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Motivation

• Probabilistic parsers based on Stochastic Tree Grammars
(STGs) achieve state-of-the-art performance

• STGs formally generalise probabilistic context-free grammars
(PCFGs) because STGs express contextual evidence by
productions that are partial parse-trees

• It is well-known that maximum-likelihood estimation yields
excellent model instances for PCFGs; By contrast, we still do
not know how to estimate STGs with desirable theoretical
properties

• This talk: On results of the NWO Project LeStoGram
(Oct 2003 - Sept 2006): Bringing together Standard
Estimation Theory and Natural Language Processing...
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Overview

• Current Practice in Natural Language Processing

• Standard Estimation Theory

• Treebank Grammars and Estimation Theory

• Related Corpus-Based Methods

• Conclusion
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Natural Language
Processing

(NLP)
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Applications of NLP

Natural language and NLP play a central role in systems that

- augment textual or spoken data with information (e.g.
automatic transcription of speech signals, part-of-speech
tagging, named-entity recognition, parsing/chunking,
word-sense disambiguation)

- transform textual or spoken data (e.g. text-to-speech,
speech-to-text, spelling correction, text summarization,
machine translation)

- extract information from textual or spoken data (e.g.
information retrieval, question answering, information
extraction, data mining)

- communicate with people (dialog systems)
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The Aim of NLP

Scientific: Build models reflecting the human use of
language and speech.

Technological: Build models that serve in technological
applications.

The main NLP questions are:

1. What are the kind of things that people say and write?

2. What do these things mean?

3. How to incorporate the knowledge about these things
into algorithms?
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How to build models of NLP?

Traditional View: Competence (Chomsky, ∼ 1960)
Grammaticality of sentences in a language is defined via a
set membership test:
- A sentence is a sequence of words,
- A language is a set of sentences,
- A formal grammar is a device defining the language,

Modern View: Performance (∼ 1990)
Given a specific NLP task and a specific domain of language
use, the human language-behavior is modeled by a

(black-box) function: input −→ output,

the output that humans perceive as the most plausible for a
given input.

Detlef Prescher, University of Amsterdam, October 2006 6



Building Models of NLP

Formal Grammar
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− either on sentences or analyses (un/supervised learning)

Example: Grammar Estimation
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Somes Issues in Modeling for NLP

• How to obtain the symbolic grammar?

– Broad-coverage, linguistically motivated, manually
constructed grammars: Utilised by early parsing systems;
some ongoing activities with Unification Grammars...

– Treebank Grammars: In current state-of-the art systems,
rules are simply read off a corpus of analysed sentences

• How to estimate the grammar’s probabilities?

– Context-Free Grammars : Maximum-Likelihood Estimation
– Tree-Substitution Grammars: The original estimator (DOP1)

is biased and inconsistent ; MLE overfits ; ...
– Unification Grammars: current estimators yield parse

’probabilities’ that sum to a value greater one...
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Standard Estimation Theory
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Statistics

RANDOM EXPERIMENT: an experiment whose outcome cannot
be predicted with certainty.

RANDOM VARIABLEX: a measurement in a random experiment,
characterised by a probability distribution pX(x) = p(X = x)
on the set of the outcomes x of X.

RANDOM SAMPLE <X1, ..., Xn >: a sequence of independent
random variables X1, ..., Xn with the same distribution as the
variable X above.

STATISTIC: a random variable derived from the random
sample, e.g. the sample mean Xn = 1

n

∑n
i=1 Xi or the sample

variance s2
n = 1

n−1

∑n
i=1(Xi −Xn)2 .
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Estimators

ESTIMATION THEORY: Guessing the distribution of the
random variable X from an observation sequence <x1, ..., xn>.

MODEL M: The set of admissible distributions. The ’true’
distribution of X is assumed to be an instance of M.

PARAMETERS Θ: Typically, the model is characterised by a
finite-dimensional set Θ ⊆ Rk of parameter vectors, i.e.,
M = {pθ|θ ∈ Θ}.

ESTIMATOR estn: a statistic with range Θ.

ESTIMATE: an estimator’s parameter guess based on
an observation sequence 〈x1, . . . , xn〉. For example, the
maximum-likelihood estimate arg maxθ∈Θ

∏n
i=1 pθ(xi).
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Properties of Estimators

BIAS: The expected error made by an estimator, i.e.,
biasθ (estn) = E (estn − θ). If biasθ (estn) = 0 for all θ ∈ Θ, then
estn is said to be unbiased.

CONSISTENCY: Using a loss function lossθ (estn) = ||estn − θ||2

for errors, a sequence of estimators estn is called consistent
if for each θ ∈ Θ, the expected loss approaches zero as n

tends to infinity: limn→∞E (lossθ (estn)) = 0.

MINIMAL SUFFICIENCY: A statistic U = h(X1, . . . , Xn) is called
sufficient for θ if U contains all of the information about θ that
is available in the entire sample. Thus a sufficient statistic U

taking values in an m−dimensional space with m < n yields
a data reduction with no loss of information. Typically, one
looks for sufficient statistics with smallest dimension possible.
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Current Practice in Parameter Estimation

modelobservation
sequence

(output)(input) Estimator

(parameter space)

model instance
(parameter)

Standard estimation theory:

• build a model with a finite-dimensional parameter space

• ensure that the model contains the ’true’ distribution

• search for unbiased and/or consistent estimators

• base estimation on minimal sufficient statistics
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Treebank Grammars

and

Standard Estimation Theory
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What Are the Parameters of Probabilistic Parsing?

From an Estimation Theory perspective, probability estimation
from a corpus of syntactic annotations is used for two tasks:

• Task 1: Estimate the production probabilities of an a priori
fixed grammar

=⇒ parameters = production probabilities

• Task 2: Estimate the probability distribution over the parses
themselves

=⇒ parameters = parse probabilities
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Choose the Right Parameters!

Example: Different tree-substitution grammars with the same
parse distribution.

PARSES GRAMMAR1 GRAMMAR2
t1 t2 0.25 0.25 1.0 0.5 0.5 1.0 0.5

S

a

S

A

a

a

S

A

a

a S

A a

A

a

S

a

S

A a

A

a

S

a
Two different tasks: Estimating a probabilistic grammar is not

equivalent to estimating a parse distribution!
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Pro/Cons for Estimating Production/Parse Probs

ESTIMATION via productions via parses

finite-dimensional model?
true distribution in the model?
consistent estimators?
minimal sufficient statistics?

Linguistic Perspective: (i) Estimating production probabilities
implies pinning down a grammar prior to estimation. The
chosen grammar has to reflect the exact nature of natural
language syntax (which is a very strong assumption)
(ii) For ambiguity resolution, the alternative parses have to
be ranked by parse probabilities (and should therefore be
parameterised)
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The Parameters of Probabilistic Parsing

• The actual goal is to estimate parse distributions (of which
the treebank is a finite sample)

• Paradigm shift: Assume that some grammar — but not an
a priori constructed and fixed one — generates the parse
distribution

• Search for a minimal sufficient statistics to reduce the
infinite-dimensional parse space to a finite-dimensional
model

=⇒ Explore Treebank Grammars i.e. probabilistic grammars
with productions directly projected from the treebank
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Treebank-Grammar Approaches

Example: Data-Oriented Parsing (DOP)
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DOP Estimation: Properties...

The original DOP1 estimator is biased and inconsistent
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DOP Estimation: More Problems...

Maximum-likelihood estimation (MLE) (Fisher 1912), typically
yields an excellent estimate if the given corpus is large:

• under certain conditions which are typically satisfied in
practical problems, they are consistent estimators,

• unlike the relative-frequency estimator, maximum-likelihood
estimators typically do not over-fit the given corpus in
practice.

Unfortunately: MLE results in a completely over-fitting instance
of the standard DOP model, which does not assign a positive
probability to any tree outside the given treebank...
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DOP Estimation: A More Fundamental Problem

In sharp contrast to PCFG estimation, the typical asymptotic
behavior of DOP estimation is that the symbolic backbone of
DOP’s probability model grows as the treebank grows

x1 :
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x5 : . . .

In the limit of the treebank size, DOP risks learning an
arbitrarily large grammar — even if the treebank is

generated by a finite grammar.
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Related Corpus-Based
Methods
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The Unknown-Word Problem

Unknown words: words that have not occurred in the training
data but that will occur in new sentences... Unknown words
have been linked to Zipf’s law: as a corpus grows there are
always new phenomena to be expected to occur in the
future...

Examples: Open category words like proper nouns and
compound nouns, but also verbs are made up on the fly all
the time (e.g. ’googling someone’).

Unknown-Word Problem: One cannot determine a finite
set of allowed words (the terminal symbols in the formal-
grammar terminology) a priori to estimation...
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Generalising the Unknown-Word Problem

The unknown-word problem may be streched to:

• unknown categories: words for which some part-of-speech
categories are not in the corpus

• unknown productions: many productions in the well-known
Penn Wall Street Journal treebank occur only once, hinting
at the fact that other novel productions are likely to occur
in new utterances...
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Current Solution for the Unknown-Word Problem

Most NLP systems based on probability models over word
sequences utilise:

Smoothing Techniques:

1. Estimate the parameters of a (finite) grammar, including a
special symbol UNKNOWN, a category of unknown events

2. Use a mapping from a word to itself if it is known, or else to
the UNKNOWN category

3. Reserve and distribute probability mass to the map into
UNKNOWN

Problem: The second step (the mapping) can only be
described by an infinite set of rules that maps a novel word
to its UNKNOWN...

Detlef Prescher, University of Amsterdam, October 2006 26



Conclusion

• We raise a question as to whether any probabilistic
instance of an a priori fixed, finite grammar can reflect
natural-language syntax

• DOP (and any other higher-order STG) aims at estimating
an infinite-dimensional parameter vector, implying that
DOP estimation is incompatible with Estimation Theory

• Similiarly, other corpus-based methods in NLP (like
smoothing) can only be described by an infinite set of rules

• It seems necessary and reasonable to lift certain finiteness
restrictions on the formal grammar that is assumed to
generate a natural language
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Thank you!
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The Elements of NLP

Phonetics/Phonology: map acoustic signals to phoneme
and/or grapheme sequences and vice versa (speech
recognition/synthesis)

Morphology: analyze the structure of words (morphological
analysis)

Syntax: identify the category of words (POS tagging),
analyze the structure of sentences (parsing/generation)

Semantics: calculate the meaning of words/sentences
(lexical/compositional semantics)

Discourse: analyze the structure of dialog or text (discourse
representation)

Pragmatics: incorporate world knowledge, cultural conventions,
a specific use of language.
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What changed NLP?

Competence Models: In contrast to people, the linguistic
view of language as a set does not care about
problems caused by ambiguity. Competence models

- cannot resolve multiple output
- cannot handle multiple input (noisy utterances)
- cannot express multiple levels of grammaticality

Performance Models: Mimic people’s language behavior
and are specifically designed to resolve ambiguity. They

- handle uncertainty with Probability Theory and Statistics

- utilise competence models as components

- have even the potential to model extra-linguistic factors
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Current Practice: Treebank Grammars

TREEBANK
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PROBABILISTIC GRAMMAR
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RULE PROBABILITY: relative-frequency estimate on the corpus
of all rules with the same left-hand side, e.g.

π(r4) =
count(r4)

count(r4) + count(r6)

DERIVATION PROBABILITY: product of rule probabilities
TREE PROBABILITY: sum of derivation probabilities
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Current Practice in DOP Estimation

• DOP Back-Off (Burrato and Sima’an 2003): Stick with
the ’All-Fragments Approach’ of DOP but give up
Maximum-Likelihood Estimation for DOP. Use instead back-
off distributions based on fragments and their counts...

• DOP* (Zollmann and Sima’an 2005): Stick with Maximum-
Likelihood Estimation for DOP but give up the ’All-
Fragments Approach’ of DOP...

Have we to give up the spirit of DOP saying that DOP is some
kind of a Memory-Based-Learning approach??!
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