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Abstract. The complex interactions of runoff generation pro-

cesses underlying the hydrological response of streams re-

main not entirely understood at the catchment scale. Exten-

sive research has demonstrated the utility of tracers for both

inferring flow path distributions and constraining model pa-

rameterizations. While useful, the common use of linearity

assumptions, i.e. time invariance and complete mixing, in

these studies provides only partial understanding of actual

process dynamics. Here we use long-term (< 20 yr) precip-

itation, flow and tracer (chloride) data of three contrasting

upland catchments in the Scottish Highlands to inform inte-

grated conceptual models investigating different mixing as-

sumptions. Using the models as diagnostic tools in a func-

tional comparison, water and tracer fluxes were then tracked

with the objective of exploring the differences between dif-

ferent water age distributions, such as flux and resident wa-

ter age distributions, and characterizing the contrasting wa-

ter age pattern of the dominant hydrological processes in the

three study catchments to establish an improved understand-

ing of the wetness-dependent temporal dynamics of these

distributions.

The results highlight the potential importance of partial

mixing processes which can be dependent on the hydrologi-

cal functioning of a catchment. Further, tracking tracer fluxes

showed that the various components of a model can be char-

acterized by fundamentally different water age distributions

which may be highly sensitive to catchment wetness history,

available storage, mixing mechanisms, flow path connectiv-

ity and the relative importance of the different hydrological

processes involved. Flux tracking also revealed that, although

negligible for simulating the runoff response, the omission of

processes such as interception evaporation can result in con-

siderably biased water age distributions. Finally, the model-

ing indicated that water age distributions in the three study

catchments do have long, power-law tails, which are gener-

ated by the interplay of flow path connectivity, the relative

importance of different flow paths as well as by the mix-

ing mechanisms involved. In general this study highlights

the potential of customized integrated conceptual models,

based on multiple mixing assumptions, to infer system in-

ternal transport dynamics and their sensitivity to catchment

wetness states.

1 Introduction

The runoff generation process dynamics underlying observed

stream flow responses are not yet well understood in most

catchments (e.g. McDonnell et al., 2010; Beven, 2010).

While hydrologists often have good conceptual understand-

ing of which processes are likely to be relevant (e.g. McMil-

lan et al., 2011; Fenicia et al., 2011), the spatio-temporal

process heterogeneity in catchments generates considerable

challenges to quantitative assessment (cf. Savenije, 2009).

Given the frequent absence of suitable data, the emphasis

of many hydrological modeling studies on the stream flow

response (e.g. Fenicia et al., 2006; Clark et al., 2008; Seib-

ert and Beven, 2009) rather than more integrated response

measures, such as tracer data, is thus hampering efforts to-

wards more fundamental understanding of catchment process
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dynamics. As Kirchner (2006) pointed out, this limited un-

derstanding of flow processes dictates that we can get the

right answers, but frequently for the wrong reasons. The lim-

ited understanding is in part rooted in the partial decoupling

of the hydraulic response, as observed at a stream gauge,

from the actual flow paths water is routed to the stream

(cf. Kirchner, 2003). In the vast majority of catchments, the

hydraulic response is only partially driven by advective flow

processes, such as preferential subsurface flow, characterized

by translatory movement of the individual water particles due

to the elevation head (cf. Berne et al., 2005; Anderson et al.,

2009a,b). Rather, varying – but frequently major – contribu-

tions to stream flow are typically generated by diffuse flow

processes (cf. Berne et al., 2005). These processes, such as

the groundwater response, are driven by the pressure head

and the resulting translation of a pressure wave. The ob-

served stream flow response generated by these processes

thus rather reflects the translation of a pressure wave than

the actual advective movement of individual water particles.

It thereby conceals the actual flow paths of water particles

routed through what is traditionally referred to as passive or

immobile zone, as it is hydraulically only dependent on wa-

ter stored above the stream level, i.e. active or dynamic stor-

age (Zuber, 1986). Characterizing the dynamics of flow paths

in both, the active and the passive zone, is essential for un-

derstanding solute and thus pollutant transport (e.g. Dunn et

al., 2008a; Wenninger et al., 2008; Birkel et al., 2011c). It

can also potentially provide better insights into the spatio-

temporal heterogeneity of catchment response patterns, ul-

timately leading to more realistic catchment conceptualiza-

tions and thus model formulations (e.g. Fenicia et al., 2008a;

Birkel et al., 2011b; Soulsby et al., 2010).

Information on flow paths can be gained by introducing

qualitative metrics using the variability of natural tracers as

“time stamps” to tag water and solute inputs along actual

flow paths. Flow path distributions are then reflected by dis-

tributions of water age, traditionally referred to as transit

time distributions (TTD). Many previous tracer studies fo-

cused either on detailed physical description of the transport

processes themselves (e.g. Destouni et al., 2001; Cvetkovic

and Haggerty, 2002; Lindgren et al., 2004; Fiori and Russo,

2008; Botter et al., 2009) or used relatively simple black-box

models to estimate integrated catchment descriptors of flow

path distributions such as TTD and mean transit times (MTT)

(e.g. Kirchner et al., 2000; McGlynn et al., 2003; McGuire

et al., 2005; Soulsby et al., 2006; Hrachowitz et al., 2010a;

Godsey et al., 2010; Tetzlaff et al., 2011). While transport

process studies provided crucial insights in small-scale dy-

namics, black-box model inter-comparison studies have shed

light on the physical controls of the long-term average TTDs

on the catchment scale (e.g. Laudon et al., 2007; Broxton

et al., 2009; Hrachowitz et al., 2009a; Tetzlaff et al., 2009a;

Katsuyama et al., 2009, 2010; Lyon et al., 2010a; Speed et

al., 2010; Ali et al., 2012; Asano and Uchida, 2012; Capell

et al., 2012a; McGrane et al., 2012).

Although known since the early days of tracer hydrol-

ogy (e.g. Niemi, 1977; Turner et al., 1987), the importance

of temporal dynamics in flow paths distributions and thus

in TTDs was often overlooked. Whilst it is often valid for

groundwater systems (Maloszewski and Zuber, 1982) to as-

sume steady-state conditions and hence time-invariant TTDs,

for surface water systems this simplification conceals many

of the dynamics crucial for understanding the processes con-

trolling the system. Another important aspect for process un-

derstanding is the well-established fact that the age distribu-

tions of water discharged from (flux water age distributions)

and stored in (resident water age distributions) a catchment

as well as the transit time distributions (i.e. transfer func-

tions), according to which individual input signals, routed

through a catchment, are fundamentally different from each

other (e.g. Kreft and Zuber, 1978). The frequent use of the

linearity assumption, i.e. time-invariant TTDs together with

complete mixing which resulted in these different distribu-

tions to be identical, almost eliminated this crucial point from

general perception as recently stressed by Botter et al. (2011)

and Rinaldo et al. (2011).

Although not explicitly introducing time-variance, some

black-box modeling studies previously highlighted depen-

dence of TTDs on catchment wetness in a dual way (Ruiz

et al., 2002b; Weiler et al., 2003; Roa-Garcia and Weiler,

2010; Stewart et al., 2010, 2012; Munoz-Villers and McDon-

nell, 2012). In other words, different time-invariant represen-

tations of TTDs were assigned to different flow components,

i.e. flows from fast and slow model components, resulting in

changing TTDs for individual storm events, depending on the

contributions from the respective flow components. Recently

some studies explicitly addressed the time-invariance topic

in detail and allowed for a dynamic representation of flow

path distributions (Botter et al., 2010, 2011; Hrachowitz et

al., 2010b; Morgenstern et al., 2010; McGuire and McDon-

nell, 2010; Van der Velde et al., 2010; Birkel et al., 2012a;

Heidbüchel et al., 2012; Cvetkovic et al., 2012).

Increasingly, integrated models are being used to obtain

representations of runoff and solute/tracer responses in the

stream (e.g. Uhlenbrook and Sieber, 2005; Vaché and Mc-

Donnell, 2006; Iorgulescu et al., 2007; McGuire et al., 2007;

Page et al., 2007; Fenicia et al., 2010; Lindström et al., 2010;

Lyon et al., 2010b; Birkel et al., 2011a,c; Arheimer et al.,

2012; Capell et al., 2012b; Bertuzzo et al., 2013). For ex-

ample, Dunn et al. (2007, 2010) used a conceptual model

in the context of virtual experiments (cf. Weiler and Mc-

Donnell, 2004) to infer first order controls on TTDs under

state-steady assumptions. Similarly, Shaw et al. (2008) el-

egantly linked steady-state TTDs to model structure. How-

ever, the full potential of such integrated conceptual mod-

els to serve as diagnostic tools (cf. McDonnell et al., 2007;

Dunn et al., 2008b; Zehe and Sivapalan, 2009) was not fully

realized until recently when a few studies started investigat-

ing the spatio-temporal dynamics of flow path distributions

and what is controlling them (e.g. Botter et al., 2010; Van
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Table 1. Characteristics of the three study catchments.

Catchment Strontian Loch Ard Feshie Allt

Allt Coire Burn 11 a’Mharcaidh

nan Con

Grid reference NM 793 688 NS 470 988 NH 882 043

Observation period 1986–2003 1988–2003 1985–2006

Area (km2) 8.0 1.4 9.6

Average annual precipitation (mm yr−1) 2690 2200 1100

Average annual potential evaporation (mm yr−1)a 523 625 550

Mean annual temperature (◦C) 7.2 8.7 5.3

Elevation range (m) 18–755 99–282 330–1022

Mean slope (◦) 17.0 9.0 16.0

Proportion responsive soil cover (−)b 0.79 1.00 0.35

Drainage density (km km−2) 3.8 2.2 1.3

Land Usec F/M F M

Q5 (mm d−1) 24.12 20.62 5.32

Q95 (mm d−1) 0.27 0.12 0.81

a Estimated with Penman–Monteith method; b histosols and regosols; c F ... Forest, M .... Moorland vegetation

der Velde et al., 2012). In one of these rare attempts, Sayama

and McDonnell (2009) analyzed the spatio-temporal patterns

in two contrasting catchments. They found significant dif-

ferences in the variability of MTT in response to rainfall

events, and concluded that both storage depth and rainfall

pattern control the spatio-temporal pattern of flow path dis-

tributions. This is consistent with the findings of McGuire

and McDonnell (2010), Hrachowitz et al. (2010b) and Birkel

et al. (2012a) using black-box models. In another example,

McMillan et al. (2012) illustrated the general effect of fluc-

tuations in catchment wetness on TTDs, highlighting the im-

portance of non-steady state conditions. A different approach

for better understanding flow path dynamics is suggested by

Davies et al. (2011) who make use of the Multiple Interacting

Pathways (MIP) concept introduced by Beven et al. (1989).

Yet, still little is known about the actual dynamics linking

spatio-temporal patterns of distributions of water age to flow

processes and wetness conditions in catchments.

In this study we used conceptual models of three con-

trasting upland catchments in the Scottish Highlands as

tools to explore the potential routing of incoming water

and tracer (Chloride) signals (derived from long-term data)

through the systems following a virtual experiment philos-

ophy (cf. Weiler and McDonnell, 2004). By making use of

model internal fluxes and states, we tracked and analyzed the

modeled temporal dynamics of water age distributions, inter-

preting them as potential representations of reality in a func-

tional intercomparison (cf. Uchida et al., 2006). The objec-

tives of the study were thus to (1) analyze, assess and inter-

pret the differences of modeled flux water age, resident water

age and transit time distributions in different flow compo-

nents, (2) investigate the effect of different mixing assump-

tions on the modeled water age distributions and (3) test how

the temporal dynamics of modeled water age distributions

relate to changes in the hydrological regime, i.e. the feedback

processes between dominant flow paths, antecedent wetness

and storage dynamics.

2 Study area

The distinct nature of the three study catchments is illustrated

by a summary of their characteristics (Fig. 1 and Table 1)

as well as by the respective hydrographs and chloride (Cl−)

chemographs (Fig. 2). The Allt Coire nan Con catchment

(COIR; 8 km2) at Strontian is characterized by the wet and

temperate maritime climate of the Scottish West coast with

a long-term average precipitation of ca. 2700 mm yr−1 and

a mean annual temperature of 7.2 ◦C. The steep catchment

ranges from sea level to an elevation of ∼ 750 m. Its slopes

are covered by poorly drained peats and gleys formed over

slowly permeable glacial drift and relatively impermeable

schists and gneisses of the Moine series (Ferrier and Har-

riman, 1990). These soils are characterized by mainly fast,

lateral drainage, allowing only limited recharge (cf. Soulsby

and Reynolds, 1993) which produce extremely flashy catch-

ment responses (Fig. 2a, Table 1). Base flow, on the other

hand, is sustained at very low levels from slowly draining

deeper soil horizons, drift and bedrock groundwater. Further,

the low level of attenuation in the Cl− signal (Fig. 2a) in-

dicates very short transit times of water in the catchment

(cf. Tetzlaff et al., 2009b). Land cover in the lower catchment

was dominated by mature coniferous forest (Picea sitchen-

sis) whilst the upper slopes are heather-dominated moorland

(Calluna vulgaris).

The Burn 11 catchment (BU11; 1.4 km2) at Loch Ard

in central Scotland receives an average precipitation of

2200 mm yr−1 with a mean annual temperature of 8.7 ◦C.
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Fig. 1. Long-term mean annual precipitation and elevation maps of the 3 study catchments in the Scottish Highlands.

This catchment exhibits a much more subdued topography

with an elevation range between 100 to 280 m. The meta-

morphic Dalradian geology is covered by low permeability

glacial drifts (Miller et al., 1990), which together with the

high precipitation amounts results in poorly drained peaty

gleys and peat soils (Tetzlaff et al., 2007), which maintain

low soil moisture deficits and thus high degrees of connec-

tivity for much of the year. Similar to the COIR catchment,

storm runoff is likely to be dominated by fast lateral flow pro-

cesses (cf. Soulsby et al., 2007), although base flow contri-

butions are more significant in BU11 than at COIR (Fig. 2b).

Land cover is dominated by coniferous forest (Picea sitchen-

sis; 75 %) and to a minor extent grassland (25 %; National

River Flow Archive).

The Allt a’Mharcaidh (MHAR) is located in the Cairn-

gorm Mountains at elevations between 330 and 1020 m.

The sub-arctic climate results in relatively low precipitation

of about 1100 mm yr−1 and mean annual temperatures of

5.3 ◦C. In this study it is the only catchment that receives

significant amounts of precipitation as snow (∼ 30 %; Helli-

well et al., 1998). It is underlain by fractured granite of lower

Old Red Sandstone age, covered by thick deposits of locally-

derived drift of up to 10 m in depth (Soulsby et al., 1998).

While the gently sloping valley bottoms are covered by deep

peats, the steep slopes are characterized by more freely drain-

ing alpine soils and podzols (Soulsby et al., 2000), recharging

groundwater and sustaining relatively elevated base flow lev-

els (Fig. 2c, Table 1). Among the study catchments this site

exhibits the highest degree of damping in the Cl− stream sig-

nal, suggesting relatively long catchment transit times. Land

cover is dominated by alpine heath above 500 m, while some

mixed, natural forest can be found at lower elevations (Pinus

sylvestris, Betula spp.; ∼ 10 %).

3 Data and methods

3.1 Hydrological and geochemical data

Daily stream flow, precipitation and mean temperature were

available for the period 1 May 1986–11 July 2003 in the

COIR at Strontian (Fig. 2a), for the 1 January 1988–31 De-

cember 2003 period at BU11 at Loch Ard (Fig. 2b), and for

1 October 1985–1 October 2006 in the MHAR (Fig. 2c).

Flow data were obtained from the Scottish Environmen-

tal Protection Agency (SEPA), while daily precipitation

was interpolated from daily data of adjacent British Atmo-

spheric Data Centre sites (BADC, stations Dunstaffnage,

Aberfoyle and Aviemore) and volumes recorded on a weekly

(BU11, MHAR) or fortnightly (COIR) basis in open fun-

nel bulk deposition samplers in the catchments. Daily tem-

perature data were available from the BADC stations Dun-

staffnage (COIR), Aberfoyle (BU11), Lagganalia, Cairn-

gorm lift and Cairngorm summit (MHAR). The poten-

tial evaporation was estimated with the Penman–Monteith

method and was roughly consistent with long-term estimates

for the individual regions (1961–1990, MORECS).

Weekly or fortnightly precipitation samples (see above) as

well as simultaneous stream water dip samples at the indi-

vidual catchment outlets (Fig. 1) were analyzed for chlo-

ride (Cl−) concentration. All water samples were filtered

through a 0.45 µm polycarbonate membrane filter. Cl− con-

centrations were determined by ion chromatography (Dionex

Hydrol. Earth Syst. Sci., 17, 533–564, 2013 www.hydrol-earth-syst-sci.net/17/533/2013/
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Fig. 2. Left column: time series of observed daily precipitation (−) and runoff (−) and modeled runoff (−) for a selected characteristic

5-yr period. The insets show the Master recession curves. Right column: time series of observed Cl− input (red dots) and output (blue

dots) concentrations. The symbol size indicates the mass flux. The grey shaded area is the 95 % uncertainty interval of the modeled stream

concentration using all pareto optimal parameterizations.

DX100/DX120). Daily Cl− input fluxes for modeling were

estimated using the bulk Cl− concentrations of the preceding

sampling period and weighing them with the available daily

precipitation data.

As discussed by others (e.g. Neal et al., 1988), stream

water Cl− flux typically exceeds the precipitation Cl− flux.

This apparent disequilibrium was previously shown to be

caused by occult and dry deposition (Neal et al., 2004; Page

et al., 2007), previous land use change, such as deforesta-

tion (Oda et al., 2009; Guan et al., 2010) or biochemical

cycling (Bastviken et al., 2007). Further, plants require Cl−

and thus take up Cl− stored in the root zone at varying rates

(e.g. Kauffman et al., 2003; Lovett et al., 2005; Van der Velde

et al., 2010). Here these combined imbalances in catchment

Cl− budgets were accounted for by rescaling the input con-

centrations using lumped adjustment factors as successfully

www.hydrol-earth-syst-sci.net/17/533/2013/ Hydrol. Earth Syst. Sci., 17, 533–564, 2013
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applied in earlier studies (e.g. Tetzlaff et al., 2007; Dunn and

Bacon, 2008; Shaw et al., 2008; McMillan et al., 2012). Al-

though, this strategy ignores potential temporal variability in

unobserved Cl− cycling processes, the effects of these pro-

cesses are limited in the wet and cool Scottish climate and

in the absence of more detailed information considered neg-

ligible. This assumption is supported by evidence from a re-

cent comparative tracer study with water isotopes (Kirchner

et al., 2010). Note that Cl− turnover by plants was omitted

in the present study, as this process was considered of mi-

nor importance in the cool Scottish climate, with low tran-

spiration rates (and thus limited sap flow) and relatively low

amounts of organic matter turnover (i.e. litter fall) from the

Heather moorland vegetation and coniferous forests in the

study catchments (e.g. Liu et al., 2004).

3.2 Hydrological models

Lumped conceptual models were used to track water and

tracer fluxes through the system. As recently re-iterated by

Ye et al. (2012), the dominant processes controlling runoff

patterns are influenced by complex interactions of climate,

vegetation and landscape factors. In the absence of de-

tailed a priori knowledge on the dominant runoff processes

and due to the contrasting characteristics of the three study

catchments, a flexible modeling strategy was thus adopted

(e.g. Clark et al., 2008; Fenicia et al., 2008a, 2011; Kavet-

ski and Fenicia, 2011). This ensured the use of the model

architectures best representing the dominant processes in the

individual catchments given the information available on the

respective catchments.

The DYNAMIT (DYNAmic MIxing Tank) modeling

framework used in this study is loosely based on the FLEX

model (e.g. Fenicia et al., 2006). Following the flexible mod-

eling approach, a suite of different model structures of vary-

ing process representations and complexity derived from pro-

cess conceptualization based on the information available

were tested for each catchment. For reasons of computational

capacity, the most suitable model structure for each catch-

ment was identified by a preliminary scan using 5-yr calibra-

tion and validation periods. The model structures most suit-

able for further analysis were selected on basis of their Nash–

Sutcliffe efficiencies (Nash and Sutcliffe, 1970) for stream

flow and their respective values for the Akaike information

criterion (AIC; Akaike, 1970), which penalizes additional

parameters and thus balances statistical fit and model com-

plexity (e.g. Schoups et al., 2008). Note that a detailed ex-

position of the model selection issue is not a primary aim

of this paper. Rather we take the selected models as feasible

representations of the best available model structures to ex-

plore water age distributions as a primary objective. Thus, for

brevity and clarity only the components of the three model

structures identified as optimal and subsequently used in the

study are reported here.

The selected model structures for the study catchments

as well as the water balance and flux equations of the in-

dividual model components are given in Fig. 3a–c as well

as in Table 2 and a complete list of symbols is given in Ap-

pendix A. Note that in the following all model parameters are

shown in bold. The backbone of the three models consists of

three reservoirs: an unsaturated (SU, Eq. 3), a fast respond-

ing (SF, Eq. 4) and a slow responding reservoir (SS, Eq. 5).

The model of the high-elevation MHAR catchment included

an additional semi-distributed snow component (SSN, Eq. 1).

Daily temperature lapse rates (see Hydrological data section)

were used to determine the snow water equivalent in 100 m

elevation intervals. Snow melt (M) for each elevation zone i

was then computed with the degree-day method (Eq. 6) and

based on the free calibration parameters threshold tempera-

ture (TT) and melt factor (FM). The model structure for the

heavily forested BU11 catchment on the other hand included

an interception storage (SI, Eq. 2), allowing an effective sep-

aration of two fundamentally different processes (e.g. Calder,

1990; Sutanto et al., 2012) which has only recently received

significant attention in modeling studies (e.g. Savenije, 2004;

Fenicia et al., 2008b; Gerrits et al., 2010): evaporation of wa-

ter stored on surfaces (e.g. canopy, forest floor) and transpira-

tion of root zone water by plants. Water leaves SI by overflow,

generating effective precipitation (PE) once the maximum in-

terception capacity (Imax) is exceeded and by evaporation at

the potential evaporation rate (ESI, Eq. 8). Note, that in the

absence of snow and/or interception components PE equals

the total precipitation P (Eq. 9). Upon reaching the soil PE

is split into water infiltrating into the unsaturated zone (RU,

Eq. 12) and excess water according to a runoff generation

coefficient (CR, Eq. 16). Here, CR is given by a logistic func-

tion representing the catchment wide soil moisture storage

capacity in the root zone (SUmax ), roughly reflecting the soil

moisture content at field capacity (FC), and a shape factor

(β). Excess water not stored in SU is routed either to SF (RF,

Eq. 13) or via preferential recharge to SS (RP, Eq. 14) ac-

cording to coefficient CP. Percolation of water from SU to

SS and thus recharge of the slow responding reservoir (RS,

Eq. 15) is represented by a linear relationship of the relative

soil moisture with a maximum percolation capacity (Pmax).

Recharge fluxes RF and RS are lagged (Eqs. 17 and 22) by tri-

angular transfer functions hF (Eq. 18) and hS (Eq. 23), based

on the lag parameters TF and TS which represent the num-

ber of time steps in the lag routine (e.g. Kavetski and Feni-

cia, 2011). The lag routine itself conceptualizes the system

internal time delay introduced by fluxes between different

model states. Note, that if TF = TS = 1, no time lag is present.

Plants were assumed to tap water not only from SU (ESU) but

also from SF (ESF) which was assumed to be within the root

zone. The proportion of transpiration coming from SU (CE,

Eq. 11) was thus expressed as a linear function of the mois-

ture content in SU over the total moisture content in SU and

SF. Transpiration from the unsaturated zone (ESU) was then

represented by a linear function of the relative soil moisture
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M. Hrachowitz et al.: What can flux tracking teach us about water age distribution patterns? 539

Table 2. State and flux equations of the models used in the analysis.

Process Water balance Eq. Constitutive relationships Eq.

Snow dSSN

/

dt =
∑

i

PSN,i − Mi (1) M =
∑

i

min
(

SSN,i , FM (Ti − TT)
)

(6)

Interception dSI

/

dt = PR − PTF − ESI (2) PTF = PR − min (Imax − SI, PR) (7)

ESI = min (EP, SI) (8)

Unsaturated zone dSU

/

dt = PE − ESU − RF − RP − RS (3) PE = PTF + M (9)

ESU = EP min
(

1,
SU

SUmax

1
Lp

)

CE (10)

CE = SU
SU +SF

(11)

RU = (1 − CR) PE (12)

RF = CR (1 − CP) PE (13)

RP = CR CP PE (14)

RS = Pmax

(

SU
SUmax

)

(15)

CR = 1
(

1+exp

(

−SU

/

SUmax +0.5

β

)) (16)

Fast reservoir dSF

/

dt = R∗
F − ESF − QF − QOF (4) R∗

F = RF ∗ hF (17)

hF =
{

t/T2
F, t ≤ TF

0, t > TF
(18)

ESF = min (EP (1 − CE) , SF) (19)

QF = KF SF (20)

QOF = max
(

SF − SFmax
, 0
)

(21)

Slow reservoir dSS

/

dt = R∗
S + RP − QS (5) R∗

S = RS ∗ hS (22)

hS =
{

t/T2
S, t ≤ TS

0, t > TS
(23)

QS = KS SS (24)

and threshold value LP, which is the fraction of SUmax be-

low which the potential evaporation/transpiration EP is con-

strained by the water available in SU (Eq. 10). ESF, on the

other hand, was assumed to occur at potential rate as SF rep-

resents an ensemble of fast flow paths, such as macro pores,

which are likely to be active only under temporally and lo-

cally saturated conditions (Eq. 19). As SF and SS were con-

ceptualized as linear reservoirs, water drainage (QSF, QSS)

is determined by the storage coefficients KF and KS (Eqs. 20

and 24). In two of the models, the architecture of SF allows

for a third flow component, conceptualizing overland flow

(QOF). As the model is run on a daily basis, the amount dis-

charged as QOF at a given time step is simply expressed as

the volume of water exceeding the maximum storage capac-

ity of SF at the respective time step, i.e. SFmax (Eq. 21).

3.3 Mixing models

The low-pass filter characteristics of catchments, attenuating

the amplitudes and high-frequency variability of tracer in-

put signals, were identified early (e.g. Martinec et al., 1974;

Maloszewski and Zuber, 1982). Due to the elemental dif-

ference between hydrologic response and particle response

(e.g. Beven, 1981; Neal et al., 1988; Roa-Garcia and Weiler,

2010; Heidbüchel et al., 2012), standard conceptual mod-

els can rarely accommodate stream tracer dynamics. This

is partly the result of stream tracer concentrations reflect-

ing the actual particle movement by advective and diffu-

sive processes at specific flow velocities along actual flow

lines, potentially routing particles through the passive stor-

age at depths below stream level, depending on the geol-

ogy (e.g. Asano and Uchida, 2012) and relief (e.g. Glee-

son and Manning, 2008). In contrast, substantial proportions

of stream flow are generated by the propagation of pres-

sure waves whose celerity is different to the particle flow

velocities (Beven, 1981) and which are controlled by the

pressure head or, in other words, the storage height above

the stream level alone, i.e. dynamic or active storage (Zu-

ber, 1986). The combined differences between identifiable

flow path lengths and flow velocities of tagged (i.e. tracer)

and untagged (i.e. water only) fluxes consequently entail

a shift between the flow path distributions of water and

tracer, traditionally referred to as hydrologic response func-

tion (HRF; e.g. Nippgen et al., 2011) and transit time dis-

tribution (TTD), respectively (e.g. Heidbüchel et al., 2012).

Barnes and Bonell (1996) suggested that both responses,

stream flow and tracer concentration, can be accommodated

in a conceptual model by introducing a storage component
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Fig. 3. Selected model structures for the three study catchments (a–c). Light blue shades indicate volumes not affected by mixing, medium

blue shades indicate the fraction of the active volume subject to mixing and the dark blue shades indicate the passive mixing storage. The red

triangles indicate the presence of a lag function in the specified parts of the models. The panels in (d) show the dynamic mixing coefficient

CM,SU = f (SU/SUmax
|µCM,SU, σCM,SU), the temporal dynamics of SU/SUmax

as well as of CM,SU for a selected 2-yr period for the three

study catchments.

that does not affect the hydrologic response but only the

tracer dynamics. Conceptually such a passive storage is in-

terpreted as water that is temporally (e.g. soil moisture below

field capacity FC) or constantly (e.g. groundwater below the

dynamic storage) present in the system but does not actively

contribute to stream flow generation although being gradu-

ally replaced by mixing with new water entering the system.

In a model the passive storage is thus represented by a thresh-

old in some or all storage components of a model below

which tagged water fluxes can undergo “mixing” processes

to reproduce the tracer concentration observed in the stream

according to the TTD, at the same time maintaining a water

outflow rate as determined by the HRF (Fig. 3; e.g. Dunn et

al., 2007; Shaw et al., 2008; Fenicia et al., 2010).

Note, that in the absence of detailed knowledge of the

actual mixing processes, the term “mixing” here refers to

the combined processes of potential dispersive and diffu-

sive mixing in the soil itself as well as in-stream mix-

ing of water particles entering the catchment at different

times and locations and being routed to the stream through

different flow routes. In this study two potential mixing

scenarios, employing a total of three different mixing pro-

cesses, i.e. complete, static and dynamic partial mixing, were

investigated.

3.3.1 Complete mixing

The complete mixing (CM) model, used in most studies

based on conceptual models (e.g. Dunn et al., 2007; McMil-

lan et al., 2012) assumes instantaneous and complete mixing

of the incoming signal between the active (Sa) and passive

compartments (Sp) in each of the modeled storage compo-

nents, following the tracer balance equation for each mod-

eled storage component (e.g. Birkel et al., 2011a):

d(ci Si)

dt
=
∑

j

cI,j Ij −
∑

k

ci Ok, (25)

where Si = Sa,i + Sp,i is the total water stored in each of the

i model storages [L], ci = ca,i = cp,i is the respective tracer

concentration [M L−1], I are the j different water inflow

rates [L T−1] to a given component (e.g. effective precipi-

tation PE to the unsaturated zone SU or slow and preferential
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Table 3. Parameters used in the three model setups with the initial sampling range as well as the optimal parameters and the parameter ranges

of Pareto members (in brackets) for the three study catchments.

Parameter Unit Initial Calibrated parameters

range Strontian – Loch Ard – Feshie – Allt

Allt Coire Burn 11 a’Mharcaidh

nan Con

TT (◦C) −1.5–1.5 – – 0.59

(0.18–0.62)

FM (mm ◦C−1 d−1) 0–5 – – 5.1

(3.3–5.2)

Imax (mm) 0–3 – 2.1 –

(0.72–2.58)

SUmax
(mm) 0–1500 366 528 1181

(152–450) (335–568) (871–1193)

β (−) 0–1 0.03 0.02 0.56

(0.02–0.47) (0.01–0.04) (0.13–0.70)

LP (−) 0–1 0.73 0.95 0.75

(0.62–0.94) (0.80–0.96) (0.62–0.83)

TF (d) 1–3 1.06 1.55 –

(1.04–1.22) (1.42–1.94)

SFmax
(mm) 0–100 20.8 21.3 –

(13.5–24.5) (15.6–24.5)

KF (d−1) 0–5 0.98 1.61 1.17

(0.95–2.71) (1.36–3.45) (0.91–1.99)

Pmax (mm d−1) 0–4 0.35 0.48 0.83

(0.32–1.99) (0.32–0.75) (0.64–1.42)

CP (−) 0–1 – 0.12 0.62

(0.07–0.29) (0.49–0.71)

TS (d) 1–10 – – 2.7

(2.56–8.45)

K∗
S (d−1) MRC∗ 0.10∗ 0.22∗ 0.05∗

µCM,SU (−) 0–10 1.94 1.07 0.55

(1.79–2.87) (0.98–2.05) (0.46–0.59)

σCM,SU (−) 0–1 0.65 0.35 0.18

(0.60–0.97) (0.33–0.65) (0.17–0.22)

CM,SS (−) 0–1 0.19 0.12 0.10

(0.16–0.72) (0.10–0.35) (0.08–0.23)

SP,SS (mm) 0–75 000 1120 10 568 10 218

(865–6332) (2762–12 825) (7521–14 103)

∗ Storage coefficient of SS (slow reservoir) fixed according to MRC.

recharge, RS and RP, respectively, to the slow responding

storage SS; see Table 2) with the corresponding inflow tracer

concentrations cI,j [M L−1], O are the k various water out-

flow rates [L T−1] from a given model component (e.g. ESU,

RF, RP and RS from SU; Table 2). Note that in the complete

mixing case, Sa,i are the states of the i model storage el-

ements (here: SSN, SI, SU, SF and SS) while Sp,i = SP,i are

calibration parameters. For the complete mixing case in this

study a passive storage Sp,i was only considered for the slow

responding reservoir, i.e. SP,SS (Fig. 3a–c, Table 3).

3.3.2 Static partial mixing

Experimental evidence suggests that the complete mix-

ing assumption is too simplistic for surface water systems

(e.g. Godsey et al., 2009; Rouxel et al., 2011). This is true

in particular for systems with pronounced switches between

rapid shallow subsurface (e.g. macropores) or overland flow
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on the one hand and matrix flow on the other hand (e.g. Van

Schaik et al., 2008; Legout et al., 2009; Königer et al., 2010).

Although the dynamic interaction of these different flow pro-

cesses was in the past successfully modeled using dual mix-

ing models, allowing for different mixing mechanisms in the

soil matrix and the bypass flow, respectively (e.g. Vogel et

al., 2008; Stumpp and Maloszewski, 2010), partial mixing is

rarely considered in conceptual modeling studies (e.g. Page

et al., 2007; Van der Velde et al., 2012). Here, partial mixing

is conceptualized as instantaneous, partial mixing between

Sa and Sp (cf. Fenicia et al., 2010). Thus, only a part of the

mobile water (Sa) contributing to stream flow, as determined

by the dimensionless mixing coefficient CM,i , is mixed with

water in Sp according to

d
(

ca,i Sa,i

)

dt
=
∑

j

(

cI,j Ia,j + cp,i Ip,j

)

−
∑

k

ca,i Ok (26)

d
(

cp,i Sp,i

)

dt
=
∑

j

(

cI,j Ip,j − cp,i Ip,j

)

, (27)

where Ip,j = Ij CM,i dt and Ia,j = Ij (1 − CM,i dt) are the j

individual water influxes to the i active (Sa,i) and passive

storage compartments (Sp,i). Ip,j can thus be conceptualized

as the proportion of input I to a storage component that is

mixed with water in Sp,i . As the water balance of Sp,i is 0, all

the water Ip,j entering the passive storage compartment Sp,i

with tracer concentration cI,j is subsequently released to Sa,i

with concentration cp,i . Note, that mixing coefficient CM,i is

a lumped parameter combining dispersive processes, caused

by different flow velocities through soil matrix pore spaces

of different size and diffusive exchange processes between

Sa,i and Sp,i . If warranted by data, a separation of dispersive

and diffusive mixing could be readily incorporated.

3.3.3 Dynamic partial mixing

The importance of dynamic aspects of partial mixing was re-

cently highlighted by several studies. Closely linked to the

well-known soil moisture hysteresis (e.g. Brutsaert, 2005) in

general and thus to capillarity and macropore effects in par-

ticular (e.g. Beven and Germann, 1982), for example Brooks

et al. (2009) observed in a catchment with Mediterranean

climate that water entering the soil after a dry period first

moves into small pores. As the soil is wetting up, new wa-

ter is increasingly bypassing the small pores and is routed

through the system along preferential flow paths, thus show-

ing decreased interaction with water stored in the small pores

(“First-in-last-out” mechanism). Somewhat contrasting con-

clusions were drawn by Legout et al. (2007) and Klaus et

al. (2013). They reported high initial proportions of “new”

water followed by higher contributions of “old” water with

increased soil moisture content, as relatively well-mixed wa-

ter from the matrix is increasingly complementing water

released over preferential flow pathways. To at least par-

tially reconcile these different interpretations, we suggest

a dynamic partial mixing mechanism with a dimensionless

mixing coefficient CM,i that is controlled by the soil mois-

ture content according to

CM,i =
1

2
−

1

2
erf





SU
SUmax

− µCM,i

σCM,i

√
2



 , (28)

where µCM,i [−] and σCM,i [−] are shape parameters. The

dynamic mixing coefficient CM,i , subsequently applied in

the tracer balance equations (Eqs. 26–27), thus decreases

with increased soil moisture content (Fig. 3d). Under con-

ditions with low soil moisture content, most of the incoming

“new” water enters the soil matrix, where it is assumed to

be completely mixed with the resident water, while only a

minor proportion is released over preferential flow pathways

(Eqs. 12–14). However, in spite of high exchange rates un-

der dry conditions, i.e. ∼ complete mixing, the proportion of

“new” water released is high due to low absolute “old” wa-

ter volumes available for mixing in the matrix and little wa-

ter being released from the matrix by percolation. When the

soil is wetting up, a smaller proportion of water is infiltrat-

ing into the matrix due to the increased matrix potential (or

reduced matrix suction) and it is increasingly routed through

preferential flow pathways with comparably high flow ve-

locites (Eqs. 12–14). As a consequence, the higher degree of

soil-tube filling and/or the gradual activation of larger soil-

tubes translate into proportionally reduced contact surfaces

for dispersive exchange as well as into shorter contact times

for diffusive exchange between preferential flow paths and

matrix, subsequently permitting only lower total exchange

rates between these two compartments. However, the overall

proportion of older water released can potentially increase

due to higher percolation rates from water stored in the ma-

trix (Eq. 15), which is broadly consistent with observations

reported by Weiler and Naef (2003).

Dynamic partial mixing was only considered where sig-

nificant changes in soil moisture content below FC occur,

i.e. for the unsaturated or root zone (SU) as the soil moisture

content in the unsaturated transition zone below the root zone

as well as in the groundwater storage (SS) can be assumed to

be 2SU ≥ FC and 2SS = 1, respectively. Thus, here the dy-

namic Sa,SU is water that is eventually released as RF and

RP to SF and SS (i.e. preferential flow; Eqs. 13–14), while

the dynamic Sp,SU is water stored in SU (i.e. matrix water;

Eq. 3).

In the following analysis two scenarios, each employing

different combinations of mixing assumptions, were tested:

(1) complete mixing in all model components, i.e. CM,1...i = 1

as a benchmark, thereafter referred to as complete mix-

ing model scenario (CM) and (2) dynamic partial mixing

in SU according to CM,SU = f (SU, SUmax |µCM,SU, σCM,SU),

static partial mixing in SS according to CM,SS (representing

the combined mixing processes in the unsaturated transition

zone and SS) and complete mixing in the remaining compo-

nents, thereafter referred to as partial mixing model scenario
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(PM; Fig. 3, Table 3). Supported by experimental evidence

from the Scottish Highlands (Birkel et al., 2011b), overland

flow was conceptualized as overflow of the fast responding

reservoir SF in the hydrological model thus also reflecting

its tracer composition. Initial states of tracer concentration in

the individual components were assumed to be reflected by

the long-term base flow mean tracer concentrations (cf. Hra-

chowitz et al., 2011a). Note that, although Cl− turnover by

plants can under certain circumstances play a significant role

(cf. Lovett et al., 2005), it was in the cool Scottish climate,

also in the absence of suitable data warranting the inclusion

of this process, considered negligible as individual process in

the models (cf. Kirchner et al., 2000; Page et al., 2007; Shaw

et al., 2008) due to low transpiration rates (and thus limited

sap flow) and limited organic matter turnover in the Heather

moorland vegetation and the coniferous forests of the study

catchments (cf. Liu et al., 2004).

The combined water balance and mixing models were run

on daily time steps. The observed weekly tracer input con-

centrations were distributed uniformly over the preceding

7 days. For efficiency and adequate numerical stability the

models are solved numerically using an explicit 4th order

Runge–Kutta scheme.

3.4 Model calibration

The selected models (Fig. 3) for the three study catchments

were calibrated using Monte-Carlo sampling. The 107 real-

izations for each model were based on uniform prior param-

eter distributions within the initial ranges given in Table 3.

The individual model performances were subsequently as-

sessed with a combined multi-objective (e.g. Gupta et al.,

1998) and multi-criteria (e.g. Schoups et al., 2005) strat-

egy in order to limit parameter uncertainty and ensure the

model’s capability of reproducing distinct aspects of the sys-

tem response. The chosen performance criteria were stream

flow and stream tracer concentration. The performance ob-

jectives included the Nash–Sutcliffe efficiency (ENS,Q; Nash

and Sutcliffe, 1970), the Nash–Sutcliffe efficiency for the

logarithm of the flows (ENS,logQ
) and the volumetric effi-

ciency (EV,Q; Criss and Winston, 2008) for the hydrograph

as well as ENS,C and EV,C for the stream tracer concentra-

tions. Hence, the models were evaluated according to a total

of 5 performance measures. Additionally, the modelled aver-

age annual combined actual evaporation (Eq. 8) and transpi-

ration amounts (Eqs. 10 and 19) were constrained to ± 25 %

of the long-term annual averages as estimated by MORECS

(cf. Hough and Jones, 1997). To limit the effects of epistemic

error, significant “rogue” observations, such as peaks in the

observed runoff when no precipitation or snow melt was oc-

curring, were removed from the calibration time series based

on expert judgment (cf. Beven and Westerberg, 2011).

Calibration eventually resulted in 5-D pareto fronts for

each model, representing the sets of pareto-optimal solu-

tions with respect to the 5 selected performance measures.

As pareto-optimal sets of solutions are not dominated by

any other solution as a result of trade-off effects, no objec-

tively “best” solution can be distinguished (e.g. Fenicia et

al., 2007). Thus, to document the sensitivity of the mod-

els to pareto-optimal solutions the 5th and 95th percentiles

of the pareto-optimal parameter values as well as the cor-

responding sensitivity intervals around the modeled hydro-

and chemographs were computed. However, for clarity and

conciseness of the paper, only one pareto-optimal solution

for each model was chosen for the subsequent analysis. As

frequently done, the most balanced solution for each model

was used for this purpose, i.e. the solution with the minimum

Euclidean distance DE to the perfect model, ENS,i = VE,i = 1

(e.g. Schoups et al., 2005):

DE =
√

(

1 − ENS,Q

)2 +
(

1 − ENS,logQ

)2
+
(

1 − EV,Q

)2 +
(

1 − ENS,C

)2 +
(

1 − EV,C

)2
. (29)

It should be noted that storage coefficient KS was not treated

as a free calibration parameter. It was rather directly deter-

mined from master recession curves (MRC) for each catch-

ment using the automated match-stripping method suggested

by Lamb and Beven (1997) and previously successfully ap-

plied (e.g. Fenicia et al., 2006; Hrachowitz et al., 2011b).

Briefly, the MRC is based on recession periods longer than

specified thresholds (48 h in this study). The individual re-

cession segments are then assembled into one synthetic re-

cession curve, in which the segments are sorted based on

tail-end discharge values. Starting from the segment with the

lowest tail-end value, the following segments are shifted in

time until overlap occurs and collated to the synthetic curve

(insets Fig. 2, Table 3).

3.5 Flux tracking

As experimental evidence supports the assumption that con-

servative tracers essentially “follow the water” (e.g. Kirchner

et al., 2010), water fluxes can be tracked through the sys-

tem as soon as the controlling mixing volumes and processes

are adequately parameterized. Briefly, for each time step, the

fluxes and states in all model storage components are known.

Both, fluxes and states are represented in multidimensional

matrices. Each matrix element represents the water volume

of a certain age contributing to the total flux or state at time t

(Fig. 4). Consequently, the relative contributions constitute

the various age distributions of water at each time step. For

a detailed description the reader is referred to McMillan et

al. (2012).

It is emphasized that the tracking analysis presented here-

after is based on modeling results, adopting a virtual experi-

ment approach. Thus, the employed models are interpreted as

best available representations of the system and model inter-

nal dynamics are assumed to approximate real world dynam-

ics. On the one hand this can be justified by the extensive

model selection strategy which allows to reject unsuitable

model structures. On the other hand the multiple objective

calibration approach increases model realism and predictive
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Fig. 4. Synthetic, illustrative example of the three different age distributions pF (flux age distribution), pR (resident age distribution) and pT

(transit time distribution). Value in each cell of the grid indicates the runoff generated from precipitation entering the system at ti and exiting

at tj . Note, that for simplicity, evaporation is omitted here.

power as only parameterizations that can reproduce all five

calibration objectives adequately well were accepted as be-

havioral. In spite of rigorous model selection and calibration

efforts applied here, we explicitly acknowledge the quanti-

tative uncertainty related to virtual experiment approaches.

Thus, this study is rather to be seen as a functional intercom-

parison with uncertainty estimates given for stream flow and

tracer responses as well as for parameter estimates and mod-

eled flux contributions.

3.6 Definition of age distributions

In the past few decades, many studies characterized age dis-

tributions of water with one single descriptor, i.e. the mean

transit time (MTT) which resulted from the common use of

models based on complete mixing and transit time distribu-

tions (TTD):

pR

(

tj − ti, tj
)

= pF

(

tj − ti, tj
)

= pT

(

ti, tj − ti
)

, (30)

where ti is the time of entry to the system, tj is the time of

exit from the system, tj − ti is the time elapsed since entry to

the system or the “age of water”, pR (tj − ti, tj ) is the age

distribution (i.e. probability density function) of water that

entered the catchment at any time t ≤ tj and that is stored in

the entire catchment at time tj (Fig. 4), hereafter referred to

as age distribution of resident water (Kreft and Zuber, 1978).

Similarly, pF (tj − ti, tj ) is the age distribution of water that

entered the catchment at any time t ≤ tj and that reached one

specific point in a catchment (e.g. catchment outlet) at time

tj (Fig. 4), hereafter referred to as age distribution of wa-

ter in flux (Kreft and Zuber, 1978). In other words pR is

a marginal distribution of pF conditional on the location in

the catchment. In contrast, the probability density function

pT (ti, tj − ti) is the transfer function according to which

a precipitation signal entering the catchment at ti is routed

through the catchment over time (Fig. 4), hereafter referred

to as water transit time. The equality between these three

types of distributions holds only for completely mixed, time-

invariant systems (cf. Rinaldo et al., 2011). While ground-

water dominated catchments with homogenous, high perme-

ability aquifers may meet this assumption (e.g. Maloszewski

and Zuber, 1996), it does not apply for the greater part

of catchments. As discussed by McDonnell et al. (2010),

most surface water systems are characterized by the pres-

ence of a suite of flow paths active at different timescales

(e.g. preferential flow and baseflow). Although each flow

path could in principle be represented individually as com-

pletely mixed, their combination is different from complete

mixing of the entire system due to distinct flow velocities and

dispersion/diffusion characteristics in each flow path, lead-

ing, under the time-invariance assumption, to
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pR

(

tj − ti, tj
)

6= pF

(

tj − ti, tj
)

= pT

(

ti, tj − ti
)

. (31)

Furthermore, as demonstrated by Niemi (1977), pF and pT

are related by the ratio of system input to output:

pF

(

tj − ti, tj
)

=
I (ti)

O
(

tj
) pT

(

ti, tj − ti
)

, (32)

where I (ti) is the system input at any time ti ≤ tj and O(tj )

is system output at tj . Thus, pF = pT only if I (ti)/O(tj )

are unity. For groundwater dominated systems with small

groundwater level fluctuations I (ti)/O(tj ) can approach

unity, i.e. time invariance or steady-state, as the unsatu-

rated zone can act as a low-pass filter, dampening the tem-

poral variability of precipitations signals in the groundwa-

ter recharge (here: I (ti)). For typical surface water systems,

however, this does not hold, resulting in

pR

(

tj − ti, tj
)

6= pF

(

tj − ti, tj
)

6= pT

(

ti, tj − ti
)

. (33)

The differences between pR, pF and pT are illustrated with

a sketched, hypothetical example in Fig. 4, highlighting the

relation between the 3 distributions for water entering (pT),

leaving (pF) and being stored (pR) at time t = 5. In addi-

tion to the contrasting nature of pR, pF and pT, it should be

mentioned that water is routed along each flow path accord-

ing to different transit time distributions or transfer functions

pT, thereby generating distinct water age distributions pF for

each flow path (cf. Uchida et al., 2006). For example, plants

frequently tap water for transpiration from much shallower

and thus younger sources than those for instance groundwa-

ter flow is generated from (cf. Botter et al., 2010; Van der

Velde et al., 2012). It can therefore be written as

pT,tot

(

ti, tj − ti
)

= pT,Q

(

ti, tj − ti
)

∞
∑

tj

Q
(

ti, tj
)

P (ti)

+pT,E

(

ti, tj − ti
)

∞
∑

tj

E
(

ti, tj
)

P (ti)

=
N
∑

n=1

pT,Qn

(

ti, tj − ti
)

∞
∑

tj

Qn

(

ti, tj
)

P (ti)

+
M
∑

m=1

pT,Em

(

ti, tj − ti
)

∞
∑

tj

Em

(

ti, tj
)

P (ti)
(34)

pF,tot

(

tj − ti, tj
)

= pF,Q

(

tj − ti, tj
)

Q
(

tj
)

Q
(

tj
)

+ E
(

tj
) + pF,E

(

tj − ti, tj
) E

(

tj
)

Q
(

tj
)

+ E
(

tj
)

=
N
∑

n=1

pF,Qn

(

tj − ti, tj
) Qn

(

tj
)

Q
(

tj
)

+ E
(

tj
)

+
M
∑

m=1

pF,Em

(

tj − ti, tj
) En

(

tj
)

Q
(

tj
)

+ E
(

tj
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where the transit time distribution pT,tot (ti, tj − ti) is the

transit time distribution or transfer function of the precip-

itation signal P entering at ti and routed through the sys-

tem considering all possible flow paths (or exit routes) in

the catchment, pT,Q (ti, tj − ti) and pT,E (ti, tj − ti) are the

individual transit time distributions of the exit routes runoff

Q and evapotranspiration E, which can be further split into

flow paths Qn and Em, where n = 1, ... N represents flow

generating processes such as groundwater and preferential

flow and m = 1, ... M represents evaporative processes such

as interception evaporation and plant transpiration. Note that
∞
∑

tj

Qn

(

ti, tj
)

and
∞
∑

tj

Em

(

ti, tj
)

denote the amounts of wa-

ter that entered the catchment at ti and that has already left

or will eventually leave in the future over the flow paths Qn

and Em (see also Fig. 4). Similarly, pF,tot (tj − ti, tj ) is the

total age distribution of all fluxes leaving the catchment at

tj , pF,Q (tj − ti, tj ) and pF,E (tj − ti, tj ) are the respective

age distributions of runoff Q and evapotranspiration E at tj ,

which can be further split into Qn and Em. It is thus im-

portant to note that if one is interested in flow generating

processes only, analysis needs to focus on pF,Qn as inclusion

of pF,Em will be likely to introduce a skew towards faster

responses.

For more detailed descriptions and derivations of the dif-

ferent PDFs describing water age, the reader is referred to

recent comprehensive papers by Botter et al. (2011) and Ri-

naldo et al. (2011). Note that here time-invariant refers to the

use of identical transit time distributions pT (ti, tj − ti) to

route the precipitation signals through the system for each

time step ti (i = 1, ..., T ), thus assuming steady-state condi-

tions with system input and output being constant. Further

note that to avoid confusion the abbreviation TTD is here-

after only used when referring to time-invariant applications.

3.7 Wetness regimes

The sensitivity of pR, pF and pT to changing sub-surface

wetness conditions was assessed by identifying four catch-

ment wetness regimes that constitute the end-members of

possible wetness conditions, similar to the method applied

by Heidbüchel et al. (2012): (1) dry, (2) wetting-up, (3) wet

and (4) drying-up. The four wetness regimes are character-

ized by distinct differences in the wetness states of the two

major runoff generating model components, SF and SS. Dry

regimes were defined as those periods during which the states

of both, SF and SS were low, thus not exceeding their re-

spective 25th percentiles. Correspondingly, wet regimes were

defined as periods with water volumes in SF and SS ex-

ceeding their 75th percentiles. The wetting-up regime, on

the other hand, was defined as periods with SS ≤ 25th and

SF > 75th percentiles, while the drying-up regime were the

periods with SS > 75th and SF ≤ 25th percentiles, respec-

tively (Fig. 5). The rational behind this was that in a wetting-

up period after a dry period the ground water, i.e. SS, is not
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Fig. 5. Schematic of the defined hydrologic regimes used for the

analysis, based on the degree of filling of SF and SS, respectively.

yet recharged while increased high soil moisture contents

can trigger preferential flows generated from SF. Conversely,

while SF can be expected to become increasingly inactive

during drying-up periods, groundwater levels (SS), recharged

during the preceding wet period, are still high. Note that ab-

solute storage differences are low in the wet and cool Scottish

climate compared to drier and warmer climates with marked

seasonality. Thus wetness related effects observed here can

be expected to be much more pronounced in such climates.

4 Results and discussion

4.1 Hydrological models

The model structures best representing both the dynamics of

the hydrographs and the tracer responses in the three study

catchments not only exhibit largely adequate performance

levels (Table 4), but also broadly reflect a priori conceptual-

izations of the study catchments. Note, that for brevity the de-

tailed results of the model selection procedure are not shown

here. Briefly, only a comparably simple core model struc-

ture, consisting of SU, SF and SS was necessary to capture

the dynamics of the COIR catchment (Fig. 3a). This reflects

the simple structure of the catchment which is dominated by

fast responses as soils retain high moisture contents through-

out the year. Humid climate, together with steep relief and

thin soils, causes very pronounced and rapid switches from

slow to fast processes. Slower processes only make minor

contributions to modeled stream flow (3 % of water entering

the catchment; Table 4) due to the elevated water holding ca-

pacities of the peat soil matrix and comparably impermeable

parent material. Most of water entering the catchment thus

leaves as runoff, in the model represented as overland flow

(14 %) or preferential flow (68 %), while transpiration lev-

els are rather low (15 %; Table 4). Although the lower part

of the catchment is covered by forest, high precipitation and

relatively low potential evaporation rates did not warrant the

Table 4. Model performance measures for the performance metrics

used in model calibration. The first values represent the respective

performance measures for the model with the lowest DE, i.e. the

“most balanced model”, the values in the brackets indicate the per-

formance range of the 5-D pareto front. The lower part of the table

gives flux contributions of individual model components from the

“most balanced” parameterization and those with the members of

the 5-D calibration pareto fronts (in brackets).

Strontian – Allt Loch Ard – Burn 11 Feshie – Allt

Coire nan Con a’Mharcaidh

Performance measure [−]

E∗
NS,Q 0.85/0.86/0.84 0.74/0.74/0.73 0.72/0.72/0.73

AIC∗ 4429/4478/4512 4974/4989/5001 686/694/695

DE 0.55 0.69 1.01

(0.55–0.66) (0.69–0.75) (1.01–1.09)

ENS,Q 0.82 0.73 0.64

(0.61–0.87) (0.65–0.77) (0.37–0.74)

ENS,logQ 0.80 0.81 0.58

(0.58–0.85) (0.70–0.89) (0.43–0.71)

EV,Q 0.65 0.57 0.63

(0.39–0.66) (0.49–0.61) (0.53–0.70)

ENS,C 0.79 0.77 0.47

(0.71–0.83) (0.57–0.81) (0.39–0.52)

EV,C 0.80 0.88 0.87

(0.67–0.83) (0.78–0.91) (0.86–0.93)

Flux contributions [−]

Qtot 0.85 0.77 0.66

(0.83–0.86) (0.75–0.79) (0.63–0.70)

QOF 0.14 0.03 0.00

(0.05–0.20) (0.01–0.05) (0.00–0.00)

QSF 0.68 0.60 0.20

(0.55–0.74) (0.47–0.64) (0.15–0.25)

QSS 0.03 0.14 0.46

(0.03–0.20) (0.11–0.26) (0.41–0.52)

Etot 0.15 0.23 0.34

(0.14–0.17) (0.21–0.25) (0.30–0.38)

ESI 0.00 0.12 0.00

(0.00–0.00) (0.06–0.13) (0.00–0.00)

ESU 0.15 0.11 0.34

(0.14–0.17) (0.10–0.15) (0.30–0.38)

∗ Performance measures for the three best tested model structures for each catchment
based on 5-yr calibration periods (1 October 1994–30 September 1999).

inclusion of an interception component in the model. Snow

was also found to be negligible as significant parts (> 50 %)

of the catchment did only experience negative temperatures

in 2 % of the time steps. BU11 at Loch Ard, while being

represented by a similar core model structure as COIR and

extended only by additional preferential recharge RP to SS

(Fig. 3b), required the incorporation of an interception com-

ponent in the model to ensure an adequate description of

the hydrograph dynamics. It can be justified by the com-

paratively higher proportion of forest cover, ∼ 20 % lower

annual precipitation and ∼ 20 % higher potential evapora-

tion (Table 1). Although, fast runoff processes are dominant,
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base flow contributions sustained by SS are more significant

(14 %) here than at COIR, which can be linked mostly to the

more subdued topography (Table 4). Further, approximately

a quarter of the incoming precipitation leaves the catchment

by combined interception evaporation and transpiration.

The hydrological function of the MHAR catchment is

markedly different to the other two in that its higher pro-

portion of deep and more freely draining soils entail a more

damped response in the stream flow, which is thus to a large

part generated by groundwater. The core model structure of

the catchment accounts for the importance of groundwater

using a lag function hS for fluxes between SU and SS in place

of lag function hF and by the incorporation of preferential

recharge to SS (Fig. 3c). In addition, although about 20 % of

water entering the catchment leaves along preferential flow

pathways, no second fast component such as overland flow

could be identified as significant. In spite of the compara-

tively high proportion of precipitation leaving the catchment

by evaporative fluxes (34 %), the absence of a significant pro-

portion of forest cover and the dominance of relatively thin

heather moorland vegetation are evidence for a lower influ-

ence of interception evaporation. As the inclusion of inter-

ception in the model structure does not improve the results

it is thus effectively negligible for stream flow modeling. In

contrast to the other two sites, and due the sub-arctic climate

of the MHAR significant parts of the catchment (> 50 %)

are exposed to temperatures below freezing in ∼ 15 % of the

time, resulting in the need for a snow component to cap-

ture the relevant hydrograph features during winter and early

spring.

4.2 Mixing models

The two mixing model scenarios (as discussed in Sect. 3.3),

complete (CM; complete mixing in all model components)

and partial mixing (PM; dynamic partial mixing in SU,

static partial mixing in SS and complete mixing in the re-

maining model components), were tested in the three study

catchments. While the PM models generally outperformed

the CM in all catchments, the degree to which they did so

strongly varied. At COIR the performance of the CM model

(ENS,C = 0.76) only slightly improved to ENS,C = 0.79 for

the PM model. The parameters of dynamic PM (µCM,SU,

σCM,SU) resulted in dynamic PM coefficients (Eq. 28)

that differed only slightly from unity (0.98 ≤ CM,SU ≤ 0.99,

Fig. 3d). The fact that the degree of mixing is close to CM

can be explained by high turnover rates in SU, due to the ex-

tremely wet climate and low SUmax . Thus, the water in SU is

constantly renewed and the composition of partially mixed

water is therefore close to the composition of completely

mixed water, which is also reflected by the relatively wide

parameter ranges of the PM parameters µCM,SU and σCM,SU

(Table 3). Although the static partial mixing coefficient for

SS (CM,SS) is also characterized by a rather high degree of

equifinality, caused by the limited importance of fluxes from

SS, it remains clearly below unity, supporting the PM as-

sumption for SS.

Consequently, lower precipitation rates and higher soil

moisture capacity resulted in a clearer distinction between

CM and PM models in the BU11 catchment. The PM model

improves the representation of tracer dynamics compared to

the CM model with an increase of ENS,C from 0.69 to 0.77.

The increased importance of PM processes in BU11 is fur-

ther evidenced not only by lower mixing parameter values,

which result in dynamic PM coefficients CM,SU (Eq. 28) be-

low unity (0.89 ≤ CM,SU ≤ 0.95, Fig. 3d), but also by the

somewhat reduced parameter ranges (Table 3). As at COIR,

low and comparably constrained values of CM,SS indicate the

importance of PM in SS.

Clearest evidence for the suitability of the PM model was

found for the MHAR catchment. ENS,C increased from 0.32

for the CM model to 0.47 for the PM model (Table 4).

The well constrained dynamic mixing parameters (µCM,SU,

σCM,SU) resulted in the CM,SU ranging between 0.28 for the

wettest conditions and 0.79 for the driest conditions (Fig. 3d).

Likewise, the static partial mixing coefficient also takes on a

well-identifiable, low value (Table 3). The importance of dy-

namic partial mixing in SU in the study catchments hence

appears to be related mostly to the available soil moisture

storage capacity in combination with climatic variability. In

other words, the more marked the fluctuations in the soil

moisture content over time, the better the dynamic PM pro-

cesses can be identified and the clearer the distinction from

CM models. Note that the reduced ENS,C at MHAR is partly

an artefact of the low signal-to-noise ratio, caused by a high

degree of damping, in the stream tracer signal (Hrachowitz

et al., 2009b). Closely linked to this, one of the frequently

discussed disadvantages of tracers like Cl− is the limited de-

tectable variation in the observed stream tracer signal for

water older than 4–5 yr (e.g. Stewart et al., 2010). As the

highest contributions of such old water are generally under-

stood to be generated by groundwater (here: SS), it is thus

frequently difficult to identify the passive mixing storage as-

sociated with SS within limited uncertainty (e.g. Dunn et al.,

2007; Fenicia et al., 2010; Birkel et al., 2011a), which is re-

flected in the relatively wide parameter ranges of SP,SS (Ta-

ble 3). Interestingly, little differences in the feasible ranges of

SP,SS were found between CM and PM models (not shown).

Note that for consistency and brevity, the following analysis

of water age distributions is focused on the results of the PM

models while results of CM models are discussed for com-

parative reasons only.

4.3 Flux water age distributions pF

The modelled age distributions of different flux components

leaving the three study catchments, shown as temporally av-

eraged, unweighted distributions for each of the pre-defined

four catchment wetness conditions (see Sect. 3.7 and Fig. 5)

have markedly different characteristics (Fig. 6) which largely
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Fig. 6. Temporally averaged, unweighted flux water age distributions pF for all runoff generating components of the three study catchments

for each of the four pre-defined hydrological regimes. The averages were constructed from the median water ages for all time steps within

the respective hydrological regime. CM indicates results from the complete mixing scenario and PM from the partial mixing scenario. The

panels below the first row show the full results of PM scenarios and only where significant differences were found, the temporally averaged,

unweighted results of the CM scenario constructed from the median of all values for the entire time series is given (grey, dash-dotted line) in

addition. The color code of the lines is corresponding to the four hydrologic regimes defined in Fig. 5: red (dry), yellow (wetting-up), green

(wet) and blue (drying-up).

reflect the different levels of attenuation in the tracer input–

output relationship (Fig. 2). Note that in Fig. 6 some pF do

not add up to unity as due to computational limitations only

water younger than 5 yr could be tracked. Thus, the miss-

ing difference to unity represents the proportion of water in

runoff older than 5 yr. Depending on the antecedent wetness

conditions, on average between 65 and 96 % of the water at

the COIR catchment outlet is estimated to be younger than

100 days and up to 20 % is estimated to be older than 5 yr

for both CM and PM (insets Fig. 6.1–2). In this catchment

the water age distributions in the total runoff, pF,Qtot, exhibit

a clear dual pattern, as previously demonstrated by others

(e.g. Morgenstern et al., 2010; Roa-Garcia and Weiler, 2010).

This reflects the abrupt switches between fast (QOF, QSF)

and slow (QSS) runoff contributions: runoff younger than

∼ 1 yr is predominantly generated as QOF and QSF, while

runoff water older than that can almost exclusively be at-

tributed to QSS. This is illustrated by the pF distributions

for the different flow components. While almost 100 % of

the water in QOF and QSF is inferred to be younger than

100 days (Fig. 6.3–4), ∼ 60 % of QSS is estimated to be

older than 5 yr (Fig. 6.5). Due to the dynamic mixing co-

efficient CM,SU being close to unity, the age distributions of

water generated as QOF and QSF (pF,OF and pF,SF) by PM

are effectively indistinguishable from those obtained by CM.

In contrast, the break in pF,QSS
at around 200 d (Fig. 6.5) is a

consequence of the static PM process in SS (Eqs. 25 and 26):

it can be observed that PM produces higher fractions of both,

relatively young and very old water compared to CM. The

close-to complete mixing in SU in combination with the low
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Fig. 7. Temporally averaged, unweighted flux water age distributions pF for all evaporative processes in the three study catchments (1 – Allt

Coir nan Con, 2 – Allt a’Mharcaidh and 3, 4 – Burn 11) for the four pre-defined hydrological regimes. The averages were constructed from

the median water ages for all time steps within the respective hydrological regime. The figures show the full results of the PM scenarios and

only where significant differences were found, the temporally averaged, unweighted results of the CM scenario constructed from the median

of all values for the entire time series is given (grey, dash-dotted line) in addition. The color code of the lines is corresponding to the four

hydrologic regimes defined in Fig. 5: red (dry), yellow (wetting-up), green (wet) and blue (drying-up).

contributions of QSS to total runoff Qtot, however, make this

effect negligible for pF,Qtot . (Fig. 6.1–2). Consequently, at

COIR the relatively long tails of pF,Qtot , i.e. the significant

proportions of “old” water in Qtot, are almost exclusively

due to the switches between and the relative importance of

individual processes active at different timescales, i.e. QOF,

QSF and QSS, respectively. The age distribution of the runoff

observed at the outlet, pF,Qtot , thus strongly reflects the fea-

tures of pF,OF and pF,SF on the one hand as well as pF,SS on

the other hand. In the light of the minor contributions of QSS

to Qtot in COIR this supports evidence that even very limited

groundwater contribution to runoff can have considerable ef-

fects on the tail-end of pF,Qtot and thus on the moments of

the water age distributions in runoff (e.g. MTT; Dunn et al.,

2007; Stewart et al., 2012).

At the other extreme, the MHAR catchment is character-

ized by a damped response (Fig. 2) and the dominance of

water generated from SS (Table 4) exhibits water age distri-

bution (pF) characteristics markedly distinct from COIR. De-

pending on antecedent wetness, only 12 to 37 % of the mod-

eled stream flow is on average younger than 100 days and up

to 60 % is older than 5 yr for the PM model (inset Fig. 6.12),

which is significantly higher than the values obtained from

the CM model (inset Fig. 6.11). Although, there is a break

in pF,Qtot at about 30 d in the PM model (Fig. 6.12), it has

a different origin than both the breaks in pF,Qtot in the CM

model (Fig. 6.11) and at COIR (Fig. 6.1–2). This can be in-

ferred by comparing pF,Qtot of the PM and CM models. CM

results in a quite subtle break in pF,Qtot at ∼ 200 d, created

by the relatively smooth transition from QSF to QSS domi-

nated runoff, as in the MHAR the overall proportions of fast

and slow processes contributing to runoff are more balanced

than at COIR (Table 4). Unlike for CM, the inflections in

the age distributions of the flux components QSF and QSS,

pF,QSF and pF,QSS for PM are very similar, both exhibiting

very early breaks (Fig. 6.14–15). In the PM model, the break

in pF,Qtot at ∼ 200 d is thus almost completely masked by the

more pronounced break at ∼ 30 d (Fig. 6.12) caused mainly

by partial mixing in SU and SS according to the coefficients

CM,SU and CM,SS ≪ 1 (Table 3).

In contrast, the modeled water age distributions pF at

the BU11 catchment, which is characterized by intermedi-

ate modeled contributions of QOF, QSF and QSS to Qtot (Ta-

ble 4) and a significant degree of partial mixing (Table 3),

show clear evidence of the influence of both the switching be-

tween flow processes as well as partial mixing on the shape of

pF,Qtot (Fig. 6.6–10). PM is responsible for a break at ∼ 20 d,

which is not present in the pF obtained from the CM model.

The switches between the runoff processes QOF/QSF and

QSS, on the other hand, cause a second, smoother break at

∼ 500 d.

Water leaving the catchment along evaporative flow paths

can originate from different pools than runoff generating wa-

ter, as previously discussed in detail elsewhere (e.g. Botter et

al., 2010; Van der Velde et al., 2012). Transpiration, which

was here conceptualized as water tapped from the soil ma-

trix of the root zone SU as well as from preferential flow

paths (Eqs. 10 and 18), is characterized by modeled water age

distributions pF,ESU that closely resemble pF,QOF
and pF,QSF

(cf. Figs. 6.4, 9, 14 and 7.1–3). The reason for this being

that both, QOF and QSF, equally draw water directly from

model component SU. These fluxes are subsequently only
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subject to limited mixing in SF, where, due to the conceptu-

alized absence of further passive mixing volumes, no signif-

icant amounts of older water are stored. However, transpira-

tion is mainly drawn from the soil matrix which stores water

of different age, while much of the water that generates pref-

erential flow and preferential recharge can bypass the matrix

without mixing according to the dynamic partial mixing co-

efficient CM,SU. Therefore, the high modeled proportions of

very young water (< 20 d) found in QSF and QSS at MHAR

(Fig. 6.14–15) do not occur in ESU (Fig. 7.2). Likewise, in

the case of complete mixing, pF,ESU is shifted towards higher

modeled proportions of younger water as, due to CM,SU = 1,

more “new” water enters the soil matrix and mixes with the

resident water. A different aspect is the incorporation of inter-

ception evaporation ESI as individual process, e.g. BU11. As

shown in Fig. 7.3–4, the inferred age signatures of ESU and

ESI are significantly different from each other. All the water

in ESI is estimated to be younger than ∼ 10 d as the maxi-

mum storage capacity in model component SI (Imax, Table 3)

roughly reflects the average evaporation rates. The small size

of SI as compared to the high precipitation rates throughout

the year further ensures short turnover times in SI as “old”

water in SI is quickly mixed and replaced by “new” precip-

itation. In general it can be said that, depending on the size

of SI, the season and antecedent wetness, ESI can remove

significant proportions of very young water from the system

and can thus emphasize wetness related changes in all model

component pFs (see Sect. 4.5). In many rainfall–runoff mod-

els interception evaporation is not explicitly considered as

an individual process (cf. Savenije, 2004) or it could not be

identified as a dominant process in the rainfall–runoff sys-

tem, like in the COIR and MHAR. However, it should be

noted, that interception evaporation is always happening, al-

beit to varying degrees. Hence, incorporating the process will

in many cases not significantly influence the modelled stream

flow. However, as tested for COIR (not shown), omission of

the process can introduce an important bias in our under-

standing of transport processes with direct implications for

surface contamination with evaporative substances such as

aqueous solutions of volatile compounds.

Clearly, the pattern of modeled water age distributions pF

shown here are sensitive to both, the chosen model structures

and the mixing assumptions. However, the results highlight

the need for a more careful characterization of the relevant

flow paths in a catchment if the system as a whole wants to

be understood. In spite of uncertainty in the modeling pro-

cess, it can be argued that depending along which flow paths

water is routed through the catchment, its age distribution pF

can exhibit distinct features, highlighting the importance of

non-linearity in transport processes. Further it can be noted

that the tail behavior of pF, a crucial characteristic for a bet-

ter understanding of catchment scale soil and groundwater

contamination dynamics (cf. Feng et al., 2004), is the re-

sult of the subtle but complex feedback between flow path

connectivity and mixing processes, depending on the hydro-

logical functioning of a given catchment.

4.4 Resident water age distributions pR

The modelled resident water age distributions of different

storage components are shown in Fig. 8 as temporally av-

eraged, unweighted distributions for each of the pre-defined

four catchment wetness conditions (see Sect. 3.7 and Fig. 5).

Note that also here in Fig. 8 some pR do not add up to

unity as due to computational limitations only water younger

than 5 yr could be tracked. Thus, the missing difference to

unity represents the proportion of stored water older than

5 yr. While in general pR reflects the overall pattern of pF,

the modeled proportion of younger water is reduced depend-

ing on the partial mixing coefficients. At COIR, the esti-

mated age distribution pR,Stot of all the water stored in the

catchment (Fig. 8.1) is characterized by the same breakpoint

at ∼ 200 d as pF (Fig. 6.2), as this is a mere indication of

the process variability in this catchment (see above). How-

ever, pR is considerably shifted towards older water, with

only ∼ 15 % of the total water stored in the catchment be-

ing younger than 100 d and ∼ 70 % older than 5 yr. This shift

towards older water in the modeled pR is almost entirely at-

tributed to the substantial amounts of old water stored in and

only slowly released from SS. The pRs of water stored in SU

and SF (Fig. 8.2–3) are closely corresponding to the pFs of

these storage components, since they are both subject to ef-

fectively complete mixing. In contrast, the high modeled pro-

portions of water younger than ∼ 200 d present in pF,SS are

not present in pR,SS, where only ∼ 2 % of water is younger

than 100 d and 85 % is older than 5 yr (Fig. 8.4).

At BU11 the shift towards older water is even more sig-

nificant (Fig. 8.5–8), as the amount of water stored in the

passive storage SP,SS outweighs the amount of modeled wa-

ter stored elsewhere in the catchment. In addition, the limited

estimated recharge to SS (Pmax, Cp; Table 3) further prevents

faster turnover rates, resulting in ∼ 93 % of the total water

stored in the catchment being older than 5 yr (Fig. 8.5). Sim-

ilarly, pR,Stot at MHAR (Fig. 8.9) suggests that ∼ 86 % of the

stored water is older than 5 yr. However, in spite of the large

modeled passive storage SP,SS, relatively high recharge rates

to SS caused by the more freely draining soils (Pmax, Cp; Ta-

ble 3), result in faster turnover of water in SS than at BU11

(Fig. 8.12). The significant level of partial mixing in SU at

MHAR produces a particular feature in pR,SF. Since partial

mixing allows very young water to bypass SU and reach SF

without further mixing and because SF is conceptualized as

completely mixed, modeled water stored in SF preserves the

high proportions of very young water leaving SU (Fig. 8.11).

Yet, due the small total volume of modeled water stored in

SF compared to the total amount of water in the system, the

influence of these early peaks in pR,SF is negligible in pR,Stot

(Fig. 8.9).
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Fig. 8. Temporally averaged, unweighted resident water age distributions pR for all the total catchment water storage (Stot) and the individual

storage elements SU, SF and SS for the PM scenarios of the three study catchments for each of the four pre-defined hydrological regimes.

The averages were constructed from the median water ages for all time steps within the respective hydrological regime. The color code of

the lines is corresponding to the four hydrologic regimes defined in Fig. 5: red (dry), yellow (wetting-up), green (wet) and blue (drying-up).

Although influenced to a certain degree by the mixing as-

sumption, the inferred resident water age distributions pR

were found to be mainly controlled by the estimated recharge

to SS and the water stored in SP,SS, consistent with what was

reported by Dunn et al. (2007) and Heidbüchel et al. (2012).

The importance of SP,SS together with its frequently limited

identifiability (e.g. Birkel et al., 2011a) make it the most

important source of uncertainty for pR as discussed in the

Mixing models section. Notwithstanding these uncertainties,

clear differences between pF and pR for catchments rep-

resented by multi-component models and/or partial mixing

were apparent with the age of resident water being signifi-

cantly higher than the age of water released from the catch-

ment. In the potential presence of truly immobile or stag-

nant water (Zuber, 1986), i.e. very deep groundwater which

is not affected by mixing processes, resident water is likely to

be considerably older than the age modeled here using Cl−.

Note, however, that the age of such deep, stagnant groundwa-

ter bodies can only be estimated by direct borehole sampling

using tracers such as tritium or CFCs. The results strongly

emphasize the persistence of water in catchments and their

resulting long memory (cf. Kirchner et al., 2000). In other

words and in contrast to the common understanding, water

stored in a catchment can be considerably older than wa-

ter released from a catchment, both of which are crucial as-

pects in attempts to better understand how catchments re-

tain and release water (cf. Soulsby et al., 2009; McNamara

et al., 2011). Furthermore, the results suggest that the long-

term near-chemostatical behavior reported for a considerable

range of catchments (e.g. Godsey et al., 2009; Basu et al.,

2010) could at least partially be explained by the persistence

of water, and thus tracer, stored especially in SP,SS of a catch-

ment. As can be seen in pF (Fig. 6.5, 6.10 and 6.15) this wa-

ter is then only released at extremely low rates over very long

time periods (see also Sect. 4.7).

4.5 Transit time distributions pT

Precipitation entering a catchment is routed through the sys-

tem along varying flow paths according to the transit time

distribution pT (Eq. 34) and it can leave the catchment over

different exit routes such as runoff or evaporative fluxes. Note

that in the following (Fig. 9), pT does not refer to the actual

conditional transit time distributions (i.e. they do not add up

to unity) pT,Q and pT,E (Eq. 34) but to proxies, which for-

mally are conditional finite measures (e.g. Bogachev, 2007)

or, more casually, two parts of the joint distribution of pT,tot
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Fig. 9. Temporally averaged, unweighted proxies (i.e. conditional finite measures) for transit time distributions pT for two exit routes (runoff

and evaporative fluxes) along which incoming precipitation inputs are routed through the system for the three study catchments for each of

the four pre-defined hydrological regimes according to the PM scenarios. The averages were constructed from the median water ages for all

time steps within the respective hydrological regime. The color code of the lines is corresponding to the four hydrologic regimes defined in

Fig. 5: red (dry), yellow (wetting-up), green (wet) and blue (drying-up).

resulting from Qtot and Etot. This was necessary because no

scaling factors for computing the actual conditional transit

time distributions were available as, due to the computational

tracking limit of 5 yr, most of the incoming precipitation sig-

nals did not completely leave the catchment after that time

period. It was thus only possible to show which proportions

of incoming signals left the catchment at which time and over

which exit routes. These proxies are functionally the same as

using actual distributions, with the only difference that they

do not add up to unity. The distribution proxies shown in

Fig. 9 are unweighted, temporal averages for each of the pre-

defined four catchment wetness conditions (see Sect. 3.7 and

Fig. 5).

The relative importance of runoff and evaporation can,

depending on the hydrological function of a catchment, be

highly sensitive to the wetness conditions before and after the

moment a precipitation signal enters a catchment. At COIR,

as shown in Fig. 9.1–2, on average only ∼ 65 % of the pre-

cipitation entering during dry periods was estimated to have

left the catchment after 5 yr. Thus, water entering the catch-

ment at a given time during a dry period eventually exits the

catchment to roughly equal proportions as runoff (∼ 35 %;

Fig. 9.1) and evaporative fluxes (∼ 30 %, Fig. 9.2). At early

stages, i.e. <∼ 50 d, after entering evaporation is the domi-

nant flux, while runoff becomes the dominant flux thereafter.

Due to the low modeled water content in SU during dry peri-

ods, considerable proportions of new precipitation are stored

in SU and mixed with the limited amounts of older resident

water in the soil matrix, becoming available for ESU. Recent

precipitation released from SU to recharge SS is only slowly

discharged as QSS as a result of mixing with the relatively

large volume of older water stored in SS. In dry periods,

evaporation rates higher than runoff rates from QSS together

with the lower amount of old water available for mixing in

SU therefore control the shapes of pT,Qtot and pT,Etot , respec-

tively. During wet periods, the pattern observed during dry

periods is inverted. On average ∼ 76 % of precipitation en-

tering the catchment leaves the system within 5 yr. The pT in

wet periods is subject to a strong bias toward runoff which

is responsible for routing ∼ 71 % (Fig. 9.1) of the incom-

ing precipitation signals through the system, as opposed to

only ∼ 5 % of the precipitation leaving as evaporative fluxes

(Fig. 9.2). Responsible for this shift are the markedly in-

creased relative importance of QSF and QOF over ESU in

wet periods together with increased PM induced bypass flow

in SU. While the general patterns of wetness induced dynam-

ics in pT are consistent across all three study catchments, the

extent to which pT changes with changing wetness depends

on the hydrological functioning of the individual catchments.

For example, at BU11 on average ∼ 95 % of precipitation en-

tering the catchment during dry periods has left after 5 yr.

Due to the conceptualized presence of interception evapora-

tion, the model suggests that only minor proportions of pre-

cipitation actually reach SU by overflow from SI. Most of the

incoming precipitation (∼ 75 %) thus rapidly exits the sys-

tem as ESI (Fig. 9.4). Significant amounts of new water ac-

tually reaching SU are subsequently leaving as ESU, result-

ing in a modeled average total of ∼ 90 % of incoming pre-

cipitation leaving as evaporative fluxes during dry conditions

while only minor fractions of new precipitation are released

as runoff (∼ 5 %) as discussed above (Fig. 9.3). In contrast,

the little variations of pT at MHAR are attributed to the less

pronounced switches between the processes involved and the
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increased importance of QSS as runoff generating flux across

changing wetness conditions.

Changes in catchment wetness not only influence the rel-

ative importance of different exit routes but can also lead to

changes in the shape of pT. The question which shapes pT

can take on is a matter of ongoing discussion (e.g. Kirch-

ner et al., 2000; McGuire and McDonnell, 2006; Dunn et

al., 2010). While some argue that pT is generally character-

ized by sharp initial peaks (e.g. Kirchner et al., 2000; Godsey

et al., 2010), Dunn et al. (2010), using a conceptual model

could only reproduce delayed peaks in pT. Here it was found

that pT can potentially be characterized by both shape types

(e.g. Fig. 9.1), which corresponds well with the findings of

Hrachowitz et al. (2010b) who suggested that the changes of

shape of pT is partly controlled by changes in the wetness

condition.

Analysis of the three study catchments also showed that

there is a further important aspect of shape which is rarely re-

ported. Water or other water-like, volatile substances affected

by evaporation are routed to the stream differently than dis-

solved solids (e.g. Cl−) which are unaffected by evaporation.

Only when no evaporation is occurring the following holds:

pT,W|Q = pT,W = pT,S, (36)

where pT,W|Q is the water transit time to runoff (i.e. the wa-

ter transit time distribution conditional on runoff), pT,W is the

transit time distribution of water and pT,S is the transit time

distribution of a dissolved solid. In the presence of evapo-

rative fluxes the three distributions cease to be equal. With

increased evaporation the distribution of water routed to the

stream, pT,W|Q, is increasingly different from pT,S, the dis-

tribution of solids routed to the stream. As a thought experi-

ment consider the very simple example of an isolated precip-

itation input signal with a given solute concentration to a lin-

ear, initially empty, well-mixed reservoir. If no evaporation is

present, the water in the reservoir is characterized by a con-

stant solute concentration as the reservoir is draining, thus

equally removing water and solute. However, if evaporation

is present the solute concentration in the reservoir increases

with each time step. In the most extreme case the solute con-

centration in the water becomes too high so as that no further

dissolution is possible. If then all the water of the precipita-

tion signal has left the reservoir either by runoff or by evapo-

ration, a residue of formerly dissolved solids remains locked

in the reservoir and can only be removed by being dissolved

with future input water. This extreme hypothetical example

clearly illustrates that the pT,S is different to pT,W|Q in the

presence of evaporation. The effect is further illustrated by

an example from BU11 in Fig. 10. It can be seen that the

transit times of water to the stream are shorter than those

of solutes, corresponding to the given hypothetical example.

Clearly, the degree of difference between pT,S and pT,W|Q is

related to the proportion of evaporation to runoff. For a low

evaporation, high runoff period (e.g. persistent winter rain)

the difference between the two distributions is comparatively

Fig. 10. Differences between the water transit time distribution to

runoff (pT,W|Q) and the transit time distribution of a dissolved solid

(pT,S) for signals entering during a dry period and a wet period,

respectively.

small, whereas for a high evaporation, low discharge period

(e.g. low yield summer precipitation) it is becoming more

important. It can be argued that since these differences could

already be distinguished in the cool and humid Scottish cli-

mate, the decoupling of pT,S and pT,W|Q is likely to be even

more pronounced in warm, semi-arid regions. For meaning-

fully assessing contamination effects it is therefore crucial to

consider which type of contaminant (volatile or solid) needs

to be interpreted. Note that accounting for Cl− turnover by

plants could potentially change the results to a certain extent,

which however cannot be reliably quantified with the avail-

able data.

4.6 Temporal dynamics and effects of wetness

conditions on pF

To explore the effects of changing wetness conditions on

modeled pF, the unweighted median pFs (i.e. temporally av-

eraged) for the four contrasting analyzed hydrologic regimes

(dry – wetting-up – wet – drying-up; cf. Fig. 5) over the

entire modeling period are also shown in Fig. 6. For COIR

the dry periods are characterized by an elevated proportion

of modeled water older than 1000 d (Fig. 6.2), reflecting the

importance of QSS during these periods. As soon as the sys-

tem is wetting up, runoff is almost exclusively composed of

water younger than 100 d, indicating a rapid switch towards

QSF and QOF and rendering the QSS contributions negligi-

ble. Under drying-up conditions, when the contributions of

QSF and QOF are reduced, the importance of old water grad-

ually increases again. While pF,QSS
is relatively insensitive

to changes in the hydrologic regime (Fig. 6.5), the modeled

age distributions in QSF (Fig. 6.4) and ESU (Fig. 7.1) show

some variation due to the lower precipitation rates and con-

sequently the reduced availability of very young water in the

system during dry periods. Very similar patterns were ob-

served for the remaining two catchments (Fig. 6.6–15), with
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Fig. 11. Flux water age distributions pF from the PM scenarios and following a full sequence of hydrologic regimes: dry (red) – wetting-up

(yellow) – wet (green) – drying-up (blue) for the three study catchments. The first row shows the daily precipitation, the second and the third

rows show the normalized states of SS and SF used to define the hydrologic regimes (see Fig. 5). Rows 4 to 8 show the absolute flux of

the respective component (black line), the long-term means and respective standard deviations of the individual fluxes and the color shades

from dark to light indicate the cumulative proportions of water younger than 1d, 10, 100, 1000 d and older than 1000 d contributing to the

individual fluxes at each time step.

the only major difference being that the influence of partial

mixing is more evident in QSF. While during dry periods a

high degree of mixing locks a relatively high proportion of

young water in SU, young water increasingly bypasses SU to

generate QSF under wet conditions in the models (Fig. 6.9

and 6.14). Note, that the general shapes and the wetness in-

duced dynamics of the modeled pF,Qtot at BU11 (Fig. 6.7)

are corresponding well to what was reported by McMillan

et al. (2012) for an adjacent catchment with similar charac-

teristics using a suite of conceptual models from the FUSE

modeling framework (Clark et al., 2008). In addition, the

general pattern of inferred shifts towards younger water ages

with increased wetness due to increased flow path connectiv-

ity is consistent with previous findings from both empirical

and theoretical studies (e.g. McGuire et al., 2007; Botter et

al., 2010; Hrachowitz et al., 2010b; Roa-Garcia and Weiler,

2010; Rinaldo et al., 2011; Birkel et al., 2012a; Segura et al.,

2012).

To further illustrate the temporal dynamics of this rela-

tively complex interplay between dry and wet periods an ex-

ample period with a full sequence of hydrological regimes

following the complete dry – wetting up – wet – drying up

cycle with a total length of ∼ 4 months each is shown in

Fig. 11 for each of the three study catchments. For all three

catchments substantial and rapid changes in the age compo-

sition of stream water can be observed. In general, old water

(> 100 d) dominates stream flow particularly towards the end

of dry periods, while significant contributions of very young

water (< 10 d) characterize wet periods, albeit to different

extent in the individual catchments. Corresponding with the

median pF in Fig. 6.2, at COIR around 60 % of the runoff is

older than 1000 d as soon as contributions from SF become

negligible and runoff generated in SS is the primary source

of stream flow towards the end of the dry period around

15 September 1996 (Fig. 11.4). As soon as the catchment

is starting to wet up after that date, a very fast switch towards
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high contributions of water younger than 10 d occurred in

the model. As a consequence of the low contribution of QSS

(Fig. 11.7) to Qtot under wet conditions the fraction of water

older than 1000 d is rapidly reduced to below 1 % which is

also reflected in Fig. 6.2. With the wetting up of the system

the proportion of water inferred to be older than 100 d gradu-

ally decreases until the drying-up period with the simultane-

ous increase of water younger than 100 d. In addition, as soon

as preferential flow paths in the model (QSF; Fig. 11.6) are

connected to the stream under wetting-up conditions some

water not older than 1 d can enter the stream, enhanced by

intermittent overland flow (QOF) connected to the stream

during high-intensity events. In contrast, the pF of runoff

peaks occurring during dry (e.g. 1 September) and drying-

up (e.g. 18 December) periods show different characteristics.

While the contribution of old water is reduced to a simi-

lar degree as during the wet period, the proportion of water

younger than 10 d is approximately only half of that during

the wet period which is mainly related to the limited amount

of recent antecedent precipitation as well as to QOF being

inactive at that time. Water in QSS, on the other hand, ex-

hibits only little variation throughout the sequence of chang-

ing hydrologic regimes (Fig. 11.7). Drawing water from the

same pool as QSF and due to CM,SU ∼ 1, the dynamics in the

modeled age distribution of ESU (Fig. 11.8) closely reflect

those in QSF. Although the general pattern observed in the

modeled response at COIR apply also for BU11 and MHAR

(Fig. 11.9–24), the latter two catchments are also character-

ized by distinctly different details. For example, the inclusion

of an interception component in the model of BU11 allows

considerable fractions of water not older than 1 d to leave the

catchment by interception evaporation (Fig. 11.16), reducing

the modeled contributions of such young water to runoff by

QSF. This effect is especially pronounced during dry summer

periods when potential evaporation is highest. On the other

hand and somewhat counter-intuitively the MHAR with its

damped stream flow and tracer response patterns is character-

ized by high proportions of very young water in all modeled

flow components, while maintaining equally important pro-

portions of very old water (Fig. 11.20). This results from par-

tial mixing in SU, where even under dry conditions ∼ 20 %

of incoming water bypass SU and reach SF and SS via pref-

erential flow paths. Another feature in this catchment is that

during dry periods the proportion of water older than 1000 d

is similar to the one at COIR but although under wetting-

up conditions the switches towards higher proportions of

younger water occur as fast, they are far less pronounced at

MHAR. This is caused by the generally lower estimated con-

tributions of QSF to Qtot as well as by the higher proportion

of old water in SU due to lower precipitation rates which to-

gether with a high estimated storage capacity SUmax result in

reduced turnover rates.

To better understand the wetness induced dynamics pF,

represented by the median of the 25th percentiles of all

pF,Qtot (i.e. TT25) during the distinct hydrological regimes,

was plotted against the normalized SF and SS to investigate

how TT25 evolves along sequences of dry – wetting-up – wet

– drying up periods (Fig. 12). Note that TT25 was used as

for computational reasons water was only tracked for 5 yr,

making a meaningful characterization of TT50 or MTT im-

possible for dry periods at MHAR. TT25 in all three catch-

ments was found to be characterized by considerable hys-

teresis effects. During dry periods TT25,dry shows the highest

value, followed by a relatively rapid decline to TT25,wet-up.

This is caused by a relatively rapid modeled replacement of

old water in SU (Fig. 8) and increasing proportions of flows

bypassing SU due to CM,SU. As a consequence SF fills up

with young water which results not only in increased flow

contributions from QSF and QOF to Qtot but also higher pro-

portions of young water in these contributions. Once signif-

icant and persistent recharge of SS with young water is es-

tablished, the lowest value, TT25,wet, is eventually reached

in the wet season, when both, fast and slow runoff pro-

cesses are active. As soon as precipitation decreases in the

drying-up period, the contributions from QSF and QOF also

decrease. QSS, and thus older water, becomes more impor-

tant, resulting in moderately increased TT25,drying-up. How-

ever, the still high soil moisture content in SU and the com-

paratively young age of this water can quickly trigger rela-

tively high contributions of young water in the case of mod-

erate to high precipitation, either by mixing and release or

direct bypass flow to SF. Only after prolonged dry periods,

when only little water is routed to SF and most either re-

mains locked in SU or percolates to SS, TT25 recovers to

TT25,dry. On the rising limb, i.e. under wetting-up condi-

tions, TT25 is thus dominated by fast processes (e.g. pref-

erential flow) while on the falling limb it is controlled by

slow processes (e.g. groundwater flow). This hysteresis un-

derpins the importance of the interplay between dominant

flow processes, mixing processes and age distributions of wa-

ter. It further supports the hypotheses that short-term changes

in stream water chemistry are partly the result of changing

contributions from different components of the system ac-

cording to the wetness state of the system (Kirchner, 2003).

To adequately assess the system response it is therefore not

only necessary to know how much water is stored in the sys-

tem, i.e. antecedent wetness, but also where in the system

the water is retained (e.g. unsaturated zone vs. groundwa-

ter) as this defines which flow process will be active as re-

cently also stressed by Aubert et al. (2013) and McGlynn

et al. (2012). While many studies report similar hysteresis

effects, e.g. in concentration–discharge (Weiler and McDon-

nell, 2006; Gascuel-Odoux et al., 2010; Murphy et al., 2012)

or concentration–location relationships (e.g. Rouxel et al.,

2011), the mechanisms behind them are still poorly under-

stood. The same is true for the dynamic interaction between

flow generating processes. The pattern of flow process con-

nectivity is largely dependent on the topological structure of

a catchment (cf. Zehe and Sivapalan, 2009). However, very

fast switches are reported for a wide range of catchments
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Fig. 12. Evolution of water age, here represented by the median of the 25th percentiles (TT25, colored dots) of all pF,Qtot during the four

distinct hydrological regimes as represented by normalized SS and SF (see Fig. 5). The whiskers represent the 5th and 95th percentiles of all

time steps within a given hydrologic regime. The arrows indicate the direction of the hysteresis. Note, that the rather noisy actual evolution

paths between the median TT25 were omitted for clarity.

and interpreted either as thresholds of intermittent processes

(e.g. Detty and McGuire, 2010; Penna et al., 2011) or results

of continuous processes (e.g. Weiler and McDonnell, 2007;

Hrachowitz et al., 2011b). From the modeled results it can

be suggested that these rapid switches do not only entail fast

changes in runoff sources but also fast switches in the age

composition of runoff under wetting-up, wet and drying-up

conditions since they tap water from different pools, charac-

terized by distinct age distributions.

4.7 Long tails of pF and pT

Previous work suggested that the gamma distribution, char-

acterized by tails longer than those from exponential dis-

tributions for shape parameter α < 1, may be a suitable

TTD for surface water systems. However, attempts to pa-

rameterize pT|Q as well as pF for the three study catch-

ments using gamma distributions were not successful.

Based on Monte-Carlo sampling (106 realizations) with

samples drawn from uniformly distributed prior parame-

ter distributions (0 < α ≤ 2, 0 < β ≤ 100 000), two-sample

Kolmogorov-Smirnov tests suggested that all tested gamma

distribution parameterizations had to be rejected at the 95 %

confidence level. Although gamma distributions could fit the

early parts (< 100 d) of pT|Q and pF well, the modeled tails

of all pT|Q and pF were too long and could thus not be repre-

sented by gamma distributions (not shown). There was rather

evidence that pT|Q and pF could potentially be more ade-

quately represented by a power law distribution, the general-

ized Pareto distribution, as parameterizations could not be re-

jected at the 95 % confidence level, implying long tails in the

formal sense (Asmussen, 2003). The question arising is thus

what is the origin of these longer-than-exponential or pos-

sibly long tails in the sense of power law tails. While some

argued (Kirchner et al., 2000, 2001; Godsey et al., 2010) that

the tails of TTDs are manifestations of fractal 1/f scaling
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which can be explained by catchment-scale advection and

dispersion processes, others pointed out the possibility that

the shapes of TTDs in general and their tails in particular

can be a reflection of the process heterogeneity and flow path

connectivity and thus casting some doubt on the generality

of strict 1/f scaling (Shaw et al., 2008; Hrachowitz et al.,

2010b). Similarly, Birkel et al. (2012b) reasoned that the be-

havior of tails, in the tracer response is an expression of the

process complexity of a given catchment. Here, analyzing the

long tails in pF (Fig. 6) and pT (Fig. 9) with respect to the

modeled processes it is suggested that long tails are the re-

sult of the combined influences of the relative importance

of different flow generating processes and their connectiv-

ity, as well as of the mixing processes in the individual sys-

tem components, as shown above (Sext. 4.3). The discussion

if advection-dispersion (Kirchner et al., 2001) or rather pro-

cess heterogeneity and flow path connectivity are at the core

of long tails in water age distributions is similar to the de-

bates over whether spatial heterogeneity or non-linearity of

the flow generating processes themselves lead to long tails

in the flow response (Harman et al., 2009; Szilagyi, 2009). It

is thus likely that the combined effects of both mechansisms

generate the observed long tails.

In any case, the occurrence of long tails, corresponding

to a long memory of the system, has important implications.

Depending on the reactivity of a contaminant, not only high

short-term contamination loads could potentially be expected

in the stream. Rather, the contaminant will also remain in

the system and cause continuous low level contamination of

the stream for long time periods (e.g. Molenat and Gascuel-

Odoux, 2002; Ruiz et al., 2002a). Therefore, the long tails

of pT|Q and pF suggest that the near-chemostatical behavior

observed in a considerable range of catchments (e.g. Godsey

et al., 2009; Basu et al., 2010) can at least to some extent be

explained by water/tracer storage dynamics as discussed in

Sect. 4.4.

We explicitly acknowledge potentially significant influ-

ences of different sources of uncertainty when using a model

as diagnostic tool, including but not limited to the choice of

model structure, the parameterization as well as the mixing

assumptions. Although these uncertainties can affect a wide

range of details in the analysis (cf. Hrachowitz et al., 2011a;

McMillan et al., 2012), the results of the functional analysis

presented, such as the general influence patterns of wetness

on pF and pT, remain largely unaffected.

5 Conclusions

In this study we used conceptual models to simulate the in-

tegrated stream flow and tracer responses of three contrast-

ing, upland catchments in Scotland. Using the models as

diagnostic tools in a functional comparison, the water and

tracer fluxes were tracked so as to analyze the model internal

response patterns. The main findings of the analysis were as

follows:

1. Partial mixing models were found to perform consis-

tently better than models based on complete mixing, al-

beit to a varying degree, tightly linked to the importance

of the unsaturated zone in a given catchment. However,

the superiority of partial mixing needs to be further

tested in the future potentially with the help of more

data, such as other tracers (e.g. tritium) or estimates

of catchment integrated soil moisture and groundwater

storage changes, to more effectively constrain mixing

parameters.

2. Tracking fluxes through the system showed that the var-

ious components of a model, representing individual

flow processes, can be characterized by fundamentally

different water age distributions. As a consequence, the

wetness dependent connectivity patterns of these dis-

tinct pools of water are responsible for potentially fast

switches in both, the total flux and transit time distribu-

tions, pF and pT.

3. For the three study catchments modeled flux water age

is significantly lower than the age of resident water.

4. Modeled resident water age distributions pR exhib-

ited only limited sensitivity to antecedent wetness com-

pared to pF as the modeled passive groundwater stor-

age SP,SS was substantially larger than event water

amounts, allowing for a considerable buffer capacity,

potentially explaining frequently observed long-term

near-chemostatic behavior of catchments.

5. Modeled flux water age distributions pF were found to

be highly sensitive to variable catchment wetness condi-

tions and exhibited considerable hysteresis effects, de-

pending on the catchment wetness history. While the

water age during wetting-up conditions is controlled by

fast processes (e.g. preferential flow), it is controlled by

slow processes (e.g. groundwater flow) under drying-

up conditions. This non-linearity is caused by the fact

that pF is not only influenced by the total water volume

stored in a catchment but also by how the water is dis-

tributed among the various components of the system

such as the unsaturated zone or the groundwater, at a

given time.

6. Tracking fluxes through the system also revealed that,

although potentially negligible for the runoff response,

the omission of processes such as interception evapora-

tion can result in considerably biased water age distri-

butions. This can be problematic not only for our under-

standing of the system but also for water management

related issues such as assessment of contamination.

7. Depending on the importance of evaporation, water

molecules can exhibit considerably shorter transit times

www.hydrol-earth-syst-sci.net/17/533/2013/ Hydrol. Earth Syst. Sci., 17, 533–564, 2013
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Appendix A

Table A1. List of symbols.

c Tracer concentration [M L−1] QOF Overland flow [L T−1]

CM Mixing coefficient [−] QSS Runoff from slow reservoir [L T−1]

CP Preferential recharge coefficient [−] RF Recharge of fast reservoir [L T−1]

CR Runoff generation coefficient [−] RP Preferential recharge of slow reservoir [L T−1]

ESF Transpiration from fast responding reservoir [L T−1] RS Recharge of slow reservoir [L T−1]

ESI Evaporation from interception reservoir [L T−1] RU Infiltration into unsaturated reservoir [L T−1]

ESU Transpiration from unsaturated reservoir [L T−1] Sa Active storage [L]

KF Storage coefficient of fast reservoir [T−1] SF Storage in fast reservoir [L]

KS Storage coefficient of slow reservoir [T−1] SFmax
Storage capacity of fast reservoir [L]

LP Transpiration threshold [−] SI Storage in interception reservoir [L]

FM Melt factor [L 2−1 T−1] Sp Passive storage [L]

Imax Interception capacity [L] SP,SS Passive storage in slow reservoir [L]

M Snow melt [L T−1] SS Storage in slow reservoir [L]

P Total precipitation [L T−1] SSN Storage in snow reservoir [L]

PE Effective precipitation [L T−1] SU Storage in unsaturated reservoir [L]

pF Flux water age distribution SUmax
Storage capacity in unsaturated reservoir [L]

Pmax Percolation capacity [L T−1] TF Lag time for fast reservoir [T]

pR Resident water age distribution TS Lag time for slow reservoir [T]

PR Rainfall [L T−1] TT Threshold temperature [2]

PSN Snowfall [L T−1] β Shape parameter [−]

pT Transit time distribution µCM Location parameter [−]

PTF Throughfall [L T−1] σCM Shape parameter [−]

QSF Runoff from fast reservoir [L T−1]

to the stream than dissolved solids, e.g. tracers such as

Cl−.

8. It was not possible to reject the hypothesis that the wa-

ter age distributions pF and pT in the three study catch-

ments have power-law tails which are generated by in-

terplay of flow path connectivity, the relative impor-

tance of different flow paths as well as by the mixing

mechanisms.

9. The high age of resident water together with the long

tails in pF and pT suggest that the frequently observed

near-chemostatic conditions in catchments could in part

result from persistence of water in the passive ground-

water storage (SP,SS).

In spite of the need for more detailed experimental analy-

sis of catchment internal processes which will allow more

rigorous hypothesis testing, this study highlights the poten-

tial of customized integrated conceptual models and suitable

mixing assumptions, to increase our functional understand-

ing of system internal transport dynamics and their sensitiv-

ity to catchment wetness states.
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