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Many visual search experiments measure response time (RT) as their primary dependent variable.

Analyses typically focus on mean (or median) RT. However, given enough data, the RT distribution can

be a rich source of information. For this paper, we collected about 500 trials per cell per observer for both

target-present and target-absent displays in each of three classic search tasks: feature search, with the

target defined by color; conjunction search, with the target defined by both color and orientation; and

spatial configuration search for a 2 among distractor 5s. This large data set allows us to characterize the

RT distributions in detail. We present the raw RT distributions and fit several psychologically motivated

functions (ex-Gaussian, ex-Wald, Gamma, and Weibull) to the data. We analyze and interpret parameter

trends from these four functions within the context of theories of visual search.
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The visual search paradigm, in which an observer looks for a

target among a varying number of distractors, has been an impor-

tant tool for evaluating theories of visual selective attention for

thirty years now (e.g., Duncan & Humphreys, 1989, 1992; Treis-

man & Gelade, 1980; Treisman & Gormican, 1988; Treisman &

Sato, 1990; Wolfe, 1994; Wolfe, Cave, & Franzel, 1989). In much

of the visual search literature, the principle independent variable is

the number of items in the search array (set size), and the principle

dependent variable is mean or median response time (RT). The

slope of the resulting RT � set size function (search slope)

indexes the efficiency of search. This method has proven to be

valuable for understanding visual features, attentional capture,

neuropsychological disorders, and so forth (for reviews, see

Chelazzi, 1999; Chun & Wolfe, 2001; Driver & Vuilleumier,

2001; Luck & Vecera, 2002; Pashler, 1998; Wolfe & Cave, 1999).

However, the standard RT x set size graph represents only the

tip of the metaphorical iceberg (Figure 1, left). Each data point on

the graph is the mean of many observers’ average response time

(Figure 1, middle). Moreover, an observer’s mean or median RT is

merely an estimate of the central tendency of an entire underlying

RT distribution (Figure 1, right). Those underlying RT distribu-

tions have rarely been examined, perhaps because accurately es-

timating their shapes requires hundreds of trials for each distribu-

tion (Van Zandt, 2000).

Nevertheless, analyzing the full distribution has advantages that

make it worth the effort. First, the widespread use of means

reflects the implicit assumption of a Gaussian distribution, though

it is known that RTs are not normally distributed (Luce, 1986; Van

Zandt, 2000). The assumption of normality may have conse-

quences for the treatment of RT data. Consider the common

practice of eliminating RTs as outliers based their distance from

the mean in terms of standard deviations. Since RT distributions

are highly skewed, this procedure has the unintended consequence

of truncating the positive tail of the distribution far more than the

negative tail (Miller, 1988, 1991; Ulrich & Miller, 1994).

Second, some experimental manipulations affect only part of the

RT distribution. For instance, an increase in mean RT could be due

to either an increase in skew or a shift in the distribution (Spieler,

Balota, & Faust, 2000). Such information is lost in an analysis of

means alone. Consequently, many researchers have turned to dis-

tributional analyses in order to more precisely characterize cogni-

tive and perceptual phenomena (Bricolo, Gianesini, Fanini,

Bundesen, & Chelazzi, 2002; Gottlob, 2004; Heathcote, Popiel, &

Mewhort, 1991; Hockley, 1984). For example, Heathcote et al.

(1991) analyzed the RT distributions produced in a Stroop color

naming task. They used the Vincentizing method (Ratcliff, 1978)

to create group RT distributions, which were then fit with the

ex-Gaussian function (convolution of the Gaussian and exponen-

tial functions; Burbeck & Luce, 1982). They determined that when

participants named the color of a word, the mean of the Gaussian
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portion of the RT distribution was slowed in the incongruent

condition and speeded in the congruent condition, whereas the

standard deviation of the Gaussian component was slowed for the

incongruent condition but not the neutral or congruent conditions.

Furthermore, the exponential portion of the RT distribution in-

creased for both the congruent and incongruent condition relative

to the neutral condition. These results are more sophisticated than

an analysis of means alone, illustrating the differential effects of

the conditions on the mean, standard deviation, and skew of the RT

distribution, as interpreted through the ex-Gaussian function (more

on this function below).

Most important to note, for our purposes, is that RT distributions

might be used to constrain models of visual search. Many models,

positing quite different mechanisms, can qualitatively account for

the basic patterns of mean RTs (Duncan & Humphreys, 1992;

Grossberg, Mingolla, & Ross, 1994; McElree & Carrasco, 1999;

Wolfe, 1994; Wolfe et al., 1989). The challenge to predict RT

distributions might winnow the field; in fact, it is our belief that

none of the current crop of models successfully captures all the

details of RT distributions (Wolfe, Palmer, & Horowitz, 2010).

This paper has two goals. First, we will describe the properties

of RT distributions for search tasks spanning a broad range of

difficulty. Second, we will consider the implications of these

distributions for models of visual search. In particular, we will be

focusing on how the parameters of four popular distribution func-

tions are affected by the experimental variables of task, set size,

and target presence or absence.

We investigated the empirical RT distributions for three types of

visual search: an easy feature search, an intermediate conjunction

search, and a more difficult spatial configuration search (all three

tasks described below). We gathered 500 trials per condition for

9-10 participants in each task and fit four functions (ex-Gaussian,

ex-Wald, Gamma, and Weibull) to each RT distribution using

maximum likelihood estimation methods. These distributions were

chosen because each has a history in cognitive psychology and

parameters that have been associated with specific components of

models. The parameters values for the fits are provided in Appen-

dix A and the analyses of the statistical trends in the fits are

reported in Appendix B, both of which are available online as

supplemental material.

Experimental Methods

The data in this paper come from three visual search tasks that

span a range of processing difficulties (Figure 2). In the feature

search, the target was a red vertical rectangle among green vertical

rectangles. This is a highly efficient search task, typically yielding

search slopes near zero. Next, in the conjunction search, observers

searched for a red vertical rectangle among green vertical and red

horizontal rectangles. This task typically yields RT x set size

functions with a moderate slope of around 10 ms/item. Finally, the

spatial configuration task required observers to search for a digital

2 among digital 5s; items composed of the same horizontal and

vertical components but in different spatial configurations. This

task typically yields inefficient RT x set size slopes between 30

Figure 1. Data compression in a standard mean RT � set size plot. Each data point is an abstraction of an entire

underlying distribution of RTs. Usually, the RT distribution for each condition and for each subject is not

collected because it requires so many trials to estimate it accurately.

Figure 2. Illustrations of the three tasks. Actual stimuli were presented on

a black background. Filled black rectangles correspond to red, outlined

rectangles correspond to green, and the digital 2s and 5s were white. On the

left, the target was a red vertical rectangle among green vertical rectangles

(feature search). In the middle, the target was a red vertical rectangle

among green vertical and red horizontal rectangles (conjunction search).

On the right, the target was a digital 2 among digital 5s (spatial configu-

ration search).

59VISUAL SEARCH RT DISTRIBUTIONS



and 60 ms/item. Task, set size, and target presence/absence all

influence mean RT and, depending on one’s model, might be

expected to alter the distribution of RTs as well.

We fit the RT data from each condition and subject with four

different distributions: ex-Gaussian, ex-Wald, Gamma, and Weibull,

chosen because the parameters that determine their shape, spread or

placement have been theorized to reflect particular mental represen-

tations or processes (e.g. Luce, 1986). Complete details of the stimuli

and methods as well as traditional mean RT � set size and error

analyses are reported in (Wolfe et al., 2010).

Brief Description of Methods

We present the data for 28 observers between the ages of 18–55

(only one observer older than 30) who participated in the three

tasks. Each observer had normal visual acuity and color percep-

tion, gave informed consent, and was paid $8 per hour for partic-

ipating. We collected approximately 4000 trials per subject in each

of three tasks: feature search, conjunction search, and spatial

configuration search (Figure 2). For each task, there were four set

sizes (3, 6, 12, 18) and targets were present on 50% of trials. Both

the set size and presence of a target were determined probabilis-

tically from trial to trial, meaning that some cells have slightly

different numbers of trials than others. For each combination of set

size and target presence, there were about 500 trials, enough to

create meaningful RT distributions.

Data Analysis Procedures

We removed 80 of the nearly 112,000 trials (.07%) from this

data set because RTs were � 200 ms or � 4000 ms for the feature

and conjunction search tasks and RTs � 200 ms or � 8000 ms in

the spatial configuration search task.1 The entire data set (includ-

ing excluded trials) as well as distribution fitting code is available

at http://search.bwh.harvard.edu/new/data_set.html.

The empirical RT distributions for each participant and condi-

tion were fit with three-parameter versions of the ex-Gaussian,

ex-Wald, Gamma, and Weibull distributions, using maximum like-

lihood estimation procedures. The Gamma and Weibull functions,

which are typically two-parameter functions, were specified in a

form that included the extra parameter �, which shifts the origin of

the function along the x-axis without changing the function’s

shape. The ex-Wald distribution has four parameters, but the �

parameter, which represents the standard deviation of the drift rate

in the diffusion process, was set to 1.0. This assumption does not

affect the generalizability of the function fits (Schwarz, 2001).

Therefore, all four of our fitting functions had three free parame-

ters and were on an equal footing in terms of their ability to fit the

data.

Maximum likelihood estimates were obtained by minimizing

the negative log likelihood function for each distribution using the

Optimization Toolbox routines in Matlab 7.0.4 (particularly the

“fminsearchbnd” function), which are based on the Nelder-Mead

simplex search algorithm (e.g. Lagarias, Reeds, Wright, & Wright,

1998). A grand total of 896 distribution fits were computed (28

Participants � 4 Set Sizes � 2 Target-Present/Absent � 4 Distri-

butions).

There are a few assumptions and regularity conditions that must

be met for maximum likelihood procedures to yield accurate

estimates of population parameters (Azzalini, 1996). First, we

assumed that the set of RTs we collected from each participant

were sampled from independently and identically distributed (IID)

random variables from some underlying distribution that we were

trying to estimate. This is a common assumption when dealing

with RT observations (e.g. Van Zandt, 2002). It should be noted

that it is possible that the data violate the IID assumption due to

subtle factors like learning or fatigue. We attempted to address

these issues by using experienced psychophysical observers and

requiring them to take frequent rest breaks during data collection.

However, there is no clear way to tell if the IID assumption was

violated. In our analyses, we adopted the common assumption that

distributions are IID, but the reader may want to keep this caveat

in mind. Second, we used estimation functions with parameters

that can vary independently and have continuous densities, both of

which are requirements for maximum likelihood procedures to be

asymptotically unbiased (Azzalini, 1996). Finally, we collected

several hundred observations per condition, which greatly im-

proves the stability and reliability of the maximum likelihood

procedure (Azzalini, 1996).

We evaluated parameter trends for each three-parameter distri-

bution with four 3 � 2 � 4 (Task � Target-Present/Absent � Set

Size) mixed ANOVAs, with task treated as a between-subjects

variable. Follow-up ANOVAs were conducted as necessary to

interpret main effects and interactions. Goodness of fit for each

function was measured using �2, computed for every subject and

condition with the best-fitting parameters for each condition (as

determined by maximum likelihood estimation). Bins for the �2

analysis were initially set to every fifth percentile of the empirical

data, with the constraint that there had to be more than five

predicted observations per bin (Hays, 1994). If there were five or

fewer observations, adjacent bins were combined until there were

more than five. The �2 scores were entered into a 4 � 3 � 2 � 4

(Function � Task � Target-Present/Absent � Set Size) repeated

measures ANOVA, with task treated as a between-subjects vari-

able. Follow-up ANOVAs and planned two-tailed t-tests were used

to compare the fits of different functions. In order to ease presen-

tation of our main findings, ANOVA results for parameter trends

and �2 values of the four distributions are presented in Appendix

B. Error bars on graphs represent confidence intervals computed

from pooled mean squared error values (Masson & Loftus, 2003).

Results and Discussion

Raw Histogram Plots

Figures 3, 4, and 5 show histograms of the RT distributions for

each task, display type (target-present or target-absent), set size,

and participant. The feature, conjunction, and spatial configuration

histograms were computed with bin sizes of 50, 100, and 200 ms,

respectively. Each histogram was normalized so that the total area

under each curve was equal to 1.0. The distributions for correct

target-present and target-absent trials are displayed in the same

graph for comparison.

1 Truncation of the data set resulted in an average 2.87% improvement

in function fits to the data, as measured by �2, but resulted in no qualitative

changes to the parameter patterns.
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For the feature search task (Figure 3), informal examination of

the RT distributions for each participant as a function of set size

reveals no major differences in shape. Additionally, the shapes of

the RT distributions for target-present and target-absent trials

remained fairly stable (and similar) for each participant as set size

increased. Thus, it appears that the RT distribution data mirror the

typical RT � set size data for feature search experiments—

changes in set size or target presence or absence did not yield

obvious differences in behavior for participants in this kind of

search.

Visual inspection of the conjunction search RT distributions

plotted in Figure 4 show distributions spreading out slightly at

larger set sizes, particularly for target-absent trials. The starting

point of the distribution, corresponding to the fastest RTs, appears

Figure 3. Response time histograms for correct trials in the feature search task. Target-present trials are

depicted in white, and target-absent trials are depicted in black. Axis values are listed in the lower left cell and

apply for all plots. The time range in this graph is from 0 to 1000 ms. Each column represents one participant

in the task. Each row displays a different set size.

Figure 4. Response time histograms for correct trials in the conjunction search task. Target-present trials are

depicted in white, and target-absent trials are depicted in black. Axis values are listed in the lower left cell and

apply for all plots. The time range in this graph is from 0 to 2500 ms. Each column represents one participant

in the task. Each row displays a different set size.
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to remain fairly stable as a function of set size for target-present

trials. However, target-absent functions begin slightly later than

target-present functions, especially at larger set sizes. Target-

absent trials are slightly broader and appear less skewed than

target-present trials.

Informal observation of the RT distribution functions for the

spatial configuration search task in Figure 5 suggest clear changes

in distribution shape as a function of set size and target presence or

absence. Both target-present and target-absent functions appear to

spread out more as set size increases, with target-absent functions

also shifting to the right. Target-present functions appear to orig-

inate from the same starting point regardless of set size.

Four Moments Analyses

Figure 6 presents the four moments of the RT distributions

(mean, standard deviation, skew, and kurtosis) for all tasks and set

sizes, averaged across observers. The means and standard devia-

tions of the RTs from this experiment are consistent with those

typically observed in the literature (e.g., Cheal & Lyon, 1992;

Wolfe, 1998). Perhaps the most surprising trend in this data is that

high set size spatial configuration search RT distributions have

almost identical skew and kurtosis for both target-present and

target-absent distributions despite the fact that the raw histograms

look quite different.

Distribution Analysis Results

In this section, we present the average parameter fits for each of

four functions: ex-Gaussian, ex-Wald, Gamma, and Weibull.

Readers who have found one or the other function useful in other

contexts may be interested to see how well the function captures

search RT distribution data. More general readers will wish to note

whether parameters of a function appear to capture something

psychologically real about the search task; e.g. does one parameter

track set size? We introduce each function in turn and discuss its

applicability to modeling visual search processes.

Ex-Gaussian

This function, named by Burbeck & Luce (1982), is the convo-

lution of a Gaussian and an exponential distribution. The Gaussian

portion of the distribution is described by two parameters, mean �

and standard deviation �. The exponential portion of the ex-

Gaussian is captured by the parameter �, which is related to both

the mean and variance of that component. The mean of the

ex-Gaussian is � 	 � and the variance is �2 	 �2 (Ratcliff, 1978).

We used the ex-Gaussian density function defined by Van Zandt

(2002) as:

fT
t, �, �, �� �

1

�
exp�� t

�
�

�

�
�

�2

2�2��� t � � � �2/�

� � ,

(1)

where � is the cumulative density function of the standard Gauss-

ian distribution. Since the Gaussian portion of this function has a

non-zero density for times less than zero, we constrained the

density function so that t � 0.

The components of the ex-Gaussian distribution might corre-

spond to different mental processes. McGill (1963) identified the

Gaussian portion of the distribution with decision processes and

the exponential portion of the distribution with residual perceptual

and response-generation processes. In contrast, Hohle (1965) ar-

gued that decision processes might be distributed exponentially,

whereas residual processes might be distributed normally. While

there is little agreement about which component of the ex-

Gaussian distribution corresponds to which hypothetical process-

Figure 5. Response time histograms for correct trials in the spatial configuration search task. Target-present

trials are depicted in white, and target-absent trials are depicted in black. Axis values are listed in the lower left

cell and apply for all plots. The time range in this graph is from 0 to 6000 ms. Each column represents one

participant in the task. Each row displays a different set size.
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ing stage (Luce, 1986; Schwarz, 2001), the idea that components

of a mixture distribution might reflect particular components of

mental processing is appealing (Spieler et al., 2000). Additionally,

the ex-Gaussian distribution is known to fit RTs very well and so

has often been used when examining RT distributions (e.g., Hock-

ley, 1984; Luce, 1986; McElree & Carrasco, 1999; Ratcliff, 1978,

1979; Ratcliff & Murdock, 1976; Spieler, Balota, & Faust, 1996).

Hockley (1984) reported that increases in set size in a visual

search task lead to increases in the values of the � and � param-

eters but not in the � parameter. That finding is consistent with �

representing the residual motor and neural delays that are theoret-

ically constant across set size in a search (McGill, 1963). Thus, we

might expect to observe the same trend in the present data, with �

varying little with set size, while � and � increase proportionally.

Spieler et al. (2000) noted that parameters in the ex-Gaussian

distribution often trade off with one another. In particular, they

claimed that the � parameter is often inversely correlated with the

� parameter. We will also evaluate this claim. Another question of

interest is whether the three different visual search tasks will yield

three different patterns of parameter trends. It has been argued that

the � parameter is a convenient way to parcel out changes in skew

from changes in the mean of an RT distribution (Spieler et al.,

2000), so another question of interest is how the � parameter

correlates with skew.

Average parameter values, along with �2 goodness-of-fit mea-

sures are plotted in Figure 7. One obvious feature of this graph is

that the � and � parameters have very similar trends as a function

of set size (consistent with observations by Wagenmakers &

Brown, 2007), while the � parameter behaves differently. This

observation was supported by the statistical analyses. Omnibus

ANOVAs of the � and � parameters returned highly significant

main effects and interactions for all factors (all p � .0001),

whereas omnibus ANOVA of � parameter trends only detected

main effects of task and set size (all p � .0001) and interactions of

target presence by task, set size by task, and target presence by set

size by task (all p � .005). Neither the main effect of target

presence nor the interaction of target presence by set size was

significant for the � parameter (all p � .05, n.s.). Thus, the � and

� parameter trends were similar to each other but different than the

� parameter trends.

Three follow-up ANOVAs on the parameter trends for the

feature search task failed to detect any significant main effects or

interactions for any of the three parameters (all p � .05, n.s.). Set

size and display type do not affect RT distributions in feature

search (as indexed by the ex-Gaussian function) any more than

they affect means.

For the conjunction search task, analyses of all three ex-

Gaussian parameters revealed significant main effects of target

presence and set size, as well as significant interactions of target

presence by set size (all p � .05). For the spatial configuration

search task, all main effects and interactions of � and � were

highly significant (all p � .0001), whereas for �, the difference

between target-present and target-absent displays failed to reach

significance ( p � .05, n.s.). The lack of an omnibus main effect of

Figure 6. Four moments of visual search response time distributions. Note that standard deviation rather than

variance is plotted for the second moment.
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target presence for � seems to be due to target-absent trials having

higher � values for conjunction search but lower values (on aver-

age) for spatial configuration search. These two opposite trends

cancelled each other out.

Hockley’s (1984) finding that the � parameter did not change as

a function of set size was not replicated in our data set, as

evidenced by the significant main effects of set size for the

conjunction and spatial configuration search tasks (both p �

.0001). Spieler et al.’s (2000) observation that the � and � param-

eters tend to be inversely correlated was also not supported. The

overall correlation across the 224 distributions modeled was r 

.61, t(222)  11.46, p � .0001. None of the average correlations

for any task were negative.

Finally, we examined the relationship between measurements of

skew and the values of the � parameter. The correlation between

these two measurements was negative, r  �0.43, t(222) 

�7.02, p � .0001, meaning that higher values of skew were

predictive of lower � values in our data set. It is interesting to note

that both the conjunction and spatial configuration search tasks had

negative correlations but the feature search task had a positive

correlation between � and skew.

To evaluate goodness-of-fit, the �2 statistic was computed for

every function fit and the scores submitted to an omnibus

ANOVA. The analysis detected a significant main effect of task

( p � .05) and a reliable interaction of target presence by task ( p �

.005), but no other trends reached significance (all p � .05, n.s.).

�2 values were lowest in the spatial configuration search task

(lower �2 indicates better fit), followed by the conjunction and

then the feature search tasks. Follow-up one-way ANOVAs for

each task failed to find any reliable effects for feature and con-

junction search but did detect a significant main effect of target

presence ( p � .005) for spatial configuration search. No other

trends reached significance (all p � .05, n.s.). The significant main

effect of target presence for spatial configuration search, combined

with a lack of all other effects, explains the main effect of task and

the interaction of target presence by task.

Discussion of Ex-Gaussian Fits

The more difficult the search task (and thus, the more extended

in time the distribution), the better the fit of the ex-Gaussian to the

data. It appears that both the mean (�) and variance (�) of the

Gaussian component of the ex-Gaussian distribution were simi-

larly modulated by changes in task, set size, and target presence or

absence (see also Wagenmakers & Brown, 2007). On the other

hand, �, the exponential component of the ex-Gaussian distribu-

tion, showed somewhat different trends than the � and � param-

eters. The analyses found no significant effects (of set size, target

presence/absence, or their interaction) in � for the feature search

task, unlike the conjunction and spatial configuration tasks. The

effect of target presence on the � parameter was the opposite for

the conjunction and spatial configuration search tasks, with target-

absent conjunction displays yielding larger estimates of � than

target-present displays, and target-present spatial configuration

Figure 7. Average parameter values for the ex-Gaussian distribution. � is the mean of the Gaussian compo-

nent, � is the standard deviation of the Gaussian component, and � is the exponential parameter. For the

confidence intervals in the upper left, F stands for feature search, C stands for conjunction search, and S stands

for spatial configuration search.
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displays yielding larger estimates of � than target-absent displays.

But perhaps the most obvious difference in the � parameter from

the � and � parameters was that target-present and target-absent

trials were similar for the � parameter in spatial configuration

search but not for the � and � parameters.

Ex-Wald

The ex-Wald is the convolution of an exponential and a Wald

distribution that attempts to represent both the decision and re-

sponse components of a response time (Schwarz, 2001) as a

diffusion process, a continuous accumulation of information to-

wards some decision threshold (Ratcliff, 1978). The Wald com-

ponent describes the finishing time distribution of a diffusion

processes with a single absorbing boundary. Diffusion models

have been successful in modeling response times for a number of

cognitive and perceptual tasks (Palmer, Huk, & Shadlen, 2005;

Ratcliff, 1978), including visual search (Reeves, Santhi, & Decaro,

2005). Thus, in theory, the Wald portion of the distribution cor-

responds to the search/decision portion of a RT. The exponential

portion of the distribution is intended to capture the residual

component of RTs (e.g., motor delays) and is independent of the

diffusion process (Schwarz, 2001, 2002).

The scale of the exponential component is described by the

parameter � (actually, 1/�), which determines both the mean and

standard deviation of the exponential. The diffusion process is

described by the three parameters of the Wald distribution (Figure 8).

The parameter � represents the mean drift rate of the diffusion

process, while �2 represents its variance. The � parameter is

typically set to 1.0 without any loss of generality (Schwarz, 2001).

The height of the absorbing boundary is described by the param-

eter a. We implemented the Schwarz (2001) definition of the

ex-Wald, which has the probability density function h defined as:

h
t��, �, a, �� � �exp�� �t �

a
� � k�

�2 � ·F
t�k, �, a�,

(2)

where k is defined as:

k � ��2
� 2��2

� 0, (3)

and the cumulative density function of the Wald distribution, F, is

defined as:

H
t��, �, a, �� � F
t��, �, a�

� exp���t �

a
� � k�

�2 � · F
t�k, �, a� (4)

where � is the standard cumulative Gaussian function.

One of the strengths of the ex-Wald function is that it has

well-specified theoretical connections to models of process

(Heathcote, 2004; Schwarz, 2001), such as the diffusion model

(Ratcliff, 1978). These connections can allow one to make reason-

able hypotheses about parameter trends as a function of condition

(Schwarz, 2001). For instance, as the difficulty of the search task

increases from feature search to conjunction to spatial configura-

tion search, we can expect the rate of accumulation of information

over time (�) to decrease. Likewise, increasing set size should

cause a decrease in �, since large set size displays contain more

information to process than small set size displays.

According to our maximum likelihood estimates, the � parameter

decreased with task difficulty and set size, as predicted (Figure 9).

Analyses of the � parameter trends showed main effects of task,

target presence, and set size (all p � .01). The only interaction was

target presence by task ( p � .05; all others p � .05). This

interaction reflected the fact that the drift rate was reduced for

target absent trials in the spatial configuration search task ( p �

.05), while target presence or absence had no effect on drift rate for

the other search tasks (all p � .05).

The average estimated level of the absorbing boundary, a, was

higher for the conjunction search task than for the feature search

task, but the spatial configuration search task had the lowest values

overall. The combination of slower information accumulation and

lower decision thresholds reflects the typical speed-accuracy co-

variance across tasks. ANOVAs on the estimated a parameter

returned main effects of task and set size (both p � .05) but no

other significant findings (all p � .05). T-tests on the three tasks

showed that the average level of the absorbing boundary a for the

conjunction search and spatial configuration search tasks differed

reliably, t(8)  3.60, p � .01, but no other comparison was

significant (all p � .05). Follow-up ANOVAs on each of the three

tasks revealed no significant trends in either the feature or con-

junction search data (all p � .05) but a reliable main effect of set

size for the spatial configuration search data ( p � .05).

Analyses of the exponential parameter 1/� detected main effects

of task and set size, as well as interactions of target presence by

task, set size by task, and the three-way interaction of target

presence by set size by task (all p � .005). No other trends in the

omnibus ANOVA for 1/� reached significance (all p � .10).

Follow up ANOVAs on the individual tasks found no significant

effects for feature search (all p � .05) but detected main effects of

target presence and set size for conjunction search (both p � .05)

and a main effect of set size and an interaction of target presence

by set size for the spatial configuration search task (both p � .05).

For the conjunction search task, values of 1/� increased signifi-

cantly with set size, with target-absent trials for conjunction search

consistently yielding higher values of 1/� than target-present trials.

Spatial configuration search, on the other hand, had larger values

of 1/� for target-present trials but only for the two highest set sizes.

The trends of the estimated exponential parameter 1/� for the

Figure 8. The ex-Wald distribution is the combination of the Wald

distribution and the Exponential distribution. The Wald component models

the finishing time distribution of a diffusion process in which information

accumulates over time towards an absorbing decision boundary. The ex-

ponential component is intended to capture residual processes, such as

motor response times.
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ex-Wald distribution are highly similar to the estimated exponen-

tial parameter � in the ex-Gaussian distribution, as comparison of

the lower-left panels of Figures 7 and 9 will confirm.

Omnibus ANOVA of the �2 goodness-of-fit measure detected a

main effect of task and a significant interaction of target presence

by task (both p � .05). Spatial configuration search data were

better fit by the ex-Wald distribution than were feature search data,

t(8)  2.71, p  .027, though the other comparisons were not

significant (all p � .10).

Discussion of Ex-Wald Fits

More difficult search tasks lead to lower estimates of �, indi-

cating that information about more difficult displays accumulated

more slowly than did information about easier displays. The �

parameter appears to be inversely proportional to mean RT. The

1/� parameter also showed a pattern of data that was qualitatively

similar to the mean RT data, with higher estimates of the expo-

nential parameter for difficult spatial configuration searches than

for moderate conjunction searches or easy feature searches. Both

the � and 1/� parameters showed the same qualitative ordering of

values as would be expected based on search difficulty.

The threshold parameter a, on the other hand, did not yield

estimated values that had a clear ordered correspondence with task

difficulty. Spatial configuration search had the lowest values of a,

followed by feature search and then conjunction search. Lower

levels of a indicate lower thresholds for responding, which lead to

shorter RTs and more errors, though these trends will be modu-

lated by the drift rate, �. Starting with feature search, neither �,

nor a, nor 1/� varied much as a function of set size or target

presence or absence. For target-present conjunction searches, the

drift rates had values similar to feature search, while the thresholds

were higher. Conversely, for spatial configuration searches, the

drift rate is so slow that even with a very low decision boundary,

RTs remain much higher than for the other tasks.

According to the ex-Wald model, mean RT differences between

conditions are a combination of factors including perceptual dif-

ficulty (i.e., drift rate �) and the observer’s internal criteria (i.e.,

threshold a), as opposed to simply reflecting difficulty, as is

implicit in other models. Through the threshold parameter a, the

ex-Wald acknowledges the contribution of error rates to under-

standing search behavior. All other things being equal, lower

values of a should yield faster RTs but higher error rates. Of

course, all other things are not equal across tasks, so we cannot

make direct inferences about what the error rates should be. A

theory relating RT and accuracy in search is beyond the scope of

the this paper, but the interested reader can look at (Palmer et al.,

2005) for an approach using the diffusion model and to (Wolfe et

al., 2010) for an analysis of the error rates from this dataset.

Gamma

This function is defined as the sum of a series of exponential

processes. Each exponential process may have a different scale,

Figure 9. Average parameter values for the ex-Wald distribution. � is the mean drift rate, �, the standard

deviation of the drift rate was set to 1, a the level of the absorbing boundary, and 1/� is the exponential

parameter. For the confidence intervals in the upper left, F stands for feature search, C stands for conjunction

search, and S stands for spatial configuration search.
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but the average scale of the processes is captured by the parameter

�. The shape parameter � reflects the approximate number of

exponentials contributing to the function. The shift parameter �

moves the function along the x-axis without affecting its shape.

The density function of the shifted Gamma distribution (Johnson,

Kotz, & Balakrishnan, 1994, as reported in Dolan, van der Maas,

& Molenaar, 2002) is:

f
x��, �, �� �


x � ����1exp�� x � �

� �
���
��

, (5)

where �(�) is the gamma function.

Consider two accounts of the � parameter. In one version of a

serial model, each deployment of attention might add an exponen-

tially distributed increment to the RT and � would increase with

set size. Alternatively, � might reflect a number of larger stages

(e.g. initial processing, search, and decision). In this case, � would

be relatively constant across set size and, perhaps, across tasks.

Figure 10 presents the average parameters from the fitted

gamma distributions. It is clear that � varied little with set size or

task. Except for the higher set sizes of target absent, spatial

configuration, the data can be modeled as representing the contri-

butions of 2 - 3 exponentials with the differences between the

conditions captured by the rate parameter �, which increased with

set size for the spatial configuration and conjunction tasks (both

p � .0005) but not the feature task ( p � .05). Rates were overall

slower for more difficult tasks ( p � .0001). No individual task

yielded a significant main effect of set size for � (all p � .05),

though the omnibus main effect of set size reached significance

( p � .005).

The shift parameter � was stable across set size ( p � .05) but

varied as a function of task ( p � .0001) and target presence ( p �

.01). Unsurprisingly, increasing task difficulty shifted the RT

distributions later in time.

Analysis of the �2 goodness-of-fit measure revealed a main

effect of task ( p � .0005) but no other significant main effects or

interactions (all p � .05). Overall, the gamma function appeared to

be somewhat better-suited for describing behavior in the spatial

configuration search task than either the feature or conjunction

search tasks.

Discussion of Gamma Parameter Fits

The number of exponentials making up the gamma function, �,

did not track set size, arguing against modeling even inefficient

search as a series of exponentially distributed attentional shifts.

This finding should not be taken as evidence either way regarding

serial attentional shifts in search, only against one possible imple-

mentation of a serial model. The gamma parameter fits are more

consistent with a model that sees RT distributions as composed of

2 - 3 exponentially distributed processes: e.g. initial feed-forward

processing, the search process, and response selection/execution.

In this account, �, increasing with RT, captures the duration of

search processes while � – which varied with task and target-

Figure 10. Average parameter values for the Gamma distribution. � is the rate parameter, � is the shape

parameter, and � is the starting time parameter. For the confidence intervals in the upper left, F stands for feature

search, C stands for conjunction search, and S stands for spatial configuration search.
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present vs. target-absent but not set size – would seem to be more

closely tied to decision processes.

This account broadly describes the parameter fits except for the

target absent RTs for the larger set sizes of the spatial configura-

tion task. Here the � parameter suddenly grows suggesting that

some different factor is contributing to the RT distributions in

these for the longest target-absent searches.

Weibull

For random variables, such as RT, that are bounded by zero at

the lower end and can extend to infinity at the upper end, like a

series of races, the asymptotic description of their minima (i.e., the

“first place” finishing times) is well captured by a Weibull func-

tion (Logan, 1992). The version of the Weibull used in our anal-

yses has three parameters: the shape parameter �, the scale param-

eter �, and the shift parameter �. We used the form of the Weibull

defined by Johnson et al. (1994), as reported in Dolan et al. (2002):

f
x��, �, �� �

�

��x � �

� � ��1

exp���x � �

� � �� . (6)

When the shape parameter �  1, the Weibull distribution is

equal to an exponential distribution (Chechile, 2003). When � 

3.6, the Weibull is approximately normal (Logan, 1992). Since

most RT distributions are positively skewed but not normal, we

can expect � to take on a value somewhere between 1 and 3.6.

Weibull distributions have been used to model RTs in a variety

of cognitive tasks (Rouder, Lu, Speckman, Sun, & Jiang, 2005),

particularly those that can be modeled as a race among competing

units (Cousineau, Goodman, & Shiffrin, 2002). While Logan

(1992) successfully used the Weibull to explain memory search

RTs, to our knowledge there has been no systematic exploration of

its applicability to visual search.

Discussion of Weibull Parameter Fits

The � parameter of the Weibull function appears to share the

same qualitative trends as the mean RT data, with all main effects

and interactions being highly significant (all p � .0001). This

parameter showed a pattern of values more similar to the mean RT

data than any other parameter in the four functions we examined.

Examining the upper right panel of Figure 11, it is interesting to

note the similarity to the fits of the gamma distribution. Here, the

� parameter changes very little with set size or target presence

except for the target absent trials at the larger set sizes for spatial

configuration search. Consistent with these observations, analyses

of the � trends detected no main effect of task ( p � .10), but there

were reliable main effects of target presence and set size, as well

as significant interactions between those factors along with a

three-way interaction of target presence by set size by task (all p �

.01). � did not significantly differ as a function of set size for

feature or conjunction search displays (all p � .10), but � values

were reliably larger for target absent spatial configuration search,

as evidenced by an interaction of target presence by set size (all

p � .0005) for that search task.

Figure 11. Average parameter values of the Weibull function. � is the scale parameter, � is the shape

parameter, and � is the starting time parameter. For the confidence intervals in the upper left, F stands for feature

search, C stands for conjunction search, and S stands for spatial configuration search.
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Like the � parameter, the omnibus analysis of the � parameter

revealed trends similar to the mean RT data. That is, as set size

increased, the starting position of the best-fitting Weibull function

also increased, with target-absent trials showing a more rapid

increase as a function of set size than target-present trials. The

main effects of task, target presence, and set size, as well as all

interactions between those factors, is highly significant (all p �

.0001).

The Weibull function only seemed to provide a consistently

good fit to the data for the spatial configuration search task.

Omnibus ANOVA of the �2 goodness-of-fit metric revealed main

effects of task and set size, as well as an interaction of task by set

size (each p � .01). The Weibull function fit spatial configuration

search distributions better than conjunction search, which were in

turn better fit by the Weibull than the feature search data (both p �

.01). Additionally, higher set size displays in the conjunction

search and spatial configuration search tasks were more closely fit

by the Weibull than lower set size displays (all p � .05).

Discussion

Comparing Function Fits

How impressed should one be by the fits of these functions to

the data and by the differences between the fits of the functions?

Can this approach be used to reject hypotheses about the RT

distributions? Figure 12 shows the �2 error as a function of set size,

averaged over task and target presence/absence. For comparison,

we add the error obtained by fitting a standard Gaussian function

to the data, since a simple Gaussian is the implicit assumption of

the standard practice of reporting mean and standard errors of RT

data. Fortunately, our chosen functions fit the data substantially

better than the Gaussian. Furthermore, not all plausible functions

are equally good at fitting the data. In particular, the Weibull fits

were systematically worse than the fits for the other three func-

tions.

To assess these impressions, we submitted the �2 goodness of fit

values to a 4 � 3 � 2 � 4 (Function � Task � Target Presence �

Set Size) mixed ANOVA with task treated as a between-subjects

variable (omitting the Gaussian data). We observed a main effect of

function type, and t-tests of the overall function fits showed that the

Weibull function was worse than the other three functions (all p �

.0001). The ex-Gaussian function yielded the closest fit to the data,

overall, followed by the ex-Wald, Gamma, and then the Weibull

function, though there is little difference between the performance

of the first three functions. The close ties of the ex-Wald distri-

bution to diffusion process models makes this function particularly

relevant to search, with a clear set of interpretations for its param-

eters (e.g. Ratcliff, 1978; Schwarz, 2001). The ex-Gaussian func-

tion also fits these and other RT distributions well (Hohle, 1965),

and the theoretical status of the individual parameters in the

ex-Gaussian has been well-explored by many researchers (Hock-

ley, 1984; Luce, 1986; Ratcliff, 1978; Ratcliff & Murdock, 1976;

Spieler et al., 1996). However, the ex-Gaussian parameters are not

as strongly tied to computational models of search as the ex-Wald

parameters.

Similarities Among Parameter Trends

One unique opportunity provided by the current analyses of

visual search RT distribution data is the ability for us to examine

similarities in parameter trends across the four fitting functions.

We have identified three patterns of parameter values that appear

in two or more functions, indicating that the different fitting

functions might be picking up similar trends in the RT distribution

data.

Parameter trend #1. Similar exponential parameter trends

for all conditions as a function of set size for three of the four

fitting functions. Three functions include an exponential compo-

nent scale parameter (� in the ex-Gaussian, 1/� in the ex-Wald, and

the exponential scale parameter � in the Gamma). The parameter

values look similar in all cases and qualitatively mirror the mean

RT data. The only place where they all depart from the pattern of

the mean RT data is for the higher set sizes of the target absent

trials of the spatial configuration search. Here, the parameter

values are lower than the values for target present. It is interesting

that these conditions also produce the highest error rates (Wolfe et

al., 2010).

Parameter trend #2. The � parameter for the Gamma func-

tion and � for the Weibull function respond to the shape of the

distributions. These show marked elevation for the same higher set

sizes of target absent trials in spatial configuration search. The

shape parameters are otherwise quite constant. Higher values for

the shape parameters of both the Gamma and Weibull functions

yield distributions that are less positively skewed than lower

values. The fact that the conditions with high shape parameter

values also have high miss error rates (Wolfe et al., 2010) suggests

that observers may have abandoned their searches too early, which

would lower skew of correct target absent distributions since long

RTs in the tails would be more rare.

Parameter trend #3. Finally, several functions have a pa-

rameter or parameters that scale linearly with set size for the target

absent trials of the spatial configuration search while the same

parameter remains relatively flat in contrast for other conditions.

These are parameters that capture the rightward shift and spread of

the target absent data. In the ex-Gaussian function, both � and �

increased rapidly for spatial configuration target-absent distribu-

tions compared to all other conditions. For the ex-Wald function,

the quantity 1/� (indicating drift time of the diffusion process

Figure 12. Average �2 score as a function of set size for the four

distributions with added data from the fit of a Gaussian function. Lower

scores indicate better fit. Error bar represents standard error of the mean.
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rather than drift rate � presented earlier) increases more dramati-

cally for target-absent spatial configuration searches than for the

other conditions, mirroring the trends in the other parameters.

Finally, the shift parameter � for the Weibull function exhibits the

same pattern, increasing almost six times as much in the spatial

configuration target-absent vs. target-present distributions.

Exponential Processes in Visual Search

Perhaps the most interesting feature of the distribution analyses

is that the three functions with an exponential component were all

more successful at modeling RT distributions than the one function

(the Weibull) without an exponential component. Furthermore,

these exponential factors qualitatively capture the basic pattern of

mean RTs. As noted in the previous section, the exponential

parameter trends for the ex-Gaussian, ex-Wald, and Gamma func-

tions are all very similar. One interpretation in the literature is that

these exponential components reflect residual (non-decision) pro-

cesses in the generation of response times (McGill, 1963; Schwarz,

2001). However, in the visual search tasks explored here, these

components seem to reflect something more like the search pro-

cess itself (Hohle, 1965). It is worth noting that an “amnesic” serial

search mechanism would produce exponentially distributed search

times. An amnesic search is one in which rejected distractors are

not marked or inhibited, i.e., sampling with replacement. There is

some evidence in favor of amnesic search (Horowitz & Wolfe,

1998, 2005), though the topic is controversial (Dukewich & Klein,

2005; Shore & Klein, 2000).

Either these exponential parameters, often linked to residual

processing, don’t correspond to residual processing at all, or “re-

sidual” processes actually play a significant role in shaping the

pattern of RTs in search tasks. Perhaps, to borrow an analogy from

the field of biology, these residual processes that we had long

regarded as “junk DNA” are actually encoding something impor-

tant. We suspect that this may be the case, but more work needs to

be done before any strong conclusions can be drawn.

Conclusions

The purpose of this project was to move beyond analysis of

mean RT in visual search by trying to capture the full RT distri-

butions. We acquired approximately 500 trials per cell from three

different benchmark visual search tasks: feature search, conjunc-

tion search, and spatial configuration search. We then evaluated

the ability of four popular functions to capture the resulting em-

pirical RT distributions. The ex-Gaussian, ex-Wald, and Gamma

functions all provided good fits to the empirical data, while the

Weibull function did not perform as well. It is interesting to note

that several of the functions had similar parameter trends. Most

notably, the three best-fitting functions had exponential compo-

nents that responded in similar ways to variations in task and set

size. Given that many theories of visual search can easily repro-

duce mean RT data, we hope that the fuller analyses of RT

distributions presented here will aid theorists in testing and devel-

oping models of visual search.
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