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Phenomenological functions Σ and μ (also known as Glight=G and Gmatter=G) are commonly used to
parametrize possible modifications of the Poisson equation relating the matter density contrast to the
lensing and the Newtonian potentials, respectively. They will be well constrained by future surveys of
large-scale structure. But what would the implications of measuring particular values of these functions be
for modified gravity theories? We ask this question in the context of the general Horndeski class of single-
field scalar-tensor theories with second-order equations of motion. We find several consistency conditions
that make it possible to rule out broad classes of theories based on measurements of Σ and μ that are
independent of their parametric forms. For instance, a measurement of Σ ≠ 1 would rule out all models
with a canonical form of kinetic energy, while finding Σ − 1 and μ − 1 to be of opposite sign would
strongly disfavor the entire class of Horndeski models. We separately examine the large- and the small-
scale limits, the possibility of scale dependence, and the consistency with bounds on the speed of
gravitational waves. We identify subclasses of Horndeski theories that can be ruled out based on the
measured difference between Σ and μ.
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I. INTRODUCTION

General relativity (GR) [1] provides a theoretical frame-
work for calculating predictions of cosmological models
and testing them against observations made in the sky.
As the variety and the quality of observations improve, it
is becoming possible not only to test particularmodelswithin
the framework of GR but, in addition, to test the consistency
of GR itself [2–6]. Aside from the new opportunities for
testing gravity on cosmological scales, the observed cosmic
acceleration [7,8] and the unexplained nature of dark matter
have led to an increased interest in alternative gravity theories
(for reviews, see Refs. [9–11]). Additional motivation
comes from the long-standing failure to explain the techni-
cally unnatural fine-tuning needed to reconcile the very large
vacuum energy predicted by particle physics with the small
value of the observed cosmological constant [12,13].
A significant amount of work over the past decade went

into understanding the aspects of GR that can be tested
observationally and developing frameworks and practical
tools for implementing these tests [14–28]. The validity
range of such frameworks is generally restricted to linear
cosmological scales. Much like the parametrized post-
Newtonian formalism [29–32], they involve phenomeno-
logical parameters or functions that can be constrained and
compared to predictions of specific theories.
One of the testable aspects of GR is the relationship

between the curvature perturbation Φ and the Newtonian
potential Ψ. In GR, when the matter anisotropic stress
can be neglected, the Weyl potential, Φþ ≡ ðΦþΨÞ=2,
affecting relativistic particles, is the same as the gravitational

potential felt by nonrelativistic particles. In contrast, alter-
native gravity theories typically contain additional degrees
of freedom that can mediate new interactions. There, the
equivalence betweenΦþ,Φ andΨ is generically broken. By
combining weak lensing and galaxy clustering data from the
upcoming large-scale structure surveys, such as Euclid and
LSST, one can search for differences between the different
potentials and constrain alternative gravity theories.
While Φ ≠ Ψ is a generic signature of a nonminimal

gravitational coupling, the quantities that will be more
directly probed by observations of galaxy redshifts and weak
lensing are the effective gravitational constants Gmatter and
Glight that appear, respectively, in the Poisson equations forΨ
andΦþ. Parameters Σ ¼ Glight=G and μ ¼ Gmatter=G, which
generally are functions of scale and redshift, have been
widely used in papers on cosmological tests of GR [33–38].
Another widely used parameter, EG, introduced in Ref. [5],
is designed to directly probe the relation betweenΦþ andΨ.
As shown in Ref. [39], practical implementations of the EG
test [38,40] are, in effect, primarily sensitive to Σ.
Despite the high sensitivity of observables to Σ and μ, and

their widespread use as phenomenological parameters, the
physical implications of measuring Σ ≠ 1 or μ ≠ 1 have not
been fully explored. As we argue in this paper, the meas-
urement of Σ and its difference from μ are of key importance
for discriminating among modified gravity theories. For
instance, scalar-tensor theories with a scalar that has a
canonical kinetic term, i.e. the generalized Brans-Dicke
(GBD) models, predict a scale-independent Σ which is
strongly constrained to be close to unity in models with
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universal coupling to different matter species. Thus, a
measurement ofΣ ≠ 1would rule out all universally coupled
GBD theories, such as the fðRÞ [41–45], chameleon [46],
symmetron [47] and dilaton [48,49] models.
Within a broader class of models, such as the Horndeski

class [50–52] of general scalar-tensor theories with up to
second-order equations of motion, a number of useful
results were obtained in Refs. [25,53–58] concerning
general features of the growth of structure in the quasistatic

limit. Our aims are similar to those in Refs. [53,54,56],
and our conclusions agree where they overlap, but the
questions we address are more specifically focused on the
implications of measuring particular values of μ and Σ for
subclasses of scalar-tensor models. We avoid making
strong theoretical assumptions about the anomalous speed
of gravity waves, and do not require the models to allow
for self-acceleration, since dark energy is only one possible
motivation for studying modifications of gravity. We also
avoid making assumptions about particular functional
forms of the free functions or priors on their parameters,
focusing instead on trends that are parametrization inde-
pendent. The main conclusions of this paper are presented
in the form of a flow chart diagram in Fig. 1.
In what follows, we review the definition of the phenom-

enological functions Σ, μ and γ in Sec. II and the basics
of the effective theory approach to linear perturbations in
scalar-tensor models in Sec. III. In Sec. IV, we examine
the expressions for the phenomenological functions in the
quasistatic limit in Horndeski models and observe several
consistency relations that can be tested with observations.
We consider some examples in Sec. V and conclude with a
summary in Sec. VI. One of our conclusions is that
measuring Σ − 1 and μ − 1 to be of opposite sign would
effectively rule out all Horndeski models.

II. THE PHENOMENOLOGICAL
FUNCTIONS Σ, μ AND γ

Consider the perturbed Friedmann-Lemaitre-Robertson-
Walker (FLRW) metric in the conformal Newtonian gauge

ds2 ¼ −ð1þ 2ΨÞdt2 þ a2ð1 − 2ΦÞdx2; ð1Þ
where a is the scale factor. Einstein’s equations of general
relativity relate potentials Ψ and Φ to the components
of the perturbed stress-energy tensor. Specifically, working
in Fourier space, one can combine the 00 and the 0i
components of the Einstein equations to form the Poisson
equation

k2Φ ¼ −4πGa2ρΔ; ð2Þ
while the i ≠ j component gives

k2ðΦ −ΨÞ ¼ 12πGa2ðρþ PÞσ; ð3Þ
where k ¼ k̂k is the Fourier vector, G is the gravitational
constant, ρ is the background matter density, Δ is the
comoving density contrast and σ is the dimensionless shear
perturbation.1

FIG. 1. A flow chart diagram summarizing the main conclu-
sions of the paper. It provides a systematic way of interpreting
measured values of phenomenological functions Σ and μ for
the purpose of constraining, and even ruling out, scalar-tensor
theories of Horndeski type. Note that, while not explicitly
indicated on the diagram, measuring any of the functions
to be different from 1 would rule out GR. Also, measuring
Σ ¼ μ ¼ 1 would imply consistency of observations with GR as
well as with Horndeski theories, since the latter includes GR.

1Δ≡ δþ 3aHv=k, where δ≡ δρ=ρ is the density contrast
in the Newtonian conformal gauge, v is the irrotational
component of the peculiar velocity, and H ¼ _a=a; ðρþ PÞσ≡
−ðk̂ik̂j − δij=3ÞÞπji , where πji is the traceless component of the
energy-momentum tensor.
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Equations (2) and (3) can be combined into an equation
relating the Weyl potential, Φþ ≡ ðΦþΨÞ=2, to the
stress-energy components:

2k2Φþ ¼ k2ðΦþΨÞ ¼ −8πGa2½ρΔþ 3ðρþ PÞσ=2�: ð4Þ

Nonrelativistic particles respond to gradients of the gravi-
tational potential Ψ, while relativistic particles “feel” the
gradients of the Weyl potential Φþ. In LCDM, at epochs
when radiation density can be neglected, σ ¼ 0, and
one has Φþ ¼ Φ ¼ Ψ. However, in alternative models,
in which additional degrees of freedom can mediate
gravitational interactions, the three potentials need not
be equal. It will be possible to test this by combining
the weak lensing shear and galaxy redshift data from
surveys like Euclid and LSST. A common practical way
of conducting such tests involves introducing phenomeno-
logical functions μ, γ and Σ, parametrizing departures of
Eqs. (2), (3) and (4) from their LCDM form. Neglecting
the radiation shear (σ ¼ 0), which is irrelevant at epochs
probed by the surveys, they are defined as

k2Ψ ¼ −4πGμða; kÞa2ρΔ; ð5Þ

Φ ¼ γða; kÞΨ; ð6Þ

k2ðΦþΨÞ ¼ −8πGΣða; kÞa2ρΔ: ð7Þ

The three functions are related, so providing any two of
them is sufficient for solving for the evolution of cosmo-
logical perturbations [17] as, for example, implemented in
the publicly available code MGCAMB [16,18].
In general, cosmological perturbations can be solved for

exactly on all linear scales, once two of the above functions
are provided. However, deriving the functional forms of
these functions in a specific gravity theory requires taking
the quasistatic approximation (QSA). Under the QSA, one
restricts oneself to scales below the sound horizon of the
scalar field and ignores time derivatives of the gravitational
potentials and the scalar field perturbations. We discuss this
further in Sec. IV D.
Detailed principal component analysis forecasts for

surveys like LSST and Euclid [35,59] show that Σ is the
parameter that is best constrained by the combination of
weak lensing and photometric galaxy counts. Adding
information from measurements of redshift space distor-
tions, afforded with spectroscopic galaxy redshifts, adds a
bias-free estimate of the Newtonian potential and helps to
further break the degeneracy between Σ and μ [34,36,59].
The parameter γ is generally more weakly constrained
[35,59,60] because it is not directly probed by the observ-
ables and is effectively derived from the measurement of
the other two. From the physical perspective, it is inform-
ative to examine constraints on μ, γ and Σ simultaneously,

because specific models predict consistency relations
among them.

III. SCALAR-TENSOR THEORIES

Essentially all attempts to modify GR result in theories
with additional degrees of freedom [61,62]. Even when
these degrees of freedom are not fundamental scalar fields,
they can manifest themselves as such in limits appropriate
for cosmological structure formation (see Ref. [10] for a
review of proposed alternative gravity models). In this
section, we review the effective theory approach to scalar-
tensor models of gravity that covers linear perturbations in
all single-scalar-field models.

A. The effective approach to dark energy

The effective theory (known as “EFT” or “Unified”)
approach to dark energy [21,22,24,63] provides a unifying
language for studying the dynamics of linear perturbations
in the broad range of single-scalar-field models of dark
energy and modified gravity. This includes the Horndeski
class [50] and beyond Horndeski models, such as those
of [64], as well as the ghost condensate model [65] and
low-energy versions of Lorentz-violating theories like
Hořava-Lifshitz gravity [66–68]. Inspired by the EFT of
inflation [69], it is based on writing an action for the
perturbed FLRW metric that includes all terms invariant
under time-dependent spatial diffeomorphisms up to the
quadratic order in perturbations. The action is constructed
in the unitary gauge, in which the slices of constant time are
identified with the hypersurfaces of uniform scalar field.2

It is assumed that all matter fields minimally couple to the
same Jordan frame metric; however, in principle, one could
relax this assumption and allow for different couplings
[72]. The resulting EFT action can be written as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
m2

0

2
ΩðtÞRþ ΛðtÞ − cðtÞδg00

þM4
2ðtÞ
2

ðδg00Þ2 − M̄3
1ðtÞ
2

δg00δKμ
μ −

M̄2
2ðtÞ
2

ðδKμ
μÞ2

−
M̄2

3ðtÞ
2

δKi
jδK

j
i þ

M̂2ðtÞ
2

δg00δRð3Þ

þm2
2ðtÞðgμν þ nμnνÞ∂μðg00Þ∂νðg00Þ

�

þ Sm½gμν; χi�; ð8Þ

where m−2
0 ¼ 8πG; and δg00, δKμ

ν , δK and δRð3Þ are,
respectively, the perturbations of the time-time component

2Our analysis concerns cosmological perturbations around the
FRW background that can be probed with large-scale surveys.
For a complementary analysis of perturbations in scalar-tensor
theories around different backgrounds, such as spherical
symmetry, see for instance Refs. [70,71].
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of the metric, the extrinsic curvature and its trace, and the
three-dimensional spatial Ricci scalar of the constant-time
hypersurfaces. Finally, Sm is the action for all matter fields
χi minimally coupled to the metric gμν.
The perturbation of the scalar field can be made explicit

by applying an infinitesimal time diffeomorphism,
t → tþ πðxμÞ. This restores covariance, and the action
(8) is then written in terms of coordinates defined on
hypersurfaces of constant background density, with π
representing the perturbed part of the scalar degree of
freedom. After performing this transformation, one can
choose the Newtonian gauge and study linear growth of
structure in the standard way. The corresponding Poisson
and anisotropic shear equations can be written as [22]

2m2
0Ω

k2

a2
Φ ¼ −ρΔþ ΔP; ð9Þ

m2
0Ω

k2

a2
ðΦ −ΨÞ ¼ 3

2
ðρþ PÞσ þ ΔS; ð10Þ

whereΔP andΔS denote the additional terms in the Poisson
and shear equations. Under the QSA, they read

a2

k2
ΔP ¼ ðm2

0
_Ωþ M̄3

1 − 2HM̄2
3 − 4HM̂2Þπ

− 4HM̂2Φþ 8m2
2Ψ; ð11Þ

a2

k2
ΔS ¼ðm2

0
_Ω − M̄2

3H − 2M̄3
_̄M3Þπ þ 2M̂2Ψ: ð12Þ

For models with a canonical form of the scalar field
kinetic energy, with the Lagrangian given by Eq. (33) in
Sec. VA, all coefficients in the EFT action (8) are zero
except for Ω, Λ and c. In that case,

ΔP ¼ ΔS ¼ m2
0
_Ωπk2=a2; ð13Þ

and one immediately finds Σ ¼ 1=Ω after subtracting (10)
from (9).
To derive Σ in a general scalar-tensor theory, as well as

the expressions for the other phenomenological functions μ
and γ, one needs to supplement Eqs. (9) and (10) with the
scalar field equation of motion so that π can be eliminated
from the system of equations. The general expressions for
Σ, μ and γ that follow are lengthy and not particularly
illuminating; thus we opt to show them in the Appendix.
In what follows, we specialize to the Hordneski subclass

of scalar-tensor theories, which cover all models with
manifestly second-order equations of motion.

B. Horndeski models and
their “effective” representation

The most general action for a scalar-tensor theory in
(3þ 1) dimensions with second-order field equations was

originally written by Horndeski [50] and, more recently,
rediscovered in Refs. [51,52] in the context of generalized
Galileon models. The Horndeski action is given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �X5
i¼2

Li þ LMðgμν;ψÞ
�
; ð14Þ

with

L2 ¼ Kðϕ; XÞ;
L3 ¼ −G3ðϕ; XÞ□ϕ;

L4 ¼ G4ðϕ; XÞRþ G4X½ð□ϕÞ2 − ð∇μ∇νϕÞð∇μ∇νϕÞ�;
L5 ¼ G5ðϕ; XÞGμνð∇μ∇νϕÞ

−
1

6
G5X½ðϕÞ3 − 3ð□ϕÞð∇μ∇νϕÞð∇μ∇νϕÞ

þ 2ð∇μ∇αϕÞð∇α∇βϕÞð∇β∇μϕÞ�; ð15Þ

whereK andGi (i ¼ 3, 4, 5) are functions of the scalar field
ϕ and its kinetic energy X ¼ −∂μϕ∂μϕ=2, R is the Ricci
scalar, Gμν is the Einstein tensor, and GiX and Giϕ denote
the partial derivatives of Gi with respect to X and ϕ,
respectively.
For the Horndeski class of models,

m2
2 ¼ 0; 2M̂2 ¼ M̄2

2 ¼ −M̄2
3; ð16Þ

and the relations between the EFT functions Ω, Λ, c, M̄2
1,

M4
2, M̂

2 appearing in (8) and the functions in the Horndeski
Lagrangian (15) can be found in Ref. [63].
An equivalent alternative way of parametrizing the EFT

action for linear perturbations around a given FLRW
background in Horndeski models was introduced in
Refs. [25,26]:

Sð2Þ ¼
Z

dtdx3a3
M2�
2

fδKi
jδK

j
i − δK2 þ RδN

þ ð1þ αTÞδ2ð
ffiffiffi
h

p
R=a3Þ þ αKH2δN2

þ 4αBHδKδNg þ Sð2Þm ½gμν; χi�; ð17Þ

where N is the lapse function and Sð2Þm is the action for
matter perturbations in the Jordan frame. This action is
parametrized by five functions of time: the Hubble rate H,
the generalized Planck mass M�, the gravity wave speed
excess αT , the “kineticity” αK , and the “braiding” αB [25].
It is also convenient to define a derived function, αM, which
quantifies the running of the Planck mass. For known
solutions of the Horndeski theories, they can be expressed
in terms of the functions appearing in the Lagrangian (15),
with the relations provided in the Appendix. There are
notable connections between these effective functions and
the phenomenology of Horndeski theories:
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1. αT ¼ c2T − 1 is the excess speed of gravity waves,
and it is nonzero whenever there is a nonlinear
derivative coupling of the scalar field to the metric.
The same nonlinearity is responsible for a nonzero
anisotropic stress component in the scalar field
energy-momentum tensor.

2. αK quantifies the “independent” dynamics of the
scalar field, stemming from the existence of a kinetic
energy term in the scalar field Lagrangian. For
example, αK ≠ 0 in minimally coupled scalar fields,
such as quintessence and k-essence, while fðRÞ
models have αK ¼ 0. In the latter case, the scalar
field is df=dR and is completely determined by the
dynamics of the Ricci scalar.

3. αB signifies a coupling between the metric and the
scalar field degrees of freedom. It is zero for
minimally coupled models, such as quintessence
and k-essence, and nonzero for all known modified
gravity models, i.e. all models with a fifth force.

4. The running of the Planck mass, αM, is also
generated by a nonminimal coupling, but of a more
restricted type. All known models with αM ≠ 0 also
have αB ≠ 0, but the reverse statement is not true.
E.g., for fðRÞ, αM ¼ −αB, while in the “kinetic
gravity braiding” model [73], one has αB ≠ 0 and
αM ¼ 0.

It is also interesting to note the connection between the
higher-order derivative terms in the Horndeski action, the
scalar field anisotropic stress, and the speed of gravity
waves [74]. A nonvanishing function M̄2

2 ¼ 2M̂2 ¼ −M̄2
3

generates a nonzero shear component of the scalar field
energy-momentum [22]. Such a component does not exist
for canonical scalar fields and originates from the non-
linearities generated by higher-order kinetic energy terms.
The same nonlinearity is responsible for the modification
of the dispersion relation for gravitational waves [75,76],
leading to a change in c2T . From the mapping provided in
the Appendix, we have

2HM2�αT ¼ M̄2
2 ¼ 2X½2G4X − 2G5ϕ − ðϕ̈ −H _ϕÞG5X�;

ð18Þ
i.e. the anisotropic stress and αT are nonzero if either G4X,
G5ϕ or G5X is not zero.
Both ways of parametrizing the effective action, (8) and

(17), have their merits, and one or the other can be preferred
depending on the circumstances. As mentioned before, (8)
was designed to cover a broader range of models, while
(17) is optimized to Horndeski but can be extended to
“beyond Horndeski” [56] and other models [77]. Also, (8)
simultaneously parametrizes the evolution of the back-
ground and the perturbations and, as such, is more directly
related to the full Lagrangian of particular models. For
example, both the background and the perturbations in the
entire class of GBD models can be described by specifying

two functions of time, ΩðtÞ and ΛðtÞ, that have transparent
physical meanings of, respectively, the conformal coupling
and the difference between the scalar field kinetic and
potential energy densities. In contrast, doing the same in the
framework of (17) requires specifying four functions:HðtÞ,
αKðtÞ, αBðtÞ and αMðtÞ, with an obscured connection to the
original Lagrangian. On the other hand, working with α’s is
more efficient in an agnostic approach to testing general
Horndeski models, as demonstrated in the section below.

IV. PHENOMENOLOGY OF HORNDESKI

In this section, we examine the forms of the phenom-
enological functions Σ, μ and γ in Horndeski models. We
consider the scale dependence associated with the mass of
the scalar degree of freedom, M, and examine the limiting
cases of k=a ≪ M and k=a ≫ M, since the range of linear
scales actually probed by observations is likely to fall into
one of these two regimes. We point out consistency checks
that can help to determine which of the two limiting
regimes happened to fall into the observational window,
as well as tests that can be performed if the k dependence is
detected. We also briefly address the conditions for validity
of the QSA.

A. The Compton transition scale

Scalar-tensor theories have a scale associated with the
Compton wavelength of the scalar field that sets the range
of the fifth force. It is determined by the “mass term” term
(the Cπ term) in the equation of motion for the scalar field
perturbations, given in Eq. (A3) of the Appendix.
The expressions for the phenomenological functions μ, γ

and Σ in Horndeski theories can be readily obtained from
Eqs. (A5), (A6), and (A7) of the Appendix. As we are
specifically interested in the scale dependence, we can
write them as

μ ¼ m2
0

M2�

1þM2a2=k2

f3=2f1M2� þM2ð1þ αTÞ−1a2=k2
; ð19Þ

γ ¼ f5=f1 þM2ð1þ αTÞ−1a2=k2
1þM2a2=k2

; ð20Þ

Σ ¼ m2
0

2M2�

1þ f5=f1 þM2½1þ ð1þ αTÞ−1�a2=k2
f3=2f1M2� þM2ð1þ αTÞ−1a2=k2

; ð21Þ

where we define M2 ≡ Cπ=f1 and use Eqs. (A14) and
(A16) to convert to the notation in (17). From (19), (20)
and (21), one can see that M2 sets the transition scale in all
three phenomenological functions. The differences amount
to factors of (1þ αT) which, as we discuss in the next
subsection, are constrained to be close to unity.
For most of the specific models studied in the literature,

the observational window offered by surveys of large-scale
structure happens to be either entirely below or entirely
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above the Compton wavelength. For instance, in models
that exhibit self-acceleration, such as covariant Galileons,
the scalar mass is very small, comparable toH. Then, as far
as the large-scale-structure observables are concerned, one
always probes the small-scale regime, k=a ≫ M. Thus, a
detection of k dependence in either Σ or μ would rule out
self-accelerating models, such as covariant Galileons.
Self-acceleration is not the only motivation for studying

modifications of gravity, and one could have scalar fields
of larger masses that mediate new interactions without
providing an alternative to dark energy. Popular examples
include GBD models of chameleon type, in which the
Compton wavelength is constrained to be ≲1 Mpc. With
this in mind, we will consider both the large- and the small-
scale limits, as well as the possibility of transition occurring
inside the observational window, and try to identify testable
consistency relations.

B. The large-scale limit

Taking the k=a ≪ M limit in Eqs. (19), (20) and (21), we
obtain

μ0 ¼
m2

0

M2�
ð1þ αTÞ; ð22Þ

γ0 ¼
1

1þ αT
¼ c−2T ; ð23Þ

Σ0 ¼
m2

0

M2�

�
1þ αT

2

�
: ð24Þ

Thus, on large scales, modifications are either due to
change in the background value of the Planck mass, or
due to the modified propagation speed of gravity waves.
Note that both are independent of the fluctuations in the
scalar field, since the scalar fifth force is suppressed on
scales above the Compton wavelength.
The current effective value of Gmatter in the k → 0 limit

must coincide with the value measured in Cavendish-type
experiments on Earth [54]. Even though Earth must be
in a screened environment to satisfy the stringent laboratory
and Solar System tests of GR, screening mechanisms of
chameleon [46–49] or Vainshtein [78] type only suppress
the enhancement in the effective Newton constant caused
by the attractive force mediated by scalar field fluctuations.
They do not affect the super-Compton value of the
gravitational coupling. This imposes a constraint on the
current values of μ0 and Σ0:

μ0ðt0Þ ¼ 1; Σ0ðt0Þ ¼
1

2

�
2þ αT
1þ αT

�
; ð25Þ

with γ0 still given by (23). Bounds on the current value of
the gravity wave speed come from nonobservation of the
gravitational Cherenkov radiation by cosmic rays [79,80].
This strongly constrains the possibility of cT < 1, or

αT < 0. However, as argued in Ref. [81], in principle,
the speed of the extremely high-energy gravitons
(∼1010 eV) involved in deriving this bound need not
necessarily be the same as the propagation speed of linear
tensor mode metric perturbations, given the nonlinearity of
the coupling of the metric to the scalar field. Another
bound, derived in Ref. [81], comes from the observed
evolution of the orbital period of binary pulsars, con-
straining αT to be within 10−2. Tight direct bounds on cT
will become available when the electromagnetic counter-
parts of the gravity-wave emitting events are detected at
cosmological redshifts [82].
While the present value of αT is strongly constrained,

based on the data from the nearby Universe, αT ≠ 0 is still
allowed in the past, including at redshifts ∼1 probed by
large-scale surveys.3 Agreement with big bang nucleosyn-
thesis (BBN) requires the Newton constant G at the time of
BBN to be with 10% of the value we measure on Earth,
with a similar bound obtained from the CMB [84]. Aside
from these bounds, both μ0 and Σ0 are allowed to vary in the
past. However, their values must be consistent with Eqs. (22)
and (24) at all times. For example, if one finds that μ0 < 1,
which can happen inmodels of self-accelerating type [85,86]
because of the increasing M2�ðtÞ, then one should not be
observingΣ0 > 1. A situation of this type can only happen if
a relatively large positive αT conspires to change in a very
particular way to negate the decrease in m2

0=M
2� in Σ0, but

not in μ0, which is extremely unlikely.
If the k dependence is detected, so that the k=a ≪ M

regime can be identified, then an observation of Σ0 ≠ μ0 or,
equivalently, γ0 ≠ 1, would indicate cT ≠ 1. On the other
hand, if one observes Σ0 ¼ μ0, then one can set αT ¼ 0
when examining the bounds in the k=a ≫ M limit.
It is more likely, however, for the transition scale to

be outside the observational window. For instance, the
k=a ≪ M limit would be out of the appropriate range if the
mass of the scalar field is set by the horizon scale. If no
scale dependence is detected, then one would have to check
the consistency in the small- and the large-scale limits
separately. It may be possible to rule out the large-scale
regime if one finds that Σ ≠ μ at redshifts where αT is
known to be zero, e.g. from future combined detections of
gravity waves and their electromagnetic counterparts [82],
or CMB B-modes [87,88]. In such a case, one would
abandon the k=a ≪ M limit and focus on testing the
consistency in the k=a ≫ M limit.

3There are theoretical arguments disfavoring cT > 1 [83],
based on the difficulties it creates for embedding the low-energy
effective dark energy theory into a quantum theory. Due to this, in
some of the prior work (e.g. Ref. [54]), cT ≤ 1 was enforced as
one of the viability conditions. We opt to keep an open mind
because gravity is known to be inconsistent with quantum field
theory.
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C. The small-scale limit

On scales below the Compton wavelength, i.e. in the
limit k=a ≫ M, the expressions for μ, γ and Σ become

μ∞ ¼ m2
0

M2�
ð1þ αT þ β2ξÞ; ð26Þ

γ∞ ¼ 1þ βBβξ=2

1þ αT þ β2ξ
; ð27Þ

Σ∞ ¼ m2
0

M2�

�
1þ αT þ β2ξ þ βBβξ=2

2

�
; ð28Þ

where, following the notation in Ref. [56], we define

β2B ¼ 2

c2sα
α2B; ð29Þ

β2ξ ¼
2

c2sα

�
αB
2
ð1þ αTÞ þ αM − αT

�
2

; ð30Þ

α ¼ αK þ 3

2
α2B; ð31Þ

with the expression for the speed of sound of the scalar field
perturbations, c2s , given in Ref. [25].
One can deduce several conclusions from the general

forms of μ∞ and Σ∞ in (26) and (28). Firstly, comparing
(26) and (28) with (22) and (24), we see that one generally
should have μ∞ ≥ μ0, since β2ξ is strictly nonnegative. This
reflects the fact that the scalar fifth force is always attractive
and the growth of structure is enhanced on sub-Compton
scales as a result. Thus, if k dependence is detected, then
finding μ∞ < μ0 would rule out all Horndeski models.
Otherwise, a measurement of Σ∞ − Σ0 or μ∞ − μ0 would
signal β2ξ ≠ 0, which amounts to a detection of a fifth force.
If no scale dependence is detected, then one must test the

small- and the large-scale regimes one at a time. Evolution
of Gmatter in the k=a ≫ M regime has been discussed in
great detail in Ref. [54]. There, it was observed that the time
dependence of μ∞ is a combination of the evolution of μ0
and the enhancement due to the fifth force. As discussed in
the previous subsection, it is possible to have μ0 < 1 in
models with decreasing M−2� . This can be compensated for
in μ∞ by the fifth force enhancement, potentially giving
μ∞ > 1. Indeed, in covariant Galileon models, μ∞ tends to
evolve from < 1 to > 1 [85,86]. The fact that Σ∞ in (28)
depends on the same parameters as μ∞ constrains the
differences between the two. For instance, if μ∞ − 1 is of a
certain sign at a given epoch, then the sign of Σ∞ − 1

should be the same, since they share the same M−2�
prefactor and the corrections they receive from αT and
the fifth force are of the same order. It is extremely unlikely
for αT and β2’s to conspire in just the right way as to negate
the effect of M−2� in Σ∞, but not in μ∞. Thus, we conclude

that finding μ − 1 and Σ − 1 to be of opposite signs at any
redshift or scale would strongly disfavor all Horndeski
models.
Finally, the difference between the values of Σ∞ and μ∞

can tell us something about the model. In particular, if αT is
either measured [82,87,88] or assumed to be negligible,
then Σ∞ ≠ μ∞ would amount to the detection of a
nonzero αM.

D. The quasistatic approximation

In LCDM, the time derivatives of the metric potentials
can be neglected when considering the growth of structure
on subhorizon scales. In scalar field models, one can often
extend the QSA to also neglect the time derivatives of the
scalar field fluctuations on scales below the scalar sound
horizon. In models with a canonical form of the scalar field
kinetic energy, c2s ¼ 1, but one can have c2s < 1 in more
general cases.
On scales below the sound horizon, due to the pressure

support, the scalar field cannot cluster via gravitational
instability on its own. Because of this, in minimally
coupled models such as quintessence and k-essence, there
can be no spatial inhomogeneities in the scalar field on
subsonic scales. In nonminimally coupled models, pertur-
bations in the scalar field still do not cluster on their own
on sub-sonic-horizon scales, but, because of the coupling
to matter, they are sourced by matter inhomogeneities.
Growing matter fluctuations act as a source, and the scalar
field responds to them. The QSA assumes that the response
of the scalar field to matter inhomogeneities is adiabatic,
even though there is always dynamics associated with the
scalar field response. It can, for example, oscillate about
some mean growing inhomogeneity. The key to the validity
of QSA is for the dynamical response of the scalar field
to not impact the mean adiabatic growth, and also for the
oscillations around the mean to be unobservable.
Above the speed of sound, the scalar field develops its

own gravitational instability and no longer traces the matter
inhomogeneities. In this case, the QSA is definitely not
valid. Thus, restricting the QSA to the sub-sound-horizon
scales is a necessary condition, which may or may not be
sufficient.
In viable nonminimally coupled models with canonical

kinetic terms, the QSA tends to hold on subhorizon scales.
Namely, in models with working screening mechanisms of
chameleon type [46–49] that have been studied in the
literature, the rapid oscillations of the scalar field around
the minimum can be ignored [89–91]. It has also been
shown in Ref. [92] that c2s ∼ 1 and the QSA holds to a good
accuracy in viable covariant Galileon models [93]. In
general, however, the validity of the QSA is model
dependent [94], and one should try to confirm it before
drawing conclusions about specific models based on
constraints obtained in terms of the phenomenological
functions such as μ and Σ.
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V. CASE STUDIES

In what follows, we consider two popular subclasses of
Horndeski theories—generalized models of Brans-Dicke
type and covariant Galileons.

A. Generalized Brans-Dicke models

The generalized Brans-Dicke (GBD) model is described
by the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½LGBD þ LMðgμν;ψÞ�; ð32Þ

with4

LGBD ¼ ΩðϕÞ
16πG

R −
hðϕÞ
2

∂μϕ∂μϕ −UðϕÞ: ð33Þ

It includes the fðRÞ and chameleon-type models, and
assumes the weak equivalence principle, i.e. that there
exists a Jordan frame metric gμν to which all matter species
(collectively denoted as ψ) are minimally coupled. The
Einstein equations in GBD are

ΩGμν ¼ 8πGðTM
μν þ Tϕ

μνÞ þ∇μ∇νΩ − gμν□Ω; ð34Þ

where ∇μ denotes a covariant derivative, and TM
μν and Tϕ

μν

denote, respectively, the energy-momentum tensors of the
matter and the scalar fields. One can expand (34) to first
order in perturbations and obtain the analogues of the
Poisson (2) and the anisotropy (3) equations in Fourier
space. After applying the QSA, they read

Ωk2Φ ¼ −4πGa2ρΔþ 1

2
k2δΩ; ð35Þ

Ωk2ðΦ −ΨÞ ¼ k2δΩ; ð36Þ
where we neglect the shear in ordinary matter and radiation.
Note that, in GBD,

Tϕ
μν ¼ hðϕÞ∂μϕ∂νϕ − gμν½hðϕÞ∂σϕ∂σϕ=2þ UðϕÞ�; ð37Þ

which has no anisotropic stress (i ≠ j) component at linear
order in perturbations. The effective anisotropic stress
appearing on the right-hand side of (36) is due to the
conformal factor and is different from the intrinsic scalar
field anisotropic stress present only in models with non-
trivial G4 or G5 Horndeski terms. It is the intrinsic
anisotropic stress that modifies the speed of gravity models,
hence αT ¼ 0 in GBD.

Combining (35) and (36), we get the analogue of the
Poisson equation for the Weyl potential (4):

k2ðΦþΨÞ ¼ −
8πG
ΩðϕÞ a

2ρΔ: ð38Þ

Comparing it with (7), we find

ΣGBD ¼ Ω−1; ð39Þ
i.e., in GBD, Σ must be independent of k and is inversely
proportional to the background value of the conformal
factor Ω which determines the effective background value
of the Planck mass.
The other phenomenological functions can be written as

[89,96]

μ ¼ Ω−1ðϕ̄Þ½1þ ϵðk; aÞ�; ð40Þ

γ ¼ 1 − ϵðk; aÞ
1þ ϵðk; aÞ ; ð41Þ

where

ϵðk; aÞ ¼ 2β2ðaÞ
1þM2ðaÞa2=k2 ; ð42Þ

and β2 and M2 denote the coupling and the mass of the
scalar field [89]. Since ϵ ≥ 0, one must have μ ≥ 1 and
γ ≤ 1.
Screening mechanisms of chameleon [46], symmetron

[47] and dilaton [48,49] types can suppress the enhancement
in G due to the fifth force on scales above the Compton
wavelength, but they do not affect the background value
of the gravitational coupling. Thus, the value of the
Newton constant that we measure in a screened environment
on Earth today must be the same as the current value
of the effective Newton constant Geff ¼ μG in the k → 0
limit. This provides a normalization μða¼ 1;k¼ 0Þ¼ 1,
which implies ΣGBDða¼ 1Þ¼Ω−1ðϕ̄0Þ¼ 1, with variations
at earlier times constrained by BBN and CMB, as already
discussed in the previous section.
A much stronger bound on changes of Ω at z < 1

comes from requiring the screening mechanism to work.
As shown in Ref. [97], this limits variations in the value
of the scalar field, implying, in particular, jΩðz ¼ 1Þ −
Ωðz ¼ 0Þj=Ωðz ¼ 0Þ ≲ 10−6 [11,89,97].
The tight restrictions imposed onΩ in GBD with a scalar

field coupling universally to all matter do not apply to
models in which the scalar couples with different strengths
to baryons and dark matter [98]. In the case of a nonuni-
versal coupling, in addition to the constraints imposed
by measurements of _G, there is a scale-independent bias
relating large-scale distributions of baryons and dark
matter, which, in principle, can be observable [99].
Further, there can be significant effects on the mass
function of virialized halos [100] leading to observable

4One can always absorb hðϕÞ into a redefinition of the scalar
field. Alternatively, one can set Ω ¼ ϕ and redefine h, writing the
GBD Lagrangian as 16πGLGBD ¼ ϕR − 2ωðϕÞϕ−1∂μϕ∂μϕ −
2ΛðϕÞ. The original BD model [95] had constant ω and Λ.
We opt to keep hðϕÞ to make it easier for the reader to convert to
different conventions for BD.
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effects on nonlinear scales, such as the galaxy satellite
abundance, spiral disk formation and apparent baryon
shortage, in models that otherwise fit all observations at
the level of background and linear perturbations. N-body
simulations in nonuniversally coupled models performed in
Refs. [101,102] revealed a relative enhancement of the
trailing tidal stream compared to the leading stream in
satellite galaxies undergoing tidal disruption. Overall, these
effects imply jΣ − 1j≲ 0.1 in nonuniversally coupled
models, but the bounds are expected to become much
tighter with future measurements.
We conclude that a measurement of either Σ ≠ 1, γ > 1

or μ < 1 would rule out all GBD models with universal
coupling to matter, and it would likely also rule out models
with nonuniversal coupling.

B. Covariant Galileons and their generalizations

Galileons, introduced in Ref. [103], are the class of
models in which the scalar field Lagrangian is invariant
under the Galilean and the shift symmetry in flat spacetime.
In Ref. [93], this class of models was generalized to a
curved spacetime via a covariantization of the Lagrangian.
In order to maintain the equations of motion at second
order, it was necessary to introduce nonminimal couplings
of the scalar field to the curvature, at the cost of losing the
Galilean symmetry. The resulting class of models is a
subclass of Horndeski known as covariant Galileons. It
corresponds to the following choice of the terms in the
Lagrangian (14):

K ¼ c2X; G3 ¼ −
c3
M3

X; G4 ¼
m2

0

2
−

c4
M6

X2;

G5 ¼
c5
M9

X2; ð43Þ

where c2, c3, c4 and c5 are dimensionless constants, andM
is a constant with the dimension of mass.
Since there is no cosmological constant, or a quintes-

sence-type term, present in (43), these models must exhibit
self-acceleration in order to be viable. This forces the mass
of the scalar field to be small, with the corresponding
Compton wavelength comparable to the horizon. This
implies that all probes of cosmic structure formation that
are consistent with the QSA are in the sub-Compton
regime. Thus, a detection of any scale dependence in Σ
or μ would rule out all covariant Galileon models.
Within the covariant Galileon class, models with

c2, c3 ≠ 0 and c4 ¼ c5 ¼ 0 are referred to as cubic
Galileons (G3), while the cases with c4 ≠ 0 and c5 ≠ 0
are called quartic (G4) and quintic (G5) Galileons, respec-
tively. The validity of the QSA in this class of models has
been verified on subhorizon scales in Refs. [104,105].
Other than the absence of scale dependence, the phe-

nomenology of the G4 and G5 models is same as that of
general Horndeski in the small-scale regime. One can show
that all effective functions, M2�, αM, αK, αB and αT can be

nontrivial. Thus, in the case of G4 and G5, there is not
much to add to the small-scale consistency relations
discussed in Sec. IV.
If G4 ¼ m2

0=2 and G5 ¼ 0, irrespective of the form
of K and G3, one has αM ¼ αT ¼ 0 and M2� ¼ m2

0. As a
consequence, in all such models, which we dub H3,
βξ ¼ βB=2. Using this in Eqs. (22)–(24) and (26)–(28),
we can immediately find

μH30 ¼ γH30 ¼ ΣH3
0 ¼ 1 ð44Þ

and

μH3∞ ¼ ΣH3
∞ ¼ 1þ β2B

4
; γH3∞ ¼ 1: ð45Þ

Thus, an observation of μ ≠ Σ or, equivalently, γ ≠ 1, at
any scale or any epoch, would rule out all H3 models.
These conclusions apply to the G3 models, since they are a
subclass of H3, with the main difference being that H3 can
include an explicit dark energy driving acceleration, lead-
ing to a scale dependence, while the phenomenology of the
G3 models is always in the small-scale regime.
We note that the effective dark energy equation of state

in G3 models is, in general, evolving. This makes it
challenging to find values of c2 and c3 that simultaneously
fit both the background expansion and the growth of
cosmological perturbations [92,105].

VI. SUMMARY

Phenomenological functions Σ and μ, parametrizing
modified growth of linear perturbations in alternative
gravity models, can be well constrained by combining
information from the weak lensing and galaxy redshift
surveys, together with other cosmological probes. Related
tests have already been performed [36,38] using the weak
lensing data from CFHTLens [106] and RCSLenS [107]
combined with growth measurements from WiggleZ [108]
and BOSS [109]. Measurements of Σ and μ will become
significantly more accurate [35,59] with future surveys,
such as Euclid and LSST. Given these prospects, we asked
in this paper if there are trends and consistency relations
that must be respected by Σ and μ within the general
paradigm of viable scalar-tensor theories of gravity of
Horndeski type. We identified several such conditions
which could help to rule out large subclasses of Horndeski,
irrespective of the particular parametric forms of Σ and μ.
They are presented as a flow chart diagram in Fig. 1.
For example, an observation of μ ≠ Σ at any scale or any

epoch would rule out cubic Galieons and all Horndeski
models of H3 type, i.e. those withG4 ¼ m2

0=2,G5 ¼ 0, and
arbitrary K and G3. An observation of scale dependence
in any of the phenomenological functions would rule
out covariant Galileons and other models exhibiting
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self-acceleration. An observation of Σ ≠ 1 would rule out
all models with canonical kinetic terms.
If a scale dependence is detected in either Σ or μ, then

the difference between their large-scale and small-scale
limiting values amounts to a detection of a fifth force. Also,
one generally should have Σ∞ > Σ0 and μ∞ > μ0, since
the force mediated by the scalar is attractive. If no scale
dependence is detected, it is possible to figure out if one is
probing the large- or the small-scale regime, since the
difference between Σ0 and μ0 can only be due to αT ≠ 0.
The bound on the speed of gravity waves at cosmological
redshifts may eventually become available, e.g. from
electromagnetic counterparts of binary mergers [82], or
CMB B-modes [87,88].
In all cases, the difference between the values of Σ and μ

can tell us something about the model. For example, if αT is
either measured or assumed to be negligible, an observation
of Σ ≠ μ would rule out the large-scale regime, and would
amount to the detection of a nonzero αM, while a meas-
urement of μ − 1 and Σ − 1 to be of opposite signs on any
scale would strongly disfavor all Horndeski models. It is
interesting to note that the best-fit values of the phenom-
enological functions derived by the Planck Collaboration in
Ref. [37] indicate μ < 1 and Σ > 1. The statistical signifi-
cance of the departure from LCDM is too low to be a cause
for concern. However, it serves as an illustration that, if
such values were to hold up, they would effectively rule
out all Horndeski models.
Our results demonstrate the utility of the (Σ, μ)

approach to testing gravity on cosmological scales, and
how far-reaching conclusions about alternative gravity
theories can be derived independently from details of their
parametrizations.
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APPENDIX: Σ AND μ IN EFFECTIVE THEORY
OF DARK ENERGY

The equations of motion for perturbations in a general
scalar-tensor theory in the quasistatic limit can be written
as [22]

A1

k2

a2
Φþ A2

k2

a2
π þ A3

k2

a2
Ψ ¼ −ρΔ; ðA1Þ

B1Ψþ B2Φþ B3π ¼ 0; ðA2Þ

C1

k2

a2
Φþ C2

k2

a2
Ψþ

�
C3

k2

a2
þ Cπ

�
π ¼ 0; ðA3Þ

where we stick to the notation of Ref. [22]. Expressed in
terms of the functions in the EFTaction (8), with the spatial
curvature set to zero, the coefficients are

A1 ¼ 2m2
0Ωþ 4M̂2;

A2 ¼ −m2
0
_Ω − M̄3

1 þ 2HM̄2
3 þ 4HM̂2;

A3 ¼ −8m2
2;

B1 ¼ −1 −
2M̂2

m2
0Ω

;

B2 ¼ 1;

B3 ¼ −
_Ω
Ω
þ M̄2

3

m2
0Ω

�
H þ 2 _̄M3

M̄3

�
;

C1 ¼ m2
0
_Ωþ 2HM̂2 þ 4M̂ _̂M;

C2 ¼ −
m2

0

2
_Ω −

1

2
M̄3

1 −
3

2
HM̄2

2 −
1

2
HM̄2

3 þ 2HM̂2;

C3 ¼ c −
1

2
ðH þ ∂tÞM̄3

1 þ
�

k2

2a2
− 3 _H

�
M̄2

2

þ
�
k2

2a2
− _H

�
M̄2

3 þ 2ðH2 þ _H þH∂tÞM̂2;

Cπ ¼
m2

0

4
_Ω _Rð0Þ − 3c _H þ 3

2
ð3H _H þ _H∂t þ ḦÞM̄3

1

þ 9

2
_H2M̄2

2 þ
3

2
_H2M̄2

3: ðA4Þ

Under the QSA, the phenomenological functions μ, γ and Σ
can be written as

4πGμ ¼ μ

2m2
0

¼ f1 þ f2a2=k2

f3 þ f4a2=k2
; ðA5Þ

γ ¼ f5 þ f6a2=k2

f1 þ f2a2=k2
; ðA6Þ

8πGΣ ¼ Σ
m2

0

¼ f1 þ f5 þ ðf2 þ f6Þa2=k2
f3 þ f4a2=k2

; ðA7Þ

where
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f1 ¼ B2C3 − C1B3;

f2 ¼ B2Cπ;

f3 ¼ A1ðB3C2 − B1C3Þ þ A2ðB1C1 − B2C2Þ
þ A3ðB2C3 − B3C1Þ;

f4 ¼ ðA3B2 − A1B1ÞCπ;

f5 ¼ B3C2 − B1C3;

f6 ¼ −B1Cπ: ðA8Þ

In the case of Horndeski theories, with m2
2 ¼ 0 and

2M̂2 ¼ M̄2
2 ¼ −M̄2

3, the k dependence in C3 disappears,
and f1;…; f5 are functions of time only [110].
The functions appearing in the effective action given by

Eq. (17) are related to solutions of Horndeski theories via
[25]

M2� ¼ 2½G4 − 2XG4X þ XG5ϕ − _ϕHXG5X�; ðA9Þ

HM2�αM ¼ dM2�
dt

; ðA10Þ

M2�αT ¼ 2X½2G4X − 2G5ϕ − ðϕ̈ −H _ϕÞG5X�; ðA11Þ

HM2�αB ¼ 2 _ϕ½XG3X − G4ϕ − 2XG4ϕX�
þ 8XHðG4X þ 2XG4XX −G5ϕ − XG5ϕXÞ
þ 2 _ϕXH2½3G5X þ 2XG5XX�; ðA12Þ

HM2�αK ¼ 2X½KX þ 2XKXX − 2G3ϕ − 2XG3ϕX�
þ 12 _ϕXH½G3X þ XG3XX − 3G4ϕX − 2XG4ϕXX�
þ 12XH2½G4X þ 8XG4XX þ 4X2G4XXX�
− 12XH2½G5ϕ þ 5XG5ϕX þ 2X2G5ϕXX�
þ 4 _ϕXH3½3G5X þ 7XG5XX þ 2X2G5XXX�:

ðA13Þ

They are related to the functions appearing in the EFT
action (8) via [25]

M2� ¼ m2
0Ωþ M̄2

2; ðA14Þ

HM2�αM ¼ m2
0
_Ωþ _̄M

2
2; ðA15Þ

M2�αT ¼ −M̄2
2; ðA16Þ

HM2�αB ¼ −m2
0
_Ω − M̄3

1; ðA17Þ

HM2�αK ¼ 2cþ 4M4
2: ðA18Þ
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