indicators for MSCPs based on the

dimensions of society, economy, and environment. This study had the following objectives:

I. To use literature analysis and interviews to identify the key indicators for evaluating MSCPs.

II. To use workshops to establish links between different evaluation indicators and the

corresponding stakeholders.

III. To use the SNA method to construct a network of the evaluation indicators and identify the

key stakeholders and indicators in the network.

Few studies aimed to identify the critical evaluation indicators of sustainable construction

considering stakeholders who are influenced by the indicators [14]. In this study, a stakeholder-indicator

network model based on SNA was constructed, expanding the body of knowledge relating to sustainable

construction. The identified key stakeholders and indicators could be used by relevant decision-makers

to develop targeted strategies to improve the sustainability performance of mega construction projects.

2. Literature Review

Sustainable development means such a development that satisfies the present needs without

a limitation of the possibility of satisfying the needs in the future [15]. Many composite indicators

are used to measure the sustainable development of construction projects. These indicators should

take into account the triple bottom line approach of sustainability, and therefore, include economic,

environmental, and social dimensions in their assessment [16]. Accordingly, it is important for MSCPs

to achieve a balance amongst the environmental, economic and social objectives. Kibwami and

Tuteigensii [17] indicated that sustainable construction has three sets of goals, namely the economic,

social, and environmental goals. In addition, there are previous studies on the indicators for evaluating

MSCPs. For instance, Fernández-Sánchez and Rodríguez-López [18] used a sustainable breakdown

structure (SBS) to reduce subjectivity and uncertainty in the process of indicator selection, and they

divided the sustainability indicators into social, environmental, and economic dimensions as well.

This is further supported by Zhong and Wu [19], who also built a sustainability evaluation system from

the same three dimensions, as well as Whang and Kim [20], who highlighted the need to balance these

dimensions in successfully achieving sustainability. Based on these previous studies, this research

centered on the three dimensions of society, economy, and environment. This study synthesized
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previous studies and accounted for the linkages between stakeholders and the evaluation indicators

for MSCPs.

2.1. Stakeholders in MSCPs

Stakeholder refers to “any group or individual that is likely to be affected or affecting the

achievement of organizational goals” [21]. The Project Management Institute (PMI) Standards

Committee defines project stakeholders as individuals and organizations who are active in the

project, or those whose interests may be affected by project implementation or successful completion

of the project. Compared with traditional construction projects, mega sustainable construction

projects emphasized more types of stakeholders such as the public, suppliers, financial institutions,

end-users, and professional associations. Many different types of stakeholders in mega projects have

more uncertainties than traditional projects when they are faced with risks. Based on extensive

literature analysis and semi-structured interviews, Yang and Shen [22] grouped construction project

stakeholders into 14 categories, including clients, contractors, consultants, suppliers, end-users,

governments, financiers/sponsors, communities, district councils, the general public, competitors,

utilities, special interest groups, and the media. Similarly, Yang and Zou [23] grouped construction

project stakeholders as clients, consultants, contractors, subcontractors/suppliers, end-users, financial

organizations, government, environmental protection organizations, professional associations, media,

the public, trade unions, evaluators/certifiers, and researchers/educators. Davis [24] proposed

stakeholders of MSCPs should include the government, financiers, developers, consultants, suppliers,

designers, owners, supervisors, contractors, sub-contractors, and end-users. Mok et al. [25] argued

construction project stakeholders should include clients, consultants, the main contractor, engineers,

subcontractors, end-users, and others.

Often initiated by the government, mega construction projects usually require massive

investments in infrastructure, which have a long schedule, long lifespan, extreme complexity,

and significant social impacts [26]. Mega construction projects are usually very complex in nature and

each megaproject could easily cost over $1 billion [27]. MSCPs are a complex concept involving both

the primary and secondary stakeholders [28,29]. Clients, owners, contractors, designers, suppliers,

and governments have a direct link to mega construction projects. They often have sufficient

influence on sustainable construction, and thus, could be considered as primary stakeholders [30].

Secondary stakeholders mainly refer to assessment organizations, scientific research institutions,

and the surrounding people who do not directly participate in the project construction process.

Stakeholders have different interests in the development process of MSCPs. If their expectations

and interests are not met, conflicts among them could emerge which hinders project success [31,32].

Stakeholder theory indicates that, to achieve sustainable development, organizations must balance

different stakeholder interests [22]. Managing multiple stakeholders and maintaining an acceptable

balance between their interests is the key to project delivery success [33–35]. Effective stakeholder

management requires highly reliable and effective information exchange, which could eliminate

information asymmetry among stakeholders [36]. In addition, by strengthening the cooperative

relationships between stakeholders, the net benefits of MSCPs can be improved, especially for the

owners and contractors [37].

2.2. Evaluation Indicators for MSCPs

The implementation of sustainable projects requires effective stakeholder management at

all project stages. Such projects also require an accounting of the project’s social, economic,

and environmental implications [38]. Life-cycle assessment (LCA) is the most widely used method

to assess the environmental impact of construction projects, including mega projects. LCA is

particularly useful for quantifying CO2 emissions, renewable energy use, water consumption,

and other environmental factors in mega construction projects [39]. Past studies also compared

different evaluation systems for green buildings, such as LEED (Leadership in Energy and
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Environmental Design), BREEAM (Building Research Establishment Environmental Assessment

Method), CASBEE (Comprehensive Assessment System for Built Environment Efficiency),

BEAM (Building Environmental Assessment Method), and SB Tool (Sustainable Building Tool) [40,41].

Previous studies also employed various methods to assess the sustainability performance

of construction projects. Fernández-Sánchez and Rodríguez-López [18] proposed a framework

of sustainability indicators assessing infrastructure projects. Aboushady and El-Sawy [42] used

the analytical hierarchy process (AHP) method to develop the sustainability indicators of mega

infrastructure construction projects. Waas et al. [43] used sustainability assessment (SA) and

sustainability indicators (SIs) as theoretical tools for evaluating the decision strategies of sustainable

construction. Chen et al. [10] combined fuzzy set theory, the Delphi method, and the discrete

multi-criteria method, to analyze the sustainable development indicators in the uncertain economic

environment. Lin et al. [14] used a structured method and a quantitative analysis model to develop an

indicator system to evaluate megaproject social responsibility effectively.

Most of these evaluation methods and tools focus on project impacts on the environment and

energy efficiency, without a holistic perspective on sustainability including the economic, financial,

and social aspects [44]. This gap slowed down the development of assessment indicators for

MSCPs [45]. Sustainable construction performance needs to be assessed by a combination of indicators,

including energy consumption, thermal comfort levels, resident well-being, and productivity [46].

These indicators should respond to various stakeholders’ sustainability interests as well. However,

few existing studies aim to link the assessment indicators with the associated stakeholders.

As mentioned in Section 2.1, MSCPs typically involve various stakeholder groups with complex

interests and interactions. Accordingly, linking indicator analysis and stakeholder management can

effectively achieve sustainable development in MSCPs. Therefore, identifying critical indicators based

on a perspective of stakeholders is a critical concern. This study aims to bridge these research gaps.

3. Methodology

3.1. Research Instrument Development

The research process for this study was designed in four stages (Figure 1). Based on the

two methods of identifying stakeholders (empiricism and rationalism) proposed by Yang [47],

Mok et al. [25] combined the two methods to analyze the stakeholders comprehensively. This study

identified 12 types of stakeholders for MSCPs through literature analysis, including governments (S1),

owners/investors (S2), planning/design enterprises (S3), contractors (S4), subcontractors/suppliers

(S5), financial institutions (S6), environmental protection organizations (S7), evaluators/certifiers

(S8), scientific/educational institutions (S9), end-users (S10), professional associations (S11),

and surrounding populations (S12). The list of 12 stakeholders was then presented to 13 experts

in the pilot study (Table 1) in the field of sustainable construction for further comments. With rich

experience and knowledge for MSCPs, all interviewees were selected following a stakeholder-based

sampling principle to ensure the data were representative.

To identify the evaluation indicators for MSCPs, 28 evaluation indicators were obtained from a

literature analysis. The indicator list was further revised according to 13 experts’ feedback. Eventually,

23 evaluation indicators were identified as shown in Table 2. Five evaluation indicators were deleted

because they were duplicated with other indicators. A relationship table was developed to link

sustainable construction evaluation indicators with the stakeholders (Table 2). The design structural

matrix method was adopted in this study to define the links in the evaluation indicator network.

The link was defined by the impact from one indicator to the other. The data were collected from

workshops and interviews, with more details in the following sections. The initial data collection

process lasted two months. After the data were collected and collated, the results were reported back

to the interviewees, to facilitate the identification of fuzzy areas.
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according to 13 experts’ feedback. 

Figure 1. Research framework.

Table 1. Background of experts in the face-to-face interviews. MSCPs—mega sustainable construction projects.

Organization Role of Interviewee Ages
Experience in
Construction

Number of MSCPs
Involved in

Construction company Senior engineer 36 10 years 4
Construction company Civil engineer 38 12 years 5
Construction company Project manager A 56 24 years 10
Construction company Project manager B 53 23 years 10

House builder Developer A 45 17 years 8
House builder Developer B 44 15 years 7
House builder Design engineer 55 32 years 12

Research institutions Professor A 56 25 years 9
Research institutions Professor B 54 24 years 8

Construction and technical services organization Consultant A 41 17 years 14
Construction and technical services organization Consultant B 38 14 years 12

Real estate firm Architectural 48 17 years 8
Real estate firm Architectural 45 15 years 7

Table 2. Project stakeholder-associated indicators.

Index Index Name Stakeholder Index ID Source Dimension

N1 Recycling of materials and water
S3
S4
S5

S3N1
S4N1
S5N1

[48,49]

Environment

N2 Land use
S1
S2
S3

S1N2
S2N2
S3N2

[48–50]

N3 Material resources
S3
S4
S5

S3N3
S4N3
S5N3

[48,49]

N4 Waste management
S1
S4
S5

S1N4
S4N4
S5N4

[40,42,49,51]

N5 Ecosystem
S3
S4
S5

S3N5
S4N5
S5N5

[40,50,52]



Sustainability 2018, 10, 2939 6 of 18

Table 2. Cont.

Index Index Name Stakeholder Index ID Source Dimension

N6 Protection of water resources

S1
S3
S4
S5
S7

S1N6
S3N6
S4N6
S5N6
S7N6

[48,53]

N7 Air quality around the project
S4
S5

S4N7
S5N7

[40,49]

N8 Indoor environmental quality
S2
S3

S10

S2N8
S3N8

S10N8
[54–56]

N9 Greenhouse gas emissions

S1
S3
S4
S5

S1N9
S3N9
S4N9
S5N9

[18,49,57]

N10 Noise level

S1
S4
S5

S12

S1N10
S4N10
S5N10
S12N10

[42,49,58]

N11 Renewable energy efficiency
S3
S7
S8

S3N10
S7N10
S8N10

[42,49,57,59]

N12 Best energy performance
S3

S11
S3N12
S11N12

[60]

N13
Application of energy saving, ecology,

and intelligent technology

S3
S7
S9

S3N13
S7N13
S9N13

[8,53]

N14 Cost-effectiveness

S2
S3
S4
S6

S2N14
S3N14
S4N14
S6N14

[8,18,40,42,53,61]

Economy

N15
Percentage of population receiving external

benefits in project-affected areas

S7
S9

S12

S7N15
S9N15
S12N15

[55,62]

N16 Economic diversity in project-affected areas
S1
S2
S6

S1N16
S2N16
S6N16

[58,62]

N17 Life/endurance of construction and design
S3
S4
S5

S3N17
S4N17
S5N17

[53]

N18 Maintenance and renovation
S3
S4
S5

S3N18
S4N18
S5N18

[53]

N19 Market supply and demand
S1
S2

S12

S1N19
S2N19
S12N19

[49,54,55,58]

Society

N20
Percentage of community residents who

must be relocated due to the project
S1

S12
S1N20
S12N20

[49,54,55,58]

N21 Work created throughout the project cycle
S4
S5

S12

S4N21
S5N21

S12N21
[56,58,63]

N22 Occupational health and safety

S3
S4
S5

S12

S3N22
S4N22
S5N22
S12N22

[42,55,56]

N23 User and owner satisfaction

S2
S3
S4
S5

S10

S2N23
S3N23
S4N23
S5N23
S10N23

[56]
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3.2. Data Collection

Twelve types of stakeholders were contacted and invited to participate in this study. This study

used snowball sampling technology to encourage more potential respondents to participate in the

study [32]. A total of 120 potential interviewees were invited, and 36 were willing to participate in the

interview, which leads to a response rate of 30%. Each type of stakeholder consisted of three individuals.

Interviewees had 5–20 years of working experience, mainly in government departments, scientific

research institutions, planning/design enterprises, and construction companies. These interviewees

formed a workshop, which reduced ambiguity through open discussion and improved data reliability

by sharing information among different participants [64,65]. In the workshop, 36 interviewees were

divided into 12 different types of stakeholder groups. These groups were organized to identify

stakeholder-associated indicators in the project. They then were asked to evaluate the tightness between

different indicators and stakeholders. To ensure the reliability of the results, interview questions were

sent to the interviewees via e-mail before the face-to-face workshop to prepare them for the event [32].

Roundtables started with an introduction of researchers. They discussed the objectives of this study

and provided a list of topics to guide discussion. In the workshop, participants were asked to answer

some types of “how” and “what” questions, such as how indicators are connected to stakeholders and

what the degree is between different stakeholder-associated indicators. The workshop participants

contributed to the development of a stakeholder-associated indicator interrelationship matrix in which

the possibility and consequence of the impact between risks were determined with five-point values.

A Likert scale (1 to express complete disagreement, and 5 to express complete consent) was used as

well for some questions. This approach was similar to studies conducted by Li et al. [66]. To reduce

ambiguity, we verbally explained questions that were not clear to the interviewees. After the workshop,

the stakeholder-associated indicator interrelationship matrix was completed.

3.3. Data Analysis

To visualize the data, we established a structural matrix to determine the relationships

between stakeholders and indicators. This step mainly defined the interactions between indicators.

After transforming the data, the matrix data were entered into the NetMiner 4 software. This allowed

the derivation of the network chart showing the sustainable construction evaluation indicator and the

status centrality map.

In SNA, the first step is to identify the nodes. For this study, the number Si (i = 1, 2–12) represents

12 stakeholders, and the number Nj (j = 1, 2–23) represents 23 evaluation indicators. For example, a line

from S1N2 to S3N4 indicates that S1N2 affects S3N4. Then interviewees from S1 and S3 were interviewed

to answer the question: “Can S1N2 affect S3N4, and if so, to what degree does S1N2 influence S3N4?”

After collection, the data were entered into NetMiner 4 to visualize the network. According to the

analysis of network characteristics in sustainable construction, this paper mainly analyzes the network

density, network cohesion, node degree, intermediation, and status centrality of the stakeholder index

network [25,65,67]. Table 3 explains the theoretical definitions of these SNA metrics. These indicators

can reflect key nodes and key connections in the network, leading to key stakeholders and key

evaluation indicators in the sustainable project network. Finally, effective measures were proposed for

managing stakeholders in large sustainable construction projects.

Table 3. SNA metrics and their explanations.

Metrics Theoretical Definition Explanation

Density
The ratio of actual ties in a network to the
greatest number of possible ties when all
nodes are interconnected. [68].

Network density ranges between 0 and 1.
The higher the density, the more indicator
interrelations are there in the network.

Cohesion
The number of ties, or the length of path
to reach nodes in a network [69]

The higher the cohesion, the closer the risks are
connected in the network.
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Table 3. Cont.

Metrics Theoretical Definition Explanation

In-degree
The number of direct incoming ties
transmitted to a specific node [70].

A stakeholder with high in-degree has high
accessibility to information in the project.

Out-degree
The number of direct outgoing ties
emitted by a particular node [70].

A stakeholder with high out-degree is
influential as it can quickly disseminate one’s
information to a large population.

Degree difference
The difference between out-degree and
in-degree scores of a specific node [69].

A stakeholder with larger in-degree than
out-degree is considered peripheral
(i.e., less influential) in the project as it is an
information receiver more than the provider.

Betweenness centrality

It calculates the occurrence in which a
specific node/link is situated between
other pairs of nodes/links on the basis of
the shortest path [71].

This role facilitates communication by diffusing
information to stakeholders who may
otherwise be disintegrated from the network.
This role may also interfere with
communication if it transmits information in
poor quality or untimely manner.

4. Results and Analysis

4.1. Identification of the Indicators for MSCPs

Based on the literature analysis and semi-structured interviews, this study identified

12 stakeholders and 23 evaluation indicators (Table 2) for MSCPs. The workshop participants identified

72 stakeholder-related indicators. There are 72 corresponding nodes in the figure, and 1495 links

between the 72 nodes. These represent the interrelationships among the indicators. In addition,

we calculated the out-degree and in-degree of each node to analyze node interactions. The out-degree

is the effect of the node on other nodes, and the in-degree is the influence of other nodes on the node.

4.2. Network Analysis

In the sustainable construction network, each stakeholder-associated indicator was a network

node. Node importance is determined by the degree of centrality, because the degree of centrality

characterizes the ability of one node to develop interaction with other nodes. Figure 2 shows that the

network nodes have 12 colors, representing 12 different stakeholders. The three shapes of the nodes

represent the three dimensions of the indicators. A total of 1495 lines are connected to 72 nodes in

this stakeholder-indicator network. The lines connecting the nodes represent information exchange

relationships and node interactions. For example, pointing to SaNb from the node SiNj indicates that

SiNj affects SaNb. The more connections a node has outside, the greater the node’s impact. A few nodes

have a very high density in the center. This means that these nodes play a central role throughout

the network. Figure 2 shows that the network has more red, yellow, and green nodes than nodes of

other colors. These indicate that most of the indicators were associated with these three stakeholders.

The corresponding stakeholders are the government, planning/design enterprises, and the contractors,

respectively. In addition, the evaluation indicators associated with these stakeholders also cover most

of the network. This is another way of reflecting their importance.

The network density and cohesion were also calculated to quantitatively investigate the allocation

of sustainable stakeholder indicator networks. The network density reflects the overall connectivity of

the network, and the cohesion captures network complexity by considering the reachability of different

nodes. The higher the network density is, the higher the degree of correlation between the indicators is.

The greater the cohesion value is, the more complex the network is. In this study, the network density

was 0.292, and the network cohesion value was 0.447. The value of network cohesion was higher than

the network density. This indicates that when considering the propagation effect of the whole network,

the interrelationships of the stakeholder indicator are more complex.
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the degree of influence. The figure shows that the project’s internal rate of return (N15) and 

Figure 2. Stakeholder-associated sustainable index network.

4.3. Node and Link Level Analysis

Figure 3 shows the status centrality map of the stakeholder-indicator network. The node colors

indicate the stakeholder groups, while the shapes show the indicator types. There are 10 concentric

circles, reflecting the overall impact of each indicator. The closer the circle is to the center, the higher the

degree of influence. The figure shows that the project’s internal rate of return (N15) and user/owner

satisfaction (N23) are at the center of the map. These placements indicate that these indicators have a

high degree of impact on other indicators. In addition, subcontractors/suppliers, owners/investors,

planning/design enterprises, and scientific/educational institutions associated with these high-impact

indicators have a significant impact on other stakeholders in MSCPs.

When considering the full life cycle of mega construction projects, the first step is for investors to

decide whether to invest in sustainable buildings, which require new technologies and new sets of

skills compared to traditional projects. In this network, owners/investors are the stakeholders with

the greatest impact on sustainable construction indicators, because they initiate the evaluation about

whether to invest in MSCPs rather than in traditional mega construction projects. If investors invest in

MSCPs, they must consider the requirements of different evaluation indicators throughout the project

cycle. They should also sign contracts with contractors based on these requirements to ensure project

sustainability. Scientific/educational institutions are secondary, because, under different cultural

backgrounds and different evaluation angles, different local projects will be evaluated according

to different types of mega construction projects, and the evaluation indicators differ. At this point,

scientific research institutions need to research evaluation indicators and provide technical knowledge

support to the government to determine indicators suitable for local projects. Finally, considering the

significant social, economic, and environmental benefits created by MSCPs, the government formulates
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relevant policies according to research results in this area. This encourages investors to invest in

MSCPs actively.

 

Figure 3. Indicator locations in the status centrality map.

In addition to the status centrality map, we calculated other node-level metrics, including

self-network size, external centrality, out-degree, and degrees of difference (see Table 4). These values

analyze the characteristics of evaluation indicators and their effects on the network of indicators from

different perspectives. A large self-network scale indicates that many evaluation indicators are closely

related to that node. Out-degree reflects the range of influence. The higher the out-degree is, the

larger the range of influence is. In-degree is the number of lines to which the node as a target is

incident. The degree of difference is equal to the difference between out-degree and in-degree [69].

The bigger the difference is, the greater the impact a specific node has on other nodes, compared to

the impact of other nodes on itself [72]. Therefore, the index of these networks is calculated to see

whether the index has more influence in the network. The index with a high value usually plays a

more important role in the network of indicators. Table 4 shows that the waste management (S1N4)

is an index near the top of the self-network scale index. Therefore, many indicators closely relate to

the waste management. The highest out-degree values are seen with market supply and demand

(S12N19), at a value of 141. This demonstrates that they have the largest range of influence on the

evaluation indicator network. The difference in market supply and demand of MSCPs is the largest in
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the network indicator. This indicates that all indicators related to sustainable construction, such as

the application of energy-saving technologies, waste management, and cost-effectiveness, are greatly

affected by market supply and demand. These indicators themselves have little effect on market

supply and demand.

Table 4. Ranking of critical indicators based on status centrality, ego network, and nodal degree

analyses. ID—identifier.

Ranking Index ID
Out-status
Centrality

Index ID Ego Size Index ID Out-degree Index ID
Degree

Difference

1 S12N19 1.88 S1N4 54 S12N19 141 S12N19 114
2 S2N19 1.78 S10N23 52 S2N19 133 S2N19 106
3 S1N19 1.70 S12N19 50 S1N19 130 S1N19 106
4 S8N11 1.66 S2N19 49 S8N11 128 S12N21 57
5 S9N13 1.55 S2N23 49 S1N4 122 S1N10 54
6 S7N11 1.54 S9N13 48 S7N11 120 S12N10 48
7 S1N4 1.51 S1N19 47 S9N13 120 S8N11 45
8 S7N13 1.42 S4N4 47 S7N13 112 S4N10 42
9 S3N11 1.32 S7N13 46 S4N4 101 S5N10 42

10 S3N13 1.27 S5N4 46 S5N4 101 S7N11 42

Finally, the intermediation centrality of different nodes and links were analyzed to show that the

index or interaction can control the degree of influence. This shapes the ability to control that influence.

Table 5 shows the top 10 nodes and links in the betweenness centrality. Emphasizing these evaluation

indicators or interactions can significantly reduce the complexity of the index network and improve

management performance.

Table 5. Key indicators and links according to the betweenness centrality.

Rank Index ID Node Betweenness Centrality Link ID Link Betweenness Centrality

1 S1N4 0.050 S2N2→S1N10 40.544
2 S9N13 0.049 S2N2 →S1N20 39.298
3 S2N2 0.048 S2N14 →S6N16 29.483
4 S7N13 0.045 S3N5→S2N2 29.440
5 S5N4 0.032 S6N14 →S1N16 28.163
6 S1N2 0.030 S6N14 →S2N16 27.701
7 S4N4 0.029 S1N16→S2N19 26.931
8 S8N11 0.025 S9N15→S12N21 26.032
9 S7N11 0.024 S2N2→S12N20 25.454
10 S3N13 0.023 S12N15→S4N21 24.738

Table 5 presents the most important connections related to the key indicators. Controlling these

key indicators is particularly important. This is because, if the links for these key indicators are cut

off, the entire network would be paralyzed. This would prevent the achievement of the project’s

sustainability goals. These indicators are analyzed next. Key indicators, including S1N4, S9N13,

and S2N2, represent waste management, the application of energy saving, ecology, and intelligent

technology, and land use. These indicators are particularly critical in this network, and managerial

control of these key indicators can significantly enhance management performance. The stakeholder

groups associated with these indicators include governments, planning/design enterprises, research

institutes, owners, and contractors. This analysis shows that these stakeholders play a key role in

the evaluation network of MSCPs. Rational project management will effectively reduce evaluation

complexity and improve management performance. Comparing the centrality of nodes with the

centrality of links, the research concludes that government departments occupy the main position in

the network of sustainable indicators. The link between S2N2 and S1N10 has the greatest degree of

centrality. This shows that, of the indicators, land use will have an important impact on market supply

and demand.
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Government decisions significantly impact owner and investor behaviors. The links to the

governments (S1) have the highest centrality, demonstrating the government’s important role in the

project evaluation network from the opposite side. In the practice of mega sustainable construction,

the government can influence the strategic decisions of investors using different incentive policies.

The percentage of community residents who must be relocated due to the project and noise level is an

important consideration for government departments. In turn, investors are more likely to consider

life-cycle costs when the government offers preferential policies. When the cost is within its acceptable

range and is more profitable than traditional large-scale construction projects, the owner and investor

choose to invest in MSCPs. Different types of construction projects will also affect a region’s economic

diversity. Therefore, in the network of evaluation indicators for MSCPs, the primary responsibility for

researching evaluation indicators lies with scientific research institutions. When implementing the

project, this research found that the policies formulated by government departments are most critical

in carrying out the evaluation.

5. Discussion

The analysis of indicators for MSCPs, and research on combining stakeholders and indicators

using social network methods for these projects remain in their infancy. This study’s stakeholder

analysis found that the government has the most influence on the actual operation of MSCPs.

The government does and should adopt more incentive policies to support these operations.

For example, the government provides more subsidies to manufacturers of low-margin green goods,

as discussed by Guo et al. [73]. When determining indicators for MSCPs, the most critical stakeholder

is the researcher or scientific research institution, which also plays an important role in developing

sustainable building practices. This conclusion also verifies that by Tan et al. [74] in another aspect.

In this study, planning/design enterprises, contractors, and suppliers are also very important in

implementing evaluation indicators. Wang et al. [75] showed that a company’s emphasis on social

performance creates a good reputation between internal and external stakeholders. This improves

financial performance. Therefore, sustainable construction company managers should consider

economic performance, social performance, and environmental performance.

In researching the evaluation indicator network, applying energy-saving and intelligent

technology in the whole indicator network provides the most connection with other indicators and

has the most extensive influence. This further validated the article by Ahn et al. [76], who found that

the most important driving factors for sustainable design and construction are energy conservation,

improvement of indoor environmental quality, environmental/resource conservation, and waste

reduction. The results of the analysis show clear differences between traditional projects and

MSCPs. Firstly, user/owner satisfaction, which is related to end-users, owners, and surrounding

populations, is more important in MSCPs than traditional projects. Secondly, market supply and

demand has the largest range of influence on the MSCPs, but has less influence on traditional projects.

Thirdly, key stakeholders such as surrounding populations are regarded as less important for traditional

projects than for MSCPs, which implies that MSCPs are more subject to public opinion. The impact

of renewable energy utilization efficiency also deserves attention. Wind energy in renewable energy

sources results in lower greenhouse gas emissions than other renewable energy sources. This form

of energy also demands less water and has a larger social impact, but it requires more land and has

higher capital costs [77]. Renewable-energy technologies are mostly realized in developing countries

using hydropower technologies. This requires adequate technology, knowledge, and policy support.

Constructing energy infrastructure is key to producing renewable energy and ensuring the sustainable

achievement goals [78].

Many indicators related to government departments have an important impact on the entire

network of indicators. Compared to other stakeholders, government departments pay more attention

to economic diversity, market supply and demand, and waste management in the area’s projects affect.

This may be related to China’s rapid urbanization and increased emphasis on environmental protection.
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For example, the government is strongly supporting the development of high-tech environmental

protection industries. This highlights the importance of dividing the evaluation indicator of MSCPs

into the three dimensions of environment, society, and economy. In previous research on sustainability

indicators for mega construction projects, Shortall et al. [58] and Farzanehrafat et al. [63] focused on

identifying evaluation indicators and determining weights. Shi et al. [79] accounted for stakeholders

when analyzing sustainable construction at the project level. This study identified 12 stakeholders

and 23 evaluation indicators to study the sustainable development level of mega construction projects.

The indicators were divided into social, economic, and environmental dimensions. Stakeholders were

linked to the evaluation indicators; a network perspective was applied to determine the strength of the

link between the indicators and stakeholders, and the impact of different indicators was determined.

Finally, a network visualization model was successfully established. This method can help project

participants simplify the steps for identifying key evaluation indicators. This solves the problem of

integrating evaluation indicators with mega construction projects, but also promotes a higher efficiency

of sustainable project management.

In practice, results in this study may help mega construction project participants reduce the

pressure of identifying many stakeholders and evaluating indicators. Firstly, the 12 stakeholders

and 23 evaluation indicators in Table 2 can help participants identify their own stakeholders and

indicators more clearly. It may also help them better understand the links between these different

stakeholders and indicators. Secondly, the SNA model established in this study can help determine

the key stakeholders and evaluation indicators based on network theory; the study also presented the

potential degrees of interaction. As a result, project participants can focus on the evaluation indicators

that significantly impact sustainability levels. Finally, this study established links with stakeholders in

the process of identifying key evaluation indicators. This may help project participants identify key

stakeholders who have important links to key indicators, improving their ability to manage from a

stakeholder perspective, and further improving the sustainability of mega construction projects.

This study also redefined the sustainable construction concept through a list of sustainability

indicators. It can be used to evaluate the sustainability performance. These indicators incorporate not

only the major international sustainability metrics (economy, environment, and society) [6,19,23,80],

but also linked them to stakeholders. The identified key stakeholders can simplify the steps for

identifying key evaluation indicators. This study showed that government agencies should develop

subsidy policies that apply energy-saving eco-intelligent technologies to the sustainability of mega

construction projects. Agencies should also promptly respond to the needs of different stakeholder

groups. Project investors should pay attention to government agency involvement and make decisions

based on the policies they set. In the process of implementing projects, the interactions between the

project, government, and other stakeholder groups (such as subcontractors, financial institutions,

and scientific research institutions) will enhance the sustainability of mega construction projects.

6. Conclusions and Recommendations

Using the SNA method and stakeholder management theory, this study linked the evaluation

indicators of MSCPs with stakeholders. Using a comprehensive literature analysis and expert

interviews, 12 key stakeholder groups were identified for MSCPs. The key stakeholders include

government departments, owners/investors, planning/design enterprises, research institutes,

and contractors. Government departments play an important role in sustainable construction,

and government incentive policies positively impact investments in MSCPs. These findings provide a

useful reference for the Chinese government’s construction department to take appropriate measures

to improve the sustainability level of mega construction projects. For instance, the government can

significantly promote the development of sustainable construction by providing policy incentives to

investors and financial institutions. In the same way, the study derived 23 indicators to evaluate

sustainable construction. The key indicators are the economic diversity of the area affected by

the project, the application of energy-saving ecological intelligent technology, waste management,
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and market supply and demand. This means that the application of economic diversity and

energy-saving ecological intelligence technologies in the areas affected by mega construction

projects may largely determine the sustainability level. These key indicators may capture the

government’s attention, and they can formulate targeted policies. Therefore, emphasizing the strong

management of these key stakeholders and key indicators may address the complexity of sustainable

evaluation and improve management efficiency. According to the key indicators mentioned above,

“further market-based incentives for MSCPs”, “financial incentives for the application of energy-saving

ecological intelligent technology”, and “mandatory government policies and regulations for waste

management” were the three strategies which can promote construction sustainability.

This study applied a social network analysis method to provide a new perspective on the

identification of key stakeholders and key evaluation indicators for MSCPs. This method can help

project participants simplify the steps for identifying key evaluation indicators. For example, contractor

decision-making is affected by the supply and demand of the market, which largely impacts the

development of mega sustainable construction. In addition, study results showed that the application

of energy saving, ecology, and intelligent technology, as well as land use and waste management are the

most important indicators of sustainable building evaluation, which differed from other studies [35,37].

This is because the evaluation tools used in those studies focused more on the environmental dimension

and less on the socio-economic dimension. This led to differences in the results. Comprehensive

analysis and evaluation indicators should be considered during data collection to address this problem.

This research did have some limitations. Firstly, the degree of connection between indicators

for MSCPs was mainly based on knowledge shared by 36 interviewees; this knowledge was used for

assessment. These respondents may have limited expertise in the indicators of MSCPs. Future studies

should focus on collecting more comprehensive data that include more potential evaluation indicators.

In addition, the stakeholder group sample size would benefit from being larger. This might make

the conclusions more stable. However, highlighting these opportunities does not eliminate the

contribution of this research. The in-depth interviews with representative stakeholders can determine

network trends.
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