What are Treebank Grammars?

Detlef Prescher, Remko Scha, Khalil Sima'an University of Amsterdam

> Andreas Zollmann *Carnegie Mellon University*

Motivation

- Probabilistic parsers based on Stochastic Tree Grammars (STGs) achieve state-of-the-art performance
- STGs formally generalise probabilistic context-free grammars (PCFGs) because STGs express contextual evidence by productions that are partial parse-trees :
- It is well-known that maximum-likelihood estimation yields excellent model instances for PCFGs; By contrast, we still do not know how to estimate STGs with desirable theoretical properties
- This talk: On results of the NWO Project LeStoGram (Oct 2003 - Sept 2006): Bringing together Standard Estimation Theory and Natural Language Processing...

Overview

- Current Practice in Natural Language Processing
- Standard Estimation Theory
- Treebank Grammars and Estimation Theory
- Related Corpus-Based Methods
- Conclusion

Natural Language Processing (NLP)

Applications of NLP

Natural language and NLP play a central role in systems that

- augment textual or spoken data with information (e.g. automatic transcription of speech signals, part-of-speech tagging, named-entity recognition, parsing/chunking, word-sense disambiguation)
- transform textual or spoken data (e.g. text-to-speech, speech-to-text, spelling correction, text summarization, machine translation)
- **extract information from textual or spoken data** (e.g. information retrieval, question answering, information extraction, data mining)
- communicate with people (dialog systems)

The Aim of NLP

Scientific: Build models reflecting the human use of language and speech.

Technological: Build models that serve in technological applications.

The main NLP questions are:

- 1. What are the kind of things that people say and write?
- 2. What do these things mean?
- 3. How to incorporate the knowledge about these things into algorithms?

How to build models of NLP?

Traditional View: Competence (Chomsky, ~ 1960) Grammaticality of sentences in a language is defined via a set membership test:

- A sentence is a sequence of words,
- A language is a set of sentences,
- A formal grammar is a device defining the language,

Modern View: Performance (~ 1990)

Given a specific NLP task and a specific domain of language use, the human language-behavior is modeled by a

(black-box) function: input \longrightarrow output,

the output that humans perceive as the <u>most plausible</u> for a given input.

Building Models of NLP

Example: Grammar Estimation

Somes Issues in Modeling for NLP

- How to obtain the symbolic grammar?
 - Broad-coverage, linguistically motivated, manually constructed grammars: Utilised by early parsing systems; some ongoing activities with Unification Grammars...
 - <u>Treebank Grammars</u>: In current state-of-the art rules are simply read off a corpus of analysed sentences
- How to estimate the grammar's probabilities?
 - <u>Context-Free Grammars</u>: Maximum-Likelihood Estimation
 - <u>Tree-Substitution Grammars</u>: The original estimator (DOP1)
 is biased and inconsistent : MLE overfits : ...
 - <u>Unification Grammars</u>: current estimators yield parse 'probabilities' that sum to a value greater one...

Standard Estimation Theory

Statistics

RANDOM EXPERIMENT: an experiment whose outcome cannot be predicted with certainty.

RANDOM VARIABLE X: a measurement in a random experiment, characterised by a probability distribution $p_X(x) = p(X = x)$ on the set of the outcomes x of X.

RANDOM SAMPLE $\langle X_1, ..., X_n \rangle$: a sequence of *independent* random variables $X_1, ..., X_n$ with the same distribution as the variable X above.

STATISTIC: a random variable derived from the random sample, e.g. the sample mean $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ or the sample variance $s_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$.

Estimators

ESTIMATION THEORY: Guessing the distribution of the random variable X from an observation sequence $\langle x_1, ..., x_n \rangle$.

MODEL \mathcal{M} : The set of admissible distributions. The 'true' distribution of X is assumed to be an instance of \mathcal{M} .

PARAMETERS Θ : Typically, the model is characterised by a finite-dimensional set $\Theta \subseteq \mathbb{R}^k$ of parameter vectors, i.e., $\mathcal{M} = \{p_{\theta} | \theta \in \Theta\}.$

ESTIMATOR est_n : a statistic with range Θ .

ESTIMATE: an estimator's parameter guess based on an observation sequence $\langle x_1, \ldots, x_n \rangle$. For example, the maximum-likelihood estimate $\arg \max_{\theta \in \Theta} \prod_{i=1}^n p_{\theta}(x_i)$.

Properties of Estimators

BIAS: The expected error made by an estimator, i.e., $bias_{\theta}(est_n) = E(est_n - \theta)$. If $bias_{\theta}(est_n) = 0$ for all $\theta \in \Theta$, then est_n is said to be *unbiased*.

CONSISTENCY: Using a loss function $loss_{\theta}(est_n) = ||est_n - \theta||^2$ for errors, a sequence of estimators est_n is called *consistent* if for each $\theta \in \Theta$, the <u>expected loss approaches zero</u> as *n* tends to infinity: $lim_{n\to\infty} E(loss_{\theta}(est_n)) = 0$.

MINIMAL SUFFICIENCY: A statistic $U = h(X_1, \ldots, X_n)$ is called sufficient for θ if U contains all of the information about θ that is available in the entire sample. Thus a sufficient statistic Utaking values in an m-dimensional space with m < n yields a <u>data reduction with no loss of information</u>. Typically, one looks for sufficient statistics with smallest dimension possible.

Current Practice in Parameter Estimation

Standard estimation theory:

- build a model with a finite-dimensional parameter space
- ensure that the model contains the 'true' distribution
- search for unbiased and/or consistent estimators
- base estimation on minimal sufficient statistics

Treebank Grammars and

Standard Estimation Theory

What Are the Parameters of Probabilistic Parsing?

From an Estimation Theory perspective, probability estimation from a corpus of syntactic annotations is used for two tasks:

• Task 1: Estimate the production probabilities of an a priori fixed grammar

 \implies parameters = production probabilities

- **Task 2**: Estimate the probability distribution over the parses themselves
 - \implies parameters = parse probabilities

Choose the Right Parameters!

Example: Different tree-substitution grammars with the same parse distribution.

PARSES		G	GRAMMAR2					
t_1	t_2	0.25	0.25	1.0	0.5	0.5	1.0	0.5
	S	S						
S a	Á a a	A a a	S A a	A a	S a	S A a	A a	S a

Two different tasks: Estimating a probabilistic grammar is not equivalent to estimating a parse distribution!

Pro/Cons for Estimating Production/Parse Probs

ESTIMATION

finite-dimensional model? true distribution in the model? consistent estimators? minimal sufficient statistics? via productions via parses

Linguistic Perspective: (i) Estimating production probabilities implies pinning down a grammar prior to estimation. The chosen grammar has to reflect the exact nature of natural language syntax (which is a very strong assumption) (ii) For ambiguity resolution, the alternative parses have to be ranked by parse probabilities (and should therefore be parameterised)

The Parameters of Probabilistic Parsing

- The actual goal is to **estimate parse distributions** (of which the treebank is a finite sample)
- Paradigm shift: Assume that some grammar but not an a priori constructed and fixed one — generates the parse distribution
- Search for a minimal sufficient statistics to reduce the infinite-dimensional parse space to a finite-dimensional model
- Explore Treebank Grammars i.e. probabilistic grammars with productions directly projected from the treebank

Treebank-Grammar Approaches

Treebank (Tree fragm	Example b ents:	y Johnson	, 2002):	$n_1 \times t_1$: S \widehat{AA} $ a a$	n ₂ ×	s ^t 2: S A a
<pre>/1: S</pre>	^t 2 [:] S A a	^{<i>t</i>₃: S ÂA ∣ a}	^{/₄:} S ÂÂ a	[∕] 5 [:] S ÂÂ	^t 6 [:] S │ A	^⁄7 [:] A │ a

Tree derivations (Trees with hidden breakpoints):

 $D(t_1) = \{t_1, t_3 \circ t_7, t_4 \circ t_7, t_5 \circ t_7 \circ t_7\} \text{ and } D(t_2) = \{t_2, t_6 \circ t_7\}$

Example: Data-Oriented Parsing (DOP)

DOP Estimation: Properties...

The original DOP1 estimator is biased and inconsistent

DOP Estimation: More Problems...

Maximum-likelihood estimation (MLE) (Fisher 1912), typically yields an excellent estimate if the given corpus is large:

- under certain conditions which are typically satisfied in practical problems, they are consistent estimators,
- unlike the relative-frequency estimator, maximum-likelihood estimators typically do not over-fit the given corpus in practice.

Unfortunately: MLE results in a completely over-fitting instance of the standard DOP model, which does not assign a positive probability to any tree outside the given treebank...

DOP Estimation: A More Fundamental Problem

In sharp contrast to PCFG estimation, the typical asymptotic behavior of DOP estimation is that *the symbolic backbone of DOP's probability model grows as the treebank grows*

In the limit of the treebank size, DOP risks learning an arbitrarily large grammar — even if the treebank is generated by a finite grammar.

Related Corpus-Based Methods

The Unknown-Word Problem

Unknown words: words that have not occurred in the training data but that will occur in new sentences... Unknown words have been linked to Zipf's law: as a corpus grows there are always new phenomena to be expected to occur in the future...

Examples: Open category words like proper nouns and compound nouns, but also verbs are made up on the fly all the time (e.g. 'googling someone').

Unknown-Word Problem: One cannot determine a **finite** set of allowed words (the terminal symbols in the formal-grammar terminology) a priori to estimation...

Generalising the Unknown-Word Problem

The unknown-word problem may be streched to:

- **unknown categories**: words for which some part-of-speech categories are not in the corpus
- **unknown productions**: many productions in the well-known Penn Wall Street Journal treebank occur only once, hinting at the fact that other novel productions are likely to occur in new utterances...

Current Solution for the Unknown-Word Problem

Most NLP systems based on probability models over word sequences utilise:

Smoothing Techniques:

- 1. Estimate the parameters of a (finite) grammar, including a special symbol UNKNOWN, a category of unknown events
- 2. Use a mapping from a word to itself if it is known, or else to the UNKNOWN category
- 3. Reserve and distribute probability mass to the map into UNKNOWN

Problem: The second step (the mapping) can only be described by an infinite set of rules that maps a novel word to its UNKNOWN...

Conclusion

- We raise a question as to whether any probabilistic instance of an **a priori fixed**, **finite grammar** can reflect natural-language syntax
- DOP (and any other higher-order STG) aims at estimating an infinite-dimensional parameter vector, implying that **DOP estimation is incompatible with Estimation Theory**
- Similiarly, other corpus-based methods in NLP (like smoothing) can only be described by an infinite set of rules
- It seems necessary and reasonable to lift certain finiteness restrictions on the formal grammar that is assumed to generate a natural language

Thank you!

The Elements of NLP

Phonetics/Phonology: map acoustic signals to phoneme and/or grapheme sequences and vice versa (speech recognition/synthesis)

Morphology: analyze the <u>structure of words</u> (morphological analysis)

Syntax: identify the category of words (POS tagging), analyze the <u>structure of sentences</u> (parsing/generation)

Semantics: calculate the meaning of words/sentences (lexical/compositional semantics)

Discourse: analyze the <u>structure</u> of dialog or text (discourse representation)

Pragmatics: incorporate world knowledge, cultural convention a specific use of language.

What changed NLP?

Competence Models: In contrast to people, the linguistic view of language as a set does not care about problems caused by ambiguity. Competence models

- cannot resolve multiple output 😕
- cannot handle multiple input (noisy utterances) 😕
- cannot express multiple levels of grammaticality 😕

Performance Models: Mimic people's language behavior and are specifically designed to resolve ambiguity. They

- handle uncertainty with Probability Theory and Statisticsee
- utilise competence models as components 🙂
- have even the potential to model extra-linguistic factors 🙂

Current Practice: Treebank Grammars

RULE PROBABILITY: relative-frequency estimate on the corpus of all rules with the same left-hand side, e.g.

$$\pi(r_4) = \frac{\operatorname{count}(r_4)}{\operatorname{count}(r_4) + \operatorname{count}(r_6)}$$

DERIVATION PROBABILITY: product of rule probabilities TREE PROBABILITY: sum of derivation probabilities

Current Practice in DOP Estimation

- DOP Back-Off (Burrato and Sima'an 2003): Stick with the 'All-Fragments Approach' of DOP but give up Maximum-Likelihood Estimation for DOP. Use instead backoff distributions based on fragments and their counts...
- DOP* (Zollmann and Sima'an 2005): Stick with Maximum-Likelihood Estimation for DOP but give up the 'All-Fragments Approach' of DOP...

Have we to give up the spirit of DOP saying that DOP is some kind of a Memory-Based-Learning approach??!