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Abstract

Aggregating extra features has been considered as an ef-

fective approach to boost traditional pedestrian detection

methods. However, there is still a lack of studies on whether

and how CNN-based pedestrian detectors can benefit from

these extra features. The first contribution of this paper is

exploring this issue by aggregating extra features into CNN-

based pedestrian detection framework. Through extensive

experiments, we evaluate the effects of different kinds of ex-

tra features quantitatively. Moreover, we propose a novel

network architecture, namely HyperLearner, to jointly learn

pedestrian detection as well as the given extra feature. By

multi-task training, HyperLearner is able to utilize the in-

formation of given features and improve detection perfor-

mance without extra inputs in inference. The experimental

results on multiple pedestrian benchmarks validate the ef-

fectiveness of the proposed HyperLearner.

1. Introduction

Pedestrian detection, as the first and most fundamental

step in many real-world tasks, e.g., human behavior analy-

sis, gait recognition, intelligent video surveillance and au-

tomatic driving, has attracted massive attention in the last

decade [11, 26, 10, 35, 33, 30]. However, while great

progress has been made by deep convolutional neural net-

works (CNNs) on general object detection [24, 19, 7, 14],

research in the realm of pedestrian detection remains not as

cumulative considering two major challenges.

Firstly, compared to general objects, pedestrians are less
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Figure 1. (a) Examples of true pedestrians and hard negative sam-

ples of low resolution. Without extra semantic contexts, it is diffi-

cult to discriminate between them, even for human eyes. (b) Ex-

ample of pedestrians in crowded scenes, where CNN-based de-

tectors fail to locate each individual without low-level apparent

features.

discriminable from backgrounds. In other words, the dis-

crimination relies more on the semantic contexts. As shown

in Figure 1(a), usually appearing in low resolution (less than

20×40 pixels), pedestrians together with the cluttered back-

ground bring about hard negative samples, such as traffic

signs, pillar boxes, and models in shopping windows, which

have very similar apparent features with pedestrians. With-

out extra semantic contexts, detectors working with such

low-resolution inputs are unable to discriminate between

them, resulting in the decrease in recall and increase in false

alarms.

How to accurately locate each pedestrian is the second
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Figure 2. A demonstration of various channel features. Includes: apparent-to-semantic features, temporal features, depth features.

challenge. Figure 1(b) is one showcase in practical applica-

tions where the pedestrians stand close in a crowded scene.

As a result, detectors typically fail to locate each individual

and hence produce a dozen of false positives due to inac-

curate localization. This problem becomes even worse for

CNN-based detectors since while convolution and pooling

layers generate high-level semantic activation maps, they

also blur the boundaries between closely-laid instances. An

intuitive alternative to address the problem is to make use

of extra low-level apparent features (e.g. edges), for the pur-

pose of solving the localization drawbacks by providing de-

tectors with detailed apparent information.

In addition, in many applications, detectors can also ben-

efit from other information, like depth when the camera is

equipped with a depth sensor, or temporal information when

a video sequence is input. However, it is still unclear how

these information can be utilized by detectors, especially

CNN-based detectors.

Given the observations above, one question comes up

naturally: what kind of extra features are effective and how

they actually work to improve the CNN-based pedestrian

detectors? In this paper, we aim to answer this question

and explore the characteristics of different extra features in

pedestrian detection task. This paper contributes to:

• Firstly, we integrate extra features as input channels

into CNN-based detectors. To investigate three groups of

channel features: apparent-to-semantic channels, tempo-

ral channels and depth channels, extensive experiments

are carried out on the KITTI pedestrian dataset [26].

• Then, we experimentally analyze both advantages and

disadvantages of different kinds of channel features.

Specifically, we quantify the improvement brought by

different channel features and provide insight into the er-

ror sources.

• Moreover, a novel network architecture, namely Hy-

perLearner, is proposed to aggregate extra features in a

multi-task learning manner. In HyperLearner, channel

features are aggregated as supervision instead of extra

inputs, and hence it is able to utilize the information of

given features and improve detection performance while

requiring no extra inputs in inference. We verify the

effectiveness of HyperLearner on several pedestrian de-

tection benchmarks and achieve state-of-the-art perfor-

mance.

2. Related work

Traditional pedestrian detectors, extended from Viola

and Jones paradigm [27], such as ACF [9], LDCF [22],

and Checkerboards [35], filter various Integral Chan-

nels Features (ICF) [10] before feeding them into a boosted

decision forest, predominating the field of pedestrian detec-

tion for years. Coupled with the prevalence of deep con-

volutional neural network, CNN-based models [17, 33, 2]

have pushed pedestrian detection results to an unprece-

dented level. In [33], given region proposals generated by

a Region Proposal Network (RPN), CNN features extracted

by an RoI pooling layer [13] are fed into a boosted forest;

while in Cai et al. [2], a downstream neural network archi-

tecture is proposed to preform end-to-end detection.

Integrating channel features of different types has been

proved to be useful in many decision-forest-based pedes-

trian detectors. Prior work by Park et al. [23] embeds opti-

cal flow into a boosted decision forest to improve pedes-

trian detectors working on video clips. CCF [32] uses

the activation maps of a VGG-16 [25] network pretrained

on ImageNet [16] as channel feature, while Costea and

Nedevschi [8] utilize the heatmap of semantic scene pars-

ing, in which detectors benefit from the semantic informa-

tion within a large receptive field. However, the problem

whether and how CNN-based pedestrian detectors can ben-

efit from extra features still exhibits a lack of study.

3. Channel features for pedestrian detection

In this section, we empirically explore the performance

boost when extra channel features are integrated into CNN-

based detectors.
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3.1. Preliminaries

Before delving into our experiments, we first describe

the dataset, evaluation metrics and baseline detector we use.

KITTI dataset We choose KITTI dataset [26] for channel

feature analysis considering its possession of pedestrians of

various scales in numerous scenes, as well as the informa-

tion of adjacent frames and stereo data. KITTI contains

7, 481 labeled images of resolution 1250×375 and another

7, 518 images for testing. The training set is further split

into two independent set for training and validation follow-

ing [5]. The person class in KITTI is divided into two sub-

classes: pedestrian and cyclist, both evaluated under PAS-

CAL criteria [12]. KITTI contains three evaluation metrics:

easy, moderate and hard, with difference in the min. bound-

ing box height, max. occlusion level, etc. Standard evalua-

tion follows moderate metric.

Faster R-CNN Our baseline detector is an implementa-

tion of Faster R-CNN [24], initialized with VGG-16 [25]

weights pretrained on ImageNet [16]. It consists of two

components: a fully convolutional Region Proposal Net-

work (RPN) for proposal generation, and a downstream Fast

R-CNN (FRCNN) detector taking regions with high fore-

ground likelihood as input.

Since KITTI contains abounding small objects, we

slightly modify the framework as [30] and [2]. Specifically,

we adjust the number of anchors from 3 scales and 3 ratios

to 5 scales and 7 ratios; besides, all conv5 layers are re-

moved to preserve an activation map of high resolution for

both RPN and FRCNN.

We choose Faster R-CNN not only for its prevalence and

state-of-the-art performance, but also generality: our obser-

vations should remain mostly effective when similar tech-

niques are applied in other CNN-based pedestrian detectors.

3.2. Introduction to channel features

In this section, we introduce the channel features we in-

tegrated into the CNN-based pedestrian detector. Based on

the type of information they carry, the selected channel fea-

tures for integration are divided into three groups: apparent-

to-semantic channels, temporal channels and depth chan-

nels. Figure 2 provides a demonstration of all channels.

Apparent-to-semantic channels This group of channels

includes ICF channel [10], edge channel, segmentation

channel and heatmap channel. The information in these

channels ranges from low-level apparent to high-level se-

mantic.

The ICF channel is a handy-crafted feature channel com-

posed of LUV color channels, gradient magnitude chan-

nel, and histogram of gradient (HOG) channels, which has

been widely employed in the decision-forest-based detec-

tors [9, 22, 34]. Containing only colors and gradients within
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Figure 3. As described in Section 3.3, our Faster R-CNN for chan-

nel feature integration. The side branch takes channel features as

input and generates channel feature representations before con-

catenated with conv4 3.

a local patch, ICF channel represents the most low-level but

detailed information of an image.

The edge channel is extracted from the second and third

layers of HED network [31]. Different with traditional edge

detector such as Canny [3], the HED framework produces

more semantically meaningful edge maps (see Figure 2).

The edge channel is thus considered as a mid-level fea-

ture channel containing both detailed appearance as well as

high-level semantics.

As in [20, 4], a fully convolutional network (FCN) is

trained on MS-COCO dataset [18] to generate the seman-

tic segmentation channel, where each pixel represents the

probability of the category (e.g., person and street) it be-

longs to. The segmentation channel carries higher-level se-

mantic information, while still perserving some detailed ap-

pearance features, i.e., the boundaries between objects of

different categories. However, two closely-laid instances of

same category can not be distinguished from each other in

the segmentation channel without contour of each instance.

Furthermore, to obtain a feature channel with only high-

level semantics, we blur the segmentation channel into the

heatmap channel. By doing so, the clear boundaries be-

tween objects of different categories are also removed and

only high-level information of categories remains.

Temporal channels The temporal features (e.g., optical

flow [1] and motion [29]) have been proved to be benefi-

cial to traditional pedestrian detectors [28, 23] working on

videos. To test their effectiveness in CNN-based frame-

work, we extract optical flow channel as representative us-

ing temporally adjacent frames.

Depth channels With more and more depth sensors em-
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ployed in intelligent systems such as robotics and automatic

driving, the depth information available in these tasks be-

comes an alternative extra channel feature to boost detec-

tors. Instead of using the sparse point clouds captured by

laser radars, we turn to DispNet [21] to reconstruct the dis-

parity channel from stereo images.

3.3. Integration techniques

We integrate channel features by creating a new shal-

low side branch alongside the VGG-16 main stream (see

Figure 3). This side branch consists of several convolution

layers (with kernel size 3, padding 1 and stride 1) and max

pooling layers (with kernel size 2 and stride 2), outputing

an 128-channel activation maps of 1/8 input size, which is

further concatenated with activation map conv4 3. The

concatenated activation map is fed into the RPN and FR-

CNN to preform detection.

We experiment different compositions of the side

branch: the number of convolution layers and the ini-

tial weights (i.e., a random gaussian kernel, or pretrained

weights). The technique we employed to pretrain the side

branch is to train a Faster R-CNN detector which com-

pletely relies on the side branch and intialize the side branch

with the weights from this network.

Model Pedestrian

#Convs Init. W. Mod Easy Hard

O N/A N/A 68.96 73.33 60.43

A 2 random 70.80 78.15 62.16

B 1 random 70.40 75.17 61.92

C 2 pretrained 69.92 77.33 61.65

Table 1. Detection improvement by integrating channel features

on KITTI validation set. Model “O” is our baseline detector.

“#Convs” means the number of convolution layers in the side

branch. “Init. W.” denotes initial weights for the side branch. The

input images are not enlarged.

Summariesed in Table 1, all integration methods im-

prove the baseline Faster R-CNN detector in KITTI vali-

dation set on both classes across all three metrics. Never-

theless, the model with two extra convolution layers out-

performs the model with only one extra convolution layer.

A pretrained side branch does not perform well when fur-

ther assembled with the VGG-16 network. When probing

the network, we find that the model with pretrained weights

tend to “rely” more on the sidebranch, (i.e., activation map

produced by side branch has much greater value than the

main stream). Given the fact that the side branch was pre-

trained to perform detection independently, this inbalance

may be a cause accounting for the performance degradation.

Based on the analysis, we use two convolution layers with

random Gaussian initialization in all future experiments.

Model
Recall

(0, 80] (80, 160] (160, inf] all scales

Baseline 21.3% 87.6% 96.8% 70.0%

+Segmentation 35.6% 88.2% 96.8% 74.0%

Table 2. Recall comparison at 70% precision between baseline and

segmentation channel at different pedestrian heights. The results

are based on 1x scale.

3.4. Comparison and analysis

We conduct experiments on two input scales (1x and 2x).

Table 3 summarizes the results. For a fair comparison, a

controlled experiment in which the original image is used

as input of the side branch is also included.

In general, models integrated with extra channel features

show improvement over the baseline. The experiment using

original image as extra input shows nonobvious improve-

ment, which confirms that the performance gain is indeed

attributed to channel feature integration. Among all channel

features, ICF channel shows least contribution to the detec-

tion performance in both scales. We conjecture the reason

is that in deep convolutional networks, CNN features are

more discriminative than hand-crafted features like HOG.

Recall the two major challenges for pedestrian detec-

tion: hard negative samples and the individual localization.

Through detailed analysis, we demonstrate how CNN-based

detectors can benefit from extra channel features to over-

come these problems.

1x experiments In 1x experiments, channels that carry

more semantic information show better performance. As

shown in Table 3, detectors with segmentation channel and

heatmap channel bring most significant improvement to the

detector. In accord with our previous hypotheses, the detec-

tors utilize the semantic context provided by extra channel

features to discriminate pedestrian of low resolution from

hard negative samples.

Table 2 provides the recall comparison at certain preci-

sion rate (70%) between models with segmentation channel

and the baseline model for pedestrians of different sizes.

All pedestrians are divided into four groups based on their

heights in pixel. Leading absolute 4% recall rate on aver-

age, the detector with segmentation channel performs sig-

nificantly better in recall for small pedestrians (less than or

equal to 80 pixel in height).

2x experiments In 2x experiments, model with only high-

level semantic information but no low-level apparent fea-

tures (i.e. the heatmap channel) fails to produce consistent

improvement over the baseline model compared to the 1x

experiments. Nonetheless, channel features with both high-

level semantic and low-level apparent information (edge

channel and segmentation channel) outperforms other chan-

nels. A possible explanation for this is that when it comes
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Model
Pedestrian 1x Input Improvement Pedestrian 2x Input Improvement

Mod Easy Hard Mod Easy Hard Avg Mod Easy Hard Mod Easy Hard Avg

Fr-RCNN* [24] 59.29 64.53 53.01 - - - - 71.05 76.00 62.08 - - - -

MS-CNN [2] 68.37 73.70 60.72 - - - - 72.26 76.38 64.08 - - - -

Our Baseline 68.96 73.33 60.43 - - - - 71.21 77.73 62.19 - - - -

+ Original img 68.63 76.61 60.45 -0.33 +3.28 +0.02 +0.99 71.33 76.72 62.17 +0.12 -1.01 -0.02 -0.30

+ ICF 68.40 73.56 60.20 -0.56 +0.23 -0.23 -0.19 71.80 77.40 62.79 +0.59 -0.33 +0.60 +0.29

+ Edge 69.49 76.28 60.89 +0.53 +2.95 +0.46 +1.31 72.34 78.32 63.28 +1.13 +0.59 +1.09 +0.94

+ Segmentation 70.80 78.15 62.16 +1.84 +4.82 +1.73 +2.80 72.54 78.49 63.61 +1.33 +0.76 +1.42 +1.17

+ Heatmap 70.33 78.03 61.75 +1.37 +4.70 +1.32 +2.46 71.39 77.64 62.34 +0.18 -0.09 +0.15 +0.08

+ Disparity 70.03 77.74 61.48 +1.07 +4.41 +1.05 +2.18 71.72 77.52 62.47 +0.51 -0.21 +0.28 +0.19

+ Optical Flow 69.39 77.07 60.79 +0.43 +3.74 +0.36 +1.51 71.13 76.85 62.24 -0.08 -0.88 +0.05 -0.25

Table 3. Channel features comparison on KITTI validation set. We list improvement across all three KTTTI metrics as well as the average.

*: Our reproduced Faster R-CNN with same parametrs as in [24]. The baseline is a re-implementation of Faster RCNN pipeline, consisting

of slight differences with the basic Faster RCNN (See Section 3.1).

to large input scale, low-level details (e.g., edge) will show

greater importance in detection. To further explore this phe-

nomenon, we randomly sampled 1/4 of images (about 800)

from validation set and collected false positive statistics at

70% recall rate, as shown in Figure 4(a). While in Fig-

ure 4(b), we also count top-200 false positives in the vali-

dation set and show the fractions of each error source. Not

only inhibiting false positives across all categories at a high

recall, edge channel also contributes significantly to the lo-

calization precision. Integrated with the edge channel, de-

tector lowers localization error rate by absolute 9% and 7%
compared with the baseline and the detector with heatmap

channel respectively. This proves that channel features with

low-level apparent features (e.g., boundaries between indi-

viduals and contours of objects) improve localization preci-

sion when the input image is of high resolution.

Besides, We witness noticeable improvement in 1x when

optical flow is integrated into the detector. Park et al. [23]

also proved this effectiveness in decision-forest-based de-

tectors with a detailed analysis. For the disparity channel,

the results are very similar to the results of heatmap channel.

To have an insight into this, we should notice that the rela-

tive value in a disparity map also serves as a “segmentation-

like” channel (see Figure 2), while the absolute value has

only limited effects compared to the deep convolutional fea-

tures and the predefined anchors.

4. Jointly learn the channel features

Integrating channel features into the network can boost

our detector working on images of both low resolution and

high resolution. With these channel features, we can nar-

row most of the gap between resolutions without introduc-

ing heavy computational cost brought by enlarging the input

image, and push state-of-the-art forward.

However, a brute-force integration method is computa-

tionally expensive with respect to the basic Faster R-CNN,
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Figure 4. False positive analysis for baseline, edge channel and

heatmap channel at 2x scale. All false positives are categorized

into four types: localization error, background classification error,

cyclist classification error, and annotation error. Localization error

is defined as non-matched detection bounding boxes which over-

lap with a groundtruth but iou ¡ 0.5, while background error has no

overlap with any groundtruth box. Cyclist error happens when a

bounding box match cyclist groundtruth. Annotation error occurs

when detection “matches” a de facto groundtruth which, however,

is not annotated.

given that the extra channel feature usually comes from the

feed-forwarding of another neural network. While many

of the channel features comes from neural networks (e.g.,

semantic segmentation and edge), it is natural to think of
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Figure 5. The proposed HyperLearner, which consists of 4 components: body network, channel feature network (CFN), region proposal

network (RPN) and Fast R-CNN (FRCNN). HyperLearner learns representations of channel features while requiring no extra input in

inference. Refer to Section 4.1 for details.

“teaching” our neural-network both channel features gener-

ation and detection. In the following section, we propose a

new network structure which is suitable for this multi-task

training, namely, HyperLearner.

4.1. HyperLearner

The HyperLearner framework is illustrated in Figure 5.

As shown, our system consists of four components: the

body network for activation map generation, a channel fea-

ture network (CFN), a region proposal network (RPN) and

a Fast R-CNN (FRCNN) network for final detection task.

From the very left, the entire image is forwarded through

multiple convolution layers to generate the hierarchical ac-

tivation maps. We first aggregate activation maps and make

them into a uniform space, namely aggregated activation

map. Aggregating activation maps from multiple level has

been proved to be useful and important in many computer

vision tasks [15, 31] for its ability to collect rich hierarchi-

cal representations. This aggregated map is then fed into the

channel feature network (CFN). CFN is a feed-forward fully

convolutional network (FCN) for channel feature predic-

tion. Unlike Faster R-CNN, RPN and FRCNN do not only

take the output of the last convolution layer (conv4 3) as

input. Instead, the aggregated activation map is also fed

into the RPN, as well as FRCNN. By sharing the same ag-

gregated activation map, the RPN and FRCNN are able to

benefit from the representations CFN learned.

Aggregated activation map The body network takes the

raw image, of shape 3×H×W , as its input, and outputs

several activation maps. In our experiments, the body net-

work is a VGG-16 [25] network (without conv5 1 to

conv5 3) intialized with the weights pretrained on Im-

ageNet [16]. We extract the activation maps from layer

conv1 2, conv2 2, conv3 3 and conv4 3. Due to the

pooling layer in the network, these maps are of different size

and number of channels. We add two convolution layers af-

ter each map and make them of same number of channels

(32 in all our experiments). The high-level maps are then

upsampled to the same size as the first activation map. Fi-

nally, they are concatenated together to form the aggregated

activation map.

Channel Feature Network (CFN) The CFN directly takes

the aggregated activation map to generate the predicted

channel feature map through a fully convolutional structure.

This map is typically of the same shape as the raw image.

For example, the predicted channel feature may be a se-

mantic segmentation map of several categories, or an edge

detection map like HED Network [31].

Region Proposal Network (RPN) and Fast-RCNN (FR-

CNN) We build the RPN and FRCNN using the same struc-

ture as proposed in [24]. RPN and FRCNN now take both

last convolutional activation map in the VGG16 network

(conv4 3) and the aggregated activation map from the

body network as the inputs. The proposals generated by

RPN are then fed into FRCNN to perform final detection.

4.2. Training Details

Loss Function During the training phase, besides the raw

image and groundtruth bounding boxes for standard Faster

R-CNN framework, the HyperLearner also takes a chan-

nel feature map as its supervisor, which is typically gen-

erated by another CNN (e.g., semantic segmentation and

edge). To address the channel feature learning, we intro-

duce a new pixel-level loss. Denote the feature map pre-

dicted by the CFN as Cx,y , and the supervisor map as
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Sx,y . The loss is computed by:
1

H ×W

∑

(x,y)

ℓ(Sx,y, Cx,y),

where H and W represents the size of the feature map and

ℓ is a loss function for a single pixel. In binary probabilis-

tic maps, like edge map, cross-entropy loss is used, given

by: ℓ(p, q) = βx,y

(

− p log q − (1− p) log(1− q)
)

, where

β is a weight function to balance the positive labels and

negative labels. If Sx,y > 0.5, β = 1 − |S+|/|S|; oth-

erwise, β = |S+|/|S|, where |S+| =
∑

1[Sx,y > 0.5].
For multi-class probabilistic maps, like segmentation map,

cross-entropy loss is used. For other tasks, MSE loss is

used.

The final loss for the network is thus computed by:

L = LCFN+λ1LRPNcls+λ2LRPNbbox+λ3LFRCNNcls+
λ4LFRCNNbbox where the last four component remains the

same as Faster R-CNN [24]. In all our experiments, we set

all λi = 1.

Multi-stage training The aggregated activation map acts

as an important role in the framework, which must be care-

fully trained. Instead of trickily setting loss weight for each

loss component, we employs a pragmatic multi-stage train-

ing methods. The whole training phase is splitted into four

stages.

In the first stage, only CFN is optimized. In detail, we fix

parameters of all pretrained convolution layers in the body

network (conv1 1 to conv4 3), and drop all RPN and

FRCNN layers to train the CFN. In the second stage, we fix

the whole body network (including the convolution layers

for aggregating activation maps) and CFN, and train only

RPN. Then in the third stage, body network, CFN and RPN

are all fixed; only FRCNN component is optimized. While

in the final stage, all layers are jointly optimized.

Acrossing all stages, in the optimization of the FRCNN,

we treat region proposals coordinates from RPN as fixed

value and do not back-propagate the gradient.

5. Experiments and results

The performance of HyperLearner is evaluated across

multiple pedestrian datasets: KITTI [26], Caltech Pedes-

trian [11], and Cityscapes [6]. The datasets we chose cover

most of the popular ones in pedestrian detection task.

One may also notice that our body network an imple-

mentation of HyperNet proposed in [15]. Thus, we imple-

ment a control experiment where the CFN is removed as a

typical HyperNet setting. That is, the body network keeps

its side branches for aggregated activation map, but it does

not learn from any extra supervision.

5.1. KITTI Dataset

We evaluated the performance of HyperLearner with two

kinds of feature supervision: edge and semantic segmenta-

tion. These two kinds of channel features have been proved

Model
1x input 2x input

Mod Easy Hard Mod Easy Hard

Fr-RCNN* [24] 59.29 64.53 53.01 71.05 76.00 62.08

MS-CNN [2] 68.37 73.70 60.72 72.26 76.38 64.08

Baseline 69.80 74.37 61.20 71.73 77.84 62.30

HyperNet 69.72 76.91 61.10 72.23 77.96 63.43

+Segmentation 71.15 79.43 62.34 72.35 79.17 62.34

+Edge 71.25 78.43 62.15 72.51 78.51 63.24

Table 4. Results on KITTI validation set, the model HyperNet

refers to the HyperLearner without CFN. Evaluation follows mod-

erate metric in KITTI.

*: Fr-RCNN follows setting as [24] while baseline model is Faster-

RCNN with slightly different parameters. See also Table 3.

to be effective when directly integrated into the Faster R-

CNN framework (see Section 3.3). The results on the vali-

dation set of KITTI dataset is illustrated in the Table 4.

In experiments on 1x scale, we notice great performance

improvement when our HyperLearner is jointly learned

from an edge detection network or a semantic segmenta-

tion network compared to the Faster R-CNN baseline and

the HyperNet. The quantitative analysis is consistent with

the experiments in Section 3.3 where we directly integrate

them as an extra input into the network through a branch

network.

In experiments on 2x scale, HyperLearner as well as Hy-

perNet make clear improvement. Based on former analysis,

the introduction of channel features when the input image is

of high resolution provides detailed low-level features to the

network. Since in HyperNet setting, side branches of the

body network act as an multi-level feature extractor, such

kind of improvement is expected.

As a transfer learning application, HyperLearner suc-

cessfully boost a CNN-based detector using features learned

by other networks with different architecture and trained

for other tasks. From another perspective, HyperNet-like

CNNs has been proved to be effective in many vision tasks.

HyperLearner offers an alternative way to perform feature

learning in such CNNs and showed noticeable improve-

ment. Based on the results in Table 4 and 5, it is safe to

conclude that HyperLearner actually utilizes the extra su-

pervision from channel features to generate a better hyper-

feature extractor, especially for the detection task.

5.2. Cityscapes dataset

The Cityscapes dataset [6], is a large-scale dataset for

semantic urban segmentation which contains a diverse set

of stereo video recordings from 50 cities. It consists of

2, 975 training and 500 validation images with fine annota-

tions, as well as another 20, 000 training images with coarse

annotations. The experiments are conducted on the fine-

annotated images. Compared with former standard datasets,

Cityscapes possesses meticulous detection labeling (pixel-
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level), as well as fine semantic segmentation labeling.

As mentioned, the Cityscapes dataset provides pixel-

level semantic segmentation labeling, so instead of using

segmentation model pretrained on MS-COCO dataset, we

directly address the multi-task learning by employing pixel-

level segmentation labels as supervisor (i.e., our Hyper-

Learner jointly learns pedestrian detection and semantic

segmentation). During training, we only use segmentation

labels for “person”. As shown in Table 5, we also witness

significant improvement over the Faster R-CNN baseline

and HyperNet.

5.3. Caltech dataset

The Caltech dataset [11] is also a commonly used dataset

for pedestrian detection evaluation. It consists of 2.5 hours

30Hz VGA video recorded from a vehicle traversing the

streets of Los Angeles, USA. Detection results are evalu-

ated on a test set consisting of 4024 frames.

Zhang et al. [34] conducted a detailed survey and pro-

vided a refined groundtruth labeling on Caltech dataset. Our

experiments is completely based on this new labeling (both

training and testing). HyperLearner achieves state-of-the-

art performance on the test set. Figure 7 shows the detailed

comparison of HyperLearner, the Faster R-CNN baseline

and other methods.

6. Summary

In this paper, we integrated channel features into

CNN-based pedestrian detectors, specifically, ICF channel,

edge channel, segmentation channel and heatmap channel

(apparent-to-semantic channel); optical flow channel (tem-

poral channel); disparity channel (depth channel). Our

quantitative experiments show semantic channel features

can help detectors discriminate hard positive samples and

negative samples at low resolution, while apparent channel

features inhibit false positives of backgrounds and improve

localization accuracy at high resolution.

To address the issue of computational cost, we propose

a novel framework, namely HyperLearner, to jointly learn

channel features and pedestrian detection. HyperLearner is

able to learn the representation of channel features while

requiring no extra input in inference, and provides signifi-

cant improvement on several datasets. From another point

of view, HyperLearner offers an alternative way to perform

feature learning in HyperNet-like CNNs in a transfer learn-

ing manner.

Model
540p input 720p input Improvement

Speed AP Speed AP 540p 720p

Baseline 130ms 74.97 240ms 86.89 - -

HyperNet 140ms 74.30 250ms 86.67 -0.53 -0.22

Jointsegmap 140ms 77.22 250ms 87.67 +2.25 +0.78

Table 5. Results on Cityspcaes validation set. The speed column

shows the time each model needed to perform detection on a sin-

gle image. The speed is tested on single NVIDIA TITAN-X GPU.

We use all segmentation polygons labeled “person” to generate

bounding boxes for the pedestrian detection task. Following the

standard in Caltech dataset [11], all persons with (pixel-level) oc-

clusion greater than 0.5 or of height less than 50 pixels are ignored.

Furthermore, all polygons labeled “cyclist” or “person group” are

also ignored.

Learned Seg. ChannelDetection results

Figure 6. Results of HyperLearner on Cityscapes validation set.

The left column shows our detection result, while the right column

demonstrate CFN’s output learned from segmentation labeling.
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Figure 7. Detection quality on Caltech test set (reasonable,

MR
N

−2(MR
N

−4)), evaluated on the new annotations [34]. We

achieve state-of-the-art results on both evaluation metrics.
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