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The purpose of this paper is to provide an easy template for the inclusion of the Bayes fac-
tor in reporting experimental results, particularly as a recommendation for articles in the 
Journal of Problem Solving. The Bayes factor provides information with a similar purpose 
to the p-value—to allow the researcher to make statistical inferences from data provided 
by experiments. While the p-value is widely used, the Bayes factor provides several advan-
tages, particularly in that it allows the researcher to make a statement about the alternative 
hypothesis, rather than just the null hypothesis. In addition, it provides a clearer estimate of 
the amount of evidence present in the data. Building on previous work by authors such as 
Wagenmakers (2007), Rouder et al. (2009), and Masson (2011), this article provides a short 
introduction to Bayes factors, before providing a practical guide to their computation using 
examples from published work on problem solving.  
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The world of psychology and many related disciplines is 
dominated by the p-value. The publication of studies hinges 
upon a magical number—either .01 or .05—that plays a de-
ciding role in whether the data are thought to reflect an ac-
tual difference, or random happenstance. The p-value is, in 
a word, pervasive. However, just because a measure is ubi
quitous does not necessarily mean that it is the best measure. 
There have long been arguments for alternative statistical 
approaches (e.g., Edwards, Lindman, & Savage, 1963), and 
recently there has been a growing movement towards alter-
native analyses that overcome some of the shortcomings of 
null-hypothesis significance testing (NHST) and the associ-
ated p-values (Dienes, 2011; Gallistel, 2009; Johnson, 2013; 
Nuzzo, 2014). In particular, Bayesian methods, and Bayes 
factors, have been suggested as an excellent alternative (see 
Wagenmakers, 2007 for a thorough discussion of this alter-
native). In a similar vein to Masson (2011), the main goal 
of this paper is to provide a practical, procedural outline of 
how to estimate Bayes factors for both t-tests and regression 
analyses with output from common statistical programs, 
such as SPSS, using previously published findings from re-
search on problem solving as examples. The focus will be 
on estimating Bayes factors using the BIC method, which 
allows for computations that are mathematically straight-
forward, and do not require specialized statistical programs 
or knowledge. That said, there are many more sophisticated 
approaches that should be considered by researchers inter-
ested in using these measures (Liang, Paulo, Molina, Clyde, 
& Berger, 2008; Rouder & Morey, 2012; Rouder, Morey, 
Speckman, & Province, 2012).

Issues with Null-Hypothesis Significance Tests

Given the importance of p-values to psychological studies, it 
is somewhat strange how little thought is given to their pe-
culiarities. Everyone is taught the constraints of NHST’s in 
their first statistics class, and yet little is done to account for 
them in practice. For example, it is common knowledge that 
running more participants increases the likelihood of find-
ing a significant result, but few remember that it violates an 
assumption of NHST to “just run an extra five participants” 
as they chase significance (Wagenmakers, 2007). Likewise, 
we are all taught that .05 is the cutoff most often used to dem-
onstrate significant results, but often forget that this is an ar-
bitrary number, and that it may not always be the appropriate 
cutoff for a given study (nor may it be appropriate at all; see 
Johnson, 2013). Wagenmakers (2007) provides an excellent 
summary of some of the overarching issues of commonly 
used NHST, also referred to as the “frequentist approach.” 
His points are summarized below:

1.	 The p-value depends on hypothetical data. That is to 
say, the sampling distribution represents many it-
erations of the same experiment, assuming the null 
hypothesis is true. These data are never actually ob-
served, and this can lead to some logical quandaries.

2.	 The p-value depends on the intentions of the researcher. 
NHST is based on the idea that the experimenter has 
created a sampling plan with fixed stopping conditions 
regarding data collection, something that in practice 
may not always be the case. It has been demonstrated  
that, should an experimenter employ optional stopping, 
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they are virtually guaranteed to find a significant result 
eventually (Jennison & Turnbull, 1990).

3.	 The p-value does not grant statistical evidence. A p-value  
of .05 in a study with 20 people does not imply the 
same amount of evidence against the null hypothesis 
as the same p-value in a study with 200 people (or, 
to further emphasize this point, 2000 people). Large 
sample sizes will find tiny differences between groups 
to result in a “significant difference,” whether or not 
such a difference has any “practical” significance. In 
terms of probability, it is incorrect to assume that two 
p-values from studies of different sample sizes carry 
the same statistical weight of evidence.

Perhaps the most salient point made by Wagenmakers (2007) 
is a consideration of what is being compared when using a fre-
quentist approach. That is to say, nothing is being compared.

4.	 A frequentist approach to NHST considers only the ex-
tremeness of the data under the null hypothesis, with no 
consideration of the alternative hypothesis. In reality, it 
may be that neither the null nor the alternative hypoth-
esis are good fits for the current data, suggesting that a 
comparative approach may result in a clearer picture.

Given the above, it is clear that the p-value does not de-
liver all that we expect it to. Indeed, many of the assumptions 
made about p-values are incorrect (Wagenmakers, 2007). 

The Advantages of the Bayesian Approach

As opposed to a frequentist approach, a Bayesian approach 
to hypothesis testing is comparative in nature. That is, the 
likelihood of the data is considered under both the null and 
alternative hypotheses, and these probabilities are compared 
via the Bayes factor. The Bayes factor is a ratio that contrasts 
the likelihood of the data fitting under the null hypothesis 
with the likelihood of fitting under the alternative hypoth-
esis. One simplified way to express this is:

Therefore, as BF01 increases, there is more evidence in sup-
port of the null hypothesis, and less in favor of the alternative 
hypothesis. Taking the inverse yields the opposite; if 1 / BF01 = 5, 
that suggests that the data are five times more likely to occur un-
der the alternative hypothesis compared to the null hypothesis. 

This method addresses each of the previously listed con-
cerns, as discussed by Wagenmakers (2007):

1.	 The p-value depends on hypothetical data. The Bayes-
ian approach considers only the observed data, and 
how those data relate to the null and alternative 
hypotheses.

2.	 The p-value depends on the intentions of the researcher. 
Bayesian approaches are not altered by stopping or 

measurement criteria (Rouder, 2014). Indeed, in a full 
Bayesian analysis, analyzing one batch of data can be 
used to inform the analysis of the next batch.

3.	 The p-value does not grant statistical evidence. Because 
Bayes factors are ratios of probabilities, two Bayes fac-
tors of equal value represent the same amount of evi-
dence in favor of the alternative hypothesis, regardless 
of sample size or other extraneous factors.

4.	 A frequentist approach to NHST considers only the ex-
tremeness of the data under the null hypothesis, with 
no consideration of the alternative hypothesis. All 
Bayesian approaches are comparisons of models. This 
means that a Bayes factor considers the likelihood of 
both the null and the alternative hypothesis. From the 
researcher’s standpoint, this is likely closer to their 
overall goal than simply rejecting the null hypothesis.

One issue that is often raised about Bayesian analyses is 
that they require a “prior”; that is, a prior probability distri-
bution for the model parameters. Coming up with such an es-
timate can be problematic as it can require a certain amount 
of subjectivity and/or prior knowledge about the effect that 
is to be studied. However, a number of fairly objective priors 
have been developed, that make relatively few assumptions 
about the parameters. By using Bayesian information crite-
ria (BIC) to estimate Bayes factors using the following equa-
tion, a “unit information prior” is assumed (Masson, 2011; 
Wagenmakers, 2007). This is a prior probability distribution 
assuming probable values for the effect size are represented 
by a normal distribution, centered on the effect size observed 
in the data, and providing a standardized, conservative prior 
probability for the effect size in the analysis. The equation for 
estimating Bayes factors using BIC is as follows:

This equation estimates Bayes factors using the difference 
between the two BICs for the null and alternative hypoth-
eses. Furthermore, these BICs can be calculated using output 
received during a normal frequentist analysis, making analy-
ses possible even without extensive statistical knowledge. 
In the case of regression (and correlation), the BICs can be 
computed using just the R2 value, the sample size, and the 
number of predictor variables. In the case of ANOVA (and t-
tests), the BICs can be computed using the sum of squares for 
each experimental effect (which may include interactions), 
the error term, and the total, as well as the sample size and 
the number of independent variables (and interactions). 

Computing the Bayes Factor for a Regression Analysis

A study on the role of distraction in performance on a prob-
lem solving task can be used to illustrate the computation 
of BICs from regression analyses. In this study, Jarosz and 

BF01 =
likelihood of data given H0

likelihood of data given H1

BF01 = e∆BIC10/2
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Wiley (2012) created two versions of the Raven Advanced 
Progressive Matrices (RAPM). In one condition, the most 
commonly selected incorrect answer (the “salient distracter”)  
was excluded from the response bank of each item, while 
in the other condition a different, less salient response was 
removed and the salient distracter remained. The condition 
in which the high salience distracters appeared was referred 
to as the high salience item condition, while the condition 
where only low salience distracters appeared was referred to 
as the low salience item condition. The results of the hierar-
chical regression predicting working memory capacity were 
reported as described below: 

A hierarchical regression predicting composite span 
score was performed with low salience item accuracy as 
a predictor in the first step, and high salience item accu-
racy as a predictor in the second step. While the initial 
model was marginally significant, F(1, 62) = 2.86, p = .10,  
the addition of high salience item performance resulted 
in a significant model, with a significant change in the 
R2 value, R = .46, ΔR2 = .17, ΔF(1, 61) = 12.79, p = .001.  
In the final model, low salience item performance did 
not predict composite span score (β = −.06, t(61) = −.46,  
ns), while high salience item performance did (β = .49, 
t(61) = 3.58, p = .001, sr2 = .41). (Jarosz & Wiley, 2012, 
p. 432)

In this regression, there was a significant increase in model  
fit for performance on items that included the salient distract-
er over performance on items that excluded the salient dis-
tracter. These results were interpreted as showing a unique role 
for distraction in explaining the WMC–RAPM relationship:

The results of this study strongly support the idea that 
salient distracters among response options contribute 
to the WMC–RAPM correlation. . . . When placed hi-
erarchically into a regression, performance on the high 
salience items predicted variance in the composite span 
score above and beyond low salience item performance, 
and remained the only unique predictor. This follows the 
prediction of the attentional control account, suggesting 
that high WMC individuals are better able to avoid dis-
traction from the highly salient incorrect option within 
the response bank. (Jarosz & Wiley, 2012, p. 432)

These data can be re-examined using Bayesian methods to 
compare the initial model to the final model (Table 1). The first 
step is to find the unexplained variance for both the model rep-
resenting the null hypothesis (in this case, a the model includ-
ing only performance on items with low salience distracters, 
or the first step of the hierarchical regression) and the alterna-
tive hypothesis (a model with performance on both low and 
high salience distracter items, or the second step of the regres-
sion). The unexplained variance for the alternative hypothesis 
can be computed as (1 – total variance explained in the sec-
ond step). The R for the second step was .46, which makes 
the R2 = .21 and the unexplained variance is (1 – .21) = .79.  
For the null hypothesis, we need to compute the unexplained 
variance for the first step of the regression.  Since the change in 
variance explained by the second step was .17, this makes the 
variance explained by the first step .21 – .17 = .04. Thus, the 
total unexplained variance for the first step is (1 – .04) = .96.  
One could also find the variance explained (R2) for each mod-
el directly from the SPSS regression output. 

From this information it is possible to calculate a BIC for 
each model. The BIC for a regression model (Wagenmakers, 
2007) is equivalent to

where k is the number of free parameters or predictors (in 
this case, the number of regressors plus the intercept), and n 
is the total sample size (although see Masson, 2011, with re-
gards to the value of n in within-subjects designs). The BIC for 
the model of the null hypothesis is represented by BIC = 64 × 
ln(.96) + 2 × ln(64) = 5.71, (k has a value of 2 in the null hy-
pothesis model, as there are two predictors, low salience item 
performance and the intercept). For the alternative hypoth-
esis, the model has a BIC of BIC = 64 × ln(.79) + 3 × ln(64) = 
-2.61 (where k = 3 because there are three predictor variables). 

The next step is to compare the difference between the two 
BICs by inserting them into this equation:

ΔBIC10 = BICH1 – BICH0

And finally, a transformation converts the change in BICs 
into a Bayes factor estimate:

This leads to ΔBIC10 = -2.61 – 5.71 = -8.32, and a Bayes 
factor of BF01 = e-.8.32 / 2 = .016. 

BIC = n × ln(1 – R2) + k × ln(n)

Table 1. 
Estimating Bayes Factor from Regression (Jarosz & Wiley, 2012) 

Calculation Parameters Data
Estimating BIC for H0 BIC = n * ln(1 – R2) + k * ln(n) BIC = 64 * ln(1 – .04) + 2 * ln(64) = 5.71
Estimating BIC for H1 BIC = n * ln(1 – R2) + k * ln(n) BIC = 64 * ln(1 – .21) + 3 * ln(64) = -2.61

Change in BIC ΔBIC10 = BICH1 – BICH0 ΔBIC10 = -2.61 – 5.71 = -8.32

Bayes Factor BF01 = eΔBIC10 / 2 BF01 = e-.8.32 / 2 = .016

BF01 = e∆BIC10/2
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This Bayes factor suggests that the data are .016 times 
more likely to occur under the null hypothesis than under 
the alternative hypothesis. Alternatively, taking the inverse 
puts this value in terms of the alternative hypothesis, 1 / .016 
= 62.50. This means that the data are 62.50 times more likely 
to occur under the alternative hypothesis than under the null 
hypothesis. Using this new information we can expand the 
previously published results to include the Bayes factor (with 
added text in brackets and italics):

A hierarchical regression predicting composite span 
score was performed with low salience item accu-
racy as a predictor in the first step, and high salience 
item accuracy as a predictor in the second step. While 
the initial model was marginally significant, F(1, 62) = 
2.86, p = .10, the addition of high salience item perfor-
mance resulted in a significant model, with a significant 
change in the R2 value, R = .46, ΔR2 = .17, ΔF(1, 61) = 
12.79, p = .001. In the final model, low salience item 
performance did not predict composite span score (β 
= −.06, t(61) = −.46, ns), while high salience item per-
formance did (β = .49, t(61) = 3.58, p = .001, sr2 = .41).  
[In addition, the data were examined by estimating a 
Bayes factor using Bayesian Information Criteria (Wagen-
makers, 2007). This compares the fit of the data under the 
null hypothesis, compared to the alternative hypothesis. An 
estimated Bayes factor (null/alternative) suggested that the 
data were .016:1 in favor of the alternative hypothesis, or 
rather, 62.50 times more likely to occur under a model in-
cluding an effect for salient distracters than a model with-
out it.] (Jarosz & Wiley, 2012, p. 432)

For computation of the Bayes factor for correlations, one 
can use the same approach as outlined above, comparing the 
variance explained (correlation squared) for two predictors 
versus one predictor (the intercept).  

Computing the Bayes Factor for ANOVAs and t-tests

BIC analyses can also be applied to analysis of variance 
(ANOVA) and t-tests, using sum of squares to compute the 

unexplained variance. This section will focus primarily on 
the computations for between-subjects t-tests, though the 
analyses and discussion can be applied to between-subjects 
ANOVA as well. The unexplained variance for the model 
containing the alternative hypothesis involving an indepen-
dent variable is represented by SSerror / SStotal, while the un-
explained variance for the null hypothesis is represented by 
(SSerror + SSindependentvarianble) / SStotal—that is, a model where the 
variance explained by the independent variable is included 
as part of the unexplained variance. 

To illustrate the estimation of a Bayes factor from an 
ANOVA/t-test, we can revisit the findings of Jarosz, Colflesh, 
and Wiley (2012), who explored the impact of moderate in-
toxication due to alcohol on creative problem solving. Using 
an alcohol intoxication condition and a control condition, 
each with 20 participants, they had participants solve a num-
ber of remote associates test (RAT) problems while rating 
whether they felt they had solved the problems insightfully, 
or analytically. Using a frequentist approach, they first re-
ported a marginal difference in feelings of insight:

On average, intoxicated individuals tended to rate their 
experience of problem solving as being more insightful 
(M = 3.98) than the sober participants (M = 3.35, t(38) 
= 1.78, p < .08). (Jarosz, et al., 2012, p. 490)

Re-analyzing these data from a Bayesian perspective re-
quires several steps. First, sums of squares must be calculated. 
This can easily be accomplished by re-analyzing the data us-
ing an ANOVA in any common statistical program (although 
note that the total sum of squares is not always displayed, 
depending on the ANOVA performed—this may need to be 
calculated by adding together the other sums of squares). Do-
ing so yields 4 sums of squares: the intercept, at 535.34; the 
alcohol condition variable, at 4.05; the error term, at 48.43; 
and the total sum of squares, at 587.82. The unexplained vari-
ance for the model containing the alternative hypothesis (that 
intoxicated individuals would differ in their problem ratings 
from sober individuals) is represented by SSerror / SStotal, while 
the null hypothesis would represent unexplained error by 
(SSerror +  SSalcohol) / SStotal. Thus, the unexplained variance for 

Table 2. 
Estimating Bayes Factor From Between-Subjects t-tests/ANOVAs (Jarosz et al., 2012; Insight Rating Findings)

Calculation Parameters Data
Unexplained variance H0 1 – R2 = (SSerror + SScondition) / SStotal 1 – R2 = (48.43 + 4.05) / 587.82 = .089
Unexplained variance H1 1 – R2 = SSerror / SStotal 1 – R2 = 48.43 / 587.82 = .082

Estimating BIC for H0 BIC = n * ln(1 – R2) + k * ln(n) BIC = 40 * ln(.089) + 1 * ln(40) = -93.08
Estimating BIC for H1 BIC = n * ln(1 – R2) + k * ln(n) BIC = 40 * ln(.082) + 2 * ln(40) = -92.66

Change in BIC ΔBIC10 = BICH1 – BICH0 ΔBIC10 = -92.66 – (-93.08) = .42

Bayes Factor BF01 = eΔBIC10 / 2 BF01 = e.42 / 2 = 1.23
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the model representing the alternative hypothesis is 48.43 / 
587.82 = .082, while the unexplained variance for the model 
representing the null hypothesis is (48.43 + 4.05) / 587.82 = 
.089. These values are plugged into the equations as shown 
in Table 2. For an ANOVA, k includes the intercept and the 
independent variable. The Bayes factor is found to be BF01 = 
1.23, with an inverse of 1 / 1.23 = .81. 

This suggests that the data actually provide more support 
for the null hypothesis, being 1.23 times more likely to oc-
cur under the null hypothesis, compared to the alternative 
hypothesis. Updating the results to include the Bayes factor 
(again with new text in brackets and italics) leads to:

On average, intoxicated individuals tended to rate their 
experience of problem solving as being more insightful 
(M = 3.98) than the sober participants (M = 3.35, t(38) 
= 1.78, p < .08). [However, the data were also examined 
by estimating a Bayes factor using Bayesian Informa-
tion Criteria (Wagenmakers, 2007), comparing the fit of 
the data under the null hypothesis and the alternative 
hypothesis. An estimated Bayes factor (null/alternative) 
suggested that the data were 1.23:1 in favor of the null 
hypothesis, or rather, 1.23 times more likely to occur un-
der a model without including an effect of moderate al-
cohol intoxication, rather than a model with it.] (Jarosz 
et al., 2012, p. 490) 

Jarosz et al. (2012) also examined differences in problem 
solving accuracy between sober and intoxicated individuals. 
Here, they found a significant difference in creative perfor-
mance using the Remote Associates Task:

More importantly, a second set of analyses examined 
whether intoxication affected the actual solution of these 
creative problems. On average, intoxicated participants 
solved significantly more RAT problems (M = .58,  
SD = .13) than their sober counterparts (M = .42,  
SD = .16), t(38) = 3.43, p = .001, d = 1.08. (Jarosz et al., 
2012, p. 490)

Once again, re-analyzing these data from a Bayesian per-
spective requires several steps. The sums of squares were: .25 

for the alcohol condition, .79 for the error term, and 11.11 
for the total.  The unexplained variance for the model con-
taining the alternative hypothesis (that intoxication affects 
problem solving) would be represented by SSerror / SStotal, 
while the null hypothesis would represent unexplained error 
by (SSerror + SSalcohol / SStotal). For the alternative hypothesis, 
the unexplained variance is .79 / 11.11 = .071. For the null 
hypothesis, the unexplained variance is equivalent to (.25 + 
.79) / 11.11 = .094. As seen in Table 3, the Bayes factor is BF01 
= .023. This suggests that the data are far less likely under the 
null hypothesis than the alternative hypothesis. Taking the 
inverse, 1 / .023 = 43.48 shows that the data are 43.48 times 
more likely to occur under the alternative hypothesis than 
under the null hypothesis. Thus, the results section could be 
updated with the new information (in brackets and italics) 
accordingly:

More importantly, a second set of analyses examined 
whether intoxication affected the actual solution of 
these creative problems. On average, intoxicated par-
ticipants solved significantly more RAT problems (M = 
.58, SD = .13) than their sober counterparts (M = .42, 
SD = .16), t(38) = 3.43, p = .001, d = 1.08. [The esti-
mated Bayes factor (null/alternative) suggested that the 
data were .023:1 in favor of the alternative hypothesis, or 
rather, 43.48 times more likely to occur under the model 
including an effect for alcohol, rather than the model 
without it.] (Jarosz et al., 2012, p. 490)

Some adjustments may be needed for within-subjects 
or repeated measures t-tests and ANOVAs, although there 
remains some debate as to the best way to calculate n for 
a repeated-measures ANOVA. While Wagenmakers (2007) 
suggests that treating this value as the number of subjects is 
fine, Masson (2011) suggests that treating this as the num-
ber of independent observations is more appropriate, Thus, 
Masson suggests adjusting n to be the number of subjects, 
multiplied by (number of conditions – 1). For a detailed re-
view of how to calculate Bayes factors in ANOVA (and in 
particular, ANOVA in a within-subjects design), please refer 
to Masson (2011).

Table 3. 
Estimating the Bayes Factor From Between-Subjects t-Tests/ANOVAs (Jarosz et al., 2012, Creative Problem Solving Performance 
Findings)

Calculation Parameters Data
Unexplained variance H0 1 – R2 = (SSerror + SScondition) / SStotal 1 – R2 = (.25 + .79) / 11.11 = .094
Unexplained variance H1 1 – R2 = SSerror / SStotal 1 – R2 = .79 / 11.11 = .071

Estimating BIC for H0 BIC = n * ln(1 – R2) + k * ln(n) BIC = 40 * ln(.094) + 1 * ln(40) = -90.89
Estimating BIC for H1 BIC = n * ln(1 – R2) + k * ln(n) BIC = 40 * ln(.071) + 2 * ln(40) = -98.43

Change in BIC ΔBIC10 = BICH1 – BICH0 ΔBIC10 = -98.43 – (-90.89) = -7.54

Bayes Factor BF01 = eΔBIC10 / 2 BF01 = e-7.54 / 2 = .023
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Other Approaches to Estimating Bayes Factors

While the BIC provides an easy way to estimate the Bayes 
factor based on output from more familiar NHST approach-
es, it is important to remember that the method outlined 
above is a fairly rough approximation of the Bayes factor. 
While it certainly gives a much better idea of the evidence 
for and against one’s hypotheses than does the p-value, in 
recent years several mathematical psychologists and statis-
ticians have worked on developing better methods for cal-
culating Bayes factors (Liang et al., 2008; Rouder & Morey, 
2012; Rouder et al., 2012). In particular, the JZS approach 
(advocated for by Rouder, Morey, and Wagenmakers, among 
others; Rouder, Speckman, Sun, Morey, & Iverson, 2009) de-
serves mention. This method employs a prior based on work 
by Jeffreys (1961) and Zellner and Siow (1980). Rouder and 
colleagues highlight several issues with the BIC method of 
approximation. First, the variance of the prior using the BIC 
method is based on the observed sample variance; second, 
the unit information prior is more informative than the JZS 
prior, making the BIC method a less conservative alternative 
with respect to the alternative hypothesis; and third, the BIC 
method may not be well suited for mixed models in ANO-
VA. While the BIC method approximates the JZS method 
for larger sample sizes, those using smaller samples or mixed 
methods may be better served by employing the JZS method 
to compute Bayes factors. 

The calculations for deriving and employing the JZS 
method are beyond the scope of this paper. Thankfully, there 
is an online calculator available at http://pcl.missouri.edu/
bayesfactor that can be used to estimate Bayes factors based 
on t values (in the case of t-tests) and R2 values (in the case of 
regression), as well as sample size (Liang et al., 2008; Rouder 
& Morey, 2012; Rouder et al., 2009). For t-tests, this supplies 
both a BIC estimated Bayes factor, as well as the JZS Bayes 
factor (Rouder et al., 2009). It should be noted that the web-
pages for calculating Bayes factors based on t-tests contain 
an additional parameter, r. This factor is intended to be used 
to scale the prior distribution. Leaving it as 1 does not scale 
the distribution, while decreasing or increasing this value 
will scale the prior to represent smaller or larger effect sizes, 
respectively. This may be appropriate if one expects smaller 
or larger effects in a study, however, the value of r should be 
determined a priori, and it is generally recommended that 
this value be left as 1 (Rouder et al., 2009).

Finally, it must be noted that various researchers have 
begun implementing packages for full Bayesian analysis in 
programs such as R, capable of handling most traditional 
analyses (Morey & Rouder, 2011; Rouder & Morey, 2012; 
Rouder et al., 2012; Rouder et al., 2009). These allow the 
R-savvy researcher to complete Bayesian analyses without 
having to transform results from other traditional statistics 

programs. In addition, there is currently an effort to provide 
an open source Bayes factor alternative to popular statisti-
cal programs (“JASP”, 2014). Together, these provide a wide 
variety of more advanced options with regards to computing 
Bayes factors. 

Interpreting Bayes Factors

The advantage of the Bayes factor is that it is not just a mea-
sure of how unlikely the null hypothesis is, but rather, a com-
parison of how likely the null is compared to the alternative. 
That is, instead of simply saying “It is unlikely that there is no 
relationship between these variables,” the researcher is able 
to say “this alternative model is considerably better than the 
null, and I have the probabilities to prove it!” The Bayes fac-
tor allows for the inclusion of a statement in the results of 
how much more likely the data are to occur if the null hy-
pothesis is true, compared to if the alternative hypothesis is 
true. If the prior odds are assumed to be 1, then taking the 
inverse allows one to speak to the likelihood of the alterna-
tive hypothesis, compared to the null.

For example, imagine a scenario where BF01 = .5. In this 
case, the data are half as likely under the null hypothesis as 
they are under the alternative hypothesis. Taking the inverse 
demonstrates that the data are twice as likely under the al-
ternative hypothesis. Thus, the easiest interpretation of a 
Bayes factor is simply taking it at face value, and consider-
ing those odds. 

Alternatively, there are several authors (Jeffreys, 1961, 
Appendix B; Raftery (1995); Wetzels et al., 2011) who have 
each developed some guidelines for language that may be 
used to discuss and interpret Bayes factors.  Their suggested 
terminology is shown in Table 4. According to these sugges-
tions, the discussion of the results for Study 1 from Jarosz 
and Wiley (2012) could be updated to include the claim that 
the results provided strong or very strong evidence for the 
alternative hypothesis (with new text in brackets and italics). 

The results of this study strongly support the idea that 
salient distracters among response options contribute 
to the WMC–RAPM correlation. . . . When placed hi-
erarchically into a regression, performance on the high 
salience items predicted variance in the composite 
span score above and beyond low salience item per-
formance, and remained the only unique predictor. 
[Further, the Bayes factor suggested strong evidence for 
the role of salient distracters in the RAPM–WMC rela-
tionship.] This follows the prediction of the attentional 
control account, suggesting that high WMC individu-
als are better able to avoid distraction from the highly 
salient incorrect option within the response bank. (Ja-
rosz & Wiley, 2012, p. 432)
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The results of the insight rating analysis in Jarosz et al. 
(2012) could be said to provide weak or anecdotal evidence 
for the null hypothesis, while the analysis of problem solving 
performance would be described as strong or very strong in 
favor of the alternative hypothesis.  For an example of a paper 
using Bayes factors alongside traditional NHST, the authors 
recommend a recent study by Zwaan and Pecher (2012) ex-
amining mental simulation and language comprehension.

Another approach to estimating Bayes factors is to rely on 
prior work that has explored the relation between p-values and 
Bayes factors. Wetzels and colleagues (2011) used data from 
855 t-tests in popular psychology journals to compare evi-
dence from p-values, Bayes factors, and effect sizes (Wetzels  
et al., 2011). In general, studies that reported p-values of .05 
provided only anecdotal evidence for findings according to a 
Bayesian analysis. It is only as p-values approach .01 that evi-
dence starts becoming substantial, according to the calculat-
ed Bayes factors (Johnson, 2013; Nuzzo, 2014). Thus, in lieu 
of computing Bayes Factors, when p values are less than 0.01 
one could cite Wetzels et al. (2011) as evidence that such p-
values are likely to represent what Bayesians would call sub-
stantial evidence for an alternative hypothesis. Alternatively, 
p-values greater than 0.01 should be interpreted as represent-
ing “anecdotal evidence” according to Wetzels et al. (2011). 
However, it should be noted that this method is by no means 
foolproof, as large sample sizes tend to skew the evidence in 
favor of rejecting the null hypothesis when using only p-values  
(Wagenmakers, 2007).

A final point made by many who advocate a move away 
from NHST is the need for researchers to engage in deeper 
statistical thinking. Gigerenzer (1998) considers NHST to 
be no better than “ritual handwashing,” a habit followed by 
researchers, often with little understanding of why they do 
what they do. He suggests that current statistical protocols 
followed by many researchers obviate the need for deeper 
consideration of alternative models, themes, or positions, 
indeed allowing many to avoid specifying hypotheses al-
together. In suggesting Bayes factors to support (or even 

replace) NHST, the goal is not to simply replace one mind-
less algorithm with another. Several papers (Edwards et al., 
1963; Gallistel, 2009; Gigerenzer, 1998; Myung & Pitt, 1997) 
discuss how obtaining a value beyond some threshold is not 
the point of the analysis, and suggest that one of the inher-
ent problems with NHST is that it allows analysis without 
throughtful reflection on alternative hypotheses. Rather, 
consideration must be given to the calculated probabilities 
themselves, what those probabilities say about the relative 
strengths of the null and alternative hypotheses, and how 
those probabilities inform the greater research question at 
hand before any conclusions can be drawn. Likewise, care 
must be taken to specify hypotheses in advance, and to con-
sider that the models being compared are specific to those 
null and alternative hypotheses. Bayes factors are consider-
ably more conducive to this line of thinking when compared 
to traditional NHST. In short, while this paper focuses on 
procedure, a procedural shift is only one small part in the 
necessary transformation in the way that researchers think 
about their data.

Summary

The Bayes factor provides information with a similar pur-
pose to the p-value—to allow the researcher to make a sta-
tistical inference about the evidence in an experiment. While 
the p-value is widely reported, the Bayes factor provides sev-
eral advantages, particularly in that it allows the researcher 
to make a statement about the alternative hypothesis, rather 
than just the null hypothesis. In addition, it provides a clear-
er estimate of the amount of evidence present in the data. 
The BIC approximation, while only a rough estimate of a 
Bayes factor, provides a simple way to gain the benefits of 
Bayes factors without requiring a statistical background or 
additional statistical programs. Other more advanced meth-
ods of computation are becoming available, such as the JZS 
method or methods for engaging in full Bayesian analyses 
using R. While not yet widely used, it is the goal of this paper 

Table 4. 
Interpretation of Bayes Factors as Evidence for Alternative Hypotheses

Statistic Support for H1

Bayes Factor Inverse of Bayes Factor Raftery Jeffreys
1–.33 1–3 Weak Anecdotal
.33–.10 3–10 Positive Substantial
.10–.05 10–20 Positive Strong
.05–.03 20–30 Strong Strong
.03–.01 30–100 Strong Very Strong
.01–.0067 100–150 Strong Decisive
<.0067 >150 Very Strong Decisive
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to increase the odds that researchers include some approxi-
mation of Bayes factors when reporting the results of their 
experiments, particularly in the pages of the Journal of Prob-
lem Solving. 
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