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ABSTRACT

We confirm the Kepler planet candidate Kepler-410A b (KOI-42b) as a Neptune-sized exoplanet on a 17.8 day,
eccentric orbit around the bright (Kp = 9.4) star Kepler-410A (KOI-42A). This is the third brightest confirmed planet
host star in the Kepler field and one of the brightest hosts of all currently known transiting exoplanets. Kepler-410
consists of a blend between the fast rotating planet host star (Kepler-410A) and a fainter star (Kepler-410B), which
has complicated the confirmation of the planetary candidate. Employing asteroseismology, using constraints from
the transit light curve, adaptive optics and speckle images, and Spitzer transit observations, we demonstrate that the
candidate can only be an exoplanet orbiting Kepler-410A. We determine via asteroseismology the following
stellar and planetary parameters with high precision; M⋆ = 1.214 ± 0.033 M⊙, R⋆ = 1.352 ± 0.010 R⊙,
age = 2.76 ± 0.54 Gyr, planetary radius (2.838 ± 0.054 R⊕), and orbital eccentricity (0.17+0.07

−0.06). In addition,
rotational splitting of the pulsation modes allows for a measurement of Kepler-410A’s inclination and rotation rate.
Our measurement of an inclination of 82.5+7.5

−2.5 [◦] indicates a low obliquity in this system. Transit timing variations
indicate the presence of at least one additional (non-transiting) planet (Kepler-410A c) in the system.

Key words: planetary systems – stars: fundamental parameters – stars: individual (KOI-42, KIC 8866102,
Kepler-410, Kepler-410A, HD 175289) – stars: oscillations (including pulsations)

Online-only material: color figures

1. INTRODUCTION

Launched 2009 March, the Kepler mission continuously
observed a field in the sky centered on the Cygnus-Lyra region
with the primary goal of detecting (small) exoplanets, by
photometrically measuring planetary transits to a high level of
precision (Borucki et al. 2008). Apart from a growing list of
confirmed planets (currently 152), the Kepler catalog contains
3548 planetary candidates (Batalha et al. 2013). The order
of magnitude difference between those numbers illustrates the
intrinsic difficulty of exoplanet confirmation.

Stars showing transit-like features are termed Kepler Objects
of Interest (KOIs). Here we study Kepler-410 (KOI-42,
KIC 8866102, HD 175289), which shows transit-like features
consistent with a small planet (Rp ≈ 2.6 R⊕) on a relatively
long orbit (17.83 days; Borucki et al. 2011). Apart from the
bright host star (Kepler magnitude Kp = 9.4) Kepler-410 also
consists of a fainter blended object (Kp = 12.2, Adams et al.
2012). We refer to this object as Kepler-410B, while we use
Kepler-410A for the bright host star. The brightness of the sys-
tem would make it a prime target for follow-up studies, if it
can be confirmed that the transits are indeed occurring around
Kepler-410A. Unfortunately the added complexity due to the
presence of Kepler-410B, and the presumably small mass of the
planet candidate, has so far prevented the planetary candidate to
be confirmed as planet, or shown to be a false positive.

In this paper, we will show that the transit-like features
are indeed caused by a planet orbiting Kepler-410A. For

this we combine information from the well-determined transit
shape with additional (ground-based) observations and Spitzer
measurements. We also take advantage of Kepler-410 being
almost exclusively observed in Kepler’s short-cadence mode
(sampling it every 58.8 s; Borucki et al. 2008), which allows
for the detection of solar-like oscillations. Analyzing the stellar
pulsations aids the confirmation of Kepler-410A as planet host
and leads to accurate determination of the stellar parameters.
We further measure the stellar rotation and its inclination by
analyzing the pulsation modes. Such an analysis was recently
carried out for Kepler-50 and Kepler-65 by Chaplin et al. (2013).

In Section 2, we describe the asteroseismic modeling before
we present the various arguments that validate Kepler-410A b
as a planet in Section 3. The planetary and orbital parameters
are presented in Section 4. We discuss the characteristics of
the system in Section 5 and our conclusions are presented in
Section 6.

2. STELLAR PROPERTIES FROM ASTEROSEISMOLOGY

Kepler-410 was observed in short-cadence mode for the entire
duration of the Kepler mission, except during the second quarter
of observations (Q2) where the long cadence mode was used.
The latter observations are not included in the asteroseismic
analysis, and we use short-cadence simple aperture photometry
data from Q0–Q1 and Q3–Q13. Before using the data as input
for asteroseismology, it is de-trended and normalized using a
specifically designed median filter to remove all transit features
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Figure 1. Power spectrum of Kepler-410 (gray). Overlain are the model fits (Equation (1)) obtained from the MCMC peak-bagging. The black curve gives the model
when including modes from the range 1370–2630 μHz—all mode frequencies in this range were included in the stellar modeling. The red curve gives the model
obtained when excluding the five outermost modes obtained in the first fit (black curve) in each end of the frequency scale. From this fit we get the estimates of the
stellar inclination and frequency splitting.

(A color version of this figure is available in the online journal.)

from the time series. The resulting time series is then used to
derive a power spectrum,8 which is shown in Figure 1.

2.1. Asteroseismic Frequency Analysis

The extraction of mode parameters for the asteroseismic
analysis was performed by Peak-bagging the power spectrum
(see, e.g., Appourchaux 2003). This was done by making a
global optimization of the power spectrum using an Markov
Chain Monte Carlo (MCMC) routine,9 including a parallel
tempering scheme to better search the full parameter space (see
Handberg & Campante 2011). In the fit the following model
was used for the power spectrum:

P(νj ;�) =

nb
∑

n=na

2
∑

ℓ=0

ℓ
∑

m=−ℓ

Eℓm(i)Ṽ 2
ℓ αnℓ

1 + 4

Γ
2
nℓ

(ν − νnℓm)2
+ B(ν), (1)

where na and nb represent, respectively, the first and last radial
order included from the power spectrum. We include modes of
degree ℓ = 0–2. Each mode is described by a Lorentzian profile
(see, e.g., Anderson et al. 1990; Gizon & Solanki 2003) due to
the way in which the p-modes are excited, namely, stochastically
by the turbulent convection in the outer envelope upon which
they are intrinsically damped (Goldreich et al. 1994). In this
description, νnℓm is the frequency of the mode while Γnℓ is a
measure for the damping10 rate of the mode and equals the
FWHM of the Lorentzian. Eℓm(i) is a function that sets the
relative heights between the azimuthal m-components in a split
multiplet as a function of the stellar inclination (see, e.g.,

8 The power spectrum was calculated using a sine-wave fitting method (see,
e.g., Kjeldsen 1992; Frandsen et al. 1995) which is normalized according to
the amplitude-scaled version of Parseval’s theorem (see, e.g., Kjeldsen &
Frandsen 1992), in which a sine wave of peak amplitude, A, will have a

corresponding peak in the power spectrum of A2.
9 The program StellarMC was used, which was written and is maintained by
Rasmus Handberg.
10 The mode life time is given by τ = 1/πΓnℓ.

Dziembowski 1977; Gizon & Solanki 2003). The factor Ṽ 2
ℓ

is the relative visibility (in power) of a mode relative to the
radial and non-split ℓ = 0 modes. The factor αnℓ represents an
amplitude modulation which mainly depends on frequency and
is generally well approximated by a Gaussian.

In this work, we do not fix the relative visibilities, as
recent studies (see, e.g., Deheuvels et al. 2010; Salabert et al.
2011; Lund et al. 2014) have suggested that the theoretical
computed values (see, e.g., Ballot et al. 2011) are generally
not in good agreement with observations. In line with this
notion, we find that the theoretically expected values for the
relative visibilities from Ballot et al. (2011), which, using the
spectroscopic parameters for Kepler-410 (see Table 1), are given

by Ṽ 2
ℓ=1 ≈ 1.51 and Ṽ 2

ℓ=2 ≈ 0.53, do not conform with the
values obtained from our optimization (see Table 3).

We describe the granulation background signal given by B(ν)
by a sum of powerlaws (Harvey 1985), specifically in the version
proposed by Karoff (2008):

B(ν) = Bn +

2
∑

i=1

4σ 2
i τi

1 + (2πντi)2 + (2πντi)4
. (2)

In this equation, σi and τi gives, respectively, the rms variation
in the time domain and the characteristic time scale for the
granulation and the faculae components. The constant Bn is a
measure for the photon shot-noise.

The frequencies of the individual modes in the interval
1370–2630 μHz found from this optimization are used in the
stellar modeling, see Section 2.2 and Figure 1.

2.1.1. Stellar Inclination and Rotational Splitting

Asteroseismology can via a fit of Equation (1) be used
to infer parameters such as the stellar rotation period and
inclination.11 The information on these properties are found

11 Going from i = 0◦ at a pole-on view to i = 90◦ for equator-on view.
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Figure 2. Rotational splitting and inclination angle for Kepler-410 from the MCMC peak-bagging. The bottom left panel shows the correlation map between the
inclination and the rotational splitting, while the panels above (inclination) and to the right (splitting) give the marginal probability density (PDF) functions for these
two parameters. Our estimates for the parameters are given by the median values of their respective PDFs, indicated by the solid lines. The 68% credible regions
(found as the highest posterior density credible regions) are indicated by the dark gray part of the PDFs (bounded by dash-dotted lines), while the light gray indicates
the additional part of the PDFs covered in a 95% credible regions (bounded by dashed lines). The PDF for the inclination was found after first having folded the
part of the full distribution (0◦–180◦) in the range 90◦–180◦ onto the part in the range 0◦–90◦. In the correlation map we have indicated the splitting as a function of
inclination (dark gray), with associated uncertainty (light gray), corresponding to the values of v sin(i) estimated by Molenda-Żakowicz et al. (2013; bottom lines) and
Huber et al. (2013b; top lines) and the radius estimate from our analysis.

(A color version of this figure is available in the online journal.)

Table 1

Stellar Parameters from Spectroscopy

Reference Teff log g [Fe/H] v sin(i) Instrument

(K) (dex) ( km s−1)

a 6325 ± 75 · · · +0.01 ± 0.10 15.0 ± 0.5 HiRES, McDonald

b 6195 ± 134 3.95 ± 0.21 −0.16 ± 0.21 11.0 ± 0.8 ESPaDOnS

References. a: Huber et al. 2013b; b: Molenda-Żakowicz et al. 2013.

from the rotationally induced splitting of a oscillation mode of
degree ℓ into 2ℓ + 1 azimuthal m-components with values going
from m = −ℓ to m = ℓ. In the case of a slow stellar rotation,
the star is generally assumed to rotate as a rigid body and the
modes will be split as (Ledoux 1951):

νnℓm = νnℓ + m
Ω

2π
(1 − Cnℓ) ≈ νnℓ + mνs, (3)

with νnℓm being the frequency entering into Equation (1), while
νnℓ gives the unperturbed resonance frequency. The azimuthal
order of the mode is given by m, Ω is the angular rotation
rate of the star, and Cnℓ is the so-called Ledoux constant; a
dimensionless quantity describing the effect of the Coriolis
force. For high-order, low-degree solar oscillations, as the ones
seen in Kepler-410A, this quantity is of the order of Cnℓ < 10−2

and is therefore neglected. The splittings can thereby be seen
as being dominated by advection. In this way, we see that
the splitting due to rotation between adjacent components of
a multiplet will approximately be νs = Ω/2π , which will be
referred to as the rotational frequency splitting.

In the optimization, for the inclination we use a flat prior in the
range 0◦–180◦ and then fold the results from the MCMC around
i = 90◦. The reason for this is to better sample the posterior

of the inclination very close to i = 90◦, which would not be
possible with a fixed boundary for the inclination at i = 90◦

(see, e.g., Chaplin et al. 2013). A correct sampling of this region
mainly has an influence on the credible regions computed for
the value of the inclination. For the splitting we use a flat prior
in the range 0–5 μHz.

For the estimation of the inclination and rotational splitting we
did not include the entire range used in estimating frequencies
for the modeling; see Figure 1. The rationale for using a narrower
range that excludes the modes at highest and lowest frequencies
is that we want only the modes with the highest signal-to-noise
ratio. Furthermore, for modes at high frequencies the mode
width becomes problematic for a proper estimate of the splitting.

Figure 2 shows the correlation map from the MCMC
analysis for the stellar inclination (i) and rotational splitting
(νs), going from low (light) to high (dark). The adopted values
for the inclination and splitting are found by the median of the
marginalized distribution, and indicated in the figure by the in-
tersection of the two solid lines; final values are given in Table 3.
The dark gray part of the probability density functions (PDFs;
bounded by dash-dotted lines) show the 68% highest posterior
density credible regions for each parameter and serve as the er-
ror for our estimates. The light gray (dashed lines) indicate the
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Figure 3. Power spectrum of Kepler-410 (light gray) for a single order, with
the dark gray giving the 0.1 μHz smoothed version. Overlain is the model fit
obtained from the MCMC peak-bagging (dashed red), in addition to the limit
spectrum obtained when using an inclination angle of 45◦ (full green).

(A color version of this figure is available in the online journal.)

additional part of the PDFs covered by the 95% credible regions.
We find a value of i = 82.◦5+7.5

−2.5 for the stellar inclination of the
star, indicating a nearly equator-on view.

Figure 3 shows, for a single order, the best fitting model in
red (i.e., using i = 82.◦5). In green the limit spectrum is given
when instead using a value for the stellar inclination of i = 45◦

and keeping all other parameters fixed to the best fit values. This
shows the large effect of the stellar inclination on the appearance
of the limit spectrum from the variation in the relative heights
of different azimuthal components.

To compare our result with the literature, we can compute the
value of the splitting from literature values of v sin(i) via:

νs =
[v sin(i)]

2πR sin(i)
. (4)

Using the radius found from the asteroseismic modeling (see
Section 2.2), we have in Figure 2 illustrated the corresponding
values for the splitting from the estimate of v sin(i) by Molenda-
Żakowicz et al. (2013) of 11.0 ± 0.8 kms−1, and Huber et al.
(2013b) of 15.0 ± 0.5 kms−1. From our asteroseismic modeling
we get, as expected from Figure 2, a value in between these
estimates of v sin(i) = 12.9 ± 0.6 kms−1 (see Table 3).

2.2. Asteroseismic Modeling

The stellar parameters were determined based on grids of
models constructed using the GARching STellar Evolution Code
(GARSTEC; Weiss & Schlattl 2008). The input physics consists
of the NACRE compilation of nuclear reaction rates (Angulo
et al. 1999), the Grevesse & Sauval (1998) solar mixture,
OPAL opacities (Iglesias & Rogers 1996) for high temperatures
complemented by low-temperature opacities from Ferguson
et al. (2005), the 2005 version of the OPAL equation of state
(Rogers et al. 1996), and the mixing-length theory of convection
as described in Kippenhahn et al. (2013). One grid of models
also included the effect of convective overshooting from the
stellar core when present. This is implemented in GARSTEC as
an exponential decay of the convective velocities in the radiative
region, and the used efficiency of mixing is the one calibrated to
reproduce the color–magnitude diagram of open clusters (e.g.,

Magic et al. 2010). Diffusion of helium and heavy elements was
not considered.

Our grid of models spans a mass range between 1.10 and
1.40 M⊙ in steps of 0.02 M⊙, and comprises five different com-
positions for each mass value spanning the 1σ uncertainty in
metallicity as found from spectroscopy by Huber et al. (2013b);
see Table 1. We chose this set of atmospheric constraints for the
host star since they were derived using an asteroseismic deter-
mination of the surface gravity to avoid degeneracies from the
correlations between Teff , log g, and [Fe/H] (see Torres et al.
2012 for a thorough discussion). While the relative abundance
of heavy elements over hydrogen can be directly determined
from the measured [Fe/H] value, the assumption of a galactic
chemical evolution law of ∆Y/∆Z = 1.4 (e.g., Casagrande et al.
2007) allows a complete determination of the chemical compo-
sition. For both grids of models, we computed frequencies of
oscillations using the Aarhus Adiabatic Oscillations Package
(Christensen-Dalsgaard 2008), and determined the goodness of
fit by calculating a χ2 fit to the spectroscopic data and fre-
quency combinations sensitive to the interior as described in
Silva Aguirre et al. (2013). Final parameters and uncertainties
were obtained by a weighted mean and standard deviation using
the χ2 values of the grid without overshooting, and we added
in quadrature the difference between these central values and
those from the grid with overshooting to encompass in our error
bar determinations the systematics introduced by the different
input physics.

By combining the Casagrande et al. (2010) implementation
of the InfraRed Flux Method (IRFM) with the asteroseismic
determinations as described in Silva Aguirre et al. (2011,
2012), it is possible to obtain a distance to the host star
which is in principle accurate to a level of ∼5%. Since the
photometry of the host star might be contaminated by the
close companion, we carefully checked the Two Micron All
Sky Survey (2MASS) photometry used in the implementation
of the IRFM for warnings in the quality flags. The effective
temperature determined by this method of Teff = 6273 ± 140 K
is in excellent agreement with those given in Table 1, giving
us confidence that the distance to the host star is accurately
determined.

The final parameters of the star, including this distance, are
given in Table 3. From the stellar model parameters obtained
from the peak-bagged frequencies we can calculate the Keple-
rian (rotational) break-up frequency of the star as:

ΩK

2π
=

1

2π

√

GM

R3
≈ 70.0 ± 1.4 μHz, (5)

whereby the star rotates at a rate of ∼3% of break-up as
2πνs ≈ 0.03ΩK. With this splitting it is worth considering
the effect of second-order perturbations, δν2, on the rotational
frequency splitting:

νnℓm = νnℓ + mνs + δν2. (6)

As described in the Appendix, this effect produces a small
offset in the frequencies of the pulsations that in turn affects
the stellar parameters derived from asteroseismic modeling. For
this reason, we iterated the frequency extraction with the stellar
properties until the value of the break-up frequency converged
(obtained after only a few iterations). The final model parameters
are given in Table 3. We note that the change in parameters from
including second-order effects is quite negligible, generally less
than one per mil, with the exception of the age which is changed
by about ∼1.5%.
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Figure 4. Échelle diagram showing, in grayscale, the power spectrum of
Kepler-410. Overlaid are the frequencies estimated from the MCMC peak-
bagging (circles), along with the frequencies from the best-fitting stellar model
after a surface correction (triangles). The frequencies estimated from the peak-
bagging are the m = 0 components, while |m| > 0 components are included in
Equation (1) by the splitting. For an inclination as found for Kepler-410 mode
power will for ℓ = 1 modes mainly be contained in the m = ±1 components,
whereby the estimated m = 0 component needed for the asteroseismic modeling
should as seen be found in-between the m = ±1 power concentrations
(assuming a symmetric splitting).

(A color version of this figure is available in the online journal.)

In Figure 4, the échelle diagram (Grec et al. 1983) is
shown, with observations overlaid by the frequencies from the
best stellar model after the above iteration. For the sake of
comparison, in the échelle diagram a surface correction has
been applied to the model frequencies following the procedure
of Kjeldsen et al. (2008).12 Note that the surface correction
is not needed for the model optimization as frequency ratios,
unaffected by the surface layers, are used rather than the actual
frequencies. The splitting of the ℓ = 1 modes is clearly visible,
with mode power mainly contained in the sectoral m = ±1
azimuthal components around the zonal m = 0 components
found in the peak-bagging and the modeling. This distribution
of power between the azimuthal components is a function of the
stellar inclination angle (see, e.g., Gizon & Solanki 2003), where
we indeed for i close to 90◦ (as found for Kepler-410) should
expect to see power mainly in the sectoral components of ℓ = 1.

3. PLANETARY VALIDATION

In this section, we investigate the possible scenarios causing
the transit-like features in the Kepler data for Kepler-410. In
Section 3.1, we describe the constraints, as provided by the
Kepler data themselves, Spitzer data and additional observations
from ground. In Section 3.2, we then use those constraints
to assess the likelihood of various scenarios, and to conclude
that the transits are indeed caused by a planet in orbit around
Kepler-410A.

3.1. Constraints

3.1.1. Geometry of Transit Signal

A first constraint on what could be causing the transit signal in
the Kepler data, comes from the geometry of the transit signal

12 As reference frequency we use the mean value of the radial modes, while b
is set to the solar calibrated value of 4.823 (Mathur et al. 2012).

Figure 5. Planetary transit using the phase-folded observations (see Section 4.1),
which were binned for clarity. The best fit is shown with a red line together with
the residuals (offset).

(A color version of this figure is available in the online journal.)

itself. While the transit signal could be diluted by additional
stellar flux (i.e., by Kepler-410B, or additional unseen blends),
the shape of the transit, as governed by the four contact points,
remains the same. We use Ttot for the total transit duration, Tfull

for the duration between contact points two and three (the transit
duration minus ingress and egress), b for the impact parameter,
and find (see, e.g., Winn 2010):

sin(πTtot/P )

sin(πTfull/P )
=

√

(1 + Rp/R⋆)2 − b2

√

(1 − Rp/R⋆)2 − b2
. (7)

Here R⋆ and Rp indicate the stellar and planetary radii. This
equation (which only strictly holds for a zero-eccentricity orbit)
can be understood by considering the most extreme case, namely
a binary with two stars of the same size and b = 0, causing the
equation to go to infinity. The transit becomes fully V-shaped,
half of the transit is in ingress, while the other half is in egress.
As it turns out, the short-cadence data constrains the transit
shape to be clearly different from a V-shape as can be seen in
Figure 5. With the left-hand side of Equation (7) determined
by the data and setting b ≡ 0, an upper limit on Rp/R⋆ can be
determined. Given the observed transit depth this ratio can now
be used to establish an upper limit on any light dilution.

We model the planetary transit for various degrees of dilution
until the transit fits for the ingress and egress get signifi-
cantly worse (3σ on a χ2 distribution) and we thereby reject
transits occurring at a star more than 3.5 mag fainter than
Kepler-410A, and therefore exclude this region of the parameter
space. This region is shown as the geometric limit in hatched-
gray in Figure 6.

3.1.2. Centroid

Pixel analysis during transits can also unmask blends. Transits
occurring around a slightly offset blended star would lead to
centroid shifts on the Kepler CCD between in transit and out
of transit data. A non-detection of such shifts can give an
upper limit on the brightness of a potential blend as function
of projected distance on the sky.

The Kepler team runs elaborate vetting procedures to deter-
mine if planetary signatures are caused by blends and centroid
shifts are part of this procedure. These procedures are described
in detail by Bryson et al. (2013). Kepler-410A, however, is a
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Figure 6. Magnitude relative to Kepler-410A plotted vs. the distance to the
star. Kepler-410B is observed at 1.′′6 and ∆m = 2.7 (Adams et al. 2012). A large
magnitude difference is excluded because of the transit geometry (Section 3.1.1),
while a large angular separation can be ruled out by analyzing the centroid
(Section 3.1.2). Finally, ground-based photometry using adaptive optics (A.O.)
and Speckle imaging (Section 3.1.3) rules out all but a very small area of the
parameter space.

(A color version of this figure is available in the online journal.)

highly saturated star, which invalidates centroid shift measure-
ments that appear in the Data Validation Report.13 Visual inspec-
tion of the difference images (Bryson et al. 2013, Section 5) in
the Kepler-410 Data Validation report gives no indication that
the transit source is not on the same pixel (3.′′98 by 3.′′98) as
Kepler-410A. This analysis is qualitative, however, and does
not rule out the companion star. We therefore rely on other evi-
dence given in this paper that the transit occurs on Kepler-410A.

3.1.3. Ground-based Photometry

Adams et al. (2012) and Howell et al. (2011) independently
observed a blended object (Kepler-410B) at a distance of 1.′′6.
These observations can also be used to exclude further objects
inside certain magnitude and separation limits. The limits from
the adaptive optics (A.O.) observations by Adams et al. (2012)
are shown in Figure 6. The inner spatial limit for detections is
at 0.′′2, where unseen objects up to a contrast of 4.2 mag in the
Kepler bandpass are excluded. This increases to 11.5 mag at 6′′.

Speckle images of Kepler-410 at 562 and 692 nm by Howell
et al. (2011) provide even tighter spatial constraints (Figure 6),
achieving a magnitude contrast of 3.55 mag between 0.′′05 and
0.′′30, with an increasing contrast up to 1.′′9. The limits in Figure 6
are 3σ limits for observations at 562 nm, while those for 692 nm
are about 0.5 mag tighter for the closest separations.

We further note that the 562 nm detection of Kepler-410B
estimates it to be 4.24 mag fainter than Kepler-410A, which,
if the same difference holds in the broader Kepler band,
would place it below our geometric limit of possible planet
hosting stars. However, Howell et al. (2011) note that at 1.′′6
separation, the magnitude estimation of detected targets might
be underestimated and we choose to adopt the Kepler magnitude
value for Kepler-410B as claimed in Adams et al. (2012), placing
it just above our geometric limit.

3.1.4. Spectroscopy

Spectroscopic observations of Kepler-410 were taken with
the HIRES14 echelle spectrometer at the Keck I telescope and

13 http://exoplanetarchive.ipac.caltech.edu/docs/deprecated/KeplerDV.html
14 High Resolution Echelle Spectrometer on the Keck observatory.

Table 2

Radial Velocity Measurements of Kepler-410

Date Radial Velocity

(JD) (km s−1)

2454988.979733 −40.30 ± 0.4

2455318.048353 −40.995 ± 0.3

2455726.094382 −40.18 ± 0.6

reduced following a procedure described in Chubak et al. (2012).
The spectra have a spectral resolution of R = 55,000 and
stellar lines in the near-IR wavelength region 654–800 nm were
used to calculate the Doppler shift. The wavelength scale was
determined from thorium-argon lamp spectra taken in twilight
before and after each observing night while the wavelength
zero-point was determined using telluric lines (from the A and
B absorption bands) present in the target spectra. Due to the
relatively high v sin i of the star (see Table 1), the errors listed
here are slightly higher than the typical value (0.1 km s−1) stated
in Chubak et al. (2012). The data are listed in Table 2. We will
use these radial velocities (RVs) later to constrain scenarios
involving binary systems.

3.1.5. Spitzer Observations

Kepler-410 was observed on July 11 and 2010 December
18 in-transit with the Spitzer Space Telescope (Werner et al.
2004). The first visit consists of full-frame images with a longer
integration time and lower accuracy than the second visit, which
used Spitzer’s subarray mode. We only analyze the subarray
data. They consist of 310 sets of 64 individual subarray images,
obtained using IRAC’s channel 2 (Fazio et al. 2004), which
is centered at 4.5 μm. The data are available for download
from the Spitzer Heritage Archive database15 as basic calibrated
data files. The first observations (which are often more noisy
due to the telescope’s ramp up) are often ignored (see, e.g.,
Knutson et al. 2008), but we omit the first 55 observations
to keep an equal amount of observations before and after
the transit (62 observations on each wing, with 131 in-transit
observations).

We analyzed the data following a procedure described by
Désert et al. (2009). A square aperture (11 × 11 pixels) is used
to collect the stellar flux (where 64 images of each subarray ob-
servation are immediately combined) and the centroid position
is calculated. Since a pixel spans 1.′′2, the flux contains the com-
bined light of Kepler-410A and Kepler-410B. Subsequently, a
linear function in time is used to de-trend the data, in combi-
nation with a quadratic function of the x and y coordinates of
the centroids, resulting in five free fitting parameters (see, e.g.,
Knutson et al. 2008; Désert et al. 2009; Demory et al. 2011) to
correct for the pixel-phase effect. We fit only the out-of-transit
data, but correct the full data set.

Now we compare the average flux level of the in-transit data to
the out-of-transit data finding a transit depth of 240 ± 90 ppm.
The uncertainty is calculated by bootstrapping (we re-sample
without replacement, treating the in-transit and out-of-transit
data separately), which we find to result in a slightly higher
error level compared to simply using the scatter on the data
points. We adopt this value and show the result in Figure 7.

15 http://sha.ipac.caltech.edu/applications/Spitzer/SHA

6

http://exoplanetarchive.ipac.caltech.edu/docs/deprecated/KeplerDV.html
http://sha.ipac.caltech.edu/applications/Spitzer/SHA


The Astrophysical Journal, 782:14 (13pp), 2014 February 10 Van Eylen et al.

Figure 7. Reduced Spitzer observations are shown, together with the best
fitted transit model (black) and a 1σ confidence interval. The blue dots show
binned data points. The red dotted line indicates a lower limit for the expected
transit depth if the transit occurs on Kepler-410A. The blue dotted line shows a
minimum depth if the transit would occur on Kepler-410B.

(A color version of this figure is available in the online journal.)

A similar procedure, comparing median flux levels rather than
mean flux levels, gives a transit depth of 260 ± 90 ppm.

3.1.6. Asteroseismology

Finally, the Kepler data provide an asteroseismic constraint
on additional objects, by looking at the (absence of) stellar
pulsations in the power spectrum (see Figure 1). We searched the
power spectrum for excess power from stellar oscillations using
the so-called MWPS method (see Lund et al. 2012). With this,
only one set of (solar-like) pulsations was detected, which can
be attributed to Kepler-410A because of their high amplitudes,
and we can thereby rule out additional signal from bright, large
stars to be present in the light curve. We exclude solar-like
oscillations of main-sequence stars or red giants up to Kp = 13,
the geometric exclusion limit (Figure 6).

We can translate this magnitude limit on additional solar-like
oscillations into limits on the surface gravity using the method
developed by Chaplin et al. (2011; see also Campante et al.
2014). We estimate a lower limit for the value of νmax

16 for a
marginal detection of oscillations in the power spectrum. This
lower limit on νmax can in turn be translated into a lower limit
for the surface gravity (g) of the star (or log g as most often

16 The frequency at which the oscillations have the largest amplitude.

used) via the simple relation:

g ≃ g⊙

(

νmax

νmax,⊙

) (

Teff

Teff,⊙

)1/2

. (8)

The above relation builds on the proportionality between νmax

and the acoustic cut-off frequency (νac; see, e.g., Brown et al.
1991; Belkacem et al. 2011). In addition, the procedure uses
various scaling relations for, e.g., the amplitudes of the oscilla-
tions and the stellar noise background—we refer the reader to
Chaplin et al. (2011) for further details.

For temperatures in the range Teff = 5500–5777 K, we es-
timate that non-detection of oscillations in any second compo-
nent (i.e., a star other than Kepler-410A) sets limiting (lower-
limit) values for log g of �4.51 ± 0.05 dex (5500 K) and
�4.57 ± 0.05 dex (5777 K). For higher assumed values Teff , the
limiting values for log g are inconsistent with allowed combi-
nations for log g and Teff from stellar evolutionary theory. From
these limiting values for log g any potential second component
must necessarily be a small dwarf star.

For Kepler-410 the asteroseismic constraint, together with the
geometric constraint, is enough to establish the planetary nature
of the transit signal. As shown in Section 3.1.1, the signal cannot
occur on a star fainter than Kp = 13 (limiting the maximum true
transit depth) and due to the asteroseismic constraint, any object
brighter than this is necessarily small. Since the transit depth is
given by the size of the transiting object relative to its host star,
the two constraints together limit the size of the transiting object
to be smaller than Jupiter. For both constraints, observations in
a short-cadence sampling are crucial.

3.2. Scenarios

We now use the constraints established in the last section to
evaluate three possible scenarios which could cause the transit
signal; a chance alignment with a background system (Sec-
tion 3.2.1), an unseen companion to Kepler-410 (Section 3.2.2),
and a planet in orbit around Kepler-410B (Section 3.2.3). Given
the available data we can rule them out and conclude that the
transit signal occurs on Kepler-410A.

3.2.1. Chance Alignment

The scenario of a background system, largely diluted by a
much brighter foreground object (Kepler-410A), is disfavored
by a combination of the geometric constraints and the additional
observations described in Section 3.1. With most of the param-
eter space ruled out, a relevant system would need to have a Kp

between 9.5 and 13 (see Section 3.1.1) and a separation which
is less than 0.′′02 from Kepler-410A (see Section 3.1.3).

A detailed analysis on false positive scenarios can be found
in Fressin et al. (2013). Following a similar approach, we
use the Besancon model of the galaxy (Robin et al. 2003) to
simulate the stellar background around Kepler-410. This leads to
the prediction of 319 objects brighter than 13th magnitude in
the R-band (which is close to the Kepler band17), in an area of
one square degree. This places on average 6×10−8 background
stars of sufficient brightness in the confusion region of 0.′′05
around Kepler-410A, the region which is not ruled out by any
constraints (see Figure 6). Even without further consideration
of whether any background objects could be eclipsing binaries
or hosting a transiting planet, we consider this number too small

17 Kepler magnitudes are nearly equivalent to R band magnitudes (Koch et al.
2010).
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for such a scenario to be feasible. From here on we therefore
assume that the transit signal is not caused by a chance alignment
of a background system.

3.2.2. Physically Associated System

We now consider the possibility that the transit occurs on a
star physically associated to Kepler-410A but not Kepler-410A
itself. According to Fressin et al. (2013), transiting planets
on a physically associated star are the most likely source of
false positives for small Neptunes. Prior to constraints, they
estimate 4.7% ± 1.0% of the small Neptune Kepler candidates
are misidentified in this way.

For Kepler-410 the spatial constraints from the ground-based
photometry (see Section 3.1.3) are far more strict than what was
used by Fressin et al. (2013), who only use the Kepler data itself
to determine the region of confusion.

From the transit geometry stars fainter by ∆Kp = 3.5
are already excluded as possible host stars. Since a physical
companion would have the same age as Kepler-410A, we can use
the mass-luminosity relation for main sequence stars to derive a
lower mass limit. We find this to be about 0.5 M⊙. Furthermore,
the companion star cannot be more massive than Kepler-410A
itself, otherwise it would be more luminous and thereby visible
in the spectra and produce an asteroseismic signal.

We proceed with a simple calculation to quantify the chance
that Kepler-410 has an unseen companion with a planet that
causes the transit signal. As in Fressin et al. (2013), we assign a
binary companion to Kepler-410A following the distribution of
binary objects from Raghavan et al. (2010); a random mass
ratio and eccentricity and a log-normal distribution for the
orbital period. We calculate the semi-major axis using Kepler’s
third law and assign a random inclination angle, argument of
periastron, and orbital phase to the system.

From the simulated companions, we reject those with a mass
lower than 0.5 M⊙. We calculate their angular separation (using
the distance estimate from Table 3) and reject those which would
have been detected in the ground-based photometry. Finally, we
compute the RV signal the companion would produce at the
times of the RV measurements (Table 2) and reject those objects
inconsistent with the observations. For this, we calculate the χ2

value for each simulated companion, and assign a chance of
rejection to each one based on the χ2 distribution.

We find that only 0.46% of the simulated objects could pass
these tests. The frequency of non-single stars is 44% (Raghavan
et al. 2010), resulting in a chance of 0.2% that an undetected
star is associated with Kepler-410A. This limit would be even
lower if we assume Kepler-410B is physically associated with
Kepler-410A, since the probability of additional companions
in a multiple system is lower than the value quoted above (an
estimated 11% of all stars are triple system or more complex;
Raghavan et al. 2010). More elaborate simulations could also
further reduce this statistical chance, as we have not taken
into account the Spitzer transit depth, visibility in spectra,
or visibility of asteroseismic features, of this hypothetical
companion.

3.2.3. Kepler-410B

While the nature of Kepler-410B is largely unknown, some
information on the star ca2012ApJn be derived from the obser-
vations by Adams et al. (2012). Using their 2MASS J and Ks
magnitude, we can convert the measured brightness difference
into a temperature estimate, using color–temperature transfor-
mations as described by Casagrande et al. (2010). We find a

Table 3

Stellar Parameters are Derived from Asteroseismic Modeling

Stellar Parameters Kepler-410A

Mass (M⊙) 1.214 ± 0.033

Radius R⋆ (R⊙) 1.352 ± 0.010

log g (cgs) 4.261 ± 0.007

ρ (g cm−3) 0.693 ± 0.009

Age (Gyr) 2.76 ± 0.54

Luminosity (L⊙) 2.72 ± 0.18

Distance (pc) 132 ± 6.9

Inclination i⋆ (◦) 82.5+7.5
−2.5

Rotation perioda, Prot (days) 5.25 ± 0.16

Model Parameters

Rotational splitting, νs (μHz) 2.206+0.067
−0.065

v sin(i⋆)b ( km s−1) 12.9 ± 0.6

(V1/V0)2 1.796+0.090
−0.085

(V2/V0)2 0.861+0.073
−0.068

Planetary Parameters Kepler-410A b

Period (days) 17.833648 ± 0.000054

Radius Rp (R⊕) 2.838 ± 0.054

Semi-major axis a (AU) 0.1226 ± 0.0047

Eccentricity e 0.17+0.07
−0.06

Inclination ip(◦) 87.72 +0.13
−0.15

Model Parameters

a/R∗ 19.50+0.68
−0.77

Rp/R∗ 0.01923+0.00034
−0.00033

Linear LD 0.57+0.22
−0.28

Quad LD −0.04+0.26
−0.22

Notes. Values are from the best fitting model without overshoot; the

differences between these values and the ones from the best fitting

model including overshoot are taken as a measure of the systematic

error from differing input physics in the modeling; this difference is

added in quadrature to the uncertainties from the grid optimization.

Planetary values are derived from transit modeling combined with

asteroseismic results.
a Found as Prot = 1/νs , and using the uncertainty (asymmetric

uncertainties are added quadrature) on νs to find uncertainty for Prot.
b Found via Equation (4) and using the uncertainties (asymmetric

uncertainties are added quadrature) on the parameters R, νs , and i.

temperature of around 4850 K, assuming a solar metallicity.
This indicates a small (dwarf) star, which is consistent with the
non-detection of an asteroseismic signal of the object in the
blended Kepler light (see Section 3.1.6).

There is modulation signal present in the Kepler data, which is
presumably caused by the rotation of Kepler-410B. It indicates
a brightness variation of the object of ≈2.5% (assuming the
brightness contrast by Adams et al. 2012; see Section 3.1.3),
over a rotation period of 20 days. In fact, the modulation signal
has previously been mis-attributed to Kepler-410A (McQuillan
et al. 2013), resulting in a rotation period inconsistent with
what we derive through asteroseismology (5.25 ± 0.16 days;
see Section 2.1.1).

The different colors of Kepler-410A and Kepler-410B
can be used to rule out Kepler-410B as a host star by
comparing the transit depth measured in the Spitzer IRAC
band with the depth as measured by Kepler. Kepler-410B
is 2.7 mag fainter than Kepler-410A in the Kepler band
(Adams et al. 2012). The flux of Kepler-410B is ≈8% the
flux of Kepler-410A. In 2MASS Ks (2.1 μm) the magni-
tude difference reduces to 1.9 (≈17% flux). We conservatively
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assume that in Spitzer’s IRAC band (4.5 μm), ∆m � 1.9.
Using this assumption, a transit occurring on Kepler-410A
would be blended somewhat more in the Spitzer observations
(depth �300 ppm), while a transit occurring on Kepler-410B
would only be diluted by less than half the dilution in the Kepler
light (depth � 600 ppm).

A measured Spitzer transit depth of 240 ± 90 ppm distinctly
(at a 4σ level) rules out Kepler-410B as a potential host star to
the transiting planet and is consistent with the planet occurring
on Kepler-410A. From here on, we assume that the transits occur
on Kepler-410A.

4. PLANETARY ANALYSIS

4.1. Period and Transit Timing Variations

For the planetary analysis, we start from the same data
set as for the asteroseismic analysis (see Section 2), where
we normalize the planetary transits by fitting a second-order
polynomial to the transit wings. To determine the planetary
parameters, we first create a phase folded high signal-to-noise
light curve out of the Kepler light curve. As transit timing
variations (TTVs) are present (see below) we cannot simply
co-add the light curve on a linear ephemeris but we use the
following steps.

1. Estimate the planetary period and produce a phase-folded
light curve.

2. Use the phase-folded light curve as an empirical model for
the shape of the transit and use this model to determine
individual transit times.

3. Repeat the first two steps until convergence is reached.
4. Determine TTVs and produce a phase-folded lightcurve

which takes this into account.
5. Model the transit, taking into account the dilution caused

by Kepler-410B.

We find the usage of the phase-folded light curve as an
empirical model for the transit quite efficient in determining the
times of individual transits. The time for an individual transit
event is determined by shifting the empirical model around
the predicted transit time. The new time for the transit event
is determined by comparing data points with the time-shifted
empirical model and minimizing χ2. Based on the new transit
times, a new period estimate can be made and the procedure can
be repeated. Following this approach, we reached convergence
after only two iterations.

After convergence is reached on determining transit times
of individual transit events, the planetary period can be deter-
mined. Under the assumption of a perfectly Keplerian orbit, the
planetary period is given by a linear interpolation of the transit
times:

T (n) = T (0) + n × Period, (9)

where T (n) and T (0) refer to the nth and 0th transit times (taking
into account possible data gaps). The period found in this way is
17.833648 ± 0.000054 days. Subsequently, we produce an O −
C (Observed−Calculated) diagram in which for each transit
the calculated transit time is subtracted from the observed transit
time, and which we present in Figure 8. TTVs are clearly visible.

The interpretation of TTVs is difficult. Short-period trends
can be caused by stellar variability (e.g., stellar spots causing an
apparent TTV signal), while longer-period trends such as here
are in most cases attributed to a third body (e.g., planet Kepler-
410A c), whose gravitational influence causes the deviation from
the strictly Keplarian orbit.

Figure 8. O−C diagram showing the observed transit times minus the calculated
transit times following a Keplerian orbit (Equation (9)). The black points
represent individual transit measurements (with their error bars), the green dots
are a copy of the observed data points, offset by one full period. They are for
illustration only, and were not included in the fit. A clear trend is visible, which
is fitted by a model with discontinuities at the turning points.

(A color version of this figure is available in the online journal.)

The signal can be highly degenerate, with bodies in or close to
different resonance orbits resulting in very similar TTV signals.
Attempts of interpretations have been made by performing
three-body simulations, with unique solutions for non-transiting
objects in only a limited number of cases (see, e.g., Nesvorny
et al. 2013). TTVs have been successfully used to characterize
systems with multiple transiting exoplanets by studying their
mutual gravitational influence (e.g., Carter et al. 2012). We have
made a visual inspection of the time series to look for additional
transit signals, but found none.

Based on limited data, Ford et al. (2011) reported a possible
detection of TTVs in the orbit of Kepler-410, and a study of
TTVs on the full sample of KOIs (Mazeh et al. 2013) resulted in
an amplitude of 13.95 ± 0.86 minutes and a period of 990 days
(no error given) for Kepler-410, using a sinusoidal model. We
find a peak-to-peak amplitude of 0.023 days (33 minutes), and a
period of 957 days, not using a sinusoidal but a zigzag model, as
indicated in Figure 8 by the solid line. It is not immediately clear
what is causing the seemingly non-sinusoidal shape of the TTVs
(see, e.g., Nesvorný 2009, for a discussion). A similar shape is
seen for Kepler-36 (Carter et al. 2012), where discontinuities
occur when the planets are at conjunction. We speculate that the
eccentricity of Kepler-410A b could be influencing the shape
(see Section 4.3).

4.2. Parameters

The period-folded data are then used to determine the
planetary parameters. The blending from Kepler-410B (see
Section 3.1.3) needs to be taken into account before estimat-
ing the planetary parameters, so we subtract the estimated flux
due to Kepler-410B (8%) from the light curve before starting
our analysis.

The transits are fitted using the Transit Analysis Package
which is freely available (Gazak et al. 2012). An MCMC
analysis is carried out using the analytical model of Mandel
& Agol (2002). An orbital eccentricity of zero is assumed for
the entire fitting procedure. Flat priors were imposed on the
limb darkening coefficients, and they were simply treated as free
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Figure 9. Change of perceived stellar density, compared to zero-eccentricity
density for different angles of periastron. The inner solid line represents an
eccentricity of e = 0, the outer depicts e = 0.9. The dashed line gives the
location of the density ratio given in Equation (11) for Kepler-410 (uncertainty
of the ratio is given by the red band).

(A color version of this figure is available in the online journal.)

parameters in our approach. The folded data sets were binned
to improve the speed of the MCMC procedure. Figure 5 shows
the transit curve. A list of all parameters is provided in Table 3.

We finally note that the true errors are likely to be slightly
larger than the formal errors reported in Table 3. These are the
result of the MCMC fitting procedure, and do not take into
account systematics in the Kepler data (Van Eylen et al. 2013),
or the uncertainty in the flux contribution by the blended light
from Kepler-410B, both of which could affect the transit depth.

4.3. Planetary Eccentricity

We have access to two estimates of the stellar density. One
value was obtained from the asteroseismic modeling of the
stellar pulsations (ρasteros.) and one from modeling the planetary
transit (ρtransit; Seager & Mallén-Ornelas 2003; Tingley et al.
2011),

ρtransit =
3π

GP 2

(

a

R∗

)3

= 0.441 ± 0.050 g cm−3, (10)

where G is the gravitational constant and all other parameters
are listed in Table 3. To obtain an estimate of ρtransit a particular
orbital eccentricity (e) needs to be assumed, which in this
equation was set to zero. Therefore calculating the ratio of
the two density estimates leads to a lower limit on the orbital
eccentricity.

Following the notation in Dawson & Johnson (2012) we
obtain

ρasteros.

ρtransit

=
(1 − e2)3/2

(1 + e sin ω)3
= 1.57 ± 0.18, (11)

where ω is the argument of periastron and we took ρasteros. =
0.693 ± 0.009 from Table 3. As the value is not consistent with
unity within error bars, a circular orbit for the planet is ruled out.
The eccentricity is a function of ω, as can be seen in Figure 9.

Figure 9 and Equation (11) indicate that a lower limit on the
system’s eccentricity can be derived. For certain arguments of
periastron (around ω ≈ 210◦ or ω ≈ 320◦), high eccentrici-
ties cannot be excluded. However, the range of periastron an-
gles becomes increasingly narrow for increasing eccentricities.

Figure 10. Kernel density distribution of the eccentricity values. The mode
(dotted red line) is seen at an eccentricity of 0.17 and the uncertainties (highest
posterior density credible regions) are indicated in gray.

(A color version of this figure is available in the online journal.)

Taking a sample assuming random angles of periastron, and a
Gaussian distribution for ρasteros./ρtransit to take into account the
uncertainty of Equation (11), and using a correction factor for
non-grazing transits as described in Dawson & Johnson (2012),
we find that the mode of the eccentricity is 0.17 and 68% of
the eccentricities are contained in the interval [0.11,0.24], as
indicated in Figure 10.

For the above analysis to deliver unbiased eccentricity results,
it is important to remove TTVs (see Section 4.1) and third
light from Kepler-410B (Section 4.2) from the light curve (see,
e.g., Kipping 2013). We expect no additional light dilution
because of the additional constraints presented in Section 3.1,
and specifically the asteroseismic constraint in Section 3.1.6
which rules out bright companion stars.

4.4. Stellar Obliquity

The stellar obliquity (the opening angle between the stel-
lar rotation angle and the orbital angular momentum) can be
constrained with our asteroseismic modeling and transit mea-
surements. We measure similar values for the inclination of the
stellar rotation axis (i⋆ = 82.5+7.5

−2.5 [◦]) and the planetary orbital
axis (ip = 87.◦72 ± 0.◦15). We have no information on the other
variable defining the stellar obliquity, its projection on the plane
of the sky. However, we can ask how likely it would be that
we measure similar inclinations if the orientation of the stellar
rotation axis is uncorrelated to the planetary orbit and randomly
oriented. For this we look at a distribution which is flat in cos i⋆,
and which leads to a random orientation of the angular momen-
tum axis on a sphere. This way we find that there is a 17%
chance to find the stellar rotation axis inclined as close to 90◦

as is the case, assuming no correlation between the stellar ro-
tation axis and the planetary orbital inclination. Therefore, our
asteroseismic measurement of i⋆ suggests a low obliquity in the
Kepler-410A system.

5. DISCUSSION

With the validation of Kepler-410B as a small Neptune-
sized exoplanet (2.838 ± 0.054 R⊕), it joins the current list
of 167 confirmed Kepler exoplanets around 90 stars. Due to the
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sampling in short cadence and the brightness of the host star,
the stellar (and therefore planetary) parameters are known to
very high accuracy. The star is the third brightest of the current
sample of confirmed Kepler planet host stars, only preceded by
Kepler-21 (Howell et al. 2012) and Kepler-3 (HAT-P-11 Bakos
et al. 2010), both of which have a period of only a few days.

Even outside the Kepler field, only about 10–20 planets
(which are typically not as well-characterized) are known to
transit around stars which are brighter or of similar brightness.
55 Cnc e (McArthur et al. 2004) is the brightest and together
with HD 97658 (Howard et al. 2011; Dragomir et al. 2013)
and Kepler-21b (Howell et al. 2012), they are the only planets
smaller than Kepler-410A b around stars brighter than Kepler-
410A, and they all have a shorter orbital period. The only
ones with longer orbital periods are the Jupiter-sized planets
HD 17156b (Fischer et al. 2007) and HD 80606b (Naef et al.
2001). Perhaps the most similar system is the bright star Kepler-
37, which has three planets of sub- and super-Earth size on
orbital periods of 13, 21, and 39 days (Barclay et al. 2013).

That the host star can be well-studied has its implications
on the planetary parameters, which are now also well-known.
This makes Kepler-410 an interesting object for follow-up
observations. High-quality RV observations might be able to
constrain the planetary mass and therefore also its density, and, if
the latter is favorable, even transmission spectroscopy might be
within reach of some instruments. In addition, such observations
might shed more light on the observed TTVs, which we suspect
are caused by one or more additional planets in the system. With
a relatively high TTV amplitude (∼30 minutes peak-to-peak),
one might hope (an) additional planet(s) can be revealed with
RV observations. Full simulations of the observed TTVs were
beyond the scope of this paper but might be fruitful due to the
eccentricity of Kepler-410A b; our observed transit times are
available upon request.

Our finding of a low obliquity in Kepler-410A can be
compared to obliquity measurements in other exoplanet systems
with multiple planets. The first multiple system for which
the projected obliquities has been measured is the Kepler-30
system which harbors three transiting planets (Sanchis-Ojeda
et al. 2012). The authors found a low projected obliquity by
analyzing spot crossing events. Chaplin et al. (2013) found
good alignment between the orbital and stellar inclinations for
Kepler-50 and Kepler-65, analyzing the splitting of the rotational
modes in a similar way as presented in this work. Hirano
et al. (2012) and Albrecht et al. (2013) analyzed the KOI-
94 and Kepler-25 systems and found low projected obliquity.
For the multiple transiting planet system KOI-56, asteroseismic
modeling revealed a high obliquity between the orbit of the
two planets and the stellar rotation (Huber et al. 2013a). The
authors suggest that a companion leads to a misalignment of
one planet, which then influenced the orbital plane of the other
planet. With the measurements at hand, it appears as if the
obliquity distribution for multiple planet systems is flatter than
what is observed for systems with single close-in Jupiter-sized
planets (Albrecht et al. 2012, 2013).

One way to learn more about the obliquity in Kepler-410A
would be to also measure the projection of the stellar rotation
axis via the Rossiter–McLaughlin (RM) effect (Rossiter 1924;
McLaughlin 1924). The amplitude of the RM effect would be
of the order of a few m s−1, despite the small transit depth, as
v sin i⋆ is large.

Of particular interest in this regard is also the tight constraints
derived on the planetary eccentricity, which is measured to be

inconsistent with a circular orbit. While eccentricities routinely
result from RV observations of exoplanet hosts, this is one of
the first stars for which the eccentricity is tightly constrained
using only photometric measurements, which to our knowledge
has only resulted in excluding circular orbits in the case of
Kepler-63b (Sanchis-Ojeda et al. 2013).

6. CONCLUSIONS

Using a combination of high-quality Kepler data and ground-
based photometry and spectroscopy, we are able to validate the
presence of a planet around Kepler-410A; a small Neptune in
an orbit with a period of 17.8 days. This makes Kepler-410A
the third brightest Kepler planet host star currently known.
A detailed analysis of the solar-like oscillations allows for a
characterization of the stellar mass to within 3%, while the
radius is known to less than a 1% and the age is determined
to within 20%. The asteroseismic study also allowed a precise
determination of the distance to the star.

Furthermore, we constrain the rotation rate and inclination
angle of the host star and find the results to be consistent with low
obliquity. This is a result similar to most obliquity measurements
in multiple planet systems, which is in contrast to measurements
of obliquities in Hot-Jupiter systems, where the obliquities
are much more diverse. With an accurate determination of
the stellar density through asteroseismology, we are able to
photometrically constrain the planetary eccentricity to 0.17+0.07

−0.06.
We finally note that TTVs strongly suggest the presence of at
least one additional (non-transiting) planet in the system, which
we tentatively refer to as Kepler-410A c.
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APPENDIX

MODEL CORRECTION FROM ROTATIONAL
SECOND-ORDER EFFECTS

We approximate the second-order effect on the rotational
splitting by (see Kjeldsen et al. 1998):

δν2 =

(

ν2
s

νnℓ

)

(

∆
(1)
nℓ + m2

∆
(2)
nℓ

)

+

(

2πνs

ΩK

)2

νnℓ∆
(3)
nℓ Q2ℓm. (A1)
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Figure 11. Illustration of the effect of second order splittings as a function of
rotational frequency for an ℓ = 1 mode (left) and an ℓ = 2 mode (right), both
with a resonance frequency of νnℓ = 2000 μHz. Dashed black lines (one for
each m-component) give the first-order splitting, while the solid lines give the
second-order splittings. The grayscale indicates the relative height of azimuthal
components when assuming an inclination of i = 82.◦5. The dash-dotted
horizontal line indicates the obtained frequency splitting from peak-bagging.
The adopted mode line width is Γnℓ = 1 μHz. The cross gives the mid-point
between the m-components of ±ℓ.

(A color version of this figure is available in the online journal.)

Parameters are estimated as in Aerts et al. (2010), with the

exception of ∆
(3)
nℓ , which is assigned a value of 2/3 as in Kjeldsen

et al. (1998).
The effect of the second-order splittings can be seen in

Figure 11. The difference between first-order (dashed) and
second-order (solid) splitting increases with the rotational fre-
quency. The grayscale in this figure indicates the relative heights
of the m-components for the obtained inclination angle of
i = 82.◦5. An important aspect to note here is that the sectoral
components (|m| = ℓ) dominate the split multiplet, especially
for ℓ = 1. This means that the fitted components will have a
separation of 2ℓνs , whereby the splitting obtained from the peak-
bagging will be biased only very little by second-order effects,
and we can readily adopt this as the “true” splitting (see also
Ballot 2010). However, even though the splitting is little affected
by the second-order effects it is clear from Figure 11 that the mid
point (indicated by the cross) between the fitted m-components
of value ±ℓ will deviate from the first-order rotationally unaf-
fected estimate of the m = 0 resonance frequency—which is
the frequency entering into the stellar modeling. For the case
shown in Figure 11 where νnℓ = 2000 μHz we get from the
obtained splitting (combined with computed stellar model) that
the m = 0 frequency for ℓ = 1 is estimated too low by a value
of ∼0.26 μHz while m = 0, ℓ = 2 is estimated too low by a
value of ∼0.38 μHz. This offset will naturally have some impact
on the model computed from the fitted frequency, and in turn
the parameters of the model (via ΩK) will affect the estimated
impact of second-order effects.

For the particular case of Kepler-410 the addition of second-
order effects on the splittings did not impact the modeled
parameters in any significant way, with changes generally on the
per mil scale. The stellar age was most affected with a change
of ∼1.5%. However, we note that even though the effect from
the second-order splitting was small for Kepler-410 it might
not be for other targets, and it should in general be considered.

Estimates of rotational splittings will also generally be biased
from the second-order effect in stars with lower inclinations, and
an approach as taken here might not be appropriate. For Kepler-
410 we can add the effect a posteriori as the near equator-on
orientation of the star allows for a relatively un-biased estimation
of the rotation rate.
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