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a n  

A b s t r a c t .  This paper addresses the problem of determining the kind of 
three-dimensional reconstructions that can be obtained from a binocular 
stereo rig for which no three-dimensional metric calibration data is avail- 
able. The only information at our disposal is a set of pixel correspondences 
between the two retinas which we assume are obtained by some correlation 
technique or any other means. We show that even in this case some very rich 
non-metric reconstructions of the environment can nonetheless be obtained. 

Specifically we show that if we choose five arbitrary correspondences, 
then a unique (up to an arbitrary projective transformation) projective rep- 
resentation of the environment can be constructed which is relative to the 
five points in three-dimensional space which gave rise to the correspon- 
dences. 

We then show that if we choose only four arbitrary correspondences, 
then an affine representation of the environment can be constructed. This 
reconstruction is defined up to an arbitrary affine transformation and is rel- 
ative to the four points in three-dimensional space which gave rise to the 
correspondences. The reconstructed scene also depends upon three arbitrary 
parameters and two scenes reconstructed from the same set of correspon- 
dences with two different sets of parameter values are related by a projective 
transformation. 

Our results indicate that computer vision may have been slightly overdo- 
ing it in trying at all costs to obtain metric information from images. Indeed, 
our past experience with the computation of such information has shown 
us that it is difficult to obtain, requiring awkward calibration procedures 
and special purpose patterns which are difficult if not impossible to use in 
natural environments with active vision systems. In fact it is not often the 
case that accurate metric information is necessary for robotics applications 
for example where relative information is usually all what is needed. 

1 I n t r o d u c t i o n  

The problem we address in this paper is that of a machine vision system with two cameras, 
sometimes called a stereo rig, to which no thro~-dimensional metric information has been 
made available. The only information at hand is contained in the two images. We assume 
that this machine vision system is capable, by comparing these two images, of establishing 
correspondences between them. These correspondences can be based on some measures 
of similitude, perhaps through some correlation-like process. Anyway, we assume that 
our system has obtained by some means a number of point correspondences. Each such 
correspondence, noted (m, m') indicates that the two image points m and m' in the two 
retinas are very likely to be the images of the same point out there. It is very doubtful 
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at first sight that such a system can reconstruct anything useful at all. In the machine 
vision jargon, it does not know either its intrinsic parameters (one set for each camera), 
nor its extrinsic parameters (relative position and orientation of the cameras). 

Surprisingly enough, it turns out that the machine vision system can nonetheless 
reconstruct some very rich non-metric representations of its environment. These repre- 
sentations are defined up to certain transformations of the environment which we assume 
to be three-dimensional and euclidean (a realistic assumption which may be criticized by 
some people). These transformations can be either affine or projective transformations 
of the surrounding space. This depends essentially on the user (i.e the machine vision 
system) choice. 

This work has been inspired by the work of Jan Koenderink and Andrea van Doom 
[4], the work of Gunnar Sparr [9,10], and the work of Roger Mohr and his associates [6,7]. 

We use the following notations. Vectors and matrixes will he represented in boldface, 
geometric entities such as points and lines in normal face. For example, rn represents a 
point and m the vector of the coordinates of the point. The line defined by two points 
M and N will be denoted by (M, N). We will assume that the reader is familiar with 
elementary projective geometry such as what can be found in [8]. 

2 The projective case: basic idea 

In all the paper we will assume the simple pinhole model for the cameras. In this model, 
the camera performs a perspective projection from the three-dimensional ambient space 
considered as a subset of the projective space 7 )3 to the two-dimensional retinal space 
considered as a subset of the projective plane ~)2. This perspective projection can be 
represented linearly in projective coordinates. If m is a retinal point represented by the 
three-dimensional vector m,  image of the point M represented by the four-dimensional 
vector M, the perspective projection is represented by a 3 • 4 matrix, noted 13, such 
that: 

m = 1 3 M  

Assume now that we are given 5 point matches in two images of a stereo pair. Let 
Ai, i -- 1 , - - . ,5  be the corresponding 3D points. We denote their images in the two 
cameras by ai, a~, i -- 1, 5. We make three choices of coordinate systems: 

in 3D space  choose the five (unknown) 3D points as the standard projective basis, i.e 
A1 = el = [1, 0, 0, 0]T, ' ' . , A s  = e5 ---- [1, 1, 1, 1] T. 

in the  first image  choose the four points as, i = 1 , . . - , 4  as the standard projective 
basis, i.e, for example al = [1, 0, 0] T. 

in the  second image  do a similar change of coordinates with the points a~, i = 1 , . . . ,  4. 

With those three choices of coordinates, the expressions for the perspective matrixes 
and P~ for the two cameras are quite simple. Lets us compute it for the first one. 

2.1 A s imple  exp re s s ion  for  

We write that 
P A i = p i a l  i = 1 , . . . , 4  

which implies, thanks to our choice of coordinate systems, that P has the form: 

---- p~ 0 P4 
0 P3 P4 

(I) 
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Let a5 = [a, fl, 7] T, then the relation P A 5  = psa5 yields the three equations: 

Pl +P4 = p S a  P2 +P4  = PS~ P 3 + P 4  = P57 

We now define/J = P5 and v = P4, matrix P can be written as a very simple function of 
the two unknown parameters p and v: 

# = ~:K + ~Y (2) [ 00i] = ~ o (3) 
0 7  [:o O l] 

q = - 1  0 1 (4) 
0 - 1 1  

A similar expression holds for P '  which is a function of two unknown parameters p '  and 
/fl: 

#,  = ~,~,  + ~',~ 

2.2 Opt ica l  centers  and  ep ipo l e s  

Equation (2) shows that  each perspective matrix depends upon two projectiv%parameters 
i.e of one parameter. Through the choice of the five points Ai, i = 1, �9 �9 5 as the s tandard 
coordinate system, we have reduced our stereo system to be a function of only two 
arbitrary parameters. What  have we lost? well, suppose we have another match (m, mr), 
it means that  we can compute the coordinates of the corresponding three-dimensional 
point M as a function of two arbitrary parameters in the projective coordinate system 
defined by the five points Ai, i = 1 , . . . ,  5. Our three-dimensional reconstruction is thus 
defined up to the projective transformation (unknown) from the absolute coordinate 
system to the five points Ai and up to the two unknown parameters which we can choose 
as the ratios x = ~ and x ~ = ~ .  We will show in a moment  how to eliminate the 
dependency upon x and z ~ by using a few more point matches. 

C o o r d i n a t e s  o f  t h e  opt i ca l  centers  a n d  e p i p o l e s  Let us now compute the coordi- 
nates of the optical centers C and C '  of the two cameras. We know that  the coordinates 
of C are defined by the equation: 

f ' C = 0  

Combining this with the expression (2) for 1 ~, we obtain: 

v c~/J v - / ~ / J  v--Tp 

a set of remarkably simple expressions. Note that  the coordinates of C depend only upon 
the ratio z: 

[ 1 C =  1 1 1 1 
1 - a z  1 - 3 x '  1 - T a : '  

Identical expressions are obtained for the coordinates of C ' by adding ': 

C , = [  1 1 i I ] T  [ i I I IT  
�9 v~__-cd/j,, v~ ~/zl , v~ 71pl, V, = I_CdX~ , l_/3~Xt, l _ 7 , X ~  , 1 



566 

If we now use the relation I~'C = o I to define the epipole d in the second image, we 
immediately  obtain its coordinates: 

o ' =  L v _ p  a ' ~ ' a '  - v '  +-vlv ' pl~l~_._ P~" -b V - -  Vt Vl , P171v_pT-- vl +__]Trip = "[ Xl--~--I - -  x--al--xa ' xl/311--x/3-- x/3, xl7 ' l_xT-  XT]T 

(~) 
We note tha t  they depend only on the ratios x and x ~. We have similar expressions for 
the epipole o defined by P C  ~ = o: 

r~-v-- v v / ~ - v  v v T - v  v T . = ~ - - z % '  z / ~ - z ' / ~ '  z T - - x ' 7 ' ] T  

(~) 

Constraints on the coordinates of the epipoles The coordinates of the epipoles are 
not arbitrary because of the epipolar transformation. This transformation is well-known 
in stereo and motion [3]. It says that the two pencils of epipolar lines are related by a 
collineation, i.e a linear transformation between projective spaces (here two projective 
lines). It implies that we have the equalities of two cross-ratios, for example: 

{(o, al), (o, a2), (o, a3), (o, a~)} = {(o', al), (o', a~), (o', a~), (o', 4)} 
{(o, "d, (o, a~), (o, a3), (o, as)} = {(o', al), (o', a~), (o', a~), (o', a~)} 

As shown in appendix A, we obtain the two relations (12) and (13) between the coordi- 
nates of o and d. 

3 R e l a t i v e  r e c o n s t r u c t i o n  o f  p o i n t s  

3.1 C o m p l e t e  d e t e r m i n a t i o n  o f  I ~ a n d  1 ~l 

Assume for a moment  that  we know the epipoles o and d in the two images (we show in 
section 3.3 how to est imate their coordinates). This allows us to determine the unknown 
parameters  as follows. Let, for example,  U', V ~ and W ~ be the projective coordinates of 
d .  According to equation (5), and after some simple algebraic manipulations,  we have: 

U ~ x ~ - z ' a  ~ x 7 - 1  V ~ x / ~ - z ' / 3  ~ x 7 - 1  

W ~ x 7 - z ~ 7  ~ z a - 1  W ~ z 7 - z ' 7  ~ x / ~ - I  

If we think of the pair (z, z ~) as defining the coordinates of a point in the plane, these 
equations show that  the points which are solutions are at the intersection of two conics. 
In fact, it is easy to show, using Maple, tha t  there are three points of intersection whose 
coordinates are very simple: 

x = 0  x t = 0  
i X t _ _  i 

X = - -  -- . -7/  7 7 
o'-(as^a~) x' ~" 7u'v ' (a-~)+c~v'w'(7-a)+aw'u'(~- 'O 

z o~-(asAa~) = -7 ' v ' v ' (~ -a )+a ' v 'w ' (7 -~ )+yw 'u ' (~ - - r )  

Where 
o~ = [~v', ~v',  ~w'] r 

One of these points has to be a double point where the two conics are tangent. Since it 
is only the last pair (z, z ~) which is a function of the epipolar geometry, it is in general 
the only solution. 
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Note that since the equations of the two epipoles are related by the two equations 
described in appendix A, they provide only two independent equations rather than four. 

The perspective matrixes P and P '  are therefore uniquely defined. For each match 
(m, m ~) between two image points, we can then reconstruct the corresponding three- 
dimensional point M in the projective coordinate system defined by the five points Ai. 
Remember that those five points are unknown. Thus our reconstruction can be considered 
as relative to those five points and depending upon an arbitrary perspective transforma- 
tion of the projective space ~p3. All this is completely independent of the intrinsic and 
extrinsic parameters of the cameras. 

We have obtained a remarkably simple result: 

In the case where at least eight point correspondences have been obtained between two 
images of an uncalibrated stereo rig, if we arbitrarily choose five of those correspondences 
and consider that they are the images of five points in general positions (i.e not four of 
them are coplanar), then it is possible to reconstruct the other three points and any other 
point arising from a correspondence between the two images in the projective coordinate 
system defined by the five points. This reconstruction is uniquely defined up to an unknown 
projective transformation of the environment. 

3.2 Reconstructing the points 

Given a correspondence (m, m~), we show how to reconstruct the three-dimensional point 
M in the projective coordinate system defined by the points Ai, i = 1 , - . . ,  5. 

The computation is extremely simple. Let Moo he the point of intersection of the 
optical ray (C, m) with the plane of equation T -- 0. Moo satifies the equation PMoo -- 
m,  where P is the 3 x 3 left submatrix of matrix P (note that Moo is a 3 x 1 vector, the 
projective representation of Moo being [M~,  o]T). The reconstructed point M can then 
be written as 

where the scalars A and # are determined by the equation ~"M = m ~ which says that 
m ~ is the image of M. Applying P '  to both sides of the previous equation, we obtain 

m '  = / Jo '  + AP'P-Im 

where P' is the 3 x 3 left submatrix of matrix P'. 
It is shown in appendix B that 

p , p - 1  0 ~ 'x ' - I  0 
0 0 7~x'-I 

~,z--1 

Ixt 
Let us note a -- ~ , _  b -- ~ x - 1 ,  and c -- 7=_-11 . A and/J  are then found by solving 
the system of three linear equations in two unknowns 
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3.4 C h o o s i n g  t h e  five p o i n t s  Ai 

1 As mentioned before, in order for this scheme to work, the three-dimensional points 
that we choose to form the standard projective basis must be in general position. This 
means that no four of them can be coplanar. The question therefore arises of whether we 
can guarantee this only from their projections in the two retinas. 

The answer is provided by the following observation. Assume that four of these points 
are coplanar, for example A1, A2, A3, and A4 as in figure 1. Therefore, the diagonals of 
the planar quadrilateral intersect at three points B1, Bs, B3 in the same plane. Because 
the perspective projections on the two retinas map lines onto lines, the images of these 
diagonals are the diagonals of the quadrilaterals al, as, a3, a4 and at, aS, a~, a~ which 
intersect at bl, bs, b3 and bt, b~, b~, respectively. If the four points Ai are coplanar, then 
the points b~, j = 1, 2, 3 lie on the epipolar line of the points bj, simply because they 
are the images of the points Bj. Since we know the epipolar geometry of the stereo rig, 
this can be tested in the two images. 

But this is only a necessary condition, what about the reverse? suppose then that b~ 
lies on the epipolar line of bl. By construction, the line (C, bl) is a transversal to the 
two lines (A1, As) and (A2, A4): it intersects them in two points C1 and C2. Similarly, 
(C I, bt) intersects (A1, As) and (As, A4) in CI and C~. Because b t lies on the epipolar 
line of b~, the two lines (C, b~) and (C', b~) are coplanar (they lie in the same epipolar 
plane). The discussion is on the four coplanar points C1, C2, C~, C~. Three cases occur: 

1. C1 r C~ and Cs r C~ implies that (A1, As) and (As, A4) are in the epipolar 
plane and therefore that the points al, as, as, a4 and at, aS, ~ i as, a 4 are aligned on 
corresponding epipolar lines. 

2. C1 --- C~ and Cs r C~ implies that (A1, As) is in the epipolar plane and therefore 
that the lines (al, as) and (at, a~) are corresponding epipolar lines. 

3. The case C1 r CI and C2 - C~ is similar to the previous one. 
4. C1 -- C~ and C2 - C~ implies that the two lines (A1, As) and (As, A4) are coplanar 

and therefore also the four points A1, As, As, A4 (in that cas we have C1 --- C~ - 
Cs -- C~ - B1) .  

In conclusion, except for the first three "degenerate cases" which can be easily detected, 
the condition that b t lies on the epipolar line of bl is necessary and sufficient for the four 
points A1, A2, As, A4 to be coplanar. 

4 G e n e r a l i z a t i o n  t o  t h e  af l lne  c a s e  

The basic idea also works if instead of choosing five arbitrary points in space, we choose 
only four, for example Ai, i = 1, �9 �9 4. The transformation of space can now be chosen in 
such a way that it preserves the plane at infinity: it is an affine transformation. Therefore, 
in the case in which we choose four points instead of five as reference points, the local 
reconstruction will be up to an affine transformation of the three-dimensional space. 

Let us consider again equation 1, change notations slightly to rewrite it as: 

~= 0 
r 

1 This section was suggested to us by Roger Mohr. 
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where matrix 
aX 

A V' = bY 
W' eZ 

is in general of rank 2. We then have 

The coordinates of the reconstructed point M are: 

M -- ~[.z~ 1 1 I _I]T + A [ x X  Y Z O] T 
- 1 '  z f l - l '  z T - - l '  - 1 '  x f l - l '  x T - l '  

In which we have taken m = 
determined. 

[X, Y, Z] T. We now explain how the epipoles can be 

3.3 D e t e r m i n i n g  t h e  ep ipo les  f r o m  po in t  m a t c h e s  

The epipoles and the epipolar transformation between the two retinas can be easily 
determined from the point matches as follows. For a given point m in the first retina, its 
epipolar line om in the second retina is linearly related to its projective representation. 
If we denote by F the 3 x 3 matrix describing the correspondence, we have: 

orn = F m  

where o,n is the projective representation of the epipolar line o,n. Since the corresponding 
point m'  belongs to the line em by definition, we can write: 

m ' T F m  : 0 (8) 

This equation is reminiscent of the so-called Longuet-Higgins equation in motion analysis 
[5]. This is not a coincidence. 

Equation (8) is linear and homogeneous in the 9 unknown coefficients of matrix F. 
Thus we know that, in generM, if we are given 8 matches we will be able to determine a 
unique solution for F, defined up to a scale factor. In practice, we are given much more 
than 8 matches and use a least-squares method. We have shown in [2] that the result is 
usually fairly insensitive to errors in the coordinates of the pixels m and m'  (up to 0.5 
pixel error). 

Once we have obtained matrix F, the coordinates of the epipole o are obtained by 
solving 

Fo = 0 (9) 

In the noiseless case, matrix F is of rank 2 (see Appendix B) and there is a unique vector 
o (up to a scale factor) which satisfies equation 9. When noise is present, which is the 
standard case, o is determined by solving the following classical constrained minimization 
problem 

m~nllFoll 2 subject to 11o112 = 1 

which yields o as the unit norm eigenvector of matrix ETF  corresponding to the small- 
est eigenvalue. We have verified that in practice the estimation of the epipole is very 
insensitive to pixel noise. 

The same processing applies in reverse to the computation of the epipole o'. 
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Fig. 1. If the four points A1, A2, As, Ai are coplanar, they form a planar quadrilateral whose 
diagonals intersect at three points B1, B2, B3 in the same plane 

with a similar expression with ' for P ' .  Each perspective matrix now depends upon 4 
projective parameters, or 3 parameters, making a total of 6. If we assume, like previously, 
that we have been able to compute the coordinates of the two epipoles, then we can write 
four equations among these 6 unknowns, leaving two. Here is how it goes. 

It is very easy to show that the coordinates of the two optical centers are: 

1 , 1 1  ! ]  T C'  1 , 1  1 1]T 
C = [ p  q, r '  = [ 7  q"  r "  

from which we obtain the coordinates of the two epipoles: 

pt 81 ql 81 r~ P T o' T 
~ =[7 ;'q ; 'r s 

Let us note 
p# ql r I 81 

X 1 ~ - -  X 2 ~-~ - -  X 3 ---~ - -  X 4 ~ - -  
p q r s 

We thus have for the second epipole: 

X 1 - -  g 4 U e x 2 - -  z 4 - -  V t 

x3 - -  x4 W ~ x3 - -  x4 W ~ 

and for the second: 

(10) 

X l - - X 4  x3 U x 2 - x 4  x3 V 
�9 -- = - -  -- (11) 

Z 3 - -  X 4 Z 1 W x 3  - -  Z 4  X 2  W 

The first two equations (10) determine xl and x2 as functions of z3 by replacing in 
equations (11): 

U'W V'W 
x l  = W - r f f x ~  ~2 = -~--~ 
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replacing these values for xl and x2 in equations (10), we obtain a system of two linear 
equations in two unknowns z3 and z4: 

{ x sU ' (W - U) + z4U(U'  - W' )  = 0 
xsv'(w v) + x4v(v' w') o 

Because of equation (12) of appendix A, the discriminant of  these equations is equal to 
0 and the two equations reduce to one which yields x4 as a function of z3: 

V ' ( W  - U) V ' ( W  - V) 
~' - v ( w , -  u,) ~ = ~ : ~ ~ 

We can therefore express matrixes 13 and 131 as very simple functions of the four projective 
parameters p, q, r, s: 

�9 U ' W _  U ' ( W - U ~  "1 

V ' W  . n U 131= 0 wr'r v v s 
u 

0 0 r s 

There is a detail that  changes the form of the matrixes 13 and 13' which is the following. 
We considered the four points Ai, i = 1 , . . . , 4  as forming an affine basis of the space. 
Therefore, if we want to consider that  the last coordinates of points determine the plane 
at infinity we should take the coordinates of those points to have a 1 as the last coordinate 
instead of a 0. It can be seen that  this is the same as multiplying matrixes 13 and P '  on 
the right by the matrix 

0 1 0  
Q =  0 0 1  

1 1 1  

Similarly, the vectors representing the points of p3  must be multiplied by Q-1 .  For 
example 

~ 1 , 1 , 1 + 1  1 1 
c = [  p 7 

We have thus obtained another remarkably simple result: 

In the case where at least eight point correspondences have been obtained between two 
images of an uncalibrated stereo rig, if we arbitrarily choose four of these correspondences 
and consider that they are the images o f four points in general positions (i.e not coplanar), 
then it is possible to reconstruct the other four points and any other point arising from a 
correspondence between the two images in the alpine coordinate system defined by the four 
points. This reconstruction is uniquely defined up to an unknown affine transformation 
of the environment. 

The main difference with the previous case is that  instead of having a unique de- 
termination of the two perspective projection matrixes 13 and 13', we have a family of 
such matrixes parameterized by the point o f P  3 of projective coordinates p, q, r, s. Some 
simple parameter counting will explain why. The stereo rig depends upon 22 = 2 x 11 
parameters, 11 for each perspective projection matrix. The reconstruction is defined up 
to an affine transformation, that  is 12 = 9 + 3 parameters, the knowledge of the two 
epipoles and the epipolar transformation represents 7 = 2 + 2 + 3 parameters. Therefore 
we are left with 22 - 12 - 7 = 3 loose parameters which are the p, q, r, s. 
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Similarly, in the previous projective case, the reconstruct ion is defined up to a projec- 
tive t ransformat ion,  tha t  is 15 parameters .  The knowledge of the epipolar  geometry stil l  
provides 7 parameters  which makes a to ta l  of 22. Thus our result tha t  the perspective 
project ion matr ixes  are uniquely defined in tha t  case. 

4.1 R e c o n s t r u c t i n g  t h e  p o i n t s  

Given a pair  (m, m ' )  of matched pixels, we want to compute  now the coordinates of 
the reconstructed three-dimensional  point  M (in the affine coordinate  system defined by 
the four points  Ai,  i = 1 , - - . ,  4). Those coordinates will be functions of the parameters  
p, q, r, s. 

The  computa t ion  is extremely simple and analogous to the one performed in the 
previous projective case. We write again tha t  the reconstructed point  M is expressed as 

U'W and = v 'w The scalars A and p are determined as in section 3.2. Let u12 : W-~ v12 w'v" 
We have 

~ 
A and ~ are given by equation 7 in which mat r ix  

U' u12X] 
A = V'  w,V  YI 

is in general of rank 2. The projective coordinates of the reconstructed point  M are then: 

[~ 1 1 1]T+.~[X,  Y Z o ] T )  
M = Q - I ( / J  ' q '  r '  q '  r '  

4 .2  C h o o s i n g  t h e  p a r a m e t e r s  p,  q, r,  8 

The  parameters  p, q, r,  s can be chosen arbi trar i ly.  Suppose we reconstruct  the same 
scene with two different sets of parameters  p l ,  ql, r l ,  Sl and p~, q2, r2, s2. Then the 
relat ionship between the coordinates of a point  M1 and a point  Ms reconstructed with 
those two sets from the same image correspondence (m, m ' )  is very s imple in projective 
coordinates:  

i"~ M2 = Q - I  q~ 
0 ~ 

r l  

0 0 ~ QM1 = 0 

r l  
| 1~ _ ~_a ~. _ s__a r_.a _ s__a 
~ P l  $1 q l  $1 r l  $1 

The two scenes are therefore related by a projective t ransformat ion.  I t  may come as a 
surprise tha t  they are not related by an afline t ransformat ion  but  it  is clearly the case 
tha t  the above t ransformat ion preserves the plane at  infinity if and only if 

P2 q2 r2 s2 

Pl ql r l  Sl 

If  we have more information about  the stereo rig, for example  if we know tha t  the two 
opt ical  axis are coplanar,  or parallel ,  then we can reduce the number  of free parameters .  
We have not  yet  explored exper imental ly  the influence of this choice of parameters  on 
the reconstructed scene and plan to do it in the future. 
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5 P u t t i n g  t o g e t h e r  d i f f e r e n t  v i e w p o i n t s  

An interesting question is whether this approach precludes the building of composite 
models of a scene by putting together different local models. We and others have been 
doing this quite successfully over the years in the case of metric reconstructions of the 
scene [1,11]. Does the loss of the metric information imply that this is not possible 
anymore? fortunately, the answer to this question is no, we can still do it but in the weaker 
frameworks we have been dealing with, namely projective and affine reconstructions. 

To see this, let us take the case of a scene which has been reconstructed by the affine 
or projective method from two different viewpoints with a stereo rig. We do not need to 
assume that it is the same stereo rig in both cases, i.e we can have changed the intrinsic 
and extrinsic parameters between the two views (for example changed the base line and 
the focal lengths). Note that we do not require the knowledge of these changes. 

Suppose then that we have reconstructed a scene $1 from the first viewpoint using 
the five points Ai, i = 1 , . . . ,  5 as the standard projective basis. We know that our recon- 
struction can be obtained from the real scene by applying to it the (unknown) projective 
transformation that turns the four points Ai which have perfectly well defined coordi- 
nates in a coordinate system attached to the environment into the standard projective 
basis. We could determine these coordinates by going out there with a ruler and measur- 
ing distances, but precisely we want to avoid doing this. Let T1 denote this collineation 
of 9 3 . 

Similarly, from the second viewpoint, we have reconstructed a scene $2 using five other 
points B~, i = 1, . . . ,  5 as the standard projective basis. Again, this reconstruction can be 
obtained from the real scene by applying to it the (unknown) projective transformation 
that turns the four points Bi into the standard projective basis. Let T2 denote the 
corresponding collineation of 9 3. Since the collineations of 9 3 form a group, $2 is related 
to $1 by the collineation T2T~ -1 . This means that the two reconstructions are related by 
an unknown projective transformation. 

Similarly, in the case we have studied before, the scenes were related by an unknown 
rigid displacement [1,11]. The method we have developed for this case worked in three 
steps: 

1. Look for potential matches between the two reconstructed scenes. These matches are 
sets of reconstructed tokens (mostly points and lines in the cases we have studied) 
which can be hypothesized as being reconstructions of the same physical tokens 
because they have the same metric invariants (distances and angles). An example is 
a set of two lines with the same shortest distance and forming the same angle. 

2. Using these groups of tokens with the same metric invariants, look for a global rigid 
displacement from the first scene to the second that maximizes the number of matched 
tokens. 

3. For those tokens which have found a match, fuse their geometric representations 
using the estimated rigid displacement and measures of uncertainty. 

The present situation is quite similar if we change the words metric invariants into 
projective invariants and rigid displacement into projective transformation. There is a 
difference which is due to the fact that the projective group is larger than the euclidean 
group, the first one depends on 15 independent parameters whereas the second depends 
upon only 6 (three for rotation and three for translation). This means that we will have to 
consider larger sets of tokens in order to obtain invariants. For example two lines depend 
upon 8 parameters in euclidean or projective space, therefore we obtain 8 - 6 = 2 metric 
invariants (the shortest distance and the angle previously mentioned) but no projective 
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invariants.  In order to obta in  some projective invariants,  we need to consider sets of 
four lines for which there is at  least one invariant  (16-15=1) 2. Even though this is not 
theoret ical ly significant, i t  has obvious consequences on the complexi ty  of the algori thms 
for finding matches between the two scenes (we go from an o(n 2) complexi ty  to an o(n4), 
where n is the number  of lines). 

We can also consider points,  or mixtures  of points  and lines, or for tha t  ma t t e r  any 
combinat ion of geometric entit ies but  this is outside the scope of this paper  and we will 
repor t  on these subjects  later.  

The  affine case can be t rea ted  similarly.  Remember  from section 4 tha t  we choose four 
a rb i t ra ry  noncoplanar  points  At, i = 1 , . . . ,  4 as the s tandard  affine basis and reconstruct 
the scene locally to these points.  The reconstructed scene is related to the real one by 
a three-parameter  family of affine t ransformations.  When  we have two reconstructions 
obta ined from two different viewpoints,  they are both  obta ined from the real scene by 
applying to it two unknown affine t ransformations.  These two t ransformat ions  depend 
each upon three a rb i t ra ry  parameters ,  but  they remain affine. This means tha t  the rela- 
t ionship between the two reconstructed scenes is an unknown a]]ine t ransformat ion 3 and 
tha t  everything we said about  the projective case can be also said in this case, changing 
projective into affine. In part icular ,  this means tha t  we are working with a smaller group 
which depends only upon 12 parameters  and tha t  the complexi ty  of the matching should 
be in termediate  between the metr ic  and projective cases. 

6 Experimental results 

This theory has been implemented in Maple and C code. We show the results on the 
cal ibrat ion pa t te rn  of figure 2. We have been using this pa t t e rn  over the years to cal ibrate 
our stereo rigs and it is fair enough to use it to demonst ra te  tha t  we will not need it 
anymore  in the forthcoming years. 

The pa t te rn  is made  of two perpendicular  planes on which we have painted with 
great  care black and white squares. The  two planes define a na tura l  euclidean coordinate 
frame in which we know quite accurately the coordinates of the vertexes of the squares. 
The images of these squares are processed to extract  the images of these vertexes whose 
pixel coordinates are then also known accurately. The  three sets of coordinates,  one set 
in three dimensions and two sets in two dimensions, one for each image of the stereo 
rig, are then used to es t imate  the perspective matr ixes  P1 and P2 from which we can 
compute  the intrinsic parameters  of each camera  as well as the relative displacement of 
each of them with respect to the euclidean coordinate system defined by the cal ibrat ion 
pat tern .  

We have used as input  to our program the pixel coordinates  of the vertexes of the 
images of the squares as well as the pairs  of corresponding points  4. From these we can 
es t imate  the epipolar  geometry and perform the kind of local reconstruction which has 

2 In fact there axe two which axe obtained as follows: given the family of all lines, if we impose 
that this line intersects a given line, this is one condition, therefore there is in general a finite 
number of lines which intersect four given lines. This number is in general two and the two 
invaxiants axe the cross-ratios of the two sets of four points of intersection. 

z This is true only, according to section 4.2, if the two reconstructions have been performed 
using the same parameters p, q, r and s. 
In practice, these matches axe obtained automatically by a program developed by R~gis Vail- 
last  which uses some a priori knowledge about the calibration pattern. 
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been described in this paper. Since it is hard to visualize things in a projective space, we 
have corrected our reconstruction before displaying it in the following manner. 

We have chosen A1, A2, Aa in the first of the two planes, A4, As in the second, and 
checked that  no four of them were coplanar. We then have reconstructed all the vertexes 
in the projective frame defined by the five points Ai, i = 1 , . - . , 5 .  We know that this 
reconstruction is related to the real calibration pattern by the projective transformation 
that transforms the five points (as defined by their known projective coordinates in the 
euclidean coordinate system defined by the pattern, just add a 1 as the last coordinate) 
into the standard projective basis. Since in this case this transformation is known to 
us by construction, we can use it to test the validity of our projective reconstruction 
and in particular its sensitivity to noise. In order to do this we simply apply the inverse 
transformation to all our reconstructed points obtaining their "corrected" coordinates in 
euclidean space. We can then visualize them using standard display tools and in particular 
look at them from various viewpoints to check their geometry. This is shown in figure 3 
where it can be seen that the quality of the reconstruction is quite good. 

Fig. 2. A grey scale image of the calibration pattern 

7 Conclusion 

This paper opens the door to quite exciting research. The results we have presented in- 
dicate that computer vision may have been slightly overdoing it in trying at all costs to 
obtain metric information from images. Indeed, our past experience with the computa- 
tion of such information has shown us t ha t  it is difficult to obtain, requiring awkward 
calibration procedures and special purpose patterns which are difficult if not impossible 
to use in natural environments with active vision systems. In fact it is not often the case 
that accurate metric information is necessary for robotics applications for example where 
relative information is usually all what is needed. 

In order to make this local reconstruction theory practical, we need to investigate in 
more detail how the epipolar geometry can be automatically recovered from the environ- 
ment and how sensitive the results are to errors in this estimation. We have started doing 
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Fig. 3. Several rotated views of the "corrected" reconstructed points (see text) 

this and some results are reported in a companion paper [2]. We also need to investigate 
the sensitivity to errors of the affine and projective invariants which are necessary in 
order to establish correspondences between local reconstructions obtained from various 
viewpoints. 
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t i m e .  

A C o m p u t i n g  some cross-ratios 

Let U, V, W de the projective coordinates of the epipole o. The projective representations 
of the lines (o, ai) ,  (o, a2), (o, a3), (0, a4) are the cross-products o ^ al  --= I 1, 0 ^ a2 -- 
12, o A a 3  = 13, o A a 4  ---- 14. 

A simple algebraic computation shows that  

11 = [0, W , - V ]  T l~ = [ -W,  0, U] r 
13 = [V, -U ,  0] T 14 = [ Y -  W, W -  U, U - V] w 

This shows that,  projectively (if W ~ 0): 

18=UIl+V12 14=(W-U)II+(W-V)I2 

The cross-ratio of the four lines is equal to cross-ratio of the four "points" 11, 12, 13, 14: 

Y W - Y V ( W -  U) 
{<o, al>, <o, a~>, (o, ~ ) ,  <o, ~4>} = {0, oo, U'  W - - 5  } = g ( w  V) 
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Therefore, the projective coordinates of the two epipoles satisfy the first relation: 

V(W - U) V'(W' - U') (12) 
U ( W  - V )  - V ' ( W '  - V ' )  

In order to compute the second pair of cross-ratios, we have to introduce the fifth line 
(0, a5), compute its projective representation 15 = o h as, and express it as a linear 
combination of 11 and 12. It comes that: 

15 = (U7 - W a ) l l  + (V'}, - Wfl)12 

From which it follows that the second cross-ratio is equal to: 

{(o,  a l ) ,  (o, a2), (o, as) ,  (o, as ) }  = {0, cr -~, ~ }  = 
v (v~ , -w~)  
U(U.y-wa) 

Therefore, the projective coordinates of the two epipoles satisfy the second relation: 

Y ( V ' t  - Wj3) Vt(Vt ' r '  - W t f l  t) (13) 
- w o o  - v , ( u , . r ,  - 

B T h e  e s s e n t i a l  m a t r i x  

We relate here the essential matrix F to the two perspective projection matrixes P and 
~". Denoting as in the main text by P and P '  the 3 x 3 left sub-matrixes of t '  and P ' ,  
and by p and p'  the left 3 x 1 vectors of these matrixes, we write them as: 

= [P  P] P ' =  [ P ' P ' I  

Knowing this, we can write: 

C =  [P-11 p ] _  M o o = P - l m  

and we obtain the coordinates of the epipole o' and of the image moo' of Moo in the 
second retina: 

01 = ~l C = p i p - l p _  p, i moo = p i p - 1  m 

define the epipolar line om of m, therefore the projective The two points o' and moo 
representation of om is the cross-product of the projective representations of o' and m ~  : 

o m =  o t ^ m :  = o-'moo' 

where we use the notation 6' to denote the 3 x 3 antisymmetric matrix representing the 
cross-product with the vector o ~, 

From what we have seen before, we write: 

p , p - 1  = a~O-1 #'x '-I  0 
~ - 1  

0 0 7 '#-1 
,'yx-- 1 

Thus: 
<":'- '  1 <,:_, r 1 

p , p - i p _  p, = ~ _  / ~ /  
~ z - 1  
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We can therefore write: 

5' = 

IXt X 

~ x -  1 a x  ---']"- 

and finally: 

F = 
i i 

0 
a'x'--I . 7'x~-Tx 
ax-1 3'x-1 
OttO'S ~ 1 �9 l a : t  

a x - 1  ~ 

3, 'X ' -TX 7 ' x ' - I  . p ' x ' - p a r  "1 
- -  f i x - 1  - ~yx--1 " y x - 1  ~ x - 1  l 0 

__Ttxl-1 . ~txt-~x 
f f~x'-I  a'x'--ax ")'x-1 crx-1 
#x 'L1 " otx-1 0 
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