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Feedback control of deep brain stimulation (DBS) in Parkinson’s disease has great potential to improve efficacy,
reduce side effects, and decrease the cost of treatment. In this, the timing and intensity of stimulation are titrated
according to biomarkers that capture current clinical state. Stimulation may be at standard high frequency or
intelligently patterned to directly modify specific pathological rhythms. The search for and validation of appropriate
feedback signals are therefore crucial. Signals recorded from the DBS electrode currently appear to be the most
promising source of feedback. In particular, beta-frequency band oscillations in the local field potential recorded
at the stimulation target may capture variation in bradykinesia and rigidity across patients, but this remains to
be confirmed within patients. Biomarkers that reliably reflect other impairments, such as tremor, also need to be
established. Finally, whether brain signals are causally important needs to be established before stimulation can be
specifically patterned rather than delivered at empirically defined high frequency.
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Introduction

Deep brain stimulation (DBS) has been in routine
clinical use for more than a decade and provides
a highly valuable treatment modality for selected
patients with Parkinson’s disease (PD) in the man-
agement of uncontrolled motor symptoms. DBS has
been shown to significantly improve motor control,
reduce requirement for the dopamine prodrug, lev-
odopa, and improve quality of life over best medi-
cal treatment.1 Nevertheless, the cost of functional
neurosurgery, its partial efficacy, and its side effects
mean that there is still a pressing need for improve-
ment. With DBS as currently used, stimulation is
always on, relentlessly interfering with neural cir-
cuits regardless of the level of pathological activity.
This, therefore, shortens battery life and may pro-
mote habituation and side effects such as impair-
ment of verbal fluency, neuropsychiatric symptoms,
and paradoxical worsening of motor functioning.2
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One way to improve DBS is to deliver stimulation
in a closed-loop mode. With this approach, stimu-
lation is delivered according to clinical state so that
networks are stimulated only when necessary, saving
on battery power, limiting habituation, and improv-
ing patient outcome. Closed-loop stimulation has
already proved very effective in the treatment of car-
diac arrhythmias and is being trialed in epilepsy.3–6

Another way that DBS could be improved is to
optimize the precise pattern of stimulation deliv-
ered. Standard DBS for PD is usually delivered at
130 Hz with a power or 1–4 V and pulse width of
60 �s. These parameters have been selected on em-
pirical grounds but the available parameter space
has not been fully searched and the possibility of
strategically patterning stimulation according to the
form and phase of pathological network activity
has been barely explored. Yet patterned stimulation
regimes that specifically target pathological activi-
ties may potentially be more efficient and have less
effect on physiological processing, and thereby have
less power consumption and fewer side effects.

Both these approaches to improving DBS re-
quire a detailed understanding of pathological brain
signals. In closed-loop DBS, when and where to

doi: 10.1111/j.1749-6632.2012.06650.x
Ann. N.Y. Acad. Sci. 1265 (2012) 9–24 c© 2012 New York Academy of Sciences. 9



Brain signals for control of DBS in PD Little & Brown

stimulate is determined by clinical state, there is no
kinematic measure that can comprehensively cap-
ture diverse impairments such as rigidity, slowness
of movement, or tremor, and yet be miniaturized.
Hence, the search is on for brain signals that faith-
fully reflect clinical state and can be measured with
minimal extra intervention. Such a signal should
be sensitive and specific to the clinical state and re-
liable over time and in different conditions. Yet it
should also provide a more-or-less instantaneous
measure of clinical state so that therapy does not lag
impairment. Moreover, it should be calculable with
the lowest possible computational requirement as
this will affect both battery consumption and time
to change in the efferent limb of any control sys-
tem. In the case of strategically patterned stimula-
tion the requirements are even more stringent, for
the brain signal must not merely correlate with clin-
ical state but must also cause it in order to be a
legitimate target. Unsurprisingly, there is as yet no
single biomarker that fulfills all of these criteria.

Parkinson’s disease is classically defined as the
triad of tremor, rigidity, and bradykinesia. When
considering feedback parameters for PD, therefore,
one must first establish whether the different aspects
of the disease represent different manifestations of a
single pathological system that could be potentially
represented by a single biomarker or whether these
different motor manifestations have different sub-
strates and are therefore likely to be represented by
separate biomarkers. There is now strong evidence
for more than one system and specifically it ap-
pears that rigidity–bradykinesia is functionally dis-
crete from tremor.7 This dichotomy is further com-
plicated when one considers other well-recognized
PD symptoms such as gait disorders and nonmo-
tor symptoms. Thus, the dominant phenotype of
the patient should direct the choice of biomarker or
biomarkers for closed-loop DBS in an individual pa-
tient. Fortunately, growing evidence that disturbed
temporal coding at the neuronal and population
level may lie at the heart of Parkinsonian impair-
ment affords hope that different biomarkers may
be organized in the frequency domain and available
through recordings from the same site.8

Cortical signals

Given the location of the DBS electrodes precisely at
the site of interest, namely within the pathological
basal ganglia circuit itself, it seems most rational to

seek potential biomarkers within this region, and,
preferably, to record these through the stimulating
electrode itself. On the other hand, an advantage of
recording relevant biomarkers away from the stim-
ulation site would be avoidance of contamination
via stimulation artifact, opening up the possibility
of using biomarkers over a wider frequency band, as
current approaches to recording from stimulation
sites rely on low-pass filtering to recover biological
signal.9,10 In light of this, it is worth first consid-
ering the possibility of deriving suitable biomarkers
from the cerebral cortex. The electroencephalogram
(EEG) has been the predominant signal used for
brain computer interfacing (BCI) previously, due to
its noninvasive nature. It records the aggregate sig-
nal from a surface cortical population of an area of
about 6 cm2 and has successfully been used to con-
trol simple movements in healthy volunteers and in
patients.11 EEG signals in patients even with early
untreated PD have been shown to be distinguishable
from age-matched controls by both linear and non-
linear analyses, but only at the group level.12,13 So far
only a handful of studies have demonstrated a cor-
relation between EEG-derived measures and mo-
tor impairment, and between treatment-induced
change in such measures and changes in motor
impairment.14,15 These EEG-based measures are
based on interregional synchronization and need
extensive head coverage so that EEG and elec-
trocorticography (ECoG) are currently impractical
approaches to long-term closed-loop control. More-
over, it remains to be shown that correlations with
motor impairment can be made within subjects
as state changes over time, and not just across
subjects.

An alternative approach to deriving cortical sig-
nals is to record the activity of single or multiple
units in the cortex. This affords remarkable spatial
resolution, but is potentially at the cost of the loss
of diffuse population-coded information. The latter
is often addressed by the use of multiple microelec-
trodes. However, there are considerable technical
limitations to their application in the chronic set-
ting that has thus far limited their widespread clin-
ical use. It has been found that only approximately
one half of implanted microwires deliver record-
able units and this further deteriorates over time
due to neuronal gliosis around the electrode tips
and other hardware failures.16 Additionally, there
is a significant computational cost involved in the
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online analysis of multiple discrete electrode signals
of this sort.

Basal ganglia signals

Most of the attention has been focused on recording
potential biomarkers directly from the basal ganglia
in PD. Again, there are several approaches. One is
to record single units and Weinberger et al. showed
not only that there was increased burst activity on
recording from individual neurons in the off-drug
state but that there was also a significant correla-
tion between the incidence of oscillatory neurons
and the patient’s benefit from dopaminergic med-
ications, although this correlation did not extend
to motor deficit at rest, off medications.17 A related
approach is to record the background activity from
the microelectrode. Individual neuronal spikes are
selectively removed from the data and replaced with
randomly selected surrogate spike-free data from
the same trace. The data are then high-pass filtered
at 70 Hz to remove synaptic potentials. Signals pro-
cessed in this way are thought to represent the highly
localized aggregate activity of action potentials of
the population of neurons very close to the micro-
electrode tip.18 This too has been shown to correlate
with motor impairment but its utility in closed-loop
stimulation regimes may be limited by the need to
reject from the signal both unit activity and stim-
ulation artefact, which share a similar frequency
content.

Intracranial microdialysis provides a very differ-
ent approach and is already routinely used in the
research setting in animal models of Parkinson’s
and in humans for other conditions such as post-
traumatic head injury for real-time and continuous
monitoring of cerebral metabolites.19 It is possible
that dopamine or dopamine metabolites from the
striatum may provide a useful biomarker of clinical
state that could be used for closed-loop stimulation.
Some newer silicon electrodes have microdialysis
tubules included within them and show that mi-
crodialysis can be integrated into stimulation elec-
trodes.16 However, there may be significant techni-
cal barriers to implementing this type of approach
including tube blockage and miniaturization of the
chemical analysis hardware for implementation in
an implantable device. Moreover, it seems unlikely
that microdialysis will have the temporal resolution
to avoid lags between clinical change and therapy
titration. More suitable may be fast scan voltam-

metry, which is an electroanalytical technique that
extracts information on a subsecond temporal scale
regarding the chemical composition of the extracel-
lular fluid by varying the potential at a microelec-
trode and measuring the evoked current. This has
successfully been piloted in a large animal model
to show that DBS elicits a time-locked release of
dopamine that is both intensity and frequency de-
pendent.20

Local field potentials

Despite these endeavors, most research has concen-
trated on the use of the LFP that can be recorded
from the contacts at the end of the very same elec-
trode used for chronic stimulation and so requires
no additional electrodes or hardware. Typically the
LFP is picked up from the subthalamic nucleus
(STN), where, although highly focal and localized,
it still represents a population averaged signal. It
is recorded at lower frequencies than single-unit
recordings, which is believed to be beneficial since
these lower frequencies are less affected by electrode
interface or by local geometry.16 Reassuringly, re-
search has still shown that the LFP potentials are
closely related to the activity of individual neurons
with synchronized bursting of neurons occurring
in phase with beta (13–30 Hz) activity off medi-
cation.17,21 In light of the averaged nature of LFP
activity across a population of neurons, it could be
questioned whether these signals are appropriate for
monitoring of complex state dynamics. However, it
should be noted that within the basal ganglia and
particularly the STN, there is great convergence of
information processing from across the cortex into
the localized area around the LFP recording site. Ad-
ditionally, a population-based metric may well be
superior to that of single unit recordings, given that
many states are represented diffusely across popu-
lations rather than within single neurons, and this
is likely to be particularly the case when tracking
general state changes in PD rather than the subtle
and highly localized motor coding that is involved
in precise voluntary movements. Indeed, in some
situations, LFPs are superior to single units for rep-
resenting movements.22 These considerations, com-
bined with the long-term stability of DBS at the
tissue-electrode interface, make LFPs very attractive
feedback control parameters for responsive DBS.
But how informative are they about different clini-
cal features?
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Table 1. Studies that have recorded from the STN with the proportion of patients or nuclei (in brackets) that have
demonstrated beta peaks in the off state at rest

No. of patients/ Number with beta peaks

Group Year (nuclei) recorded patients or (nuclei) %

Brown41 2001 4 4 100

Cassidy et al.34 2002 6 6 100

Levy et al.35 2002 14 9 64

Silberstein et al.79 2003 (17) (17) 100

Kuhn et al.65 2004 8 8 100

Priori et al.80 2004 (20) (17) low beta 85

Kuhn et al.21 2005 6 (8) (8) 100

Doyle et al.81 2005 14 14 100

Wingeier et al.30 2006 4 (6) (6) 100

Foffani et al.28 2006 (13) (11) low beta 85

Kuhn et al.23 2006 9 (18) (17) 94

Kuhn et al.82 2006 8 8 100

Alonso-Frech et al.48 2006 (28) (28) 100

Weinberger et al.17 2006 14 14 100

Ray et al.25 2008 (13) (11) 85

Bronte-Stewart et al.27 2009 (22) (22) 100

Kuhn et al.24 2009 30 (57) (52) 89

De Solages et al.63 2010 (28) (28) 100

Pogosyan et al.61 2010 18 18 100

Eusebio et al.10 2011 16 (28) (25) 89

The mean proportion of patients/nuclei showing beta peaks is 95%. The whole beta band is considered, except where
otherwise indicated. A number of studies have also reported beta activity but not explicitly stated the number of peaks
detected.47,64,69,81–85

Bradykinesia and rigidity
Early recordings in PD patients with DBS elec-
trodes revealed that when recorded in the off-
medication state, power spectra showed high lev-
els of synchronized activity between 13 Hz and
30 Hz (beta-frequency band) in both the STN and
the globus pallidus interna (GPi) and subsequent
follow-up studies have confirmed this in the ma-
jority of cases (Table 1). It has been shown that
beta activity is suppressed with levodopa treat-
ment and that the degree of suppression correlates
with motor improvement measured by the UPDRS
clinical rating scale, particularly in the range of
<20 Hz.23–25 It has recently been demonstrated
that DBS treatment also suppresses beta activity
and STN-DBS–driven improvement in rigidity and
bradykinesia (but not tremor) correlates with sup-
pression of synchronization (Fig. 1).10,26–30 Reas-
suringly, it also appears that the beta profile is sta-

ble within patients over time and following DBS
treatment.27,28,31

However, several studies have failed to show a
correlation between the Unified Parkinson’s Disease
rating scale (UPDRS) motor score and beta activity
at rest across patients, leading some to downplay its
significance.17,23–25 Additionally, a minority of pa-
tients fail to show a substantial beta peak off med-
ication (Table 1). A number of reasons have been
proposed to explain these conflicting results. Some
have argued that this may be due to a “stun effect”
from postoperative localized edema, which causes a
transient improvement in symptoms even without
medication or the stimulator being initiated.32 Al-
ternative considerations include variability in elec-
trode targeting between patients, the weaknesses of
the UPDRS clinical scale, and issues related to signal
normalization. A causal role for beta activity in the
pathophysiology of PD has also been sought, with

12 Ann. N.Y. Acad. Sci. 1265 (2012) 9–24 c© 2012 New York Academy of Sciences.



Little & Brown Brain signals for control of DBS in PD

Figure 1. Effect of deep brain stimulation (DBS) of subthalamic nucleus on the local field potential (LFP). (A) Power autospectrum
of LFP recorded without stimulation. There is a large peak arrowed at 14 Hz. (B) Frequency–time log power spectrum of LFP. Power,
as in (A), shown over the pass band of the amplifier (4–40 Hz). Red bars along the time axis denote periods of DBS at 2.0–3.0 V.
Dyskinesias of the contralateral foot were noted at voltages of 2.0 V and above. Note suppression of spectral peak with stimulation
≥2.0 V, with evidence of a temporary increase in the power of the peak with stimulation at 1.5 V and a delayed return of the peak
after stimulation at 3.0 V is terminated. (C) Timing and voltage of DBS. Adapted from Eusebio et al.,10 with permission.

experiments showing that stimulation at beta band
frequencies generally cause slowing of movement,
albeit modest (Table 2). Although there is still de-
bate surrounding beta in PD, in particular its causal
role, it clearly appears that in the majority of patients
beta is present at rest in the off state (mean 95%, see
Table 1) and may therefore be useful as a feedback
signal for DBS. Encouragingly, it has been shown
that despite the enormous differential in magnitude
between recorded beta and DBS stimulation voltage,
one can successfully monitor beta during DBS.9,10

Thus far, we have examined LFP signals at rest
and their relationship to rigidity and bradykine-
sia. A useful feedback parameter, however, must
also reliably indicate state information during more
complex situations including voluntary and cued
movements. Prior to and during movement, syn-
chronized beta oscillatory activity is reduced; this
has been shown at the single-unit, LFP, and cor-
tical levels.33–37 Cassidy et al. found that not only
was there increased beta activity off-medication in
the GPi and STN and that these were reduced with
levodopa, but that coupling through coherence was
also reduced between these two nuclei during ac-
tion. They also found that in the on state, LFP
activity was dominated at higher frequencies in
the gamma range (70–85 Hz) and this was aug-

mented with movement, displaying a double disso-
ciation between off and on drug states and changes
with action in the beta versus gamma band. Foffani
et al. have shown that not only does beta amplitude
change during movement but the frequency of the
prominent peaks also changes slightly in response to
movement and dopamine therapy.38 This suggests
that amplitude modulation and frequency modu-
lation might both be important for coding motor
state.

Physiological states other than movement also
modulate LFP rhythms, including beta rhythms.
It has been shown, for example, that during slow-
wave sleep, beta activity is reduced, whereas in rapid
eye-movement sleep, beta is similar to—or possibly
greater—than in the awake state.39 It has also been
found that motor control improves during sleep in
those with PD.40 Thus, monitoring of beta might
also signal non-REM sleep, affording the potential
for DBS to be turned off, thereby saving on power
consumption if implemented in a closed-loop
setup.

The changes in LFP signals prior, during, and
after movements, and during sleep, show the com-
plex relationship between brain rhythms and the
physiological state in patients with PD. If beta,
in particular, were to be used as a biomarker for
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Table 2. Studies that have attempted to demonstrate a causal role for low-frequency oscillations by stimulating at low
frequency in PD patients withdrawn from their usual medication

No. of Task (off/ Effective

Group Date patients on medication) frequency (Hz) Effect size

Timmermann et al.83 2004 7 UPDRS akinesia (off) 10 10% increase motor UPDRS

Fogelson et al.84 2005 10 Finger tapping (off) 20 6% slowing

Chen et al.85 2007 22 Finger tapping (off) 20 8% slowing

Eusebio et al.86 2008 18 Finger tapping (off) 5 and 20 12% slowing

Chen et al.85 2011 16 Grip force (off) 20 15% slowing of force development

Little et al.87 2012 12 Rigidity (on) 5, 10, 20 24% increase in rigidity

feedback control, one concern given the preemptive
suppression prior to movement would be that if
stimulation were to be turned off at this critical
period in response to beta reduction, then freez-
ing of action or gait may be exacerbated. Consid-
eration to the length of the beta-averaging window
may alleviate this problem. Beta therefore appears
to be a pathological signal in the PD off state with
a relationship to bradykinesia–rigidity. Other stud-
ies have suggested that this bradykinetic signal may
be balanced by a prokinetic one, namely gamma,41

and that the relationship between the two is recip-
rocal.42 Gamma activity is related directly to move-
ment and EEG studies have demonstrated that it
is differentially involved in ballistic versus negative
movements.36 Thus gamma and beta seem to have
complimentary roles in motor coding both at the
cortical and subcortical levels.

Tremor
As described previously, it appears that tremor
and bradykinesia–rigidity are subserved by differ-
ent pathophysiological systems and, therefore, may
require separate neurophysiological biomarkers to
adequately capture them. At the cellular level, Levy
et al. showed that in PD patients with tremor, there
exists a subsection of neurons that discharge co-
herently with the limb tremor that are themselves
characterized by both in and out of phase relation-
ships to the tremor. In addition, they demonstrated
high-frequency synchronization during tremor pe-
riods and suppression of synchronization during
voluntary movement.35,43 Analysis at the level of the
LFP has demonstrated increased signal at the tremor
frequency and also double the tremor frequency
(likely representing a harmonic), which was well

localized within the STN and coherent with periph-
eral EMG.44 Investigation of activity at the cortex
has also shown that this activity is coherent with the
M1 motor area and extends out to a wider, diffuse
network including other cortical areas, the cerebel-
lum, and diencephalon.45 Further work using non-
linear techniques has revealed that the coupling in
the theta band is bidirectional between the LFP and
the peripheral tremor and there is significant delay
(1–2 tremor cycles) for the brain-to-tremor driving
signal.46,47 In addition to tremor frequency oscilla-
tions, the beta band appears functionally related to
tremor showing beta suppression prior to the onset
of resting tremor.47 This effect, which is opposite
to the positive correlations already described be-
tween beta activity and bradykinesia–rigidity, poses
a problem for the use of beta activity as a biomarker
in patients with PD, particularly those with tremor,
and reinforces the need to individualize biomark-
ers according to clinical phenotype or to combine
biomarkers. Overall, very little work has been done
in terms of demonstrating a correlation between
single unit or LFP activity and tremor severity over
time.

Dystonia and dyskinesias
Further aspects of Parkinsonism that may be re-
flected in the LFP are dystonia and dyskinesias.
Alonso-Frech et al. have investigated LFP sig-
nals while inducing dyskinesias in patients with
PD through treatment with levodopa or apomor-
phine.48 They found in patients who manifested
dyskinesias a large increase in activity in the 4–
10 Hz band, and when dyskinesia was present in
just one limb, it was found that the 4–10 Hz ac-
tivity was present on the contralateral side only,
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suggesting that it is specific to this clinical feature.
On the other hand, dystonia and dyskinesias have
been inversely related to beta power levels.49 This
raises the possibility that the suppression of beta
may favor the development of hyperkinesias, under
some circumstances, and reinforces the view that
closed-loop control driven by a single biomarker,
such as LFP beta band power, may be insufficiently
nuanced to apply to all impairments. In addition,
the relative merits of different basal ganglia targets
for the sensing of biomarkers sensitive to dystonia
and dyskinesia are unclear.

Gait and nonmotor symptoms
The above characteristics refer to LFP signals in re-
lation to motor symptoms. PD, however, extends to
many other impairments including motor features
like gait freezing, and nonmotor symptoms such as
depression, sleep disturbance, postural instability,
and autonomic dysfunction. Is it possible that spe-
cific biomarkers exist that may allow dynamic mod-
ulation of DBS specific to these impairments as well?
There has been little research as of yet into specific
physiological biomarkers of the nonmotor symp-
toms; however, progress is being made into a better
understanding of the pathophysiology of gait with
specific reference to a new subcortical target, namely
the pedunculopontine nucleus (PPN). Interestingly,
this target is most effective when stimulated at low
frequency and is found to have a specific therapeu-
tic effect on gait and postural instability.50 Both beta
and alpha activity have been recorded in the PPN,
and are at least partially dopamine dependent and
coupled to cortical activity. 51,52 At present, although
there is an insufficient understanding of PPN LFPs
to relate individual signal components directly to
relevant clinical features, there is emerging evidence
that PPN signals may provide dynamic information
related to gait.

Higher-order spectral analyses
The previous examples demonstrate that important
and meaningful information regarding aspects of
the concurrent pathological state can be derived
from simple spectral analysis of the LFP signal.
Activity has thus been divided into individual fre-
quency bands that have been related to different
aspects of the disease/medication state through the
use of correlations. However, this approach makes
the assumption of a linear relationship between
signal and clinical feature. Although some cod-

ing at the population level may occur in a linear
manner, this likely does not completely describe
how the brain communicates, and it is therefore
possible that some valuable information regard-
ing state is not being captured with these simple
approaches.53,54 More sophisticated analyses have
therefore been examined. The notion of “complex-
ity” relates to dynamical systems theory and sim-
ply put, describes systems that are somewhere be-
tween simply predictable deterministic systems and
those that show chaos. Complex systems appear to
occur more readily in systems that are far from
their natural equilibrium and can be recognized
by characteristic features such as power law scal-
ing (1/f), fractals, and self-similarity.55 Quantita-
tive measures of complexity have been developed
and one such measure, Lempel-Ziv complexity, has
been used to show that the complexity of the LFP in
the beta-frequency range negatively correlates with
bradykinesia–rigidity at rest, but not with tremor.56

As synchronized oscillatory activity increases, com-
plexity falls, and the system becomes more deter-
ministic and it is possible that complexity in the
beta band directly relates to PD symptoms. Alterna-
tively it may be that this complexity measure sim-
ply normalizes the signal and thus avoids some of
the experimental confounds highlighted previously
(for example, stun effect and electrode targeting).
Further recent evidence suggests that variability of
beta-band power can inform on clinical state both
at rest and in response to dopa.57

Phase relationships between frequencies within
the same signal may also be informative. Marceglia
et al. have shown using bispectral techniques that
LFP signals become nonlinearly correlated in the
absence of dopamine and that this is particu-
larly strong between low and high beta (Fig. 2).58

The bispectrum relates to phase–phase interac-
tions; however, the introduction of the investiga-
tion of phase relationships raises other possibili-
ties. Might phase–amplitude interactions between
different frequencies also contain significant infor-
mation? Indeed, it has recently been shown that
the degree of movement-related modulation of
high-frequency oscillations by beta negatively cor-
relates with bradykinesia/rigidity scores and that
in the on-medication state the high-frequency os-
cillations are released from lower-frequency cou-
pling and demonstrate marked amplitude modula-
tion related to movement.59 Other recent work has
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Figure 2. Bispectral analysis. Mean bispectrum from 13 subthalamic nuclei before (A) and after (B) levodopa administration. The
central 2-D plot shows the mean bispectrum of the LFP signals as a function of frequencies f1 (x-axis, in Hz) and f2 (y-axis, in Hz). The
level lines in the plot represent bispectrum values color coded as indicated in the color bar on the right (log transform of the average
bispectrum, expressed in log arbitrary units, log AU). The mean power spectrum is also shown adjacent to each axis. The diagonal
in the central plot defines the two regions of symmetry of the bispectrum. (A) Before levodopa administration, the arrows indicate
the harmonic nonlinear correlation between the LFP rhythm in the low-beta range (13–20 Hz, dashed lines) and the LFP rhythm
in the high-beta range (20–35 Hz, continuous line). This nonlinear correlation is evidenced by the bispectral peak (13–20 Hz, 13–
20 Hz). Note that this bispectral peak appears broad due to the frequency variability between nuclei. Bispectral peaks are also
present in other regions; (2–7 Hz, 2–7 Hz), (8–12 Hz, 8–12 Hz), and (2–7 Hz, 8–12 Hz), suggesting the presence of nonlinear
correlations between different LFP rhythms in the off Parkinsonian state. (B) After levodopa administration, bispectral peaks are
suppressed. The mean spectral peak in the high-beta range is therefore now independent of activity at lower frequencies. Adapted
from Marceglia et al.,58 with permission.

examined the role of these high-frequency oscilla-
tions themselves rather than their relationship to
beta and has shown two distinct high frequency
bands centered around 250 Hz and 350 Hz.60 More-
over, they found that the power ratio of these two
bands correlated with UPDRS bradykinesia–rigidity
at rest and that this was dopamine dependent and
unrelated to beta. Nonlinear analyses are potentially
interesting but their correlation with motor impair-
ment does not so far substantially differ from that
seen with simple power measures and yet they come
with a computational cost that may limit their ap-
plication to clinical closed loop DBS in the near
future. However, no study so far has directly con-
trasted correlations between linear and nonlinear
measures and clinical impairment, nor determined
whether those cases that contribute to correlations
are the same for the two approaches. If not, then
the two approaches may prove complementary. Ta-
ble 3 summarizes the many studies that have re-
lated electrophysiological features to clinical state
and highlights the relative lack of studies looking at
correlations within subjects.

Multiple sites

There is emerging evidence that signals at all levels
including cortex, LFP, and single units, contain in-
formation that represents the clinical state and that
excessively synchronized rhythmic activity appears
to be related to Parkinsonism. As discussed previ-
ously, it is now becoming apparent that rhythms of
different frequencies interact within the same signal.
What of interactions between different signals at dif-
ferent sites? Could these interactions be important
in tracking clinical state in PD?

Phase coherence in the beta band across contact
pairs within the same electrode separated by a few
mms also correlates with bradykinesia–rigidity and
this phase coherence has been found to account for
up to 25% of motor variability.61 What of locations
that are much farther apart? In addition to the evi-
dence that local oscillations may signify something
important about the Parkinsonian state, consensus
is growing that oscillations may play a physiolog-
ical role in the functional connectivity/binding of
different spatially segregated neuronal populations
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Table 3. Studies that have investigated the relationship between electrophysiological signals and clinical features

Technique/site Correlation between

treatment-induced

changes in brain signals

and impairment

across subjects

Correlation between

treatment-induced

changes in brain signals

and impairment

within subjects

Correlation between

brain signals and

clinical state or

change in clinical

state across subjects

Correlation between

brain signals and

clinical state or

change in clinical

state within subjects

Cortical
EEG-EEG

coherence,

Silberstein

et al.14

Reduction in EEG-EEG

coherence (including

beta) correlates with

UPDRS improvement

(levodopa and DBS);

no r values given.

Beta band EEG-EEG

coherence correlates

with UPDRS; no r

values given.

MEG

synchronization

likelihood (SL),

Stoffers

et al.15

Positive association of

UPDRS with

interhemispheric

(�2 = 13.4%) and

intrahemispheric (�2

= 12.3%) theta and

interhemispheric

beta (�2 = 9.2%) SL

measures

Single/multiunit
Single unit

recordings,

Weinberger

et al.17

Negative correlation

between percentages

of beta oscillatory

cells with on drug

motor UPDRS

(r2 = 0.49)

Positive correlation

between percentage

of beta oscillatory

cells with preop

levodopa response;

(r2 = 0.62)

Spectral density

estimation of

multiunit

activity, Zaidel

et al.88

Spatial extent of STN

beta oscillations

positively correlates

with improvement

on DBS and

levodopa

(r2 = 0.45)

Correlation between

beta power off drugs

with improvement

in motor UPDRS

with levodopa r2 =
0.2 or DBS (r2 = 0.3)

Continued
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Table 3. Continued

Technique/site Correlation between

treatment-induced

changes in brain signals

and impairment

across subjects

Correlation between

treatment-induced

changes in brain signals

and impairment

within subjects

Correlation between

brain signals and

clinical state or

change in clinical

state across subjects

Correlation between

brain signals and

clinical state or

change in clinical

state within subjects

Local field potentials
LFP power spectral

densities, Kühn

et al.23

Reduction in beta with

levodopa correlates

with improvement in

contralateral motor

UPDRS (� = 0.81)

LFP power spectral

densities, Ray

et al.25

Reduction in beta

levodopa correlates

with improvement in

contralateral

bradykinesia/

rigidity UPDRS

(� = 0.7)

Baseline beta power

off-medication

correlates with

improvements in

motor symptoms

(� = 0.68)

LFP amplitude

modulation by

movement

(cross-

correlation

index),

Androulidakis

et al.37

Tapping performance

versus beta

cross-correlation

index across

patients (r2 = 0.14)

Tapping

performance

versus beta cross

correlation index

within patients

(r2 ≤ 0.53)

LFP power spectral

densities during

consecutive

DBS/ LFP

recordings

Kühn et al.26

Reduction in beta

following DBS

correlates with

improvement in

contralateral

bradykinesia. r2 = 0.31

LFP power spectral

densities

(frequency

aligned), Kühn

et al.24

Reduction in beta with

levodopa correlates

with improvement in

contralateral

bradykinesia/

rigidity UPDRS

together (r2 = 0.38),

rigidity alone

(r2 = 0.34) and

bradykinesia alone (r2

= 0.17)

LFP beta spatial

extent (phase

synchrony),

Pogosyan et al.61

Phase coherence across

contacts correlated

with bradykinesia/

rigidity. (r2 = 0.24)

Continued

18 Ann. N.Y. Acad. Sci. 1265 (2012) 9–24 c© 2012 New York Academy of Sciences.



Little & Brown Brain signals for control of DBS in PD

Table 3. Continued

Technique/site Correlation between

treatment-induced

changes in brain signals

and impairment

across subjects

Correlation between

treatment-induced

changes in brain signals

and impairment

within subjects

Correlation between

brain signals and

clinical state or

change in clinical

state across subjects

Correlation between

brain signals and

clinical state or

change in clinical

state within subjects

LFP power

spectra—high-

frequency

oscillations

(HFO),

López-Azcárate

et al.59

Movement-related

modulation of the

HFOs negatively

correlates with

rigidity/bradykinesia

scores (r2 = 0.39)

LFP Lempel-Ziv

complexity,

Chen

et al.56

Negative correlation of

beta band

complexity with

akinesia–rigidity

(� = −0.54)

LFP power

spectra—high-

frequency

oscillations

(HFO), Ozkurt

et al.60

Power ratio of 250Hz

and 350Hz HFOs

correlates with

UPDRS

akinesia/rigidity

(� = 0.36)

Beta variability

(coefficient of

variation—beta

Power), Little

et al.57

Change in CV of high

beta negatively

correlates with

changes in UPDRS in

response to Levodopa

(� = −0.66)

CV of high beta

negatively correlates

with UPDRS at rest

(� = −0.59)

Note: This table demonstrates a clear relationship between LFP activity (particularly beta) and change in clinical
features across subjects but highlights the very limited evidence for LFP signal correlations with clinical state within
subjects. In the beta-frequency band, the sign of any correlation is always consistent with the fact that high levels of
LFP activity are associated with a worse clinical state and larger decreases in lfp activity with treatment are associated
with greater improvements in clinical state. Note that improvement is predominantly in bradykinesia-rigidity. Where
possible, r2 and �2 values are given so as to show the proportion of the variance in clinical scores that can be predicted
by the brain signals.

across much greater distances.62 Applying this to
PD, we find that beta oscillations are coherent
across bilateral STNs and cerebral cortices, suggest-
ing the existence of a bilateral network control-
ling beta.14,63 Moreover, the interactions between
these spatially segregated rhythms (as measured
through coherence) are dynamically modulated by
movement and dopamine with phase lag and lead
being frequency dependent.64–66 With one excep-

tion (cortico-cortico coupling), these measures of
widely separated multisite interaction (coherence),
although dopamine and movement responsive, have
yet to be shown directly to be correlated with behav-
ioral characteristics such as bradykinesia–rigidity.14

It remains to be established whether characterizing
interactions between widely distributed neuronal
populations may give a more accurate represen-
tation of dynamic clinical phenotype, particularly
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given the consideration that recording from more
than one site raises practical implications such as
increased risk of hemorrhage and infection.

Personal programming, dynamic
optimization, and model-based control

The aforementioned studies have been concerned
with seeking reliable neurophysiological biomarkers
that represent relevant clinical states and are consis-
tent across time and across patients. This system
of attempting to definitively identify well-defined
signals can be contrasted with an alternative ap-
proach in which one uses learning algorithms to
investigate LFP signal space in individual patients
that then extract complex, nonlinear multidimen-
sional personalized signal characteristics from their
LFP rather than using unitary biomarkers. Such
approaches have been used elsewhere in brain–
computer interfacing (BCI) and software for this
is now available through open source sites such as
BCILAB.67

A learning paradigm of this sort requires a train-
ing period in which signals are correlated with
clinical features and thus requires quantitative in-
formation on clinical features in a manner that
is quick, continuous, and reliable. Accelerometers
can be used to give feedback information on limb
tremor and joysticks or gyrosensors on bradykine-
sia.68–70 The real-time continuous measurement of
rigidity is more challenging, and although quantifi-
cation of rigidity has been achieved, these meth-
ods would need adaptation before implementation
into a BCI.71,72 It would seem impractical to im-
plant multiple bilateral devices to quantify motor
impairment, but this approach could be realized by
telemetrically downloading learned algorithms after
training periods in a clinical laboratory.

A further potential approach is to move away
from static biomarkers for feedback control and to
design computerized model-based control systems.
These forms of systems are now ubiquitous outside
of the health technology field (e.g., GPS tracking and
navigational systems, autopilot systems) but have
yet to be fully implemented in medicine. The rea-
son for the delay in uptake probably relates to pre-
viously insufficient computing power, inadequate
neurophysiological models, and the nonlinearity in
biological systems. All of these obstacles are becom-
ing surmountable and PD is theoretically well placed
to benefit from this type of system given its ongo-

ing dynamic nature. The field of model-based con-
trol theory grew out of the work by Kalman in the
1960s in which a maximum-likelihood filter was
used to track a system’s state and calculate changes
that were needed to the system’s control signals in
order to return it to a desired condition. With im-
provements in the implementation of these systems
in nonlinear environments with developments such
as the unscented Kalman filter (UKF), they are now
being implemented in realistic models of neuronal
behavior (e.g., Fitzhugh–Nagumo model). A sub-
stantial advantage of these systems is that they seek
and utilize the best possible parameters for moni-
toring and control even if they do not represent a
real biophysical value but are merely abstractions.
In effect, the model (or control filter) is synchro-
nized with the real system (basal ganglia) through
continuous tracking and feedback. Additionally, the
models allow one to monitor and record from just
one site, such as the STN, and infer what the rest
of the network is doing. Schiff has reviewed the his-
tory and development of model-based control the-
ory and discussed its application to PD, and Feng
et al. have attempted to implement it in a model
of PD to improve DBS stimulation through an evo-
lutionary optimization system for control of DBS
stimulation parameters and separately through a
nonlinear feedback model.73–75

Proof of principle

Whether it is possible, let alone feasible, to fully
characterize the multifaceted nature of PD through
examination of a single signal, such as the LFP, re-
mains to be seen. Should this dissuade us from the
goal of closed-loop therapy? Or can we still get quan-
titatively important improvement and superiority to
standard open-loop DBS despite the richness of the
Parkinsonian phenotype? A pioneering report from
Bergman et al. suggests that this can be the case.76

They demonstrated that acute closed-loop stimu-
lation was superior to standard DBS in monkeys
when triggered, off, single-action potentials from
individual neurons in the GPi or the M1 area of the
cortex with an optimal delay of 80 ms. This excit-
ing result provides proof of principle that closed-
loop stimulation can be effective. Preliminary data
from our group are also encouraging in suggesting
that the differing pathophysiology of bradykinesia–
rigidity versus tremor may not be so problematic,
in so far as closed-loop control based on beta power
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Figure 3. Closed-loop stimulation in a Parkinsonian patient with tremor. The bottom panel (F) shows the spectrogram of the LFP
signal and demonstrates a low-frequency beta peak in yellow (original unfiltered LFP shown in D). The beta power in the form of
beta root mean squared (RMS) is also displayed (E), along with the trigger threshold (horizontal line). Crossing of this threshold
gave a positive trigger output that was sustained for a minimum of one second or until beta power dropped below threshold again.
Panel (A) shows trigger output. Stimulation (1.5 mV, 100 �s, 130 Hz) was delivered while trigger output was positive during the
first half of the recording, denoted by the red line (B). Trigger continued after this but did not result in stimulation. Accelerometer
recording (C) demonstrates good tremor suppression during closed-loop mode (first half) with 26% reduction in stimulation
triggering time. Note the increase in beta RMS during the second half of the recording when there is no stimulation. Previously
unpublished data.

levels in the LFP can, in practice, also control tremor
(Fig. 3).

The future

Feedback control of DBS has the potential to re-
duce power consumption/costs, improve efficacy,
and reduce side effects. As the scope of DBS widens,
feedback control will be crucial to fully realize the
potential of this therapy.

In PD, the most fruitful feedback source for im-
plementation into closed-loop DBS systems in the
short-to-medium term is the LFP, given that it can
be recorded from the stimulating electrode without
further intervention and during stimulation. Much
work has been directed toward the spectral analy-
sis of the LFP recorded by the DBS electrode; here,
the most consistent finding is a close relationship
between beta activity and bradkykinesia–rigidity.
However, this research has addressed pathophysi-
ological questions and has not necessarily been tai-
lored to assess whether signals might provide reliable
feedback on current clinical state. Hence, the focus
has been on correlations between subjects rather
than within subjects (Table 3).

We highlight four priorities for future work in the
field:

• More evidence has to be accrued for feedback
signals that might correlate with Parkinsonian
impairments other than bradykinesia–rigidity;

• Candidate signals for feedback control should
be demonstrated to correlate with clinical state
over the day and within the same subject, rather
than across different subjects;

• The validity of biomarker signals, in particular
the correlation between signal and clinical state,
needs to be shown to be consistent over years
within subjects; and

• The extent to which correlating brain sig-
nals are causally important needs to be es-
tablished before stimulation can be specifically
patterned, rather than delivered at empirically
defined high frequency.

In the longer term, it is possible that a more de-
tailed representation of clinical state for feedback
control can be ascertained via more complex anal-
yses, such as higher-order spectral analyses (bis-
pectrum), phase–amplitude relationships, multisite
recordings, and model-based control systems. How-
ever, a balance has to be struck between complexity
of analysis versus processing time and power con-
sumption, and the eventual choice of biomarker
for feedback will depend on progress in both
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neuroscience and engineering/computer science. It
is imperative that research continues apace to es-
tablish which of these markers holds the highest
fidelity to the clinical state and to advance the im-
plementation of these signals into a working re-
sponsive deep brain stimulation system. This will
require cross collaboration between neurologists,
neurosurgeons, engineers, computer scientists, and
industry.77,78 It is clear that our present knowledge
relating underlying signals to clinical state within
patients as required for a closed-loop system is lim-
ited and requires extensive further research before
this promising technology can be actualized.
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