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Abstract

The objective of a reinforcement learning agent

is to behave so as to maximise the sum of a suit-

able scalar function of state: the reward. These

rewards are typically given and immutable. In

this paper, we instead consider the proposition

that the reward function itself can be a good lo-

cus of learned knowledge. To investigate this, we

propose a scalable meta-gradient framework for

learning useful intrinsic reward functions across

multiple lifetimes of experience. Through sev-

eral proof-of-concept experiments, we show that

it is feasible to learn and capture knowledge about

long-term exploration and exploitation into a re-

ward function. Furthermore, we show that unlike

policy transfer methods that capture “how” the

agent should behave, the learned reward functions

can generalise to other kinds of agents and to

changes in the dynamics of the environment by

capturing “what” the agent should strive to do.

1. Introduction

Reinforcement learning (RL) agents can store knowledge

in their policies, value functions, state representations, and

models of the environment dynamics. These components

can be the loci of knowledge in the sense that they are struc-

tures in which knowledge, either learned from experience by

the agent’s algorithm or given by the agent-designer, can be

deposited and reused. The objective of the agent is defined

by a reward function, and the goal is to learn to act so as to

maximise cumulative rewards. In this paper we consider the

proposition that the reward function itself is a good locus

of knowledge. This is unusual (but not novel) in that most

prior work treats the reward as given and immutable, at
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least as far as the learning algorithm is concerned. In fact,

agent designers often do find it convenient to modify the

reward function given to the agent to facilitate learning. It is

therefore useful to distinguish between two kinds of reward

functions (Singh et al., 2010): extrinsic rewards define the

task and capture the designer’s preferences over agent be-

haviour, whereas intrinsic rewards serve as helpful signals

to improve the learning dynamics of the agent.

Most existing work on intrinsic rewards falls into two broad

categories: task-dependent and task-independent. Both are

typically designed by hand. Hand-designing task-dependent

rewards can be fraught with difficulty as even minor mis-

alignment between the actual reward and the intended bi-

as/goals can lead to unintended and sometimes catastrophic

consequences (Clark & Amodei, 2016). Task-independent

intrinsic rewards are also typically hand-designed, often

based on an intuitive understanding of animal/human be-

haviour or on heuristics on desired exploratory behaviour.

It can, however, be hard to match such task-independent

intrinsic rewards to the specific learning dynamics induced

by the interaction between agent and environment. In this

paper, we are interested in the comparatively under-explored

possibility of learned (not hand-designed) task-dependent

intrinsic rewards. Although there have been a few attempts

to learn useful intrinsic rewards from experience (Singh

et al., 2009; Zheng et al., 2018), how to capture complex

knowledge such as exploration across episodes into a reward

function remains an open question.

We emphasise that it is not our objective to show that re-

wards are a better locus of learned knowledge than others;

the best locus likely depends on the kind of knowledge

that is most useful in a given task. In particular, knowl-

edge captured in rewards provides guidance on “what” the

agent should strive to do while knowledge captured in poli-

cies provides guidance on “how” an agent should behave.

Knowledge about “what” captured in rewards is indirect

and thus slower to make an impact on behaviour because it

takes effect through learning, while knowledge about “how”

can directly have an immediate impact on behaviour. At the

same time, because of its indirectness the former can gen-

eralise better to changes in dynamics and different learning

agents, as we empirically show in this paper.
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How should we measure the usefulness of a learned reward

function? Ideally, we would like to measure the effect the

learned reward function has on the learning dynamics. Of

course, learning happens over multiple episodes, indeed

it happens over an entire lifetime. Therefore, we choose

lifetime return, the cumulative extrinsic reward obtained by

the agent over its entire lifetime, as the main objective. To

this end, we adopt the multi-lifetime setting of the Optimal

Rewards Framework (Singh et al., 2009) in which an agent

is initialised randomly at the start of each lifetime and then

faces a stationary or non-stationary task drawn from some

distribution. In this setting, the only knowledge that is trans-

ferred across lifetimes is the reward instead of the policy.

Specifically, the goal is to learn a single intrinsic reward

function that, when used to adapt the agent’s policy using

a standard episodic RL algorithm, ends up optimising the

cumulative extrinsic reward over its lifetime.

In previous work, good reward functions were found via

exhaustive search, limiting the range of applicability. We

develop a more scalable gradient-based method for learning

intrinsic rewards by exploiting the fact that the interaction

between the policy update and the reward function is dif-

ferentiable (Zheng et al., 2018). Moreover, unlike the prior

work, we parameterise the reward function by a recurrent

neural network unrolled over the entire lifetime and train it

to maximise lifetime return, which is crucial for the reward

function to capture long-term temporal dependencies (e.g.,

novelty of states across episodes). To handle long-term

credit assignment that spans the lifetime, we use a lifetime

value function that estimates the remaining lifetime return.

Our main contributions and findings are as follows: (1)

Through carefully designed environments, we show that

learned intrinsic reward functions can capture a rich form

of knowledge such as long-term exploration (e.g., exploring

uncertain states) and exploitation (e.g., anticipating environ-

ment changes) across multiple episodes. To our knowledge,

this is the first work that shows the feasibility of learning

such complex knowledge into reward functions. (2) We

show that “what to do” knowledge captured by the reward

functions can generalise to changing dynamics of the envi-

ronment and new learning agents, whereas policy transfer

methods do not generalise well, which provides insights

into the usefulness of rewards as a locus of knowledge.

2. Related Work

Hand-designed Rewards There is a long history of work

on designing rewards to accelerate learning in reinforce-

ment learning. Reward shaping aims to design task-specific

rewards towards known optimal behaviours, typically re-

quiring domain knowledge. Both the benefits (Randlöv &

Alström, 1998; Ng et al., 1999; Harutyunyan et al., 2015)

and the difficulty (Clark & Amodei, 2016) of task-specific re-

ward shaping have been studied. On the other hand, many in-

trinsic rewards have been proposed to encourage exploration,

inspired by animal behaviours. Examples include prediction

error (Schmidhuber, 1991a;b; Oudeyer et al., 2007; Gordon

& Ahissar, 2011; Mirolli & Baldassarre, 2013; Pathak et al.,

2017), surprise (Itti & Baldi, 2006), deviation from a default

policy (Goyal et al., 2018), weight change (Linke et al.,

2019), and state-visitation counts (Sutton, 1990; Poupart

et al., 2006; Strehl & Littman, 2008; Bellemare et al., 2016;

Ostrovski et al., 2017). Although these kinds of intrinsic

rewards are not domain-specific, they are often not well-

aligned with the task that the agent is solving, and ignore

the effect on the agent’s learning dynamics. In contrast, our

work aims to learn intrinsic rewards from data that take into

account the agent’s learning dynamics without requiring

prior knowledge from a human.

Rewards Learned from Experience There have been a

few attempts to learn useful intrinsic rewards from data.

Singh et al. (2009) introduced the Optimal Reward Frame-

work which aims to find a good reward function that al-

lows agents to solve a distribution of tasks using exhaustive

search. The empirical study only showed simple intrinsic

reward functions such as preference over certain objects due

to the inefficient exhaustive search method employed. Al-

though there have been follow-up works (Sorg et al., 2010;

Guo et al., 2016) that use a gradient-based method, they

consider a non-parameteric policy using Monte-Carlo Tree

Search. Our work is closely related to LIRPG (Zheng et al.,

2018) which proposed a meta-gradient method to learn in-

trinsic rewards. However, LIRPG considers a single task

in a single lifetime with a myopic episode return objective,

which is limited in that it does not allow exploration across

episodes or generalisation to different agents. In contrast,

our approach takes into account both the long-term effect of

intrinsic rewards on the learning dynamics and the lifetime

history of the agent. We show this is crucial for captur-

ing long-term knowledge, such as seeking for novel states

across episodes, which is not achieved in previous work. Fi-

nally, unlike AGILE (Bahdanau et al., 2019) which showed

that a learned reward function can generalise to unseen in-

structions in instruction-following RL problems, our work

shows new and interesting kind of generalisation: to new

agent-environment interfaces and algorithms.

Meta-learning for Exploration and Task Adaptation

Meta-learning (Schmidhuber et al., 1996; Thrun & Pratt,

1998) has recently received considerable attention in RL.

Recent advances include few-shot adaptation (Finn et al.,

2017a), few-shot imitation (Finn et al., 2017b; Duan et al.,

2017), model adaptation (Clavera et al., 2019), and inverse

RL (Xu et al., 2019). In particular, our work is related to

the prior work on meta-learning good exploration strate-

gies (Wang et al., 2016; Duan et al., 2016; Stadie et al.,
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Figure 1. Illustration of the proposed intrinsic reward learning

framework. The intrinsic reward rη is used to update the agent’s pa-

rameter θi throughout its lifetime which consists of many episodes.

The goal is to find the optimal intrinsic reward parameters η∗

across many lifetimes that maximises the lifetime return (Glife)

given any randomly initialised agents and possibly non-stationary

tasks drawn from some distribution p(T ).

2018; Xu et al., 2018a) in that both perform temporal credit

assignment across episode boundaries by maximising re-

wards accumulated beyond an episode. Unlike the prior

work that aims to directly transfer an exploratory policy,

our framework indirectly drives exploration via a reward

function which can be reused by different learning agents.

Meta-learning Update Rules There have been a few

studies that directly meta-learn how to update the agent’s

parameters via meta-parameters including discount factor

and returns (Xu et al., 2018b), auxiliary tasks (Schlegel

et al., 2018; Veeriah et al., 2019), unsupervised learning

rules (Metz et al., 2019), and RL objectives (Bechtle et al.,

2019; Kirsch et al., 2019). Our work also belongs to this

category in that our meta-parameters are the reward function

used in the agent’s update. In particular, our multi-lifetime

formulation is similar to ML3 (Bechtle et al., 2019) and

MetaGenRL (Kirsch et al., 2019). However, ML3 can-

not generalise to different agent-environment interfaces,

whereas intrinsic rewards can as shown in Section 6. In

addition, we propose to use the lifetime return as opposed

to the myopic episodic objective of ML3 and MetaGenRL,

which is crucial for cross-episode exploration.

Cognitive Study on Exploration-Exploitation. Several

cognitive science studies on the exploration-exploitation

dilemma (Cohen et al., 2007; Wilson et al., 2014) have

shown that humans use both a random exploration strat-

egy (Thompson, 1933; Watkins, 1989) and an information-

seeking strategy (Gittins, 1974; 1979) when facing uncer-

tainty. Computationally, the former can be easily imple-

mented, whereas the latter usually requires carefully hand-

crafted methods to guide the agent’s behaviour. In this work,

we hypothesize and empirically verify that an information-

seeking intrinsic reward function can naturally emerge if it

is useful for solving the tasks. The condition of being useful

resembles a recent study (Dubey & Griffiths, 2019) which

posited that a rational agent should explore in a way such

that the usefulness of its knowledge is maximised.

3. The Optimal Reward Problem

We first introduce some terminology.

• Agent: A learning system interacting with an envi-

ronment. On each step t the agent selects an action

at and receives from the environment an observation

st+1 and an extrinsic reward rt+1 defined by a task T .

The agent chooses actions based on a policy πθ(at|st)
parameterised by θ.

• Episode: A finite sequence of agent-environment inter-

actions until the end of the episode defined by the task.

An episode return is defined as: Gep =
∑Tep−1

t=0 γtrt+1,

where γ is a discount factor, and the random vari-

able Tep gives the number of steps until the end of

the episode.

• Lifetime: A finite sequence of agent-environment in-

teractions until the end of training defined by an agent-

designer, which can consist of multiple episodes. The

lifetime return is Glife =
∑T−1

t=0 γtrt+1, where γ is a

discount factor, and T is the number of steps in the

lifetime.

• Intrinsic reward: A reward function

rη(τt+1) parameterised by η, where τt =
(s0, a0, r1, d1, s1, . . . , rt, dt, st) is a lifetime his-

tory with (binary) episode terminations di.

The Optimal Reward Problem (Singh et al., 2010), illus-

trated in Figure 1, aims to learn the parameters of the intrin-

sic reward such that the resulting rewards achieve a learning

dynamic for an RL agent that maximises the lifetime (extrin-

sic) return on tasks drawn from some distribution. Formally,

the objective function is defined as:

J(η) = Eθ0∼Θ,T ∼p(T )

[

Eτ∼pη(τ |θ0)

[

Glife
]]

, (1)

where Θ and p(T ) are an initial policy distribution and a

distribution over possibly non-stationary tasks respectively.

The likelihood of a lifetime history τ is pη(τ |θ0) =

p(s0)
∏T−1

t=0 πθt(at|st)p(dt+1, rt+1, st+1|st, at), where

θt = f(θt−1, η) is a policy parameter as updated with

update function f , which is policy gradient in this paper.1

Note that the optimisation of η spans multiple lifetimes,

each of which can span multiple episodes.

Using the lifetime return Glife as the objective instead of the

conventional episodic return Gep allows exploration across

multiple episodes as long as the lifetime return is maximised

in the long run. In particular, when the lifetime is defined as

a fixed number of episodes, we find that the lifetime return

objective is sometimes more beneficial than the episodic

1We assume that the policy parameter is updated after each
time-step throughout the paper for brevity. However, the parameter
can be updated less frequently in practice.
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Algorithm 1 Learning intrinsic rewards

Input: p(T ): Task distribution

Input: Θ: Randomly-initialised policy distribution

Initialise intrinsic reward η and lifetime value φ

repeat

Initialise task T ∼ p(T ) and policy θ ∼ Θ
while lifetime not ended do

θ0 ← θ

for k = 1, 2, . . . , N do

Generate a trajectory using πθk−1

Update policy θk ← θk−1 + α∇θk−1
Jη(θk−1)

using intrinsic rewards rη (Eq. 3)

end for

Update intrinsic reward function η using Eq. 4

Update lifetime value function φ using Eq. 6

θ ← θN
end while

until η converges

return objective, even for the episodic return performance

measure. However, different objectives (e.g., final episode

return) can be considered depending on the definition of

what a good reward function is.

4. Meta-Learning Intrinsic Reward

We propose a meta-gradient approach (Xu et al., 2018b;

Zheng et al., 2018) to solve the optimal reward problem. At

a high-level, we sample a new task T and a new random pol-

icy parameter θ at each lifetime iteration. We then simulate

an agent’s lifetime by updating the parameter θ using an in-

trinsic reward function rη (Section 4.1) with policy gradient

(Section 4.2). Concurrently, we compute the meta-gradient

by taking into account the effect of the intrinsic rewards on

the policy parameters to update the intrinsic reward function

with a lifetime value function (Section 4.3). Algorithm 1

gives an overview of our algorithm. The following sections

describe the details.

4.1. Architectures

The intrinsic reward function is a recurrent neural network

(RNN) parameterised by η, which produces a scalar reward

on arriving in state st by taking into account the history

of an agent’s lifetime τt = (s0, a0, r1, d1, s1, ..., rt, dt, st).
We claim that giving the lifetime history across episodes

as input is crucial for balancing exploration and exploita-

tion, for instance by capturing how frequently a certain state

is visited to determine an exploration bonus reward. The

lifetime value function is a separate recurrent neural net-

work parameterised by φ, which takes the same inputs as

the intrinsic reward function and produces a scalar value

estimation of the expected future return within the lifetime.

4.2. Policy Update

Each agent interacts with an environment and a task sampled

from a distribution T ∼ p(T ). However, instead of directly

maximising the extrinsic rewards defined by the task, the

agent maximises the intrinsic rewards (rη) by using policy

gradient (Williams, 1992; Sutton et al., 2000):

Jη(θ) = Eθ

[ Tep−1
∑

t=0

γ̄trη(τt+1)

]

(2)

∇θJη(θ) = Eθ

[

G
ep
η,t∇θ log πθ(a|s)

]

, (3)

where rη(τt+1) is the intrinsic reward at time t, and G
ep
η,t =

∑Tep−1
k=t γ̄k−trη(τk+1) is the return of the intrinsic rewards

accumulated over an episode with discount factor γ̄.

4.3. Intrinsic Reward and Lifetime Value Update

To update the intrinsic reward parameters η, we directly

take a meta-gradient ascent step using the overall objective

(Equation 1). Specifically, the gradient is (see the supple-

mentary material for derivation)

∇ηJ(η) = Eθt,T

[

Glife
t ∇θt log πθt(at|st)∇ηθt

]

, (4)

The chain rule is used to get the meta-gradient (∇ηθt) as in

previous work (Zheng et al., 2018). The computation graph

of this procedure is illustrated in Figure 1.

Computing the true meta-gradient in Equation 4 requires

backpropagation through the entire lifetime, which is in-

feasible as each lifetime can involve thousands of policy

updates. To partially address this issue, we truncate the

meta-gradient after N policy updates but approximate the

lifetime return G
life,φ
t ≈ Glife

t using a lifetime value func-

tion Vφ(τ) parameterised by φ, which is learned using a

temporal difference learning from n-step trajectory:

G
life,φ
t =

n−1
∑

k=0

γkrt+k+1 + γnVφ(τt+n) (5)

φ′ = φ+ α′(Glife,φ
t − Vφ(τt))∇φVφ(τt), (6)

where α′ is a learning rate. In our empirical work, we found

that the lifetime value estimates were crucial to allow the

intrinsic reward to perform long-term credit assignments

across episodes (Section 5.6).

5. Empirical Investigations

We present the results from our empirical investigations in

two sections. In this section, the experiments and domains

are designed to answer the following research questions:
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B C
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Figure 2. Illustration of domains. (a) The agent needs to find the

goal location which gives a positive reward, but the goal is not

visible to the agent. (b) Each object (A, B, and C) gives rewards.

(c) The agent is required to first collect the key and visit one of

the boxes (A, B, and C) to receive the corresponding reward. All

objects are placed in random locations before each episode.

• What kind of knowledge is learned by the intrinsic

reward?

• How does the distribution of tasks influence the intrin-

sic reward?

• What is the benefit of the lifetime return objective over

the episode return?

• When is it important to provide the lifetime history as

input to the intrinsic reward?

5.1. Experimental Setup

We investigate these research questions in the grid-world

domains illustrated in Figure 2. For each domain, we trained

an intrinsic reward function across many lifetimes and eval-

uated it by training an agent using the learned reward. We

implemented the following baselines.

• Extrinsic-EP: A policy is trained with extrinsic rewards

to maximise the episode return.

• Extrinsic-LIFE: A policy is trained with extrinsic re-

wards to maximise the lifetime return.

• Count-based (Strehl & Littman, 2008): A policy is

trained with extrinsic rewards and count-based explo-

ration bonus rewards.

• ICM (Pathak et al., 2017): A policy is trained with

extrinsic rewards and curiosity rewards based on an

inverse dynamics model.

Note that these baselines, unlike the learned intrinsic re-

wards, do not transfer any knowledge across different life-

times. Throughout Sections 5.2-5.5, we focus on analysing

what kind of knowledge is learned by the intrinsic reward de-

pending on the nature of environments. We discuss the ben-

efit of using the lifetime return and considering the lifetime

history when learning the intrinsic reward in Section 5.6.

The details of implementation and hyperparameters are de-

scribed in the supplementary material.

5.2. Exploring Uncertain States

We designed ‘Empty Rooms’ (Figure 2a) to see whether the

intrinsic reward can learn to encourage exploration of un-

certain states like novelty-based exploration methods. The

goal is to visit an invisible goal location, which is fixed

within each lifetime but varies across lifetimes. An episode

terminates when the goal is reached. Each lifetime consists

of 200 episodes. From the agent’s perspective, its policy

should visit the locations suggested by the intrinsic reward.

From the intrinsic reward’s perspective, it should encourage

the agent to go to unvisited locations to locate the goal, and

then to exploit that knowledge for the rest of the lifetime.

Figure 3 shows that the learned intrinsic reward was more

efficient than extrinsic rewards and count-based exploration

when training a new agent. We observed that the intrinsic

reward learned two interesting strategies as visualised in Fig-

ure 4. While the goal is not found, it encourages exploration

of unvisited locations, because it learned the knowledge that

there exists a rewarding goal location somewhere. Once the

goal is found the intrinsic reward encourages the agent to

exploit it without further exploration, because it learned that

there is only one goal. This result shows that curiosity about

uncertain states can naturally emerge when various states

can be rewarding in a domain, even when the rewarding

states are fixed within an agent’s lifetime.

5.3. Exploring Uncertain Objects

In the previous domain, we considered uncertainty of where

the reward (or goal location) is. We now consider dealing

with uncertainty about the value of different objects. In

the ‘Random ABC’ environment (see Figure 2b), for each

lifetime the rewards for objects A, B, and C are uniformly

sampled from [−1, 1], [−0.5, 0], and [0, 0.5] respectively

but are held fixed within the lifetime. A good intrinsic

reward should learn that: 1) B should be avoided, 2) A

and C have uncertain rewards, hence require systematic

exploration (first go to one and then the other), and 3) once

it is determined which of the two A or C is better, exploit

that knowledge by encouraging the agent to repeatedly go

to that object for the rest of the lifetime.

Figure 3 shows that the agent learned a near-optimal

exploration-and-then-exploitation method with the learned

intrinsic reward. Note that the agent cannot pass informa-

tion about the reward for objects across episodes, as usual in

reinforcement learning. The intrinsic reward can propagate

such information across episodes and help the agent explore

or exploit appropriately. We visualised the learned intrin-

sic reward for different actions sequences in Figure 5. The

intrinsic rewards encourage the agent to explore towards A

and C in the first few episodes. Once A and C are explored,

the agent exploits the largest rewarding object. Throughout

training, the agent is discouraged to visit B through negative
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Figure 3. Evaluation of different reward functions averaged over 30 seeds. The learning curves show agents trained with our intrinsic

reward (blue), with the extrinsic reward using the episodic return objective (orange) or the lifetime return objective (brown), and with a

count-based exploration reward (green). The dashed line corresponds to a hand-designed near-optimal exploration strategy.

(a) Room (b) Intrinsic (c) Count (d) ICM

Figure 4. Visualisation of the first 3000 steps of an agent trained

with different reward functions in Empty Rooms. (a) The blue

and yellow squares represent the agent and the hidden goal, re-

spectively. (b) The learned reward encourages the agent to visit

many locations if the goal is not found (top). However, when the

goal is found early, the intrinsic reward makes the agent exploit it

without further exploration (bottom). (c-d) Both the count-based

and ICM rewards tend to encourage exploration (top) but hinders

exploitation when the goal is found (bottom).

intrinsic rewards. These results show that avoidance and

curiosity about uncertain objects can potentially emerge if

the environment has various or fixed rewarding objects.

5.4. Exploiting Invariant Causal Relationship

To see how the intrinsic reward deals with causal relation-

ship between objects, we designed ‘Key-Box’, which is

similar to Random ABC except that there is a key in the

room (see Figure 2c). The agent needs to collect the key

first to open one of the boxes (A, B, and C) and receive the

corresponding reward. The rewards for the objects are sam-

pled from the same distribution as Random ABC. The key

itself gives a neutral reward of 0. Moreover, the locations of

the agent, the key, and the boxes are randomly sampled for

each episode. As a result, the state space contains more than

3 billion distinct states and thus is infeasible to fully enu-

merate. Figure 3 shows that learned intrinsic reward leads to

a near-optimal exploration. The agent trained with extrinsic

rewards did not learn to open any box. The intrinsic reward

Episode 1

Episode 2 Episode 3

Vi
si

t A

Visit C

Episode 2 Episode 3

Visit C

Visit A

A=0.2   B=-0.5   C=0.1

Figure 5. Visualisation of the learned intrinsic reward in Random

ABC, where the extrinsic rewards for A, B, and C are 0.2, -0.5, and

0.1 respectively. Each figure shows the sum of intrinsic rewards

for a trajectory towards each object (A, B, and C). In the first

episode, the intrinsic reward encourages the agent to explore A. In

the second episode, the intrinsic reward encourages exploring C if

A is visited (top) or vice versa (bottom). In episode 3, after both A

and C are explored, the intrinsic reward encourages revisiting A

(both top and bottom).

captures that the key is necessary to open any box, which

is true across many lifetimes of training. This demonstrates

that the intrinsic reward can capture causal relationships

between objects when the domain has this kind of invariant

dynamics.

5.5. Dealing with Non-stationarity

We investigated how the intrinsic reward handles non-

stationary tasks within a lifetime in our ‘Non-stationary

ABC’ environment. Rewards are as follows: for A is either

1 or −1, for B is −0.5, for C is the negative value of the re-

ward for A. The rewards of A and C are swapped every 250
episodes. Each lifetime lasts 1000 episodes. Figure 3 shows

that the agent with the learned intrinsic reward quickly re-

covered its performance when the task changes, whereas the

baselines take more time to recover. Figure 6 shows how

the learned intrinsic reward encourages the learning agent

to react to the changing rewards. Interestingly, the intrin-

sic reward has learned to prepare for the change by giving

negative rewards to the exploitation policy of the agent a

few episodes before the task changes. In other words, the
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0 100 200
Num episodes

0.25

0.50

0.75

1.00

Ep
iso

de
 re

tu
rn

Empty Rooms

0 20 40

0.0

0.2

0.4

Random ABC

0 2500 5000

0.0

0.2

Key-Box

0 250 500 750 1000

−0.5

0.0

0.5

1.0
Non-stationary ABC

LSTM-Lifetime
LSTM-Episode
FF-Episode

Figure 7. Evaluation of different intrinsic reward architectures and objectives. For ‘LSTM’ the reward network has an LSTM taking the

lifetime history as input. For ‘FF’ a feed-forward reward network takes only the current time-step. ‘Lifetime’ and ‘Episode’ means the

lifetime and episodic return as objective respectively.

intrinsic reward reduces the agent’s commitment to the cur-

rent best rewarding object, thereby increasing entropy in the

current policy in anticipation of the change, eventually mak-

ing it easier to adapt quickly. This shows that the intrinsic

reward can capture the (regularly) repeated non-stationarity

across many lifetimes and make the agent intrinsically moti-

vated not to commit too firmly to a policy, in anticipation of

changes in the environment.

5.6. Ablation Study

To study relative benefits of the proposed technical ideas,

we conducted an ablation study 1) by replacing the long-

term lifetime return objective (Glife) with the episodic return

(Gep) and 2) by restricting the input of the reward network

to the current time-step instead of the entire lifetime his-

tory. Figure 7 shows that the lifetime history was crucial to

achieve good performance. This is reasonable because all

domains require some past information (e.g., object rewards

in Random ABC, visited locations in Empty Rooms) to pro-

vide useful exploration strategies. It is also shown that the

lifetime return objective was beneficial on Random ABC,

Non-stationary ABC, and Key-Box. These domains require

exploration across multiple episodes in order to find the opti-

mal policy. For example, collecting an uncertain object (e.g.,

object A in Random ABC) is necessary even if the episode

terminates with a negative reward. The episodic value func-

tion would directly penalise such an under-performing ex-

ploratory episode when computing meta-gradient, which

prevents the intrinsic reward from learning to encourage

exploration across episodes. On the other hand, such be-

haviour can be encouraged by the lifetime value function,

as long as it provides useful information to maximise the

lifetime return in the long term.

6. Generalisation via Rewards

As noted above, rewards capture knowledge about what an

agent’s goals should be rather than how it should behave. At

the same time, transferring the latter in the form of policies

is also feasible in our domains presented above. Here we

confirm it by implementing and presenting results for the

following two meta-learning methods:

• MAML (Finn et al., 2017a): A policy meta-learned

from a distributions of tasks such that it can adapt

quickly to the given task after a few parameter updates.

• RL2 (Duan et al., 2016; Wang et al., 2016): An RNN

policy unrolled over the entire lifetime to maximise the

lifetime return, which is pre-trained on a distributions

of tasks.

Although all the methods we implemented including ours

are designed to learn useful knowledge from a distribution

of tasks, they have different objectives. Specifically, the

objective of our method is to learn knowledge that is useful

for training “randomly-initialised policies” by capturing

“what to do”, whereas the goal of policy transfer methods is

to directly transfer a useful policy for fast task adaptation
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Figure 9. Generalisation to new agent-environment interfaces in Random ABC. (a) ‘Permuted’ agents have different action semantics.

‘Extended’ agents have additional actions. (b) ‘AC-Intrinsic’ is the original actor-critic agent trained with the intrinsic reward. ‘Q-Intrinsic’

is a Q-learning agent with the intrinsic reward learned from actor-critic agents. ‘Q-Extrinsic’ is the Q-learning agent with the extrinsic

reward. (c) The performance of the policy transfer baselines with permuted actions during evaluation.

by transferring “how to do” knowledge. In fact, it can

be more efficient to transfer and reuse pre-trained policies

instead of restarting from a random policy and learning

using the learned rewards given a new task. Figure 8 indeed

shows that RL2 performs better than our intrinsic reward

approach. It is also shown that MAML and RL2 achieve

good performance from the beginning, as they have already

learned how to navigate the grid worlds and how to achieve

the goals of the tasks. In our method, on the other hand,

the agent starts from a random policy and relies on the

learned intrinsic reward which indirectly tells it what to do.

Nevertheless, our method outperforms MAML and achieves

a comparable asymptotic performance to RL2.

6.1. Generalise to New Agent-Environment Interfaces

In fact, our method can be interpreted as an instance of

RL2 with a particular decomposition of parameters (θ and

η), which uses policy gradient as a recurrent update (see

Figure 1). While this modular structure may not be more

beneficial than RL2 when evaluated with the same agent-

environment interface, such a decomposition provides clear

semantics of each module: the policy (θ) captures “how to

do” while the intrinsic reward (η) captures “what to do”,

and this enables interesting kinds of generalisations as we

show below. Specifically, we show that “what” knowledge

captured by the intrinsic reward can be reused by many

different learning agents as follows.

Generalise to Unseen Action Spaces We first evaluated

the learned intrinsic reward on new action spaces. Specifi-

cally, the intrinsic reward was used to train new agents with

either 1) permuted actions, where the semantics of left/right

and up/down are reversed, or 2) extended actions, with 4

additional actions that move diagonally. Figure 9a shows

that the intrinsic reward provided useful rewards to new

agents with different actions, though it was not trained with

those actions. This is feasible because the intrinsic reward

assigns rewards to the agent’s state changes rather than its

actions. The intrinsic reward captures “what to do”, which

makes it feasible to generalise to new actions, as long as the

goal remains the same. On the other hand, it is unclear how

to generalise RL2 and MAML in this way.

Generalise to Unseen Learning Algorithms We further

investigated how general the learned intrinsic reward is by

evaluating it on agents with different learning algorithms.

Specifically, after training the intrinsic reward from actor-

critic agents, we evaluated it by training new agents through

Q-learning while using the learned intrinsic reward as de-

noted by ‘Q-Intrinsic’ in Figure 9b. Interestingly, it turns

out that the learned intrinsic reward is general enough to be

useful for Q-learning agents, even though it was trained for

actor-critic agents. Again, it is unclear how to generalise

RL2 and MAML in this way.

Comparison to Policy Transfer Although it is impossi-

ble to apply the learned policy from RL2 and MAML when

we extend the action space or when we change the learning

algorithm, we can do so when we only permute the actions.

As shown in Figure 9c, both RL2 and MAML generalise
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poorly when the action space is permuted for Random ABC,

because the transferred policies are highly biased to the orig-

inal action space. Again, this result highlights the difference

between “what to do” knowledge captured by our approach

and “how to do” knowledge captured by policies.

7. Conclusion

We revisited the optimal reward problem (Singh et al., 2009)

and proposed a more scalable gradient-based method for

learning intrinsic rewards across lifetimes. Through sev-

eral proof-of-concept experiments, we showed that the

learned non-stationary intrinsic reward can capture regu-

larities within a distribution of environments or, over time,

within a non-stationary environment. As a result, they were

capable of encouraging both exploratory and exploitative

behaviour across multiple episodes. In addition, some task-

independent notions of intrinsic motivation such as curiosity

emerged when they were effective for the distribution over

tasks across lifetimes the agent was trained on. We also

showed that the learned intrinsic rewards can generalise

to different agent-environment interfaces such as different

action spaces and different learning algorithms, whereas pol-

icy transfer methods fail to generalise to such changes. This

highlights the difference between the “what” kind of knowl-

edge captured by rewards and the “how” kind of knowledge

captured by policies. The flexibility and range of knowledge

captured by intrinsic rewards in our proof-of-concept experi-

ments encourages further work towards combining different

loci of knowledge to achieve greater practical benefits.
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